The Journal of Infectious Diseases Reviving phage therapy for the treatment of Cholera --Manuscript Draft--

Manuscript Number:	JID-64864R1
Full Title:	Reviving phage therapy for the treatment of Cholera
Short Title:	Phage therapy of cholera
Article Type:	Major Article
Section/Category:	Bacteria
Keywords:	bacteriophage therapy; cholera; phage; infant rabbit; prophylaxis; Vibrio cholerae
Corresponding Author:	Robert Atterbury University of Nottingham Sutton Bonington, Nottingham UNITED KINGDOM
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	University of Nottingham
Corresponding Author's Secondary Institution:	
First Author:	Sudhakar Bhandare
First Author Secondary Information:	
Order of Authors:	Sudhakar Bhandare
	Joan Colom
	Abiyad Baig
	Jennifer M Ritchie
	Habib Bokhari
	Muhammad A Shah
	Banwarilal L Sarkar
	Jingliang Su
	Brendan Wren
	Paul A Barrow
	Robert Atterbury
Order of Authors Secondary Information:	
Manuscript Region of Origin:	UNITED KINGDOM
Abstract:	Cholera remains a major risk in developing countries, particularly after natural or man- made disasters. Vibrio cholerae El Tor is the most important cause of these outbreaks, and is becoming increasingly resistant to antibiotics, so alternative therapies are urgently needed. In this study, a single bacteriophage, Phi_1, was used prophylactically and therapeutically to control cholera in an infant rabbit model. In both cases, phage-treated animals showed no clinical signs of disease, compared with 69% of untreated control animals. Bacterial counts in the intestines of phage-treated animals were reduced by up to 4 Log10 CFU/g. There was evidence of phage multiplication only in animals which received a V. cholerae challenge. No phage-resistant bacterial mutants were isolated from the animals, despite extensive searching. This is the first evidence that a single phage could be effective in the treatment of cholera, without detectable levels of resistance. Clinical trials in human patients should be considered.

1	Reviving phage therapy for the treatment of Cholera
2	
3	Sudhakar Bhandare ^{1¶} , Joan Colom ^{1¶} , Abiyad Baig ¹ , Jenny M Ritchie ² , Habib Bokhari ³ , Muhammad
4	A. Shah ³ , BL Sarkar ⁴ , Jingliang Su ⁵ , Brendan Wren ⁶ , Paul Barrow ¹ , Robert J. Atterbury ¹ *.
5	
6	¹ School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington,
7	Leicestershire, UK.
8	² Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey,
9	Guildford, Surrey, UK.
10	³ Department of Biosciences, COMSATS Institute of Information Technology, Chak shahzad
11	campus, Park Road, Islamabad, Pakistan.
12	4 National Institute of Cholera & Enteric Diseases (ICMR), WHO Collaborating Centre for
13	Diarrhoeal Diseases Research & Training, P-33, CIT Road, Scheme XM, KOLKATA -700010, India.
14	⁵ Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of
15	Veterinary Medicine, China Agricultural University, Beijing, China.
16	⁶ London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
17	* Corresponding author
18	E-mail: Robert.atterbury@nottingham.ac.uk
19	¹ These authors contributed equally to the study.
20	Article type: Major article
21	Word count of abstract: 150
22	Word count of text: 3492
23	
24	

<u>*</u>

25 Abstract

26 Cholera remains a major risk in developing countries, particularly after natural or man-made 27 disasters. Vibrio cholerae El Tor is the most important cause of these outbreaks, and is becoming 28 increasingly resistant to antibiotics, so alternative therapies are urgently needed. In this study, 29 a single bacteriophage, Phi 1, was used prophylactically and therapeutically to control cholera 30 in an infant rabbit model. In both cases, phage-treated animals showed no clinical signs of 31 disease, compared with 69% of untreated control animals. Bacterial counts in the intestines of 32 phage-treated animals were reduced by up to 4 Log_{10} CFU/g. There was evidence of phage 33 multiplication only in animals which received a V. cholerae challenge. No phage-resistant 34 bacterial mutants were isolated from the animals, despite extensive searching. This is the first 35 evidence that a single phage could be effective in the treatment of cholera, without detectable 36 levels of resistance. Clinical trials in human patients should be considered.

37 Key words: bacteriophage therapy; cholera; phage; infant rabbit; prophylaxis; Vibrio cholerae

38 Background

V. cholerae has caused seven cholera pandemics since 1817, leading to significant morbidity and mortality [1]. The first six pandemics (1816 – 1923) were caused by the classical O1 biotype, while the seventh (1961 - present) was caused by the El Tor biotype [1]. The current pandemic affects 3-5 million people per annum, causing 21,000 – 143,000 deaths [1,2]. Cholera is contracted from contaminated food and water in developing countries, where sanitation is generally inadequate or has been damaged by wars or natural disasters; then transmitted from person-to-person [3].

Rehydration therapy reduces mortality and, with antibiotics, can diminish the intensity and
duration of clinical signs and faecal shedding [4]. However, the World Health Organisation now
advises only severe cases of cholera should be treated with antibiotics due to the spread of

antimicrobial resistance (AMR). Alternative approaches to cholera control are urgently needed,
both for treatment of primary infections, and prevention of secondary spread. Biological control
using bacteriophage (phage) is one alternative, particularly where antibiotic resistance is a
problem [5]. Phage have been used to treat experimental infections in a range of animal models
including mice, chickens, cattle, pigs and lambs [6–8].

54 In this study, we show that a phage vB_VcholP_1 (Phi_1) belonging to the Podoviridae N4virus 55 genus was highly effective (p < 0.001) in preventing clinical symptoms of V. cholerae infection in 56 infant rabbits; the most relevant animal model of cholera in humans. Phage-treatment was 57 accompanied by significant reductions (p < 0.05) in V. cholerae recovered from several intestinal 58 compartments compared with untreated control animals. Notably, we recovered no phage-59 resistant mutants. This is the first study showing a single phage can prevent clinical symptoms 60 of cholera infection in this model, with no evidence of resistance development. This study 61 demonstrates that phage could be a viable alternative treatment for cholera in humans, and 62 further research to support the application of phage in clinical trials is warranted.

63

64 Methods

65 Bacteriophage isolation

Phage isolation from lake water samples from several locations in eastern China was performed as described previously [9] using host *V. cholerae* O1 strain 2095. Plaques were serially purified a minimum of five times prior to further use. Additional phage isolates Phi_1, Phi_2 and Phi_3 were obtained from Dr. Tom Cheasty, former Head of the Gastrointestinal Infections Reference Unit, Public Health England (PHE), UK. Phages Phi_24 and Phi_X29 were purchased from the Felix d'Herelle Reference Centre for Bacterial Viruses (HER), Quebec, Canada.

72 Bacteriophage propagation

73 Liquid lysates (10 mL) were prepared by inoculating mid-exponential cultures of V. cholerae with 74 phage at a multiplicity of infection (MOI) of 0.1 and incubating overnight at 37°C in an orbital 75 shaker at 150 rpm. The lysate was centrifuged (10,000 \times g, 10 min), and filtered (0.45 μ m pore-76 size, Sartorius). Phage titres were determined by plating decimal dilutions of lysates onto 77 duplicate LBA plates using the agar overlay method [10]. The top agar from plates showing semi-78 confluent lysis was transferred to a 250 mL centrifuge tube, to which was added 5 mL of SM 79 buffer per plate. Phage were eluted by incubating at 4°C overnight with gentle shaking, followed 80 by two rounds of centrifugation (4,000 $\times g$, 10 min, 4°C), filtration (0.45 μ m pore-size) and 81 storage at 4°C.

