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Abstract 

We investigated the effect of Indium (In) doping on the structural and electrical properties of Ti/Au/ 

TiO2:In/n-Si metal-oxide-semiconductor (MOS) devices. Sputtering grown TiO2 thin films on Si 

substrate were doped using two In-films with 15 nm and 50 nm thicknesses leading to two structures 

named Low Indium Doped (LID) sample and High Indium Doped (HID) sample, respectively. XRD 

analysis shows no diffraction pattern related to Indium indicating that In has been incorporated into the 

TiO2 lattice. Current-Voltage (I-V) characteristics show that rectification ratio at 2V is higher for HID 

sample than for LID sample. Evaluated barrier height, ϕB0 , decreased while the ideality factor, n, 

increased with decreasing temperature. Such behavior is ascribed to barrier inhomogeneity that was 

assumed to have a Gaussian Distribution (GD) of barrier heights at interface. Evidence of such GD was 

confirmed by plotting ϕB0versus n. High value of mean barrier ϕ̅B0 and lower value of standard 

deviation (σ) of HID structure are due to indium doping which increases the barrier homogeneities. 

Finally, estimated Richardson constants A* are in good agreement with theoretic values (112 A/cm2K2), 

particularly, for the HID structure. 
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1. Introduction 

Titanium dioxide (TiO2) is an abundantly accessible semiconductor material with high thermic and 

oxidative potential, high refractive index, chemically/thermally stable and low leakage current density 

[1,2]. With its wide bandgap energy (3.20 eV for anatase and 3.02 eV for rutile phase), it has been 

utilized in numerous applications such as photo-catalysis [3], sensors [4], solar cells [5], memory devices 

[6], self-cleaning surfaces [7], water and air purification [8], Schottky barrier diodes (SBDs) [9] and 

photoactive uses under UV light illuminations [10]. Various types of metals and non-metals materials 

have been added to TiO2 to enhance its properties and make it suitable for new device applications [11]. 

Incorporating some metals into TiO2 could inhibit formation of donor/acceptor centers, resulting a 

change in electronic charge carriers concentration and related semiconducting properties in a controlled 

manner [12]. So far, such doping effect has been successful with In, Ag, Cr, Fe, Co, Au, Mn, Ni and Zr 

metals [13]. Among these transition metals, indium (In) is capable to enhance TiO2 properties because 

of its specific characteristics such as various oxidation states (In0, In+1, In+3), higher electron production 

due to its vacant d-orbits, trapping and mobility [14,15]. 

In recent years, experimental studies on TiO2 based SBDs have shown the importance of an insulator 

layer at the metal-semiconductor (M/S) interface [16,17]. Such an interfacial insulating layer impacts 

the device characteristics such as interface state density, ideality factor and Schottky barrier height 



(SBH) [18–21]. To understand the current-conduction mechanisms or formation of the barrier at M/S 

interface, I–V characteristics are investigated over a wide range of temperatures. Altuntaş et al. [22] 

examined Au/TiO2/n-Si SBDs and observed non-ideal current–voltage–temperature (I–V–T) 

characteristics in the temperature range 80–400K. TiO2 was deposited on n-Si substrates by reactive 

magnetron sputtering. This temperature behavior has been explained on the basis of thermionic emission 

(TE) theory with double Gaussian Distribution (GD) of barrier heights (BHs) due to BH inhomogeneities 

at M/S interface. Whereas, metal-doped TiO2 with an interfacial layer in Schottky structures may lead 

to different transport phenomena. Sönmezoğlu et al. [23,24] investigated the electrical characteristics of 

Au/TiO2:Sb/n-Si metal-oxide-semiconductor (MOS) device, and concluded that Fowler–Nordheim 

tunneling is the dominant current-conduction mechanism due to a large defect density at the interface. 

Taşdemir et al. [13] investigated the ideality factor (n), barrier height (𝜙𝐵0), series resistance (Rs), shunt 

resistance (Rsh) and interface states density (Nss) of Al/TiO2/p-Si  and Al/TiO2:Zr /p-Si structures at room 

temperature, and found that Zirconium as a dopant improves the rectifying ratio and increases the barrier 

height. Al Saqri et al. [25] examined defects in indium doped TiO2 thin films grown on n-Si by e-beam 

evaporation using current-voltage (I-V), capacitance-voltage (C-V) and Deep Level Transient 

Spectroscopy (DLTS). They reported that both the reverse-bias leakage current and free carrier 

concentration increase with increasing indium doping. To further expand Al Saqri et al. [25] work, a 

thorough study of the same Schottky structures Ti/Au/15nm In/TiO2 TFs/n-Si named Low Indium Doped 

sample (LID) and Ti/Au/50nm In/TiO2 TFs/n-Si called High Indium Doped sample (HID) is undertaken 

using forward and reverse-bias I–V characteristics over the temperature range 80 K–400 K. The impact 

of temperature and  Indium as dopant on TiO2 on electrical Schottky parameters (n, 𝜙𝐵0, Rs), on forward 

and reverse current transport mechanism, on barrier inhomogeneity and on interface state density are 

obtained. 

