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Abstract

This thesis is about the calculational approach to programming, in which one de-

rives programs from specifications. One such calculational paradigm is Ruby , the

relational calculus developed by Jones and Sheeran for describing and designing

circuits. We identify two shortcomings with derivations made using Ruby. The

first is that the notion of a program being an implementation of a specification has

never been made precise. The second is to do with types. Fundamental to the use

of type information in deriving programs is the idea of having types as special kinds

of programs. In Ruby, types are partial equivalence relations (pers). Unfortunately,

manipulating some formulae involving types has proved difficult within Ruby. In

particular, the preconditions of the ‘induction’ laws that are much used within pro-

gram derivation often work out to be assertions about types; such assertions have

typically been verified either by informal arguments or by using predicate calculus,

rather than by applying algebraic laws from Ruby.

In this thesis we address both of the shortcomings noted above. We define what

it means for a Ruby program to be an implementation, by introducing the notion of

a causal relation, and the network denoted by a Ruby program. A relation is causal

if it is functional in some structural way, but not necessarily from domain to range;

a network captures the connectivity between the primitive relations in a program.

Moreover, we present an interpreter for Ruby programs that are implementations.

Our technique for verifying an assertion about types is to first express it using

operators that give the best left and right types for a relation, and then verify this

assertion by using algebraic properties of these operators.
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Chapter 1

Introduction

In the calculational approach to programming, one derives programs from specifi-

cations. There are many calculational paradigms; examples include the fold/unfold

style of Burstall and Darlington [14], the imperative refinement calculus of Back,

Morgan, Morris and others [1, 52, 53], the functional Squiggol of Bird and Meertens

[8, 49], the relational Ruby of Jones and Sheeran [41, 37], and recently, the categor-

ical approach of Bird and de Moor [20, 9]. In this thesis we work with Ruby.

Ruby is a relational language that is used for designing programs that repre-

sent hardware circuits. Ruby programs denote binary relations, and programs are

built-up inductively from primitive relations using a pre-defined set of operators.

Ruby programs also have a pictorial interpretation using boxes and wires, which is

important when circuit layout is considered in circuit design. The Ruby approach

to circuit design is to derive executable terms from specifications in the following

way. We first formulate a term that clearly expresses the desired relationships be-

tween inputs and outputs, but typically has no direct translation as a circuit. We

then transform this term using algebraic laws for the operators of Ruby, aiming

towards a term that does represent a circuit. There are several reasons why Ruby

is based upon a calculus of relations rather than a calculus of functions. Relational

languages offer a rich set of operators and laws for combining and transforming

terms, and afford a natural treatment of non-determinism in specifications. Fur-

thermore, many methods of combining circuits (viewed as networks of functions)
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are unified if the distinction between input and output is removed [58]. Ruby has

been successfully used in the design of many different kinds of circuits, including

systolic arrays [59], arithmetic circuits [43], and butterfly networks [60].

We identify two shortcomings with derivations made using Ruby. The first

is that the notion of a program being an implementation of a specification has

never been made precise. The second is to do with types. Fundamental to the

use of type information in deriving programs is the idea of having types as special

kinds of programs. In Ruby, types are partial equivalence relations (pers) [43,

38]. Unfortunately, manipulating some formulae involving types has proved difficult

within Ruby. In particular, the preconditions of the ‘induction’ laws that are much

used within program derivation often work out to be assertions about types; such

assertions have typically been verified either by informal arguments or by using

predicate calculus, rather than by applying algebraic laws from Ruby.

In this thesis we address both of the shortcomings noted above. We define what

it means for a Ruby program to be an implementation, by introducing the notion of

a causal relation, and the network denoted by a Ruby program. A relation is causal

if it is functional in some structural way, but not necessarily from domain to range;

a network captures the connectivity between the primitive relations in a program.

Moreover, we present an interpreter for Ruby programs that are implementations.

Our technique for verifying an assertion about types is to express it using operators

that give the best left and right types for a relation, and then verify this assertion

by using algebraic properties of these operators.

The thesis is structured as follows. We begin in chapter 2 with a brief survey

of work that is related to our use of a relational language in deriving programs.

Chapter 3 introduces our style for calculations, some useful concepts from lattice

theory, the basic algebra of relations, and the relational language Ruby. In chapter 4

we introduce the notion of a causal relation, and the network denoted by a Ruby

program, and define when a Ruby program is an implementation. In chapter 5 we

present an interpreter for a natural sub-class of the implementations. Chapter 6

introduces the idea of pers as types; also introduced here are the difunctional re-
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lations, which generalise pers in a natural way. Finally, in chapter 7 everything is

put into practice: we present a number of program derivations in Ruby, and run

the resulting implementations on the interpreter; pers and difunctionals are much

in evidence in our derivations. The thesis concludes in chapter 8 with a summary

of our achievements, and some directions for future research.

The title “Between Functions and Relations in Calculating Programs” of this

thesis reflects that causal relations and difunctional relations can both be viewed

as natural generalisations of the notion of a functional relation.
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Chapter 2

Survey

In this chapter we briefly survey some work that is related to our use of relational

languages in deriving programs. First some notation. Recall that a (binary) relation

on a universe U is a set of pairs of elements of U . Throughout this thesis, letters

R, S, T, . . . denote relations. If R is a relation, then a R b means (a, b) ∈ R, and

the domain and range of R are the sets defined by dom R = {a | ∃b. a R b} and

rng R = {b | ∃a. a R b}. Inclusion ⊆, equality =, union ∪, intersection ∩, and

complement ¬ are defined for relations just as for any other sets. We write ⊥⊥
for the empty relation ∅, >> for the full relation U ×U , and id for the identity

(or diagonal) relation {(a, a) | a ∈ U}. (Writing >> rather than the more usual

lattice-theoretic symbol > avoids confusion with the use of T to denote an arbitrary

relation.) The converse operator for relations is defined by R−1 = {(b, a) | a R b}.
Composition of relations is defined by R ; S = {(a, c) | ∃b. a R b ∧ b S c}.

The basic theory of binary relations was developed by Peirce, around 1870.

Schröder extended the theory in a very thorough and systematic way around 1895.

Tarksi’s aim in writing his well–known article [62] in 1941 was to “awaken interest

in a certain neglected logical theory”, saying that “the calculus of relations deserves

much more attention than it receives”, having “an intrinsic charm and beauty which

makes it a source of intellectual delight to all who become acquainted with it.”

Tarksi [62] proposes a few simple axioms as the definition for a relational algebra.

Modern introductions to Tarski’s calculus that may be of interest to calculational
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programmers are given by Dijkstra [22] and van Gasteren and Feijen [25]. Schmidt

and Ströhlein have recently published a textbook on the calculus of relations [56].