82 Host range profile

Agar overlays of each of the 89 *V. cholerae* strains (S1_Table) were prepared as described above.
Aliquots (10 μL) of each phage (10⁸ PFU/mL) were spotted onto the lawns and left to dry. The
plates were incubated overnight at 37°C, then scored for lysis as previously reported [11].

86 One-step growth curve

A mid-exponential-phase culture of *V. cholerae* was infected with a single phage (MOI 0.1).
Following phage adsorption, the suspension was diluted in LB broth to a final concentration of
10⁴ CFU/mL [9]. Samples (1 mL) of the infected culture were collected at 5 min intervals for 90
min and filtered (0.45 μm pore-size). The phage were enumerated on agar overlays as described
above and the burst size was calculated [12].

92 DNA sequencing, assembly and annotation of phage genome

Phage genomic DNA was extracted using a Wizard DNA Clean-Up system (A7280, Promega).
Next generation sequencing was performed by Source Biosciences (Nottingham, UK) and NUOMICS (Newcastle-upon-Tyne, UK) using the Illumina Miseq platform, 2 × 250-bp paired-end
run. The sequence data was assembled *de novo*, and single contigs for the phage were generated
using the SPAdes v. 3.1.0 assembler [13] with 120× coverage. The data quality was checked using

98 FastQC (Babraham Bioinformatics) and reads were quality trimmed. Genome annotation was 99 carried out using RAST [14] and Geneious (V6.1.7, Biomatters) software with some manual 100 curation, which provided the translated sequences of protein-coding regions. These sequences 101 were used to interrogate the NCBI database using BLASTp. Conserved protein motifs were 102 identified using a HHpred search of the Pfam database [15]. In the case of BLASTp, proteins were 103 only assigned to a gene sequence where there was \geq 90% identity with protein motifs in the 104 database. The tRNA annotation was performed using tRNAscan-SE [16] and ARAGORN [17]. 105 Post-annotation, the genome was submitted to GenBank (Table S2). The nucleotide sequence 106 alignments were performed by ClustalW (CLUSTAL 2.1) [18]. The maximum likelihood 107 phylogenetic analysis was performed using the generalized time-reversible (GTR) model with 108 [19] FastTree and the phylogeny visualised using FigTree was v.1.4.3 109 (http://tree.bio.ed.ac.uk/software/figtree).

110 Transmission Electron Microscopy (TEM)

High titre phage lysates were purified by ultracentrifugation using a CsCl gradient [20]. A 3 μL sample of CsCl-purified phage was applied to a hydrophilic (glow-discharged) carbon and Pioloform-coated 300 square mesh copper grid (Agar Scientific Ltd). Following adsorption (2 min), excess sample was removed with filter paper. The grid was rinsed twice with 5 μL distilled de-ionised water and the excess was removed before staining with 1% uranyl acetate. Once dry, the grids were observed on a JEOL JEM-1400 TEM with an accelerating voltage of 100 kV. Digital images were recorded using a SIS Megaview III digital camera with iTEM software.

118 Infant rabbit trials

All experimental protocols involving animals were approved by the local Animal Welfare and Ethical Review Body under UK Home Office project license 70-7495 and performed in accordance with the UK Animals (Scientific Procedures) Act (1986) and EU Directive 2010/63/EU. The infant rabbit cholera model was used to test the effectiveness of phage treatment [21].

123 Time-mated New Zealand White rabbits were obtained from Harlan Laboratories (UK). Following 124 parturition, litters were housed as a group with the lactating doe for the duration of the study. 125 Two hours prior to infection with bacteria, 2-day-old rabbits were pre-treated intraperitoneally 126 with ranitidine (5 mg/kg body weight; GlaxoSmithKline, UK). Oral inoculations of bacteria (0.5 127 mL volume) and/or phage (1 mL volume) were delivered using separate size 5 French catheters 128 (Arrow international, USA). The bacterial inoculum was prepared from stationary phase cultures 129 of pathogenic V. cholerae O1 (biotype classical) 1051 Sm^R (from the National Institute of Cholera 130 & Enteric Diseases, Kolkata, India). These cultures were resuspended in a sodium bicarbonate 131 solution (2.5 g in 100 mL, pH 9) with a final concentration of approximately 5×10⁸ CFU/animal. 132 Phage Phi_1 was administered either 6 h before or 6 h after bacterial challenge for prophylactic 133 and treatment therapies respectively (Table 1). Phage kinetics in the intestinal tract were studied 134 by dosing rabbits with phage only and collecting samples for analyses at time points 135 corresponding to 24 h post bacterial infection (i.e. at 18 h to mimic treatment and 30 h to mimic 136 prophylaxis).

137

138 Diarrhoea was scored using the following scale: none (no signs of faecal contamination or 139 wetness on their ventral surfaces; upon dissection, the colon contained digesta that appeared 140 normal (dark green, hard and formed)); mild (soft yellow stools and/or limited areas of wetness 141 on the rabbits' fur; upon dissection, digesta was missing from the colon or appeared yellow, soft 142 and unformed; some fluid accumulation in the caecum), and severe (extensive areas of wetness 143 on their tails and ventral surfaces; upon dissection no digesta was found in the colon and the 144 cecum and small intestine contained large quantities of clear fluid). Control and treatment group 145 litters were housed separately to avoid cross-contamination and at least 3 litters were used for 146 each treatment strategy.

Animals were anaesthetised 24 h post infection using inhalation isoflurane (Isofol[®], Abbott, UK)
 and euthanized with intracardiac KCl (15% w/v, MercuryPharma, Ireland) at 2.5 mL/100 g body

149 weight. Tissue segments (1 cm) were collected from the upper (I1), middle (I2) and lower (I3) 150 small intestine and caecal fluid (CF) was collected by gravity. The tissue samples were 151 mechanically homogenised between sterile glass slides in 2 mL sterile phosphate buffered saline 152 (PBS). Caecal fluid accumulation ratios (FAR) were calculated as previously reported [21]. When 153 no CF was collected, caecal content was used instead to report numbers of bacteria. For 154 bacterial enumeration, samples were decimally diluted and triplicate 10 μ L aliquots spotted 155 onto TSA containing streptomycin (200 μ g/mL). In addition, 100 μ L of the original sample, and 156 in some instances, a 5x concentration of this volume, was spread onto the same media to enable 157 lower numbers of cells to be detected. Phage enumeration was performed by spotting 10 µL 158 volumes of filtered (0.45 μ m syringe filters) intestinal content on to lawns of the host strain. All 159 plates were incubated at 37°C for 24 h before examining for colonies or plaques.

160 **Phage-resistance**

Presumptive *V. cholerae* isolates recovered from phage-treated and control animal groups were confirmed by PCR [22] and streaked on both LB agar plates, with and without supplementation with Phi_1 (1×10⁹ PFU/mL). The plates were incubated at 37°C for 24 h before examining for colonies.

165 Statistical analysis

Rabbit disease scores and caecal FARs were analysed using Fisher's exact test and one-way ANOVA, respectively. All bacterial and phage count data were log₁₀-transformed prior to statistical analysis. Bacterial count data were analysed using the Krushal-Wallis test with Dunn's *post hoc* multi-comparison test (Graphpad Prism, version 5.02). Differences in phage count data were analysed using the two-sample Mann Whitney U test (using Minitab, v. 17.2.1, Pennsylvania, USA).