2. Sample structure 

RF magnetron sputtering technique was used to deposit 100 nm thin films of TiO2 on (100) n-type silicon 

substrates. The samples were deposited using a 2-inch TiO2 target at a temperature of 500 ˚C in pure 

Argon ambient without addition of oxygen. The chamber was evacuated to a high vacuum of less than 

1×10-8 Torr. The substrate was rotated during the deposition at a low speed to enhance the thickness 

uniformity of the films. Substrates were mounted on 300 mm stainless steel rotating disk where the 

distance between target and substrate was 150 mm. High purity argon gas (99.999%) was introduced at 

a rate of 22 sccm as an inert gas for plasma. Before deposition, the samples were pre-sputtered in argon 

plasma for 10 mins to remove any contaminants. The working pressure was set to 10-3 Torr and RF 

power was fixed at 150 W. Then, 15 and 50 nm thick In-metal films were deposited by thermal 

evaporation of 99.999% pure In upon TiO2 film to change its doping concentration. In order to 

incorporate the indium into the TiO2 lattice, structures were annealed for 30 minutes at 500 °C with a 15 

°C/min heating and cooling ramp. Ohmic contact was formed using thermal evaporation of Al on the 

back-side of Si substrates. 500 μm diameter circular Schottky contacts were obtained by thermal 

evaporation of Titanium (Ti)-gold (Au) over TiO2 doped films. The schematic diagram of the fabricated 

Ti/Au/TiO2:In/n-Si devices is shown in Fig.1. 

The crystal structure of In-doped TiO2 films was examined with an ALTIMA IV X-ray diffractometer 

using Cu Kα radiation (λ = 1.5405 A), operating at 40 kV and 30 mA. I-V-T characteristics in the 

temperature range 80-400 K are performed in a Leybold-Heraeus closed-cycle helium cryostat using a 

Lakeshore 340 temperature controller having a 0.001 K sensitivity. Concentration of free charge carriers 

was determined using reverse-bias C-V characteristics at 1 MHz with an Agilent LCR meter (4980A) 

and a DC signal of 30mV. 
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Fig.1. Schematic diagram of Ti/Au/TiO2:In/n-Si structure. 

3. Results and discussion  

3.1 XRD studies of Indium doped TiO2 thin films 

The crystal quality of both LID and HID structures was examined using X-ray diffraction (XRD). Results 

are shown in Fig.2.a and Fig.2.b, respectively. All peaks in the XRD pattern have been identified using 

ASTM data. In Fig.2.a, peaks at 38.1° and 38.7° (2θ scale) arise from (004) and (112) reflections of 

TiO2 anatase phase, respectively. Peaks at 30.5°, 43.7°, and 45.6° correspond to (222), (422) and (134) 

orientations arising from In2O3 resulting from Oxygen atoms and Indium doping atoms bounding. As 

illustrated in Fig.2.b, three main peaks are observed in the samples with 50 nm Indium film thickness, 

namely, (112) for TiO2 anatase phase and (222)-(134) for In2O3. It is worth pointing out that (004) TiO2 

and (422) In2O3 peaks identified in sample LID are not present in sample HID. All prepared devices 

demonstrated sharp and intense peak for (112) TiO2 orientation indicating that synthesized In-doped 

TiO2 films have good crystallinity. Moreover, the favored film orientation is (112). The absence of 

diffraction pattern related to Indium indicates that In has been incorporated in the TiO2 lattice. 
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Fig. 2. X-ray diffraction patterns of (a) LID and (b) HID structures. 

3.2 I-V characteristics  

TE theory predicts that electrons, with energy higher than the top of the barrier, will be capable of 

crossing the barrier. For a M/S structure with an interfacial insulator/oxide layer native or deposited, the 

TE current (V ≥ 3kT/q) relationship is given as [18,26,27]  

𝐼 = 𝐼0 [ 𝑒𝑥𝑝 (
𝑞𝑉−𝐼𝑅𝑠

𝑛𝑘𝑇
) − 1]  (1) 

where q is electronic charge, Rs is series resistance, n is ideality factor, IRs is the voltage drop across 

series resistance and I0 is saturation current. I0 is given as: 

𝐼0 = 𝐴∗𝐴𝑇2 𝑒𝑥𝑝  (−
𝑞 𝜙𝐵0

𝑘𝑇
)  (2) 



where k, T, A∗, A and 𝜙𝐵0 are Boltzmann constant, temperature in Kelvin, effective Richardson constant 

(112 A.cm−2K−2 for n-type Si [26,27]), area of rectifier contact and zero bias barrier height, respectively. 

𝜙𝐵0 is given from Eq. (2) as: 

𝜙𝐵0 =
𝑘𝑇

𝑞
𝑙𝑛 (

𝐴𝐴∗𝑇2

𝐼0
)  (3) 

The ideality factor is a measure of diode conformity to pure thermionic model and is given by:  

𝑛 =
𝑘𝑇

𝑞
 𝑙𝑛 (

𝑑(𝑉−𝐼𝑅𝑠)

𝑑 𝑙𝑛 𝐼 
)  (4) 

Electrical I–V measurements were performed in the temperature range 80–400 K with 20 K steps. Fig.3 

illustrates the semi-logarithmic forward and reverse I-V characteristics for LID and HID structures. For 

the two samples, it is found that forward bias LnI–V plots are not exactly linear and display a downward 

concave curvature at high voltage due to Rs rather than interface states continuum [9,28,29]. 