An introduction to the algebraic properties of relations is given in section 3.3.

Several authors have proposed the use of a relational calculus as a programming

language. Jones and Sheeran’s relational language Ruby [58, 37, 41] is used to

design circuits. Bird and de Moor [20, 9] are developing a (categorical) relational

language, building on the work of Bird and Meertens on the functional language

Squiggol [8, 49]. Backhouse et al [4] have similar aims with their Spec calculus.

MacLennan’s language RPL [47] is a relational generalisation of Backus’ pioneering

functional language FP [5]. Cattrall [17] extends the work of MacLennan on the im-

plementation of RPL in the light of advances in functional programming languages,

notably the use of lazy evaluation and polymorphic type inference. Haeberer and

Veloso [68] derive a number of simple programs using a relational language.

Both Ruby and the Spec calculus have much in common with Bird and Meertens’

functional language Squiggol. It is interesting then to briefly survey some devel-

opments of the basic Squiggol language. Programs in Squiggol work upon trees,

lists, bags and sets, the so–called ‘Boom hierarchy’. The framework was uniformly

extended to cover recursive types by Malcolm [48], by means of the ‘F–algebra’

paradigm of type definition, and the resulting ‘catamorphic’ programming style.

(A catamorphism is a unique homomorphism from an initial F–algebra.) Gibbons’

recent thesis [29] is an extensive exploration of these ideas in deriving programs that

operate upon different kinds of trees. Meijer’s thesis [50] shows how Malcolm’s work

can be cast in a framework where types are cpo’s rather than unstructured sets,

with the advantage that finite and infinite objects can inhabit the same type; ap-

plications in deriving compilers from denotational semantics are given. Fokkinga’s

thesis [27] shows how the F–algebra paradigm may be extended to handle types

whose constructors are required to satisfy laws.

Berghammer [7] proposes the use of relational algebra to specify types and pro-

grams; the idea of characterising types by a number of relational formulae is also

explored in Desharnais’ thesis [21]. Haeberer and Veloso [67] have returned to
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Tarski’s question of how the basic calculus of relations might be extended to gain

the expressive power of first–order logic; section 2.0.1 gives more details. A cate-

gorical treatment of binary relations is given by Freyd and Scedrov in their recent

book [28]; other relevant categorical work includes that of Barr [6], and Carboni,

Kasangian and Street [16]. In his D.Phil. thesis [20] de Moor shows how categorical

results about relations can be used in solving dynamic programming problems. In

section 2.0.3 we summarise an interesting categorical result about relations, namely

that functors on functions uniquely extend to functors on relations.

A simpler notion than a relational algebra that has received much attention re-

cently is that of a quantale [55]. Brown and Gurr [12] show that relational quantales

[13] are models for a special variant of linear logic; section 2.0.2 gives more details.

Quantales have been proposed by Hoare and He [31] as models for the semantics of

non–deterministic ‘while’ programs and for program specification.

The space of relations is isomorphic to the space of set–valued functions; de

Moor [19] has experimented with manipulating set–valued functions. Every relation

can be expressed as the composition of the converse of a functional relation and

a functional relation; Riguet [54] explores the algebraic properties of the special

class of relations that can be expressed the other way around, as the composition

of a functional relation and the converse of a functional relation; such relations are

called difunctional . All the programs that we derive in chapter 7 are difunctional.

In the remainder of this chapter we expand upon a few interesting references

above that are perhaps not so well–known to calculational programmers.

2.0.1 Classical logic

Many properties of binary relations can be succinctly expressed using only the

operators of Tarski’s relational calculus. For example, that a relation R is a pre–

ordering (reflexive and transitive) can be expressed as (R ; R) ∪ id ⊆ R. One

is led to ask whether all properties of relations that can be written using first–

order classical logic can be expressed within relational calculus? The answer is
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no. The problem is with existential quantification. Logical terms involving ∃ are

translated to relational terms involving “ ; ”, this being the only operator of the

calculus defined using ∃. Observe that the ∃–bound variable b occurs twice within

R ; S = {(a, c) | ∃b. a R b ∧ b S c}. Relational calculus provides no means to

make extra copies of such a b if it is required at more than two occurrences, and

hence such logical terms can’t be translated into relational terms. The desire to

extend relational calculus such that the answer to the translation question becomes

yes lead to the development of ‘cylindric algebras’ and ‘polyadic algebras’.

Veloso and Haeberer [67] present a simple new approach to gaining the expressive

power of first–order logic, based upon the introduction of a product construction on

relations (notably, a product operator × on relations, defined by (a, b) R× S (c, d)

iff a R c ∧ b S d.) Since Jones and Sheeran’s calculus Ruby provides such a product

construction, this result tells us that the calculus that we use in this thesis to derive

programs has at least the expressive power of first-order logic.

2.0.2 Linear logic

A quantale [55] is a 4–tuple 〈Q,≤,⊗, 1〉 such that 〈Q,≤〉 is a complete lattice,

〈Q,⊗, 1〉 is a monoid, and ⊗ is universally disjunctive (distributes through all
⋃

’s)

in both arguments. Quantales are relevant to us in this thesis because the space

P (A×A) of binary relations over a universe A forms a quantale, with ≤ as set

inclusion, ⊗ as relational composition, and 1 as the identity relation on A. In fact,

such relational models are canonical, in the sense that every quantale is isomorphic

to a quantale of relations on its underlying set [13].

That a function f on a complete lattice be universally disjunctive is precisely

the condition for there being a unique function g satisfying f x ≤ y ≡ x ≤ g y.

Such a g is known as the right adjoint to f . Adjoint functions are interesting to

us because they have properties that can be useful in calculation; section 3.2.2

gives more details. That relational composition “ ; ” is universally disjunctive in

both arguments means that the functions (R ; –) and (– ; R) have right adjoints.
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Backhouse [4] denotes the adjoint functions by (R/–) and (–\R). The operators /

and \ have proved to be very useful in manipulating relational formulae [4, 35].

In [12] Brown and Gurr extend their work on quantales, showing that relational

quantales form a sound and complete class of models for ‘non–commutative intu-

itionistic linear logic.’ (Linear intuitionistic logic differs from intuitionistic logic

primarily in the absence of the structural rules of weakening and contraction, with

the effect that each premise in a sequent must be used precisely once in proving

the single consequent. In non–commutative linear logic, the exchange rule is also

discarded, with the effect that the position of a premise within a sequent becomes

significant, and that two linear implication operators become necessary.) This re-

sult is interesting to us because the linear implication operators are modelled within

a relational quantale as / and \, operators which are so useful in calculating with

relations; moreover, the result suggests that studying relational algebra might be a

useful stepping stone to understanding linear logic.