172

173 **Results**

174 Phage isolation, morphological characterization and selection for use as a

175 therapeutic

Seven phage were isolated from samples of lake water collected from China. A further five phage
were obtained from existing collections. The morphological characteristics of each phage were
used to determine a provisional taxonomic classification (Table 2).

179

The host range and burst size of each phage were determined using a collection of 89 V. cholerae O1, O139 and non-O1/O139 strains (S1 Table) in order to identify candidates best suited for therapeutic application. The three *Myoviridae* phage (Phi_2, Phi_24 and Phi_X29) exhibited much narrower host ranges (1.1 to 4.4%) than *Podoviridae* or *Siphoviridae* phages (Table 1). The different phage families did not cluster according to latent period or burst size.

185 In addition to exhibiting a broad host range and large burst size, phage therapy candidates 186 should not possess genes associated with virulence or lysogeny. Therefore, we sequenced the 187 phage and examined their genomes for proteins of known function. The Genbank accession 188 numbers for all phage genomes are provided in S2 Table. Sequencing revealed that none of the 189 phage genomes contained known virulence genes. However, all of the phage, exceptPhi_1 and 190 Phi 3, contained integrase sequences, suggesting they may be temperate phage and unsuitable 191 for therapeutic applications. Given that Phi_1 exhibited a slightly broader host range than 192 Phi 3, we focused our efforts on Phi 1 (an electron micrograph of Phi 1 presented in Fig 1). The 193 Phi 1 genome is 66.7 kb and contains 110 genes (S3 Table). Amongst these, 12 were listed as 194 early or middle genes associated with metabolism and replication, 6 could be grouped into the 195 late genes related to head morphogenesis and host cell lysis and the remaining 92 genes 196 encoded hypothetical proteins. BlastN analysis revealed that phage Phi_1 was most closely

197 related to two N4-like viruses, Vibrio phage JA1 (Genebank: NC_021540.1) and VCO139 198 (Genebank: KC438283.1), with 97 % pairwise identity and similar G+C content (34.5% versus 199 34.6%). No tRNA sequences were detected in the Phi_1 genome in contrast to a single tRNA in 200 each of JA1 and VCO139. To further resolve the taxonomic placement of Phi_1, phylogenetic 201 analysis was performed comparing the genome sequence of Phi 1 with the available published 202 genome sequences of phage in the genus N4virus. Phylogeny showed that Phi_1 grouped with 203 VCO139 and JA-1, with the only classified species of the genus N4virus, Escherichia phage N4, 204 located in a distant clade (Fig 2). Thus, we have identified a previously undescribed *Podoviridae* 205 N4likevirus with characteristics that are favourable for phage therapy including being effective 206 against a range of clinical V. cholerae strains grown under laboratory conditions.

207 Effectiveness of Phi_1 to control experimental cholera in infant rabbits

208 To assess whether phage Phi_1 could be used to control experimental cholera, therapeutic and 209 prophylactic studies were performed using the infant rabbit cholera model [23]. For the 210 therapeutic trials, groups of infant rabbits were orally infected with approximately 8×10⁸ CFU of 211 Sm^R V. cholerae O1 strain 1051 and treated with phage (10⁹ PFU) 6 h after infection. Control 212 animals receiving only V. cholerae developed signs of disease as reported previously for rabbits 213 infected with V. cholerae O1 [23]. Signs included the production of watery diarrhoea, loose stool 214 and/or notable caecal fluid accumulation occurring in the majority (11 of 17) of infected animals 215 (Table 3). In marked contrast, none of the phage-treated animals (0 of 19) showed signs of 216 disease at 24 h post infection. Caecal fluid accumulation ratios (FAR) were 6-fold higher in 217 diseased control animals compared to phage-treated animals (mean \pm standard error: 0.39 \pm 218 0.08 versus 0.06 \pm 0.01; p < 0.001), consistent with the lack of disease.

219

Furthermore, phage treatment was associated with a significant reduction in the number of *V*.
 cholerae recovered from the intestine compared to the control group, with no detectable

colonies recovered in more than half the animals (Figs 2A-C). Median reductions of 2-4 Log₁₀
CFU/g *V. cholerae* were recorded in different intestinal compartments, including in caecal
content (Fig 3D). This, together with the low volumes of fluid evident in the intestine, would lead
to a marked reduction in the number of organisms shed from the host.

We also assessed the ability of Phi_1 to be used prophylactically. In these studies, infant rabbits were administered 10⁹ PFU phage 6 h prior to infection with approximately 5×10⁸ CFU/animal *V. cholerae*. Reflecting the therapeutic trials, phage-treated animals showed no symptoms of disease, and exhibited significant reductions in recoverable *V*. cholerae and intestinal fluid compared with untreated control animals (Table 2 and Figs 2A-D). Overall, these data indicate that Phi_1 is effective at killing *V. cholerae* in several intestinal compartments both prior to and following challenge with virulent *V. cholerae*.

233 Phage Phi_1 amplifies in the intestine and did not give rise to phage-resistant mutants

234 When administered 6 h after *V. cholerae* infection, approximately 10⁶-10⁷ PFU/g of phage were 235 recovered in the intestine of the animals, approximately 100-fold higher than in animals given 236 phage only (range $10^4 - 10^6$ PFU/g) (Table 3). Slightly lower levels of phage were recovered 237 during the prophylaxis experiments, most likely reflecting the increased time for transit through 238 the intestine prior to bacterial inoculation (18h and 30h, respectively). However, in both cases, 239 significant amplification of phage was recorded in most intestinal compartments, leading to a 240 multiplicity of infection (MOI) throughout the intestinal tract of about 1-2 phage per V. cholerae 241 cell (Table 4). Finally, this data suggests that significant numbers of phage (10⁴-10⁵ PFU/g) were 242 recoverable from the intestine up to 30 h post administration, even in the absence of V. 243 cholerae.

244

V. cholerae colonies recovered from all the *in vivo* experiments were tested for their
susceptibility to phage Phi_1 to determine levels of phage-resistance. Somewhat surprisingly,

247 none of the colonies grew in LB media supplemented with 10⁹ PFU of phage Phi_1, indicating 248 that they remained sensitive to the phage. Moreover, attempts to generate phage-resistant 249 mutants *in vitro* using plate-based methods were not successful suggesting that the as-yet-250 uncharacterised phage Phi_1 receptor is important for *V. cholerae* viability under these 251 conditions.

252

253 Discussion

Here, we show for the first time, that oral administration of a single *Podoviridae* phage could prevent clinical cholera symptoms in infant rabbits without the development of phage resistance. Our findings provide further evidence that phage can both reduce the severity of disease and limit spread of the organism to the environment. Given the well-documented challenges associated with the emergence of antibiotic-resistant bacteria, phage may yet provide a viable alternative to antibiotics.

The strain of *V. cholerae* used has been shown experimentally by this group to result in cholera using the infant rabbit model [21], with fluid accumulation in the small intestine, perianal staining and dehydration resulting in death if humane termination is not carried out. The infant rabbit model combines sensitivity with a greater convenience than other whole animal models such as the ligated intestinal loop model in adult rabbits [24] or mouse models [21].

Given that animals receiving only bacteriophage had detectable levels of phage in their intestines for at least 24 h; prophylaxis experiments with a longer interval between phage and bacteria administration would be worth assessing. However, as the rabbits are in an enclosed environment, environmental contamination with phage may occur with the ingestion and reingestion of phage from the mother's skin or the bedding.