Furthermore, in the reverse bias condition, HID sample shows saturation ‘’soft’’ behavior as a function 

of bias, which can be assigned to the existence of a native oxide or deposited interlayer between the 

metal and n-Si and image force lowering of barrier height  [30,31]. At room temperature, the rectifying 

ratio between reverse and forward bias current RR = (IF/IR) at 2V is estimated to be 9 for LID and 36 for 

HID. It is important to note that RR value is highest in HID sample. This is one of the indications that 

the interface charges between In-doped TiO2 and n-Si are the lowest in HID sample. 
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Fig. 3. Semi-logarithmic I–V plots of (a) LID and (b) HID devices in the temperature range of 80-400 

K at 20 K intervals. 

As determined from experimental forward I-V analysis, 𝑅𝑠 values ranged from 482.65 kΩ to 23.84 kΩ 

and from 2.82 MΩ to 27.49 kΩ when the temperature was raised from 80 to 400 K for LID and HID, 

respectively. Sample with higher In-doping has higher 𝑅𝑠 values. Series resistance values are higher 

because of the insulator effect that become more visible at low temperature [19]. Among possible sources 

insulator thickness, defects, and non-uniform interface distribution [32,33]. Experimental values of 

barrier height 𝜙𝐵0 and ideality factor n at various temperatures are calculated using Eq.3 and Eq.4, 

respectively. They are shown in Fig. 4. 
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Fig. 4. Temperature evolution of Ideality factor and Zero-bias barrier height of (a) LID and (b) HID. 

Fig.4 shows that the ideality factor exhibits an exponential-like increasing trend with decreasing 

temperature. Such behavior has been reported previously [9,22,34]. 𝜙𝐵0 decreases with decreasing 

temperature for both devices at almost the same rate. 𝜙𝐵0 and n changed from 0.16 eV and 7.92 (at 80 

K) to 0.91 eV and 2.32 (at 400 K) for LID. These values changed from 0.21 eV and 6.70 (at 80 K) to 

1.10 eV and 1.95 (at 400 K) for HID. Variation of 𝜙𝐵0 and n with temperature shows that current 

transport is temperature dependent and is far away from simple thermionic emission over the barrier at 

low temperatures. As temperature increases, an ever-increasing number of electrons have sufficient 

thermal energy to surmount higher barriers and thermionic emission dominates [35,36]. n values far 

bigger than unity are attributed to In-doped TiO2 interfacial layer and specific density distribution of 

surface states (Nss) [9,19,28,37]. At room temperature, 𝜙𝐵0 is 0.70 eV for LID and 0.87 eV for HID. The 

difference is due to effective bandgap dropping in the In-Ti-O material due to the incorporation of 

Indium. This value is bigger than those achieved with conventional metal/semiconductor contacts such 

as Al/p-Si structure, where 𝜙𝐵0=0.50 eV [38]. The case may be ascribed to an oxide interlayer modifying 

the effective barrier height by influencing the space charge region of the substrate [39]. According to 

Tung’s theory [40], there is a straight correlation between experimental 𝜙𝐵0 and n as shown in Fig.5. 
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Fig.5.  𝜙𝐵0versus n for (a) LID and (b) HID structures at different temperatures. 



Fig.5 shows two linear regions indicating lateral inhomogeneities in barrier heights [22,41,42] and are 

attributed to the non-uniformity of interfacial charges, grain boundaries, a mixture of various phases, 

facets, defects, etc. [16,37,43–45]. One of such interface atomic structures may become dominant at a 

specific temperature and voltage region. The 𝜙𝐵0 versus n plot demonstrates two linear regions called 

Region (I) (from 80K to 180K) and Region (II) (from 200 K to 400 K). In Region (I), extrapolation of 

experimental 𝜙𝐵0(𝑛) line to n = 1 gives 𝜙𝐵0 = 0.60 eV for LID and 𝜙𝐵0=0.74 eV for HID. In region 

(II), extrapolation of experimental 𝜙𝐵0(𝑛) line to n = 1 gives 1.28 eV for LID and 1.50 eV for HID, 

respectively. Additionally, it is observed that 𝜙𝐵0 value of Region (I) and (II) increase as indium doping 

is increased. This result proves that indium doping plays a significant role in enhancing the electrical 

properties and barrier homogeneity of devices. Sellai et al. [46] pointed out that barrier height found by 

extrapolation to n=1 may be considered as a reasonably good estimate for the homogeneous barrier 

height. Thus, the barrier of HID sample is more homogeneous, because the 𝜙𝐵0 value at n = 1 for both 

regions are higher than those of LID sample. 

Inhomogeneities in SBHs can also be shown through ideality factor “T0 effect or anomaly” [47].  When 

the temperature is lowered, the current is dominated by fewer low-SBH regions with lower effective 

SBHs and larger ideality factors [47,48]. The origin of T0 effect is also attributed to interface state density 

distribution, quantum mechanical tunneling and image force lowering [49]. The ideality factor of diodes 

showing this anomaly varies linearly with temperature as:  

𝑛(𝑇) = 𝑛0 +
𝑇0

𝑇
                                  (5) 

where n0 and T0 are constants that are independent of temperature and voltage over a wide temperature 

range [50,51]. In order to investigate temperature dependence of ideality factor, n versus 1000/T is 

plotted and shown in Fig.6. This figure illustrates that at higher temperatures, n is nearer to ideal case 

(n=1), whereas at low temperatures it increases with decreasing temperature. n exhibits a linearly change 

with reverse temperature. 𝑛0 and 𝑇0 values obtained from Fig.6 for LID are 0.99 and 555 K, respectively. 