2.0.3 Extending functors

The map operator from functional programming [10] is a well–known example of a

‘functor’. (Recall that a functor is a mapping from types to types, together with

a mapping from functions to functions that must preserve identity functions and

distribute through composition.) There is also a functor map′, defined below, that

works with relations rather than functions:

[ ] map′ R [ ] ≡ true,
(x.xs) map′ R (y.ys) ≡ x R y ∧ xs (map′ R) ys.

As one would expect, the relational map′ is an extension of the functional map, in

that map′ behaves as map when applied to functional relations. Being precise,

map′ (lift f) = lift (map f),

where lift converts a function to a relation in the obvious way, that is,

lift f = {(a, fa) | a ∈ dom f}.
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An interesting result (due to Carboni, Kelly and Wood [15]) is that map′ is in

fact the only monotonic functor on relations that extends map in this way. The

result is not specific to map: every functor on functions has at most one extension to

a monotonic functor on relations; see [20] for a discussion of conditions under which

the extension exists. In conjunction with another result about functors (concerning

the existence of initial algebras), de Moor [20] cites the unique extension result as

justification for the slogan “The generalisation of programming with total functions

to programming with relations is free of surprises.”

13



Chapter 3

Prelude

In this chapter we introduce some standard material that is used in the remainder

of the thesis. Section 3.1 introduces our notation for proofs. Section 3.2 reviews

some concepts from lattice theory and Galois theory. Section 3.3 gives the basic

properties of the operators of relational calculus. And finally, section 3.4 introduces

the relational language Ruby in which all our derivations are made.

3.1 Proofs

We adopt the style for calculations and proofs as developed by Dijkstra, Fei-

jen, van Gasteren, and others [23, 66]. The reader should have little problem in

following our calculations with no prior knowledge of this style. Let us prove,

by way of an example, that functional relations are closed under composition:

fn.R ∧ fn.S ⇒ fn.(R ; S), where fn.R ≡ x R y ∧ x R z ⇒ y = z. Our proof in

fact uses the equivalent point–free definition fn.R ≡ R−1 ; R ⊆ id.

fn.(R ; S)

≡ { defn }

(R ; S)−1 ; R ; S ⊆ id

≡ { law for converse }

S−1 ; R−1 ; R ; S ⊆ id
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⇐ { assumption: fn.R }

S−1 ; id ; S ⊆ id

≡ { law for identity }

S−1 ; S ⊆ id

≡ { defn }

fn.S

Note that associativity of composition is used implicitly at a number of places to

avoid parenthesising repeated compositions. Note also that monotonicity of “ ; ”

is used implicitly in the ⇐ step. Such simple properties are used so frequently in

calculations that they are rarely mentioned in the hints between steps.

One might have expected the proof above to proceed in the reverse direction.

Experience has shown however [66] that in proving a proposition A ⇒ B, it is

often much simpler to begin with the consequent B and work backwards to the

assumption A; if there is more than one assumption (as is the case above) it is

usually convenient not to work backwards to their conjunction, but to use one or

more of the assumptions as hints during the proof.

As in the example proof above, we sometimes underline parts of a formulae.

Such underlining has no formal meaning; rather it is used to draw the eye to those

parts of the formulae that are being changed in moving to the next step.

3.2 Lattices

In this section we review some concepts from lattice theory [30]. A more detailed

introduction that may be of interest to calculational programmers can be found as

a prelude to van der Woude’s notes on predicate transformers [64].

Recall that a partially–ordered set (poset) is a pair 〈A,v〉, where v is a re-

flexive, anti–symmetric and transitive relation on the set A. For the remainder of
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this section 〈A,v〉 is assumed to be a poset. Sometimes in this thesis we find it

preferable to use the dual ordering w, defined by a w b =̂ b v a.

Definition 1: An upper bound of a set X ⊆ A is an a ∈ A for which

∀x ∈ X . x v a.

Element a ∈ A is the least upper bound (lub) of X ⊆ A if

(∀x ∈ X . x v y) ≡ a v y.

If it exists, we denote the unique lub by tX . Turning things around,

an element a ∈ A is the greatest lower bound (glb) of X ⊆ A if

(∀x ∈ X . y v x) ≡ y v a.

If it exists, we denote the unique glb by uX .

Definition 2: A lattice is a poset for which lubs and glbs exist for all

finite subsets of elements. Equivalently, a lattice is a poset for which

there exist least and greatest elements ⊥⊥ and >>, and binary lub and

glb operators t and u. The properties required of these elements and

operators are captured in the following four axioms:

⊥⊥ v a,

a v >>,

a v c ∧ b v c ≡ a t b v c,

c v a ∧ c v b ≡ c v a u b.

One can show from these axioms that the operators t and u are idem-

potent, commutative and associative. Moreover, ⊥⊥ and >> are respec-

tivity the units for t and u, and the zeros for u and t.
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We consider now some extra properties that a lattice might have:

Definition 3: A lattice is complete if lubs and glbs exist of all subsets

of elements, not just finite subsets. A lattice is distributive if for all

finite sets X ⊆ A the following two equations hold:

a t (uX ) = u {a t x | x ∈ X},

a u (tX ) = t {a u x | x ∈ X}.

Equivalently, a lattice is distributive if

a t (b u c) = (a t b) u (a t c),

a u (b t c) = (a u b) t (a u c).

A complete lattice is completely distributive if the distribution laws hold

for all sets X ⊆ A, not just finite subsets. Elements a and b of a

lattice are complements if a t b = >> and a u b = ⊥⊥. A lattice is

complemented if every element a has a unique complement ¬a.

All the notions introduced above are combined in our final definition:

Definition 4: A powerset lattice (plat) is a complete boolean algebra,

i.e. a complete, completely distributive, complemented lattice. The pow-

erset P (A) = {X | X ⊆ A} of any set A forms a powerset lattice under

set inclusion ⊆, hence the terminology.

3.2.1 Monotonicity and junctivity

Let A and B be complete lattices, f : A → B, X ⊆ A, and a, b ∈ A. In the

following definitions, we abbreviate {fx | x ∈ X} by f ∗X .

Definition 5:
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f is monotonic =̂ a v b ⇒ fa v fb,

f is disjunctive =̂ finite.X ⇒ f(tX ) = t (f ∗X ),

f is conjunctive =̂ finite.X ⇒ f(uX ) = u (f ∗X ),

f is universally disjunctive =̂ f(tX ) = t (f ∗X ),

f is universally conjunctive =̂ f(uX ) = u (f ∗X ).

There are a number of other useful formulations of monotonicity:

Lemma 6:

(a) monotonic.f ≡ fa v f(a t b).

(b) monotonic.f ≡ f(a u b) v fa.

(c) monotonic.f ≡ t (f ∗X ) v f(tX ).

(d) monotonic.f ≡ f(uX ) v u (f ∗X ).