270 Camilli and colleagues published a study describing the prophylactic use of a 3-phage (ICP) cocktail to treat cholera [25]. They recorded a marked reduction in disease and V. cholerae 271 272 recovered from rabbits given the phage cocktail. However, in contrast to the present study, 273 they also recovered phage-resistant mutants. Susceptibility profiling of the in vivo passaged V. 274 cholerae against the individual phage present in the ICP cocktail revealed that resistance differed 275 depending on the animal host as well as over time. The phage used in the Camilli study were all 276 members of the Podoviridae, a genus previously identified as containing phage that make 277 'better' in vivo therapeutic agents [26]. Rational and systematic evaluation of phage 278 characteristics according to morphology, genomics and a number of cultural phenotypes 279 including latent period, burst size and host-range, appears to be critical in the selection of phage 280 as therapeutic agents. Latent period, burst size and the presence of a DNA-dependent RNA 281 polymerase (DdRp) have all been found to correlate with in vivo efficacy in controlling 282 experimental E. coli infections [26]. Both phage Phi_1 and ICP3 encode a specific RNA 283 polymerase which could improve their effectivity in vivo. However, it could also be that phage 284 Phi_1 uses a crucial receptor for V. cholerae survival in the intestinal tract, such as the O1 285 lipopolysaccharide antigen. It is well known that phase variable mutants of O1 receptor are 286 protected from phage infection, but become attenuated [27]. Selecting phage which target 287 surface virulence determinants can be an effective approach, as phage-resistant mutants are 288 often attenuated. In one study, using *E. coli* phage targeting the K1 capsule resulted in the 289 recovery of acapsular but attenuated mutants [8]. The potential development of resistance is a 290 concern if phage are applied in the field, since oral administration to patients may result in 291 extensive shedding of bacteria and phage in the environment, potentially resulting in 292 recirculation of phage-resistant mutants. In some circumstances, this could be avoided by 293 limiting phage administration to cases in clinics and composting the evacuated faeces. 294 Alternatively, the impact of phage recirculation could be minimised by using different phage

preparations that target different receptors, or combinations of receptors, in order to limit the
 emergence of resistant strains.

297

298 Two previous studies of phage therapy to treat cholera in small groups of human patients found 299 either little clinical effect [28], or the requirement for large phage doses (>10¹⁵ PFU) [29]. 300 However, the phage used were not well-characterised, and some appeared to be temperate and 301 ill-suited for therapy. Additionally, neither study neutralised stomach acid prior to phage 302 administration, which may significantly affect the results. Both studies used phage cocktails 303 which, if combined carefully, may offer some protection against the emergence of resistant 304 mutants. However, the performance of phage cocktails may be no better than individual phages 305 [30], and could be worse. The use of cocktails requires a balance to be struck between the 306 practical limitations of preparing lysates of many different phage, and the need to include 307 sufficient phage to minimise the emergence of resistant mutants. Principally, this should be 308 done through genomic and phenotypic analysis to combine compatible phage which target different receptors. 309

310 Characterisation of the interaction of Phi_1 and its receptor(s) may provide some clues as to 311 why phage-resistant mutants were not recovered. Prophylactic and therapeutic trials with Phi 1 312 need to be performed in human volunteers to determine if this treatment is viable. Should this 313 prove successful, bacteriophage therapy could be deployed relatively easily to remote and 314 underserved communities in developing countries due to the ease and speed with which phage 315 can be prepared, using basic laboratory equipment. Alternatively, preparations of phage can be 316 made using lyophilisation, spray-drying, emulsification and microencapsulation, which remain 317 stable for years (recently reviewed in [31]). Phage therapy has significant potential to save 318 hundreds or thousands of lives during outbreaks of cholera which follow natural and man-made 319 disasters; an aim strongly worth pursuing.

320

321 Acknowledgements

- 322 We thank Jingliang Su's team at China Agricultural University for their excelent support during
- 323 the isolation of phage in China. Professor Brendan Wren, Neil Williams and Dr. Sarkar are
- 324 gratefully acknowledged for sharing their collection of *V. cholerae* isolates.

326 **References**

- 1. Hu D, Liu B, Feng L, et al. Origins of the current seventh cholera pandemic. Proc Natl
- 328 Acad Sci U S A. 2016/11/17. **2016**; 113(48):E7730–E7739.
- 329 2. Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of cholera in endemic
- 330 countries. PLoS Negl Trop Dis. 2015/06/05. **2015**; 9(6):e0003832.
- Sugimoto JD, Koepke AA, Kenah EE, et al. Household Transmission of Vibrio cholerae in
 Bangladesh. PLoS Negl Trop Dis. 2014/11/21. 2014; 8(11):e3314.
- 4. Kitaoka M, Miyata ST, Unterweger D, Pukatzki S. Antibiotic resistance mechanisms of

334 Vibrio cholerae. J Med Microbiol. 2011/01/22. **2011**; 60(Pt 4):397–407.

- Czaplewski L, Bax R, Clokie M, et al. Alternatives to antibiotics-a pipeline portfolio
 review. Lancet Infect Dis. 2016/01/23. 2016; 16(2):239–251.
- 337 6. Smith HW, Huggins MB. Effectiveness of phages in treating experimental Escherichia
- coli diarrhoea in calves, piglets and lambs. J Gen Microbiol. 1983/08/01. 1983;
- 339 129(8):2659–2675.
- 340 7. Barrow P, Lovell M, Berchieri Jr. A. Use of lytic bacteriophage for control of
- 341 experimental Escherichia coli septicemia and meningitis in chickens and calves. Clin
- 342Diagn Lab Immunol. 1998/05/30. 1998; 5(3):294–298.
- 3438.Smith HW, Huggins MB. Successful treatment of experimental Escherichia coli
- 344 infections in mice using phage: its general superiority over antibiotics. J Gen Microbiol.
- 345 1982/02/01. **1982**; 128(2):307–318.
- 346 9. Clokie MRJ, Kropinski AM. Bacteriophages : methods and protocols. 1st ed. New York:
 347 Humana Press; 2009.
- 348 10. Sambrook J, Fritsch EF, Maniatis T. Molecular cloning a laboratory manual. 2nd ed. New

- 349 York: Cold Spring Harbor Laboratory Press; 1989.
- Atterbury RJ, Bergen MA Van, Ortiz F, et al. Bacteriophage therapy to reduce salmonella
 colonization of broiler chickens. Appl Env Microbiol. 2007/05/29. 2007; 73(14):4543–
 4549.
- 12. Choi C, Kuatsjah E, Wu E, Yuan S. The effect of cell size on the burst size of T4
 bacteriophage infections of Escherichia coli B23. J Exp Microbiol Immunol. 2010;
- 355 14(April):85–91.
- 13. Bankevich A, Nurk S, Antipov D, et al. SPAdes: A New Genome Assembly Algorithm and
- 357 Its Applications to Single-Cell Sequencing. J Comput Biol. **2012**; 19(5):455–477.
- Aziz RK, Bartels D, Best AA, et al. The RAST Server: Rapid Annotations using Subsystems
 Technology. BMC Genomics. 2008; 9(1):75.
- 360 15. Finn RD, Bateman A, Clements J, et al. Pfam: The protein families database. Nucleic
 361 Acids Res. 2014; 42(D1):222–230.
- 362 16. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers
 363 for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005/06/28. 2005; 33(Web
 364 Server issue):W686-9.
- Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in
 nucleotide sequences. Nucleic Acids Res. 2004/01/06. 2004; 32(1):11–16.
- 18. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of
- 368 progressive multiple sequence alignment through sequence weighting, position-specific
- 369 gap penalties and weight matrix choice. Nucleic Acids Res. 1994/11/11. 1994;
- 370 22(22):4673–4680.
- 19. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with