These values are higher than those obtained for HID, namely 𝑛0 =0.77 and 𝑇0= 484 K. The high value 

of 𝑇0 might be ascribed to an interfacial native oxide layer. Without interfacial oxide, Sharma et al. [52]  

found a value of 205 K for Au/n-Si Schottky diode prepared by ion beam sputtering. The origin of T0 

effect is explained by the existence of a native or deposited interfacial layer, image force lowering, 

interface state density distribution, and barrier inhomogeneity at the M/S interface [27,40,44,53]. 
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Fig.6. Linear behavior of n versus 1000/T of (a) LID and (b) HID structures. 



The increase of 𝜙𝐵0 and decrease of n with increasing temperature may also originate from a deviation 

from the TE theory. Proposing that thermionic field emission (TFE) and field emission (FE) tunneling 

mechanisms exist at low temperatures, tunneling ideality factor 𝑛𝑡𝑢𝑛 is given as [27]: 

𝑛𝑡𝑢𝑛 =
𝑞 𝐸00

𝑘𝑇
coth (

𝑞𝐸00

𝑘𝑇
) =

𝑞𝐸0

𝑘𝑇
  (6) 

 

 Where 𝐸00 is the characteristic energy and is given by: 

       𝐸00 =
ℎ

4𝜋
(

𝑁𝐷

𝑚𝑒
∗

𝑠
)

1

2
    (7) 

where me
∗ = 0.19 m0 is effective mass of electrons, εs is permittivity of Si (=11.8 ε0) and ND is free 

charge carrier concentration (calculated from reverse-bias C-V characteristics at 1 MHz as 1.89×1016 

cm-3 and 5.43×1015 cm-3 for LID and HID, respectively) [26]. Usually, field emission (FE) is expected 

when kT ≪ qE00, and thermionic field emission (TFE) is expected when kT ≈ qE00 and pure thermionic 

emission (TE) occurs when kT ≫ qE00. Theoretical values of E00were derived from Eq. (7) and found 

to be 1.70 meV and 0.91 meV for LID and HID, respectively. According to these values, the conduction 

mechanism at all temperatures should be governed by TE mechanism. However, the experimental values 

of E00 are generally higher because of the electric field enhancement at the semiconductor surface  [54]  

or increasing of density of states at MS interface [55]. Fig.7 displays ntun versus temperature at different 

E00 estimated values. Filled circles represent n values calculated experimentally from I-V for LID and 

HID samples, respectively. These values match ntun values and are found to be between 50 to 80 meV 

for LID and 50 to 60 meV for HID samples, respectively. Both samples have a tunneling parameter 

value higher than kT/q at all temperature ranges. This indicates that FE is a more effective current 

transport mechanism rather than TE in the Ti/Au/TiO2:In/n-Si structure. This can be one reason of the 

non-ideal behavior of the structure. 

50 100 150 200 250 300 350 400

1

2

3

4

5

6

7

8

9

10

11

12

 

 

 n 
exp

 E
00

=40 meV

 E
00

=50 meV

 E
00

=60 meV

 E
00

=70 meV

 E
00

=80 meVn
tu

n

Temperature (K)

(a) LID

50 100 150 200 250 300 350 400 450

1

2

3

4

5

6

7

8

9

10

11

12

 n
exp

 E
00

=30 meV

 E
00

=40 meV

 E
00

=50 meV

 E
00

=60 meV

 E
00

=70 meV

 

 

n
tu

n
 

Temperature (K)

(b) HID

 

Fig.7. Temperature dependent tunneling ideality factor for various 𝐸00 values for (a) LID and (b) HID 

structures. 

3.3 Current mechanisms in reverse bias 

To investigate current transport mechanisms dominating reverse leakage current (IR) through the 

structures, Poole-Frenkel emission (PFE) and Schottky emission (SE) models are considered [56–58]. 

Poole-Frenkel barrier lowering leads to the reverse leakage current given by: 

𝐼𝑅 ∝ 𝐸 exp (
1

𝑘𝑇
√

𝑞𝐸

𝜋 𝑖
)             (8) 

https://www.sciencedirect.com/science/article/pii/S2452177917300026#f0025


and the contribution to reverse current by Schottky lowering is given by: 

𝐼𝑅 ∝ 𝑇2 exp (
1

2𝑘𝑇
√

𝑞𝐸

𝜋 𝑖
)  (9) 

where E is maximum electric field in the junction. The plot of derived ln(IR/E) and ln(IR/T2) versus E1/2 

for various temperature (80 K-400 K) for both LID and HID samples are shown in Fig.8 and Fig.9, 

respectively. Plots give a linear behavior for Poole-Frenkel and Schottky emission and the slope can be 

expressed as [58]: 

𝑆 =
𝑞

𝑛𝑘𝑇
√

𝑞

𝜋 𝑖
    (10) 

where n = 1 for PFE and n = 2 for SE. Theoretically calculated slopes and slopes obtained from the fits 

for both PFE and SE for each temperature are tabulated in Tab.1. 
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Fig.8. ln(IR/E) versus E1/2 for PFE mechanism of (a) LID and (b) HID sample in reverse bias region. 
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Fig.9. ln(IR/T2) versus E1/2 for SE mechanism of (a) LID and (b) HID samples in reverse-bias region. 