3.2.2 Galois connections

In this section we review some concepts from Galois theory [30], and make some

comments about how Galois connections are used in relational programming. Galois

connections have many other interesting applications in Computing Science; see for

example [51]. More recently, Galois connections play a key role in Hughes and

Launchbury’s work on reversing program analyses [32].

Definition 7: A Galois connection between complete lattices A and B
is a pair of functions f : B → A and g : A → B, satisfying

f b v a ≡ b v g a

for all elements a ∈ A and b ∈ B.

We say that function f is left adjoint to function g, and conversely, that g is right

adjoint to f . That A and B form lattices is not strictly necessary to define the
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notion of a Galois connection; that A and B be pre–ordered sets is sufficient. All

our applications however involve complete lattices, an assumption that allows our

introduction to Galois connections to be simplified. (To avoid confusion between

left and right adjoints, just remember that the left adjoint f : B → A appears to

the left of an inclusion v in definition 7; it might also be helpful to use a left–facing

arrow ← and think of the left adjoint f as having type A ← B.)

A Galois connection is a simple instance of the general categorical notion of an

adjunction, hence the reference to functions f and g as adjoints. Studying the simple

notion of a Galois connection is an excellent precursor to studying adjunctions.

Briefly, an adjunction between categories C and D is a pair of functors F : D → C
and G : C → D, such that for all objects B ∈ D and A ∈ C, the arrows of type

FB → A in C are in one–to–one correspondence with arrows of type B → GA

in D, in a way that is independent of the choice of particular objects A and B.

More formally, we require a ‘natural isomorphism of hom-functors.’ Fokkinga [26]

introduces and proves many properties of adjunctions in a calculational style.

What is expressed in stating that f and g are adjoint functions?

Lemma 8:

f b v a ≡ b v g a

≡
f and g are monotonic ∧ f ◦ g v id ∧ id v g ◦ f .

We see now that a Galois connection is precisely a pair of monotonic functions

that are approximate inverses , in the sense that the application f (g a) always gives

a result that approximates a, while the application g (f b) always gives a result

approximated by b. (Recall that functions f and g are true inverses precisely when

f (g a) = a and g (f b) = b for all elements a ∈ A and b ∈ B.)

The adjoint functions satisfy powerful junctivity properties:

Lemma 9:
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f and g are adjoint functions

⇒
f is universally disjunctive ∧ g is universally conjunctive.

In a complemented lattice the adjoints approximately distribute over ¬:

Lemma 10:

f and g are adjoint functions

⇒
f (¬b) v ¬(f b) ∧ ¬(g a) v g (¬a).

Adjoint functions uniquely determine one another:

Lemma 11:

f and g are adjoint functions

⇒
f b = u {a | b ⊆ g a} ∧ g a = t {b | f b ⊆ a}.

Lemma 9 tells us that adjoints are universally junctive; that a function be uni-

versally junctive is in fact the precise condition for existence of an adjoint:

Lemma 12:

f has a right adjoint ≡ f is universally disjunctive;

g has a left adjoint ≡ g is universally conjunctive.

This thesis is about the use of relational languages in deriving programs. We

identify three applications of Galois connections in this context:

Remembering properties . The algebra of relations comprises a great

many laws. Many such laws however are just a consequence of op-

erators in the calculus being adjoint to one another. Uncovering and
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remembering such adjoint operators proves to be an excellent way to

remember many of the properties of such operators. For example, the

law R−1 ⊆ S ≡ R ⊆ S−1 from relational calculus is precisely the state-

ment that the converse operator is self adjoint. Immediate now from

our knowledge of adjoint functions are the following properties:

• (R−1)
−1

= R,

• ⊥⊥−1 = ⊥⊥,

• >>−1 = >>,

• (R∪S)−1 = R−1 ∪ S−1,

• (R∩S)−1 = R−1 ∩ S−1,

• ¬(R−1) = (¬R)−1.

In axiomatic approaches to relational calculus, where manipulation of

relational formulae is conducted without ever appealing to the set–

theoretic definitions of the operators, Galois connections are clear cases

for being chosen as axioms in themselves.

Simplifying calculation. Equivalences are known to be a powerful tool

in helping to make calculations clear and concise. Galois equivalences

f b v a ≡ b v g a

are particularly useful, allowing us to switch between isolation of a vari-

able on the left or right side of an inclusion. For example, here is a

proof of one part of lemma 9, namely that a function f satisfying such

a Galois equivalence must be universally disjunctive:

f tX = t f ∗X

≡ { adjoints are monotonic (6c) }

f tX v t f ∗X

≡ { Galois: f, g }
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tX v g (t f ∗X )

≡ { Galois: t,4 }

∀x ∈ X . (x v g (t f ∗X ))

≡ { Galois: f, g }

∀x ∈ X . (fx v t f ∗X )

≡ { Galois: t,4 }

t f ∗X v t f ∗X

≡ { reflexivity }

true

Backhouse’s short note [2] gives another good example. (The hint Ga-

lois: t,4 above refers to the fact that t arises as a left adjoint. For

example, the equivalence a t b v c ≡ a v c ∧ b v c expresses that

the binary lub operator t is left adjoint to the doubling operator 4
defined by 4x = (x, x). Dually, u is right adjoint to 4.)

Suggesting operators . A function has an adjoint precisely when it is uni-

versally junctive. It may be the case that the universal junctivity of some

function is well–known, but its adjoint function is not. An important

example is relational composition, an operation that is universally dis-

junctive in both arguments. The two corresponding right adjoint func-

tions are termed ‘factoring’ operators by Backhouse [4]. These opera-

tors have many properties that can be useful in calculation; section 3.3.1

gives more details. Moreover, factors have computational meaning, cor-

responding to the notion of weakest pre– and post–specifications [31].

Related to factors are ‘monotype factors’ [3], used in simplifying proofs

involving demonic composition of relations; again these unfamiliar op-

erators arose as adjoints to universally junctive functions.
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3.3 Relational algebra

In this section we review the basic properties of the operators of relational calculus,

by defining the notion of a relational algebra. The definition we present is due to

Backhouse [4], but is equivalent to Tarski’s original formulation [62].

Definition 13: A relational algebra is a 5–tuple

〈A,⊆, ; , id, −1〉

for which all the following hold:

(a) 〈A,⊆〉 is a (non empty) power–set lattice.

(b) 〈A, ; , id〉 is a monoid:

R ; (S ; T ) = (R ; S) ; T,

id ; R = R = R ; id.

(c) (R ; ) and ( ;R) are universally disjunctive: ∀X ⊆ A,

R ;
⋃ X =

⋃ {R ; S | S ∈ X},
⋃ X ; R =

⋃ {S ; R | S ∈ X}.

(d) −1 is self adjoint:

R−1 ⊆ S ≡ R ⊆ S−1.