- 372 profiles instead of a distance matrix. Mol Biol Evol. 2009/04/21. 2009; 26(7):1641–
 373 1650.
- Hooton SPT, Timms AR, Rowsell J, Wilson R, Connerton IF. Salmonella Typhimurium specific bacteriophage ΦSH19 and the origins of species specificity in the Vi01-like
- 376 phage family. Virol J. BioMed Central; **2011**; 8:498.
- Ritchie JM, Rui H, Bronson RT, Waldor MK. Back to the future: Studying cholera
 pathogenesis using infant Rabbits. MBio. **2010**; 1(1):e00047-10.
- 22. Nhung PH, Ohkusu K, Miyasaka J, Sun XS, Ezaki T. Rapid and specific identification of 5
- 380 human pathogenic Vibrio species by multiplex polymerase chain reaction targeted to
- dnaJ gene. Diagn Microbiol Infect Dis. **2007**; 59(3):271–275.
- Ritchie JM, Rui H, Bronson RT, Waldor MK. Back to the future: studying cholera
 pathogenesis using infant rabbits. MBio. 2010/08/07. 2010; 1(1).
- 24. De SN, Chatterje DN. An experimental study of the mechanism of action of Vibrio
 cholerae on the intestinal mucous membrane. J Pathol Bacteriol. 1953/10/01. 1953;
- 386 66(2):559–562.
- 387 25. Yen M, Cairns LS, Camilli A. A cocktail of three virulent bacteriophages prevents Vibrio
 388 cholerae infection in animal models. Nat Commun. 2017/02/02. 2017; 8:14187.
- 389 26. Baig A, Colom J, Barrow P, et al. Biology and Genomics of an Historic Therapeutic
- 390 Escherichia coli Bacteriophage Collection. Front Microbiol. 2017/09/16. **2017**; 8:1652.
- 391 27. Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A. Phase variable
- 392 O antigen biosynthetic genes control expression of the major protective antigen and
- 393 bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog. 2012/10/03. 2012;
- 394 8(9):e1002917.

- 395 28. Marcuk LM, Nikiforov VN, Scerbak JF, et al. Clinical studies of the use of bacteriophage
 396 in the treatment of cholera. Bull World Health Organ. **1971**; .
- 29. Monsur KA, Rahman MA, Hug F, Islam MN, Northrup RS, Hirschhorn N. Effect of
- 398 massive doses of bacteriophage on excretion of vibrios, duration of diarrhoea and
- 399 output of stools in acute cases of cholera. Bull World Heal Organ. 1970/01/01. **1970**;
- 400 42(5):723–732.
- 30. Jaiswal A, Koley H, Ghosh A, Palit A, Sarkar B. Efficacy of cocktail phage therapy in
 treating Vibrio cholerae infection in rabbit model. Microbes Infect. 2013; .
- 403 31. Malik DJ, Sokolov IJ, Vinner GK, et al. Formulation, stabilisation and encapsulation of
 404 bacteriophage for phage therapy. Adv. Colloid Interface Sci. 2017.

405

406 **Figure 1.** Electron micrograph of *Podoviridae* phage Phi_1.

407 **Figure 2.** The maximum likelihood phylogenetic comparison of vB_VcholP_1 with the

408 published genome sequences of phage species from genus N4virus. The maximum likelihood

409 phylogenetic analysis was carried out using the generalized time-reversible (GTR) model with

410 FastTree and the phylogeny was visualised using FigTree.

411 Figure 3. Efficacy of phage Phi-1 in reducing V. cholerae O1 colonisation of the infant rabbit 412 intestine. Rabbits were administered 1×10^9 PFU phage Phi-1 orally, 6 h pre- or post- infection 413 with $5 - 8 \times 10^8$ CFU V. cholerae O1. Viable V. cholerae were recovered from the upper (A), mid 414 (B) and distal (C) small intestine and in caecal fluid (D) at 24 h post bacterial infection following 415 tissue homogenisation and plating on selective media. Symbols represent individual animals, 416 with open symbols representing samples where the number of recoverable colonies was below 417 the limit of detection. The number of animals in each group was 17, 22 and 19 respectively, and 418 each group was derived from 3 independent litters. Bars represent the median and interquartile

- 419 range. Data were compared using the Kruskal Wallis test followed by Dunn's post hoc multiple
- 420 comparisons test.
- 421
- 422

423 Footnotes

- 424 Funding sources: This work was supported by University of Nottingham internal funds (Global
- 425 Food Security Initiative), the University of Nottingham Advanced Data Analysis Centre, and
- 426 UK-India Education and Research Initiative grant UKIERI-DST-2012/13-043 to R.J.A.
- 427
- 428 Conflict of interests: The authors declare that they have no conflicts of interest.
- 429
- 430 Some of the results presented in this manuscript were presented at the 22nd biennial Evergreen
- 431 Bacteriophage conference, 6-11 August 2017 at the Evergreen State College.
- 432
- 433 **Corresponding author contact information:**
- 434 Dr. Robert Atterbury
- 435 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington,
- 436 Leicestershire, UK.
- 437 Email: robert.atterbury@nottingham.ac.uk
- 438

439 Supporting information

- 440 S1 Table. Data regarding the origin, serotype/biotype, geographical source, year of isolation and
- sample type of the Vibrio cholerae strains used in this project. The sensitivity of each strain to
- the phage used in the therapeutic trials (Phi_1) is given as '+' (sensitive) or '-' (not sensitive).
- 443 S2 Table. Phage genomes accession numbers.

- 444 S3 Table. The conserved coding sequences (CDSs) and functional annotation of V. cholerae
- 445 phage Phi_1 genome.

446

---KJ803031 Dinoroseobacter phage vBDshPR2C -KX098390 Erwinia phage vB EamP Rexella -KX098391_Erwinia_phage_vB_EamP_Gutmeister -NC_031062_Erwinia_phage_vB_EamP_Frozen -KF787094 Achromobacter phage JWDelta -NC 023556 Achromobacter phage JWAlpha ·JF974296 Pseudoalteromonas phage pYD6-A

Click here to access/download;Figure;Fig_2.pdf ±

Figure 3

B)

caecal fluid

	Number	V. cholerae		
Group	of	inoculum	Phage inoculum	Treatment schedule
	animals	(CFU/animal)	(FFO) animal)	
Control 1	6	7×10 ⁸	-	
Control 2	5	2×10 ⁸	-	-
Control 4	7	6×10 ⁸	-	
Therapeutic 1	10	1×10 ⁹	1×10 ⁹	C 9 h post hastarial
Therapeutic 2	6	4×10 ⁸	1×10 ⁹	6-8 II post-bacteria
Therapeutic 3	4	1×10 ⁹	1×10 ⁹	infection
Prophylactic 1	10	5×10 ⁸	1×10 ⁹	6 h prior-bacterial
Prophylactic 2	6	5×10 ⁸	1×10 ⁹	infection
Prophylactic 3	6	8×10 ⁸	1×10 ⁹	
Therapeutic control	Q	_	1×10 ⁹	6-8 h post-bacterial
	0		1×10	infection
Prophylactic control	6	_	1×10 ⁹	6 h prior-bacterial
	U	-	1×10	infection

Table 1. Litter size, bacterial and phage dose and treatment inoculation schedule of rabbit experiments.