Tab.1. Calculated and experimental slopes for PFE and SE mechanisms at different temperatures in the 

range 80-400 K for LID and HID structures. 

 

T(K) 

LID sample HID sample 

FPE (V/cm)-1/2 SE (V/cm)-1/2 FPE (V/cm)-1/2 SE (V/cm)-1/2 



Calculated Experimental Calculated Experimental Calculated Experimental Calculated Experimental 

80 0.0159 0,0140 0.0100 0.0078 0.0159 0.0158 0.0079 0.0242 

100 0.0127 0.0115 0.0063 0.0081 0.0127 0.0148 0.0063 0.0231 

120 0.0106 0.0111 0.0053 0.0088 0.0106 0.0143 0.0053 0.0225 

140 0.0091 0.0106 0.0045 0.0078 0.0091 0.0138 0.0045 0.0220 

160 0.0079 0.0099 0.0040 0.0071 0.0079 0.0135 0.0040 0.0217 

180 0.0071 0.0093 0.0035 0.0063 0.0071 0.0136 0.0035 0.0217 

200 0.0063 0.0089 0.0032 0.0059 0.0063 0.0134 0.0032 0.0215 

220 0.0058 0.0085 0.0029 0.0055 0.0058 0.0135 0.0029 0.0217 

240 0.0053 0.0083 0.0026 0.0050 0.0053 0.0138 0.0026 0.0219 

260 0.0049 0.0083 0.0024 0.0051 0.0049 0.0142 0.0024 0.0223 

280 0.0045 0.0082 0.0023 0,0052 0.0045 0.0144 0.0023 0.0225 

300 0.0042 0.0083 0.0021 0,0052 0.0042 0.0152 0.0021 0.0233 

320 0.0040 0.0085 0.0020 0.0052 0.0040 0.0159 0.0020 0.0241 

340 0.0037 0.0084 0.0019 0,0054 0.0037 0.0167 0.0019 0.0248 

360 0.0035 0.0084 0.0018 0,0055 0.0035 0.0172 0.0018 0.0253 

380 0.0033 0.0083 0.0017 0,0055 0.0033 0.0175 0.0017 0.0256 

400 0.0032 0.0084 0.0016 0,0056 0.0032 0.0150 0.0016 0.0231 

Based on the values in Tab.1, experimental slopes of LID structure are consistent with PFE in 

temperature range 80-200 K and SE in temperature range of 220-400 K. This suggests that in lower 

temperature region (T<220 K) the leakage current is observed to be dominated by PFE with a donor-like 

trap and thermal carrier detrapping from bulk oxide into conduction band. Therefore, this is a bulk-

limited conduction process [26,29]. In this mechanism, conduction occurs due to defect states and a very 

small amount of carriers pass over barrier. Whereas in higher temperature region (T>220 K) Schottky 

emission is dominant. In this mechanism, carriers absorb thermal energy and are then emitted over the 

potential barrier at the interface [59], while a few carriers tunnel through the interface barrier. On the 

other hand, slopes of HID sample determined from the fit in all temperature range are near theoretical 

PFE value. Hence, reverse current in this sample in all temperature range is dominated by PFE. The wide 

distribution of traps in band gap may be ascribed to structural defects and/or impurities that lead to the 

enhancement in trapping/detrapping of charge carriers. Obviously, HID has more defect than LID 

sample, that made it more sensitive to temperature in the reverse bias. The origin of these defects has 

been reported by Setviń et al. to be donor-like traps within the TiO2:In layer, most likely oxygen 

vacancies [60]. 

3.4 Interface barrier analysis 

For BH evaluation, one may also make use of Richardson plot of saturation current. 𝐼0 expression can 

be re-organized by rewriting Eq. (2) as: 

ln (
𝐼0

𝑇2) = ln(𝐴𝐴∗) −
𝑞𝜙𝐵0

𝑘𝑇
  (11) 

Plots of ln(Io/T
2) versus 1000/T for LID and HID devices are depicted in Fig. 10. 
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Fig.10. Richardson plots of ln(I0/T
2) versus 1000/T for (a) LID and (b) HID Schottky diodes. 

As can be seen in Fig.10 the curves are non-linear over the experimental temperature range but display two 

linear regions (I) and (II) with various slopes and intercepts. Similar behaviors have been reported by 

several authors  [22,34,42,45,48]. They were attributed to spatial inhomogeneous barrier heights and 

potential fluctuations at the interface that comprise low and higher barrier areas. When the temperature 

is lowered, the current will flow preferentially through the lower barriers in the potential distribution 

[22,23]. As shown in Fig.10, linear fitting of experimental data at low temperature region (I) (80-180K) 

gives ϕB0 and A* values from the slope and intercept. These values are 0.0014 eV and 1.99 × 10−10 

A/cm2 K2 for LID and 0.0066 eV and 1.79 × 10−13A/cm2 K2 for HID, respectively. While at high 

temperature region (II) (200-400K) these values were obtained as 0.0609  eV and 4.07 × 10−9 A/cm2 