(e) −1 is a contravariant homomorphism on the monoid 〈A, ; , id〉:

(R ; S)−1 = S−1 ; R−1,

id−1 = id.

(f) The middle–exchange rule:

X ; R ; Y ⊆ S ≡ X−1 ; ¬S ; Y −1 ⊆ ¬R.

(g) Tarksi’s rule:

>> ; R ; >> = >> ≡ R 6= ⊥⊥.
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Of course, the space P (U×U) of relations over a non–empty universe U (together

with the standard set–theoretic definitions for the four operators) is an example of

a relational algebra. The axiom system is not however complete for these models.

Complete axiomatisation of relational calculus with a finite number of axioms is not

possible; see section 2.158 of [28]. Note also that axioms 13a–13c are the properties

required of a quantale [55]; see section 2.0.2. There is also a close correspondence

between a relational algebra and the categorical notion of an allegory [28].

A relational algebra comprises three parts: the plat structure, the monoid struc-

ture, and the converse structure. Each part is linked to each of the others by a single

axiom: 13c links the plat and monoid structures, 13d links the plat and converse

structures, and 13e links the monoid and converse structures. It is interesting to

note that, as shown below, id−1 = id is in fact derivable from other axioms:

id−1

= { identity }

id−1 ; id

= { converse }

(id−1 ; id)−1−1

= { distribution }

(id−1 ; id−1−1)−1

= { converse }

(id−1 ; id)−1

= { identity }

id−1−1

= { converse }

id
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Axiom 13f (van der Woude’s middle–exchange rule [4]) links all three layers at

once; in the presence of the other axioms it is equivalent to the standard Schröder

equivalences, but has proved better suited to the demands of calculation. Axioms

13e and 13c are in fact derivable from the the middle–exchange rule [25]. Axiom 13g

(Tarski’s rule) precludes one–point models of a relational algebra (that is, ensures

>> 6= ⊥⊥), and the trivial assignment 〈−1, ; , id〉 := 〈λR.R,∩,>>〉. In this thesis we

never have need to apply the middle–exchange rule or Tarski’s rule.

A large number of derived properties of relational algebras are useful when

manipulating relational formulae. For example, axiom 13c gives the following:

Lemma 14:

• ⊥⊥ is a zero for composition: ⊥⊥ ; R = R ; ⊥⊥ = ⊥⊥,

• composition is monotonic in both arguments,

• >> ;>> = >>.

3.3.1 Factors

The composition operator for relations is universally disjunctive in both arguments.

Universal disjunctivity is precisely the condition for a function having a right ad-

joint; see lemma 12. Backhouse [4] writes (R/–) for the right adjoint to (R ; –), and

(–\R) for the right adjoint to (– ; R), and calls terms of the form R/S left factors

and terms of the form S\R right factors . Here are the defining Galois connections:

Definition 15:

R ; S ⊆ T ≡ S ⊆ R/T ,

S ; R ⊆ T ≡ S ⊆ T\R.

That adjoint functions are approximate inverses (lemma 8) is expressed in the case

of factors by the following cancellation properties; it is these rules that motivate

the use of the division–like symbols / and \:
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Lemma 16:

R ; (R/S) ⊆ S ⊆ R/(R ; S),

(S\R) ; R ⊆ S ⊆ (S ; R)\R.

Factors have proved very useful in simplifying the manipulation of relational

formulae [4]. (Backhouse has observed that many of the proofs in Schmidt and

Ströhlein’s text on relational algebra [56] can be considerably simplified by using

factors.) As an example of how factors are used, let F be a monotonic function from

relations to relations that distributes over composition. Monotonicity guarantees

existence of a least fixpoint µF for F . Let us now prove that µF is transitive:

transitive.µF

≡ { lemma 50 }

µF ; µF ⊆ µF

≡ { lemma 15 }

µF ⊆ µF/µF

⇐ { fixpoint induction }

F (µF/µF ) ⊆ µF/µF

⇐ { factors }

FµF/FµF ⊆ µF/µF

≡ { FµF = µF }

true

(Tarski [63] gives more details about fixpoints of functions between lattices, and

presents the ‘fixpoint induction’ rule used above: µF ⊆ R ⇐ FR ⊆ R.) The hint

‘factors’ above refers here to the law F (R/S) ⊆ FR/FS, proved as follows:

F (R/S) ⊆ FR/FS
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≡ { lemma 15 }

FR ; F (R/S) ⊆ FS

≡ { distribution }

F (R ; R/S) ⊆ FS

⇐ { monotonicity }

R ; R/S ⊆ S

≡ { lemma 16 }

true

Backhouse [3] uses a special variant of factors, so–called ‘monotype factors’, to

simplify proofs involving demonic composition of relations. In section 6.1.3 we use

factors to define and prove properties of domain operators < and >.

3.4 Ruby

In this section we introduce Ruby, the relational calculus developed by Jones and

Sheeran for describing and designing circuits [58, 37, 41].

Proofs of the algebraic laws that we give in this section can be found in some of

the earlier Ruby articles. The difference between Ruby programs that are specifica-

tions and those that are implementations is the subject of chapter 4. In chapter 7

we derive a number of circuits using Ruby.

A relation on a universe U is a set of pairs of elements of U . In Ruby the universe

is a fixed set U containing at least the booleans and integers, and closed under finite

tupling. If R is a relation, we write R : A ↔ B to mean that R is a relation between

subsets A and B of the universe, i.e. that R ⊆ A× B.

Given a function f : A → B, the relation f r : A ↔ B (called the graph of f) is

defined by f r = {(a, fa) | a ∈ A}. A useful trick is to make a unary function from

a binary function by fixing one of its arguments; for example, (∗2) is the doubling
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function, and (1/) is the reciprocating function. Formally, if ⊕ : A × B → C then

(a⊕) : B → C and (⊕b) : A → C (for a ∈ A and b ∈ B) are defined by (a⊕) b = a⊕b
and (⊕b) a = a ⊕ b. Functional relations like (∗2)r and (+1)r are much used in

Ruby. In fact, the (–)r operator is always left implicit in Ruby programs. That is,

no distinction is made between a function and a functional relation.

The basis for Ruby is Tarski’s calculus of relations, as described in the first

paragraph of chapter 2 and axiomatised in section 3.3, to which a number of ex-

tensions are made. The most important extension is the par (parallel composition)

operator, which forms the product of two relations:

Definition 17: (a, b) [R, S] (c, d) =̂ a R c ∧ b S d.

The [R, S] notation is used rather than R × S for historical reasons. (Note that

[R, S] is different from the standard cartesian product R× S, defined by (a, b) R×
S (c, d) ≡ a R b ∧ c S d.) Par generalises in the obvious way to n-arguments

[R1, R2, . . . , Rn]; for example, [R, S, T ] relates triples to triples.