vB_VcholM_24

Phi_24

HER

Phage full name	Short name	Phage source	Genus	Head diamet er (nm) a	Tail length (nm) ^a	Host range (%)	Latent period (min) ^a	Burst size (PFU) ^a
vB_VcholP_QH	Phi_QH	Qing He river (Beijing)	Podoviridae	51 ± 0.1	12 ± 0.0	84.6	12 ± 4.0	92 ± 09
vB_VcholP_CJY	Phi_CJY	Cui Jia Yao river (Beijing)	Podoviridae	54 ± 0.1	10 ± 0.0	16.5	13 ± 4.3	182 ± 62
vB_VcholP_H1	Phi_H1	Fu Jia Wan lake (Hubei)	Podoviridae	56 ± 0.1	11 ± 0.0	37.3	6 ± 2.3	89 ± 32
vB_VcholP_H2	Phi_H2	Ye Zhi Hu lake (Hubei)	Podoviridae	57 ± 0.1	12 ± 0.0	18.7	15 ± 1.6	63 ± 13
vB_VchoIP_H3	Phi_H3	Nan Hu lake (Hubei)	Podoviridae	55 ± 0.1	12 ± 0.0	70.3	7 ± 3.5	126 ± 18
vB_VchoIP_J2	Phi_J2	Yudai He river (Jiangxi)	Podoviridae	54 ± 0.1	12 ± 0.0	16.5	5 ± 0.6	34 ± 13
vB_VchoIP_J3	Phi_J3	Yudai He river (Jiangxi)	Podoviridae	52 ± 0.1	11 ± 0.0	76.9	14 ± 1.5	56 ± 17
vB_VcholP_1	Phi_1	PHE	Podoviridae	34 ± 0.2	13 ± 0.1	67.0	12 ± 0.0	43 ± 05
vB_VcholM_2	Phi_2	PHE	Myoviridae	53 ± 0.2	118 ± 0.4	4.4	14 ± 1.6	6±01
vB_VcholS_3	Phi_3	PHE	Siphoviridae	75 ±	156 ±	62.6	13 ± 4.1	54 ± 26

0.1

64 ±

0.1

Myoviridae

0.2

69 ±

0.1

1.1

 4 ± 0.0

87 ± 26

Table 2. Bacteriophage source and characterization including host range and one-step growth curve.

vB_VcholM_X29	Phi_X29	HER	Myoviridae	64 ±	95 ±	2.2	16 ± 0.0	77 ± 16
				0.1	0.3			

^aMean of three independent measurements ± Standard Error.

Public Health England (PHE), Felix d'Herelle Reference Centre for Bacterial Viruses (HER).

 Table 3. Disease status and fluid accumulation ratios (FAR) in infant rabbits treated with phage Phi_1 pre- and

 post- infection with V. cholerae O1.

Treatment		None	Phage administration ^a		
			Therapeutic	Prophylactic	
Disease (%)		69	0 ^c	0 ^c	
Disease score ^b					
S	evere	1	0	0	
	Mild	10	0	0	
	None	6	19	22	
Total no. animals		17	19	22	
FAR ^d		0.39 ± 0.31	0.06 ± 0.05^{d}	0.04 ± 0.02^{d}	

^aPhage Phi_1 was orally administered 6 h before (prophylactic) or 6 h after (therapeutic) the bacteria.

^bNumber of rabbits with disease as described in the text.

^cFisher's exact test was used to compare the disease in animals given phage Phi-1, pre- or post-infection with V.

cholerae O1. p < 0.001.

^dFluid accumulation ratio (FAR) is calculated from the weight of the caecal fluid to the tissue for each animal.

^eOne way ANOVA followed by Dunnett's multiple comparison test was used to analyse the values. p < 0.001.

Sample ^e	Therapeuti	Therapeutic treatment phage concentration (Log_{10}				Prophylactic treatment phage concentration (Log_{10}			
		PFU/g)	a	PFU/g)ª					
	Control ⁺	Treatment	Phage	MOI	Control [‡]	Treatment	Phage	MOI	
			production				production		
11	4.2 ± 1.8	6.4 ± 0.3 ^d	2.2	1.9	4.7 ± 0.4	5.1 ± 0.2	0.4	1,8	
12	5.3 ± 0.9	6.6 ± 0.2 ^c	1.3	2.0	4.6 ± 0.3	5.1 ± 0.1	0.5	1,8	
13	4.8 ± 0.8	6.8 ± 0.3 ^d	2.0	1.7	5.0 ± 0.6	5.7 ± 0.2 ^b	0.7	1,8	
MC	6.6 ± 0.5	7.6 ± 0.7 ^c	1.0	2.0	5.7 ± 0.6	6.7 ± 0.2 ^c	0.9	2,1	
CF	6.1 ± 2.5	7.8 ± 0.3 ^b	1.7	2.3	5.4 ± 0.7	7.1 ± 0.1 ^d	1.7	2,0	

Table 4. Bacteriophage concentration, production and MOI during prophylactic and therapeutic treatments.

prophylactic schedule. Prophylaxis, control n=6, treatment n=22. Therapeutic control n=8, treatment n=18. Mann Whitney U test was used to compare values between groups. ^b (p < 0.05), ^c (p < 0.01) and ^d (p < 0.001).

^aMean concentration ± Standard error. Phage Phi_1 was orally administered following the therapeutic or

eValues from Upper small intestine (I1), mid small intestine (I2), low small intestine (I3), mid colon (MC) and caecal fluid (CF) are shown.

[†]Animals given only *Vibrio cholerae* 1051.

[‡]Animals given only phage Phi_1.