K2 for LID, and as 0.2932 eV and 3.75 × 10−8A/cm2 K2 for HID, respectively. On the other hand, the 

values of Richardson constants are much lower than the well-established value of 112 Acm−2K−2 for n-

type Si and this can be explained by the lateral inhomogeneity of the barrier [61]. To further investigate 

barrier inhomogeneity, the model of Werner and Güttler [44]  was used. This model introduces a GD in 

the BH with a mean value ϕ̅B0 and a standard deviation σ. This GD of BHs and the ideality factor can 

be expressed as a function of temperature and are given by following equations [62,63]: 

𝜙𝐵0 = 𝜙𝐵0
̅̅ ̅̅ ̅ −

𝑞𝜎2

2𝑘𝑇
  (12) 

(
1

𝑛
− 1) = −𝜌2 +

𝑞𝜌3

2𝑘𝑇
  (13) 

where 𝜌2 is voltage coefficient of mean barrier height, and 𝜌3 is voltage coefficient of standard deviation. 

It is assumed that �̅�𝐵0 as well as 𝜎2are linearly bias dependent on Gaussian parameters, such as �̅�𝑏(𝑉) =
�̅�𝐵0 + 𝜌2𝑉 and standard deviation 𝜎2(𝑉) = 𝜎0

2 + 𝜌3𝑉 [16,44,64]. Usually the temperature reliance of 

𝜎 is small and can be neglected. The plots of 𝜙𝐵0 and (𝑛−1 − 1) as a function of q/2kT are shown in 

Fig.11 for LID and HID samples, respectively.  
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Fig.11. Zero-bias barrier height and ideality factor vs q/2kT curves of (a) LID, (b) HID devices.  

Fitting experimental I–V data to Eqs (3) and (4) gives ϕB0 and n, respectively, which should obey Eqs. 

(12) and (13). Thus, experimental ϕB0 versus q/2kT plot should be a straight-line with intercept at the 

ordinate determining ϕ̅B0and slope giving σ. In our case, two straight lines rather than a single one, with 

a transition occurring at 180 K, are found. Intercepts and slopes gave two sets of ϕ̅B0 and σ values with 

0.64 eV and 0.0840 V in Region (I) and 1.38 eV and 0.1834 V in Region (II) for LID sample. For HID 

structures these values are 0.71 eV and 0.0834 V in Region (I) and 1.52 eV and 0.1820 V in Region (II). 

The standard deviation σ is a measure of barrier homogeneity; a lower σ value corresponds to a more 

homogenous barrier height. Accordingly, HID samples have better homogeneity and excellent electrical 

properties when contrasted with LID samples. Chand and Kumar [65] argued that the decrease of 

standard deviation leads to an increase in barrier height and a decrease in ideality factor; the same 

behavior has been observed here. 

This study demonstrates that Au/TiO2:In/n-Si structures have Double-Gaussian distribution. The 

presence of a Double-Gaussian can be credited to the nature of the inhomogeneities themselves in the 

two cases. This may include variation in the interface composition/phase, interface quality, electrical 

charges, non-stoichiometry, etc. They are important enough to electrically impact the current–voltage 

(I–V) characteristics of the Schottky diodes, at especially low temperatures [66]. Thus, I–V 

measurements at very low temperatures are capable of revealing the nature of barrier inhomogeneities 

present in the contact area. That is, the presence of a second Gaussian distribution at very low 

temperatures may conceivably arise due to some phase change taking place on cooling below a certain 

temperature. Furthermore, the temperature range covered by each straight-line endorses the regime 

where corresponding distribution is effective.  In the same way, (n-1-1) versus q/2kT plots show for both 

temperature ranges two barrier height distributions. Voltage coefficients ρ2 and  ρ3 values are acquired 

from intercepts and slopes of (n-1-1) versus q/2kT plots shown in Fig.11. Values for LID are 0.6721 and 

-0.0029 in Region (I), whereas these values are 0.4223 and -0.0113 in Region (II), respectively. For HID 

these coefficients change to 0.6203 and -0.0033 in Region (I), and 0.3063 and -0.0136 in Region (II), 

respectively. All these values are shown in Tab.2 for comparison purposes. 

Tab.2. Mean barrier height �̅�𝐵0, standard deviation 𝜎 and voltage deformation coefficients ( 𝜌2 and  𝜌3) 

for LID and HID samples. 

 �̅�𝑩𝟎 (eV) 𝝈 (V)  𝝈𝟐 (V2)  𝝆𝟐 (V)  𝝆𝟑 (V) 

Region 

(I) 

Region 

(II) 

Region 

(I) 

Region 

(II) 

Region 

(I) 

Region 

(II) 

Region 

(I) 

Region 

(II) 

Region 

(I) 

Region 

(II) 



LID 0.64 1.38 0.0840 0.1834 0.0070 0.0336 0.6721 0.4223 -0.0029 -0.0113 

HID 0.71 1.52 0.0834 0.1820 0.0069 0.0331 0.6203 0.3063 -0.0033 -0.0136 

As illustrated in Tab.2, the negative values of  ρ3 in Region (II) are greater than those of Region (I) for 

both samples, suggesting that Region (II) is wider and has a relatively higher BH with  smaller ρ2 and 

larger −ρ3. Thus, it could be argued that Region (I) at very low temperatures may possibly arise due to 

some phase change taking place on cooling below a certain temperature. Furthermore, it is found that 

values of  σ2,  ρ2 and  ρ3 decreased by increasing indium doping. Thus, ϕ̅B0 value increases as the 

indium doping is increased. However, σ2 value of HID sample decreased with decreasing ρ3 leading to 

an increase in barrier height. This confirms that HID samples have better barrier homogeneity and 

electrical properties than LID samples. 