The converse operator distributes through par, and par is functorial:

Lemma 18:

[R, S]−1 = [R−1, S−1],

[R, S] ; [T, U ] = [R ; T, S ; U ].

Two common uses of par merit special abbreviations:

Definition 19:

fst R =̂ [R, id],

snd R =̂ [id, R].

The identity relation id is the simplest example of a restructuring or wiring

relation in Ruby; the other common wiring relations are defined as follows:
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Definition 20:

(a, b) swap (c, d) =̂ a = d ∧ b = c,

(a, b) π1 c =̂ a = c,

(a, b) π2 c =̂ b = c,

a fork (b, c) =̂ a = b ∧ a = c,

((a, b), c) lsh (d, (e, f)) =̂ a = d ∧ b = e ∧ c = f ,

(a, (b, c)) rsh ((d, e), f) =̂ a = d ∧ b = e ∧ c = f .

Note that rsh = lsh−1. The most commonly used properties of the wiring relations

are given below, and are called shunting laws. We use the term shunting for any

transformation of the form R ; S = S ; T . (Readers familiar with category theory

will recognise that the shunting rules express naturality of the wiring primitives.)

Lemma 21:

[R, S] ; swap = swap ; [S,R],

fst R ; π1 = π1 ; R,

snd R ; π2 = π2 ; R,

f is functional ≡ f ; fork = fork ; [f, f ],

[[R, S], T ] ; lsh = lsh ; [R, [S, T ]],

[R, [S, T ]] ; rsh = rsh ; [[R, S], T ].

As well as denoting binary relations, Ruby terms have a pictorial interpretation

using boxes and wires. Primitive terms are pictured as boxes labelled with the

name of the primitive, and the appropriate number of wires on their left and right

sides. For example, the addition relation + is pictured as follows:

+
.

In such pictures, the convention is that domain values flow on the left-hand wires

of a primitive, and range values on the right-hand wires. Corresponding to reading

tuples of values from left to right, we read busses of wires from bottom to top.
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The wiring primitives of Ruby are pictured just as wires. For example,

id π1 π2 fork
.

Partial identity relations A ⊆ id correspond to wires that are constrained in the

values that they may carry, constraints being pictured as blobs:

• .

Terms built using operators of Ruby are pictured in terms of pictures of their

arguments. A term R ; S is pictured by placing a picture of R to the left of a

picture of S, and joining the intermediate wires together:

R S
.

A term R−1 is pictured by bending wires in a picture of R:

R

.

When R is a wiring relation, this bending of wires is equivalent to flipping a picture

of the primitive about its vertical axis. For example,

id−1 π1
−1 π2

−1 fork−1

.
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Laws such as (R ; S)−1 = S−1 ; R−1 and [R, S]−1 = [R−1, S−1] allow any Ruby

term to be rewritten such that the converse operator is only applied to primitive

relations. In practice when picturing terms we assume that such rewriting of con-

verses has been done. Moreover, we treat the converse of a primitive relation as

itself a primitive relation; for example, +−1 would be pictured as follows:

+−1

.

A term [R, S] is pictured by placing a picture of R below a picture of S:

R

S

.

If desired, the difference between [[R, S], T ] and [R, [S, T ]] and [R, S, T ] can be

made explicit in pictures by spacing some components further apart; alternatively

one might space all three components equally, but ‘crimp’ wires closer together, or

put vertical strokes through wires that are part of the same tuple.

By way of example, consider the Ruby program R = π1
−1 ; snd fork ; rsh ;

fst + ; fork−1. This program is pictured as follows (the dashed boxes are included

to help in understanding the translation from program to picture):

A
AA

+

.

A simpler picture expresses just the connectivity:

+
.
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It is clear from this picture that a R b ≡ b = a + b, which assuming that a and b

range over the integers, tells us that a R b ≡ a = 0.

Suppose that R is a relation defined by (a, (b, c)) R d ≡ P (a, b, c, d), where P

is some predicate. With what we have said about pictures up to now, the relation

R would be drawn as a box with three wires coming from the left side, and one

wire coming from the right side. In Ruby one is in fact allowed to draw wires on all

four sides of a box, with the convention that the left and top sides correspond to

the domain of the relation, and the bottom and right sides correspond to the range.

For example, here are three ways to draw the domain wires for the relation R:

R RR R
.

Here is a way that is not acceptable:

R
.

This last picture implies thatR was defined in the form ((a, b), c) R d ≡ P (a, b, c, d),

which is not the case; the place at which the domain wires are split between the

left and top sides is significant in a picture, giving some type information about

the corresponding relation. Of course, a similar restriction applies to splitting the

range wires between the bottom and right sides of a picture.

Given two relations R and S on pairs of values, they can be composed R ; S as

any other relations; viewing them as 4-sided components, it is natural to think also

of placing one beside the other, or one below the other:
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R S

R

S

.

The beside operator is defined as follows:

Definition 22:

(a, (b, c)) R↔ S ((d, e), f) =̂ ∃x. (a, b) R (d, x) ∧ (x, c) S (e, f).

The below operator can be defined as the dual to beside:

Definition 23: R l S =̂ (R−1 ↔ S−1)
−1

.

(It is interesting to note that rsh = [id, id] ↔ [id, id] and lsh = [id, id] l [id, id].)

In fact, even the beside operator need not be taken as primitive:

Lemma 24: R↔ S = rsh ; fst R ; lsh ; snd R ; rsh.

(A similar result for below can be obtained using definition 23 and properties of

converse.) The operators below and beside satisfy an ‘abides’ law:

Lemma 25: (R↔ S) l (T ↔ U) = (R l T )↔ (S l U).

Ruby has a number of so–called generic combining forms that are defined recur-

sively on an argument that ranges over the natural numbers. The simplest generic

construction is the n–fold composition Rn of a relation R:

Definition 26:

R0 =̂ id,
Rn+1 =̂ Rn ; R.
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For example, R4 = R ; R ; R ; R. One can prove by induction that Rn ; Rm = Rn+m

and (Rn)−1 = (R−1)n. No confusion results from abbreviating (R−1)n by R−n.

To make similar recursive definitions for the other generic constructions, we first

define some generic wiring primitives. In the following definitions, ] gives the arity

of a tuple, and ++ is the concatenation operator for tuples. Tuples are indexed by

subscripting, with index 0 giving the left–most component.

Definition 27:

(x, ys) apln zs =̂ ]ys = n ∧ zs = (x)++ys,

(xs, y) aprn zs =̂ ]xs = n ∧ zs = xs++(y),

(xs, ys) zipn zs =̂ ]xs = ]ys = ]zs = n ∧ ∀i < n. zsi = (xsi, ysi).