Strain	Biotype	Collection	Source	Year of Isolation	Sample Type	Phi_1
10	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Rawalpindi, Punjab - Pakistan	2011	Sewage	-
238	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Khewra, Punjab - Pakistan	2011	Salt mine	-
404	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Islamabad, Federal Capital - Pakistan	2011	Unknown	-
406	Vibrio cholerae non-01/non-0139	Professor Brendan Wren and Muhammad Ali, LSHTM	Islamabad, Federal Capital - Pakistan	2011	Unknown	-
709	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Murree Punjab - Pakistan	2011	Clinical	-
722	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Murree, Punjab - Pakistan	2011	Clinical	+
729	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Murree, Punjab - Pakistan	2011	Clinical	+
732	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Murree, Punjab - Pakistan	2011	Clinical	+
736	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Murree, Punjab - Pakistan	2011	Clinical	+
739	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Murree, Punjab - Pakistan	2011	Clinical	-
742	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Murree, Punjab - Pakistan	2011	Clinical	+
750	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Chamman, Baluchistan - Pakistan	2011	Clinical	-
751	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Larkana, Sindh - Pakistan	2011	Clinical	+
752	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Muzattargarh, Punjab - Pakistan	2011	Clinical	+
753	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Zoab, Baluchistan - Pakistan Dadin Sindh Dakistan	2011	Clinical	+
754	Vibrio cholerae OI El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Badin, Sindh - Pakistan Pahimuar Khan Buniah, Bakistan	2011	Clinical	+
756	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Dadu Sindh - Pakistan	2011	Clinical	+
757	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Bahawalnagar. Punjab - Pakistan	2011	Clinical	+
758	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Sanghar, Sindh - Pakistan	2011	Clinical	+
759	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Larkana, Sindh - Pakistan	2011	Clinical	+
760	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Larkana, Sindh - Pakistan	2011	Clinical	-
761	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Qasoor, Punjab - Pakistan	2011	Clinical	+
762	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Muzaffarabad, Azad Jammu and Kashmir - Pakistan	2011	Clinical	+
763	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Sukkur, Sindh - Pakistan	2011	Clinical	-
764	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Rawalpindi, Punjab - Pakistan	2011	Clinical	+
765	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Chakwal, Punjab - Pakistan	2011	Clinical	-
767	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Rawalpindi, Punjab - Pakistan	2011	Clinical	+
768	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Islamabad, Federal Capital - Pakistan Deshawar, Khubar Dakhturikhura, Dakistan	2011	Clinical	+
709	Vibrio cholorao O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Swahi Khyber Pakhtunkhwa Pakistan	2011	Clinical	-
771	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Multan Punjah - Pakistan	2011	Clinical	+
772	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Multan, Punjab - Pakistan	2011	Clinical	+
773	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Sialkot, Punjab - Pakistan	2011	Clinical	+
774	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Islamabad, Federal Capital - Pakistan	2011	Clinical	+
775	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Kamalia, Punjab- Pakistan	2011	Clinical	-
776	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Okara, Punjab - Pakistan	2011	Clinical	-
1051	Vibrio cholerae O1 Classical	Felix d'Herelle reference center for bacterial virues	National Institute of Cholera and Enteric Diseases, Kolkata - India	1979	Clinical	+
2095	Vibrio cholerae O1 El Tor Inaba	Dr. Jingliang Su, CAU, China	Beijing, China	2011	Clinical	-
A-4	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Attock, Punjab - Pakistan	2011	Clinical	+
BW-5	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Chiniot, Punjab - Pakistan	2011	Clinical	+
CS-1	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Charsada, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	+
CS-12	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Charsada, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	+
CS-15	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Charsada, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	+
CS-16	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Charsada, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	+
CN 1	Vibrio cholerae OI El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Charsada, Knyber Pakhtunkhwa - Pakistan	2011	Clinical	+
D 1	Vibrio cholerae 01 El Tor Orawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Dallawalpur, Pulijab - Pakistali D I Khan Khuhar Bakhtunkhwa Bakistan	2011	Clinical	-
D-13	Vibrio cholerae non-01/non-0139	Professor Brendan Wren and Muhammad Ali, LSHTM	D I Khan, Khyber Pakhtunkhwa - Pakistan	2010	Clinical	-
D-25	Vibrio cholerae O1 FLTor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	D I Khan, Khyber Pakhtunkhwa - Pakistan	2010	Clinical	+
D-30	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	D I Khan, Khyber Pakhtunkhwa - Pakistan	2010	Clinical	+
D-56	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	D I Khan, Khyber Pakhtunkhwa - Pakistan	2010	Clinical	+
D-59	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	D I Khan, Khyber Pakhtunkhwa - Pakistan	2010	Clinical	+
DN-4	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Nowshera, Khyber Pakhtunkhwa - Pakistan	2010	Clinical	+
F-5	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Rawalpindi, Punjab - Pakistan	2011	Clinical	+
F-6	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Rawalpindi, Punjab - Pakistan	2011	Clinical	+
FB-O1	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Islamabad, Federal Capital - Pakistan	2011	Drinking water	-
FN-2	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Islamabad, Federal Capital - Pakistan	2011	Sewage	-
FN-4	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Islamabad, Federal Capital - Pakistan	2011	Sewage	-
FIN-5	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Siamabad, Federal Capital - Pakistan	2011	Clinical	-
UD-39	Vibrio cholorao O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Hudershad Sindh Bakistan	2011	Clinical	
HH-14	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Hyderabad, Sindh - Pakistan	2010	Clinical	+
HH-15	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Hyderabad, Sindh - Pakistan	2010	Clinical	+
HH-4	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Hyderabad, Sindh - Pakistan	2010	Clinical	+
Ht-10	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Rawalpindi, Punjab - Pakistan	2011	Drinking water	-
Ht-10A	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Rawalpindi, Punjab - Pakistan	2011	Drinking water	-
J-1	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Islamabad, Federal Capital - Pakistan	2011	Sewage	-
KCH-18	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Karachi, Sindh - Pakistan	2010	Clinical	+
KPD-3	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Khairpur, Sindh - Pakistan	2010	Clinical	+
KtH-4	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Jamshoro, Sindh - Pakistan	2010	Clinical	+
KTH-7	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Jamshoro, Sindh - Pakistan	2010	Clinical	+
M14	Vibrio cholerae O1 El Tor Inaba	Neil Williams, University of Bristol	Unknown Neusberg Khuber Pakhtunkhurg, Dakistan	Unknown	Clinical	+
N-10	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Nowshera, Knyber Pakhtunkhwa - Pakistan	2011	Clinical	
N-7	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali ISPTM	Nowshera, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	+
NP-14	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Nowshera, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	
NP-3	Vibrio cholerae O1 Fl Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Nowshera, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	+
NP-5	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Nowshera, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	+
NP-6	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Nowshera, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	-
NP-7	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Nowshera, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	+
O395NT	Vibrio cholerae O1 El Tor Ogawa	Neil Williams, University of Bristol	Unknown	Unknown	Unknown	+
05	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Rawalpindi, Punjab - Pakistan	2011	Sewage	-
P-1	Vibrio cholerae non-O1/non-O139	Professor Brendan Wren and Muhammad Ali, LSHTM	Peshawar, Khyber Pakhtunkhwa - Pakistan	2011	Sewage	-
PS-18	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Peshawar, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	-
PS-25	Vibrio cholerae O1 El Tor Ogawa	Professor Brendan Wren and Muhammad Ali, LSHTM	Peshawar, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	+
PS-7	Vibrio cholerae O1 El Tor Ogawa	Protessor Brendan Wren and Muhammad Ali, LSHTM	Peshawar, Khyber Pakhtunkhwa - Pakistan	2011	Clinical	+
ка-р	vibrio cholerae OI El Tor Ugawa	Professor Brendan wren and Muhammad All, LSHTM	Kawaipinui, Punjab - Pakistan	2010	CINICAL	+

V. cholerae phage	GenBank accession number
vB_VcholP_QH	KM612259
vB_VcholP_CJY	KM612260
vB_VcholP_H1	KM612261
vB_VcholP_H2	KM612262
vB_VchoIP_H3	KM612263
vB_VcholP_J2	KM612264
vB_VcholP_J3	KM612265
vB_VcholP_1	KP280062
vB_VcholM_2	KJ545483.2
vB_VcholS_3	KP280063
vB_VchoIM_24	KJ572844.2

Locus tag	Function	Start:End of CDS	Orientation	Size (bp)
	hypothetical			
AVV30_gp001	protein	183:389	forward	207
	hypothetical			
AVV30_gp002	protein	389:601	forward	213
	hypothetical			
AVV30_gp003	protein	598:990	forward	393
	hypothetical			
AVV30_gp004	protein	1071:1235	forward	165
	hypothetical			
AVV30_gp005	protein	1373:1624	forward	252
	hypothetical			
AVV30_gp006	protein	1661:1903	forward	243
	hypothetical			
AVV30_gp007	protein	1900:2121	forward	222
	hypothetical			
AVV30_gp008	protein	2172:2309	forward	138
	hypothetical			
AVV30_gp009	protein	2372:2629	forward	258
	hypothetical			
AVV30_gp010	protein	2801:2986	forward	186
	hypothetical			
AVV30_gp011	protein	3100:3333	forward	234
	hypothetical			
AVV30_gp012	protein	3389:3655	forward	267
	hypothetical			
AVV30_gp013	protein	3658:3897	forward	240
	hypothetical			
AVV30_gp014	protein	3902:4141	forward	240
	hypothetical			
AVV30_gp015	protein	4202:4408	forward	207
	DNA-directed			
	RNA polymerase			
AVV30_gp016	RNAP1	4427:5368	forward	942
	hypothetical			
AVV30_gp017	protein	5368:5583	forward	216
	hypothetical			
AVV30_gp018	protein	5602:6051	forward	450
	hypothetical			
AVV30_gp019	protein	6193:6750	forward	558
	DNA-directed			
	RNA polymerase			
AVV30_gp020	RNAP2	6918:7703	forward	786
	hypothetical			
AVV30_gp021	protein	7755:7937	forward	183
	hypothetical			
AVV30_gp022	protein	7938:8147	forward	210
	hypothetical			
AVV30_gp023	protein	8180:8368	forward	189
	hypothetical			
AVV30_gp024	protein	8382:8585	forward	204
	hypothetical			
AVV30_gp025	protein	8590:8718	forward	129
	hypothetical			
AVV30_gp026	protein	8727:8972	forward	246
	hypothetical			
AVV30_gp027	protein	8945:9217	forward	273