As mentioned above, the conventional Richardson ln(Io/T
2) versus 1000/T plot has demonstrated two 

linear regions. According to Gaussian distribution of the BH, Eq. (11) changes to: 

ln (
𝐼0

𝑇2) − (
𝑞2 𝜎2

2𝑘2𝑇2) = ln(𝐴𝐴∗) −
𝑞�̅�𝐵0

𝑘𝑇
  (14) 

Fig.12 shows modified ln(I0/T2) − q2σ2/2k2T2 versus q/kT plots of LID and HID structures. This 

figure shows two straight lines, and according to Eq.(14), the slope of these straight lines yields the 

mean BHs ϕ̅B0 and intercepts ln(AA∗) at ordinate and thus A∗ for a given rectifier contact area A. The 

ln (I0/T2) − ((q2 σ2)/(2k2T2 )) values were calculated for both σ values obtained in Region (I) and 

Region (II). For LID samples, ϕ̅B0 and A∗ were found to be 0.63 eV and 198.11 A/cm2 K2 in the 

temperature range 80-180 K, and 1.35 eV and 124.91 A/cm2 K2 in the range 200-400 K, respectively. 

For HID samples, ϕ̅B0 and A∗ values are 0.72 eV and 141.89 A/cm2 K2 in 80–180 K range, and 1.50 eV 

and 111.68 A/cm2K2 in 200-400 K range, respectively. It is clear that zero-bias mean BH values are very 

close to mean BHs obtained from 𝜑𝐵0versus q/2kT plots in Fig.11. The obtained Richardson constant 

values are close to theoretical value of 112 A/cm2 K2 for n-Si especially in Region (II) for HID samples.  

20 40 60 80 100 120 140 160

-110

-100

-90

-80

-70

-60

-50

-40

Y
2
=-1,35303 x-1,40537

Y
1
=-0.63975 x-0.9442

A*=124 A.cm
-2
.K

-2

 

 

ln
(I

0
/T

2
)-

(q
2


2
/2

K
2
T

2
) 

 (
A

.K
2
)

q/kT (eV)

(a) LID


B01

=0.63 eV 

A*=198 A.cm
-2
.K

-2


B02

=1.35 eV 

20 40 60 80 100 120 140 160

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

Y
2
=-1.50777x-1.51739

Y
1
=-0.72255 x-1.28498

A*=111 A.cm
-2
.K

-2


B02

=1.50 eV 

A*=140 A.cm
-2
.K

-2


B01

=0.72 eV 
 

 

ln
(I

0
/T

2
)-

(q
2


2
/2

K
2
T

2
) 

 (
A

.K
2
)

q/kT  (eV)

(b) HID

 

Fig.12. Modified Richardson  ln(I0/T2) − q2σ0
2/2(k2T2) vs q/kT plots for (a) LID and (b) HID 

structures. 

3.5 Effect of interface state density and series resistance   

 

 

 



Energy density distribution profiles of interface states (Nss) for Ti/Au/TiO2:In/n-Si structures were 

obtained by taking into account voltage dependent BH and ideality factor, are given in Fig.13. According 

to Card and Rhoderick [18], for M/S type SBD with a native or deposited interfacial layer, Nss can be 

simplified and is given by: 

𝑁𝑠𝑠(𝑉) =
1

𝑞
[ 𝑖

𝛿
(𝑛(𝑉) − 1) − 𝑠

𝑊𝐷
]  (15) 

where δ is the thickness of interfacial oxide layer, WD is space charge width, εs (= 11.8 ε0) and εi(=
48 ε0 TiO2  [18]) are permittivity of semiconductor and interfacial layer, respectively. WD values of LID 

and HID structures were calculated from C-2 vs reverse bias V at 1 MHz, and are found to be 2.87×10-5 

cm and 6.40×10-5 cm, respectively. δ values were found from the interfacial layer capacitance at 1 MHz 

(Ci = εiε0A/δ) as 93 nm and 234 nm for LID and HID, respectively. n(V) is the voltage-dependent 

ideality factor and is given by [18,26,27,29]: 

𝑛(𝑉) =
𝑞

𝑘𝑇
(

𝑑(𝑉−𝐼𝑅𝑠)

𝑑 ln(
𝐼

𝐼0
)

)  (16) 

In n-type semiconductors, the energy of the interface states Ess with respect to the top of the valence 

band at the surface of the semiconductor is given by [18] [29] : 

𝐸𝑐−𝐸𝑠𝑠 = 𝑞(𝜙𝑒 − 𝑉)  (17) 

where V is the voltage drop across the depletion layer and 𝜙𝑒  is the effective barrier height. The voltage 

dependence of 𝜙𝑒 is contained in the ideality factor n through the relation [18,26,27,29]:  

𝑑𝜙𝑒

𝑑𝑣
= 𝛽 = 1 −

1

𝑛(𝑉)
  (18.a) 

where 𝛽 is the voltage coefficient of 𝜙𝑒 . The effective barrier height 𝜙𝑒 is given by: 

𝜙𝑒 = 𝜙𝑏 + 𝛽(𝑉)  (18.b) 
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Fig.13 A plot of 𝑁𝑠𝑠 versus 𝐸𝑐−𝐸𝑠𝑠 for (a)  LID and (b) HID Schottky diode with temperatures 

ranging from 80 to 400 K. 