Here are some examples:

(1, (2, 3, 4)) apl3 (1, 2, 3, 4),

((1, 2, 3), 4) apr3 (1, 2, 3, 4),

((1, 2, 3), (4, 5, 6)) zip3 ((1, 4), (2, 5), (3, 6)).

The n–fold product of R is defined as follows:

Definition 28:

map0 R =̂ [],
mapn+1 R =̂ apln

−1 ; [R,mapn R] ; apln.

(Note that the [] in the map0 R definition is the 0–width par.) For example,

map4 R = [R,R,R,R]. The mapn operator distributes through composition (mapn

is functorial), and commutes with the converse operator:

Lemma 29:

mapn R ; mapn S = mapn (R ; S),

(mapn R)−1 = mapn (R−1).
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Using map one can give shunting laws for the generic wiring primitives:

Lemma 30:

[R,mapn R] ; apln = apln ; mapn+1 R,

[mapn R,R] ; aprn = aprn ; mapn+1 R,

[mapn R,mapn S] ; zipn = zipn ; mapn [R, S].

Similar to map is the triangle construction:

Definition 31:

tri0 R =̂ [],
trin+1 R =̂ apln

−1 ; [Rn, trin R] ; apln.

(Note that what we have defined above as tri is normally written as irt in Ruby.)

For example, tri4 R = [R3, R2, R1, R0], or in pictures:

R

R

R

R

R

R
.

Triangle has similar properties to map:

Lemma 32:

R ; S = S ; R ⇒ trin R ; trin S = trin (R ; S),

(trin R)−1 = trin (R−1).

The generic version of ↔ is the row construction:

Definition 33:
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row1 R =̂ snd apl0
−1 ; R ; fst apl0,

rown+2 R =̂ snd apln+1
−1 ; (R↔ rown+1 R) ; fst apln+1.

(Choosing n = 1 as the base–case for rown R avoids some technical problems with

types [38].) For example, here is a picture of row4 R:

R R R R

.

Just as l is dual to ↔, so col is dual to row:

Definition 34: coln R =̂ (rown R
−1)
−1

.

For example, here is a picture of col4 R:

R

R

R

R

.

Relational versions of the familiar reduce (or fold) operators from functional

programming [10] can be defined in Ruby by using row and col:

Definition 35:

rdln R =̂ rown (R ; fork) ; π2,

rdrn R =̂ coln (R ; fork) ; π1.

Here are pictures of rdl4 R and rdr4 R:
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R R R R

R

R

R

R

.

For example, if ⊕ is a function from pairs to values, then

(a, (b, c, d, e)) (rdl4 ⊕r) x ≡ x = (((a⊕ b)⊕ c)⊕ d)⊕ e,

((a, b, c, d), e) (rdr4 ⊕r) x ≡ x = a⊕ (b⊕ (c⊕ (d⊕ e))).

Laws for row, col, rdl and rdr are given in section 7.1.

Many circuits operate with streams of values rather than single values. Ruby

can be used to design such circuits [59, 40]. A stream is modelled in Ruby as a

function from integers to values. Given a relation R, the corresponding relation

R̂ on streams is defined by a R̂ b ≡ ∀t ∈ Z. a(t) R b(t). In practice the ˆ(–)

operator is always left implicit in Ruby programs. Note that new definitions for

the operators of Ruby are not needed when working with streams; the standard

definitions suffice. A single new primitive is introduced, a unit–delay primitive D:

Definition 36: a D b =̂ ∀t ∈ Z. a(t− 1) = b(t).

D has a number of useful properties [59], but in this thesis we don’t manipulate

programs involving delays. In chapter 5 we present an interpreter for Ruby pro-

grams; within the interpreter time is infinite only in the positive direction, and we

use a delay primitive Ds that is parameterised with a starting value s:

Definition 37: a Ds b =̂ b(0) = s ∧ ∀t ∈ N . b(t+ 1) = a(t).
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Chapter 4

Causal Relations and Networks

The Ruby approach to circuit design is to derive implementations from specifica-

tions. Ruby has been used to derive many different kinds of circuits, but the notion

of a Ruby program being an implementation has never been made precise, although

the basic ideas can be found in [39]. In this chapter we define what it means for a

program to be an implementation, using the notion of a causal relation and that of

the network of relations denoted by a Ruby program.

Section 4.1 introduces the idea of a causal relation. Section 4.2 gives a categorical

definition of causality, and some closure properties of causal relations. Section 4.3

introduces networks. And finally, section 4.4 defines ‘implementation’.

4.1 Causal relations

Given a function f : A → B, the corresponding functional relation f r : A ↔ B
is defined by a f r b ≡ b = fa. (In Ruby one always uses the same symbol for a

function and its interpretation as a relation, but for our purposes here we prefer

to make the difference explicit.) For example, (x, y) +r z ≡ z = x + y. In

this example, one can think of the x and y components as being inputs to the

relation, and the z component being the output . This is not the only way to

assign inputs and outputs to the +r relation however; either of x and y can also

be viewed as the output component, since we have (x, y) +r z ≡ x = z − y and
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(x, y) +r z ≡ y = z − x. In this sense, the +r relation is functional in three

different ways; +r is an example of what we term a causal relation.

Definition 38: A relation is causal [33] if one can partition the com-

ponents of each tuple in the relation into two classes, such that the first

class (the output components) are functionally determined by the second

class (the input components). Moreover, we require that the partition

and function be the same for all tuples in the relation.

Causal relations are more general than functional relations in that the input compo-

nents are not restricted to the domain of a causal relation, nor output components

to the range. An example of a relation that is causal but not functional is (+r)−1.

An example of a relation that is not causal is {(F, F ), (T, F ), (T, T )}.

Since there may be more than one way to pick input and output components

for a causal relation, it is useful then to think of the set of directions for a causal

relation. Whereas types tell us what kind of data a program expects, directions tell

us which components of a causal relation can be inputs and which can be outputs.

We write Rd for the set of directions for a relation R; relations that are not causal

have Rd = ∅. For example, the +r relation has three directions:

(+r)d = {((in, in), out), ((in, out), in), ((out, in), in)}.

We give below some closure properties for causal relations:

• If R is functional then R is causal.

• If A and B are sets, then the product A× B is causal.

• R is causal iff R−1 is causal. In fact, (R−1)d = (Rd)
−1

.

• R is causal and S is causal iff [R, S] is causal. In fact, [R, S]d = [Rd, Sd].