	N-			
	acetylmuramoyl-			
AVV30_gp028	L-alanine amidase hypothetical	9203:9727	reverse	525
AVV30_gp029	protein	9751:10047	forward	297
AVV30_gp030	protein	10049:10246	forward	198
AVV30_gp031	protein	10248:10409	forward	162
AVV30_gp032	protein PF10947 family	10411:10725	forward	315
AVV30_gp033	protein putative	10735:11154	forward	420
AVV30_gp034	lipoprotein hypothetical	11151:11453	forward	303
AVV30_gp035	protein thymidylate	11450:11644	forward	195
AVV30_gp036	synthase hypothetical	11641:12492	forward	852
AVV30_gp037	protein hypothetical	12502:12678	forward	177
AVV30_gp038	protein hypothetical	12688:12810	forward	123
AVV30_gp039	protein hypothetical	12905:13105	forward	201
AVV30_gp040	protein hypothetical	13112:13327	forward	216
AVV30_gp041	protein hypothetical	13634:13960	forward	327
AVV30_gp042	protein hypothetical	14631:14792	forward	162
AVV30_gp043	protein hypothetical	14812:15123	forward	312
AVV30_gp044	protein hypothetical	15125:15601	forward	477
AVV30_gp045	protein hypothetical	15914:16054	forward	141
AVV30_gp046	protein PF11753 family	16101:16556	forward	456
AVV30_gp047	protein hypothetical	16553:16846	forward	294
AVV30_gp048	protein hypothetical	16849:17031	forward	183
AVV30_gp049	protein hypothetical	17045:17683	forward	639
AVV30_gp050	protein hypothetical	17744:18199	forward	456
AVV30_gp051	protein hypothetical	18827:19027	forward	201
AVV30_gp052	protein hypothetical	19129:19728	forward	600
AVV30_gp053	protein metallopeptidase	19959:20843	forward	885
AVV30_gp054	domain protein hypothetical	20900:22126	forward	1227
AVV30_gp055	protein	22178:22372	forward	195

AV//20 gp056	nypothetical	22244.22525	forward	102
Avv30_gp030	hypothetical	22544.22555	IUIWalu	192
AVV30 gp057	protein	22522:22701	forward	180
$\Delta V/V/30$ gn058	DNA helicase	22698.23858	forward	1161
A1120_60000	hypothetical	22050.25050	ioi wara	1101
AVV30_gp059	protein	23860:24309	forward	450
AVV30 gp060	DNA polymerase	24424:25992	forward	1569
_01	hypothetical			
AVV30_gp061	protein	26109:26663	forward	555
	putative HNH			
	homing	27005 27642	c i	
AVV30_gp062	endonuclease	27085:27618	forward	534
AVV30_gp063	DNA polymerase	27878:28735	forward	858
AV(1/20 arr064	hypothetical	20011.20410	forward	600
AVV30_gp064	protein phosphoribosyl-	28811:29419	TOrwaru	609
	ATP			
AVV30 gp065	diphosphatase	29469:29918	forward	450
	hypothetical			
AVV30_gp066	protein	29918:30931	forward	1014
	hypothetical			
AVV30_gp067	protein	30939:33104	forward	2166
A) (//20 ===0.00	hypothetical	22400.22202	formuland	276
AVV30_gp068	protein	33108:33383	forward	276
AVV30 gp069	protein	33399:34136	forward	738
	ssDNA binding	00000101100	lonward	, 50
AVV30_gp070	protein	34198:34920	forward	723
	crossover			
	junction			
	endodeoxyribonu		<i>.</i> .	
AVV30_gp071	clease RusA	34920:35717	forward	798
AVA/20 gp072	nypotnetical	25717.2501/	forward	102
Avv30_gp072	hypothetical	55/17.55914	TOTWATU	190
AVV30 gp073	protein	35945:36148	forward	204
_01	viron-			
	encapsulated			
AVV30_gp074	RNA polymerase	36190:45912	reverse	9723
	hypothetical			
AVV30_gp075	protein	45912:47180	reverse	1269
AVA/20 gp076	nypotnetical	17192.17500	rovorco	109
Avv30_gp070	hypothetical	4/185.4/590	Teverse	408
AVV30 gp077	protein	47600:49804	reverse	2205
_01	hypothetical			
AVV30_gp078	protein	49827:50303	reverse	477
	hypothetical			
AVV30_gp079	protein	50306:50890	reverse	585
AV 0/20 000	major capsid	F0047 F0060		
AVV30_gp080	protein	50947:52260	reverse	1314
۵\/\/30 gn0&1	nrotein	52273.52267	reverse	1005
Eboor	hypothetical	52215.55501	i cverse	1055
AVV30_gp082	protein	53371:53682	reverse	312

AVV30_gp083	portal protein hypothetical	53682:55799	reverse	2118
AVV30_gp084	protein hypothetical	55869:56156	forward	288
AVV30_gp085	protein hypothetical	56226:57311	reverse	1086
AVV30_gp086	protein hypothetical	57313:58980	reverse	1668
AVV30_gp087	protein terminase large	58977:59663	reverse	687
AVV30_gp088	subunit hypothetical	59671:61269	reverse	1599
AVV30_gp089	protein hypothetical	61262:61939	reverse	678
AVV30_gp090	protein hypothetical	61990:62178	forward	189
AVV30_gp091	protein hypothetical	62179:62310	forward	132
AVV30_gp092	protein hypothetical	62297:62434	forward	138
AVV30_gp093	protein hypothetical	62421:62564	forward	144
AVV30_gp094	protein hypothetical	62545:62679	forward	135
AVV30_gp095	protein hypothetical	62666:62779	forward	114
AVV30_gp096	protein hypothetical	62779:62895	forward	117
AVV30_gp097	protein hypothetical	63083:63274	forward	192
AVV30_gp098	protein hypothetical	63261:63386	forward	126
AVV30_gp099	protein hypothetical	63453:63611	forward	159
AVV30_gp100	protein hypothetical	63694:63870	forward	177
AVV30_gp101	protein hypothetical	63867:63998	forward	132
AVV30_gp102	protein hypothetical	63985:64116	forward	132
AVV30_gp103	protein hypothetical	64332:64472	forward	141
AVV30_gp104	protein hypothetical	64459:64599	forward	141
AVV30_gp105	protein hypothetical	64596:64820	forward	225
AVV30_gp106	protein hypothetical	64811:65005	forward	195
AVV30_gp107	protein hypothetical	64996:65208	forward	213
AVV30_gp108	protein	65199:65384	forward	186
AVV30_gp109	protein	65581:65802	forward	222
AVV30_gp110	protein	65896:66393	reverse	498