Fig.13 shows 𝑁𝑠𝑠 versus 𝐸𝑐−𝐸𝑠𝑠 plots at various temperatures for LID and HID samples. As can be seen 

from these plots, Nss value decreases with increasing Ec−Ess as a function of temperature. 
Moreover, for LID structure, Nss shifts from 1.66×1014 eV-1cm-2 (Ec-0.13) to 6.51×1013 eV-1cm-2 (Ec-

0.16) at 80 K, whereas Nss magnitude varied from 4.04×1013 eV-1cm-2 (Ec-0.79) to 3.74×1013 eV-1cm-

2 (Ec-0.89) at 400 K. For HID samples these values changed from 3.22×1013 eV-1cm-2 (Ec-0.14) to 



1.79×1013 eV-1cm-2 (Ec-0.19) at 80 K and from 4.98×1012 eV-1cm-2 (Ec-0.71) to 2.56×1012 eV-1cm-2 (Ec-

1.04) at 400 K. Such behavior follows ideality factor variation with temperature and is due to lateral 

inhomogeneities of barrier height at MS interface [67]. Akkal et al. [68] explained this behavior by 

molecular restructuring and reordering of MS interface due to the effect of the temperature. Clearly, Nss 

values of HID are lower than those of LID samples, indicating that n-Si surface is efficiently passivated 

by the 50nm In/TiO2 TF interlayer, which leads to a saturation of dangling bonds on the surface of Si. 

Saturation current is reduced by increasing indium doping and barrier height increases as indium doping 

increases. Therefore, it can be concluded that indium doping influences NSS values. 

Furthermore, both  Rs and shunt resistance (Rsh) are also important parameters that govern the electrical 

properties and influence the performance of Schottky barrier junction. In an ideal case, Rs value is as 

low as possible, whereas Rsh is as high as possible. Rs and Rsh values of LID and HID structures were 

determined from structure resistance (Ri) versus applied bias voltage (V) plots that are shown in Fig.14 

It has been observed that, for all temperatures and at sufficiently high forward and reverse bias voltages, 

Ri reaches constant values, which corresponds to Rs and Rsh values, respectively. Thus, LID Rs values 

varied from 703.31 kΩ to 25.40 kΩ from 80 K to 400 K. while in HID sample Rs values varied from 

9180.46 kΩ to 56.66 kΩ in the same temperature range. A low value of Rs in LID can be accomplished 

by either having low SBH at M/S interface or by enhanced tunneling through the BH as in heavy doped 

n-type Si [69], or by transportation of charge carriers through inversion layer. On the other hand, Rsh 

can originate from a leaky oxide and leakage current. Rsh values are found to be about 105 to 106 Ω for 

LID structures and about 108 to 109 Ω for HID devices. 
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Fig. 14. Structure resistance (Ri) vs V plots of (a) LID and (b) HID SBDs.  

 

4. Conclusions 

In this investigation, Ti/Au/TiO2:In/n-Si structures with two different indium doping were studied using 

XRD and I-V measurements performed in the temperature range 80K-400K. XRD diffraction patterns 

show only TiO2 peaks and some peaks of In2O3 resulting from bounding between Oxygen and Indium 

atoms. Current-voltage characteristics show that HID samples have higher rectification ratio value at 2V 

and lower saturation current compared to LID samples. Evaluated experimental 𝜙𝐵0, n, Nss, Rs and Rsh 

assuming TE mechanism indicate strong temperature and applied bias voltage dependence. Results show 

that n decreases while 𝜙𝐵0 increases with increasing temperature. To explain such behavior, both 𝜙𝐵0  

versus n and (n-1- 1) versus q/2kT characteristics were analysed in order to provide evidence of a 

Gaussian distribution (GD) of BHs. Corresponding �̅�𝐵0 and σ values show that lower value of σ 

corresponds to a more homogenous barrier height. Hence, HID structures have better homogeneity and 

excellent electrical properties compared to LID ones. Furthermore, the modified ln(I0/T2) −



q2σ0
2/2(k2T2) versus q/kT plots gave consistent �̅�𝐵0 values, and experimental value of A* for HID are 

very close to the theoretical value of 112 A/(cm K)2 for n-Si. The analysis of reverse conduction 

mechanism indicates that for LID structure, the leakage current flow in lower temperature region 

(T<220K) is due to FPE, whereas SE is dominant in higher Temperature range (T>220K). On the other 

hand, reverse current in HID sample in all temperature range is dominated by PFE. Obviously, HID has 

more defect than LID sample, that made it more sensitive to temperature in the reverse bias. Calculated 

interface states Nss density for both sample is ~ 1013 eV− 1cm−2 and can be considered suitable for 

semiconductor devices. Saturation current is reduced and barrier height increases as indium doping 

increases. These results influence NSS values. It is found that indium doping plays a role in enhancing 

electrical properties of devices by improving interface barrier homogeneity. 
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