Some of these properties are proved in section 4.2.3. Unfortunately, causal relations

are not closed under composition. For example, both or−1 and and are causal

relations, but their composition or−1 ; and = {(F, F ), (T, F ), (T, T )} is not.
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If a composition R ; S is in fact causal, one might imagine that the ways in

which it is causal are related to the ways in which the components R and S are

causal, but this is not in general the case. Consider the following definition,

(R ; S)wd = {(a, c) | ∃b. a Rd b ∧ ¬b Sd c},

where the ¬ operator gives the complement of a direction, replacing ins by outs

and vice–versa. This definition demands that outputs from R coincide with inputs

to S, and conversely, that inputs to R coincide with outputs from S. We say that

R ; S is well–directed if (R ; S)wd 6= ∅. To see that (R ; S)d 6= (R ; S)wd, take

T = and−1 ; and. This program is equivalent to the identity relation {(F, F ), (T, T )}
on booleans, and hence T d = {(in, out), (out, in)}, but Twd = ∅, since there is a

‘clash of inputs’ between the two primitives. To see that not even the weaker

(R ; S)wd ⊆ (R ; S)d holds, take T = π1
−1 ; snd fork ; rsh ; fst and ; fork−1. This

program denotes the non–causal relation {(F, F ), (T, F ), (T, T )}, and hence T d = ∅,
but from andd = {((in, in), out)} and the following connectivity diagram for T ,

and
,

we conclude that Twd = {(in, out)}. (At which composition one breaks T to ap-

ply the wd definition is irrelevant, because R = S ⇒ Rd = Sd; directions are a

property of the denotation of a program, rather than of the program itself.)

4.2 Causality categorically

In section 4.2.3 we give a categorical definition for the notion of a relation being

causal, and prove some of the closure properties from section 4.1. We choose to

work not within the category REL of relations, but within a category rel(C) whose

arrows are subobjects of a binary product of objects in a suitable category C; this

is a standard categorical approach to relations [16, 6, 20]. Section 4.2.1 reviews the

notion of a subobject. Section 4.2.2 defines the category rel(C).
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4.2.1 Subobjects

An arrow f : A → B is said to factor through an arrow g : C → B if there exists

an h : A→ C for which the following diagram commutes, that is, f = g ◦ h.

A
@
@
@ h
@
@
@R

f

∨

C

	�
�
� g
�
�
�

B

We write f ≈ g if each of f and g factors through the other. One can verify

that ≈ is an equivalence relation on arrows with a common target; we write [f ] for

the equivalence class of f under ≈. If f and g are monic arrows (recall that f is

monic if f ◦ g = f ◦ h ⇒ g = h) then the factorising arrows implied by f ≈ g are

unique, and are inverse isomorphisms. A subobject of an object A is defined to be

an equivalence class under ≈ of monic arrows with target A.

How does this definition link with our intuition about sub–structures? Let us

apply the definition in SET, the category of sets and functions. In SET the monic

arrows are precisely the injective functions, so a subobject is an equivalence class of

injections. Every subobject of A contains precisely one inclusion of a subset A into

A itself, and that subset is the image of every element of that subobject; moreover,

the subsets of A form a complete set of class representatives for the subobjects of

A: each subobject in SET determines and is determined by a unique subset.

4.2.2 The category rel(C)

Let C be a category with binary products and pullbacks. The category rel(C) of

relations over C is defined as follows [16]:
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• The objects of rel(C) are those of C.

• If 〈f, g〉 : A → B×C is a monic arrow in C, then the subobject [〈f, g〉] is an

arrow B → C in rel(C).

• If [〈f, g〉] : A → B and [〈h, i〉] : B → C are arrows in rel(C), then the

composition [〈f, g〉] ; [〈h, i〉] : A → C is the equivalence class of the monic

part of an epi–monic factorisation of 〈f ◦ j, i ◦ k〉, where (j, k) is a pullback of

(g, h). The following diagram is helpful when reading this definition.

.

	�
�
�
j �
�
� @

@
@ k
@
@
@R

. .

	�
�
�
f �

�
� @

@
@ g
@
@
@R 	�

�
�
h �

�
� @

@
@ i
@
@
@R

A B C

• The identity on A in rel(C) is the subobject [〈idA, idA〉].

(The—rather technical—definition for composition is included above only for com-

pleteness; we don’t have need to apply it in our proofs.) One can verify that rel(C)

so defined does indeed form a category, and moreover, that rel(SET) is isomorphic

to REL. (A similar construction is used by de Moor [20] to present and prove prop-

erties of a relational programming language derived from a functional programming

language.) We make a few other definitions in rel(C):

• If [〈f, g〉] : A→ B, then the converse relation [〈f, g〉]−1 : B → A is [〈g, f〉].

• If [〈f, g〉] : A → B and [〈h, i〉] : C → D, then the product relation [〈f, g〉] ×
[〈h, i〉] : A× C → B ×D is given by [〈f × h, g × i〉].

• The arrow [〈πA, πB〉] : A→ B is the complete relation between A and B.
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4.2.3 Causality

Given an arrow f : A → B in C, the functional relation f r : A → B in rel(C) is

given by f r = [〈idA, f〉]. This motivates the following definition: a relation [〈f, g〉] :

A → B in rel(C) is functional if there exists an arrow h : A → B in C for which

〈idA, h〉 ∈ [〈f, g〉], or equivalently, 〈idA, h〉 ≈ 〈f, g〉. Note that 〈idA, h〉 is monic for

all h, so comparison with 〈f, g〉 under ≈ is acceptable.

Causal relations generalise functional relations in that inputs are not restricted

to the domain of the relation, nor outputs to the range:

Definition 39: A relation [〈f, g〉] : A → B in rel(C) is causal if there

exists an arrow h : I → O in C and an isomorphism α : I ×O → A×B
in C, for which α ◦ 〈idI , h〉 ∈ [〈f, g〉], or equivalently α ◦ 〈idI , h〉 ≈ 〈f, g〉.
The pair (h, α) is called a functional interpretation of [〈f, g〉].

Note that comparison with 〈f, g〉 under ≈ is acceptable in this case because monics

are closed under composition. One might like to add extra conditions to the causal-

ity definition to ensure that the isomorphism α be in some sense ‘purely structural’

(for example, requiring that α be a natural isomorphism or be constructed in a

certain way) but such conditions are not needed to prove results 40 to 43 below.

In definition 39 one can think of the isomorphism α−1 : A×B → I×O as being

used to rearrange the components of the relation such that all the input components

are in the domain and all the output components are in the range. An (informal)

example is helpful; here are three functional interpretations for +r:

α−1 ((x, y), z) = ((x, y), z), h (x, y) = x+ y;

α−1 ((x, y), z) = ((z, x), y), h (x, z) = z − x;

α−1 ((x, y), z) = ((z, y), x), h (y, z) = z − y.

Here are some pictures which show the input and output components above:

+ + +-
-

-
-
�

�
�
-

�
.
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In the remainder of this section we prove some of the closure properties given

in section 4.1 We abbreviate “is a functional interpretation of” by ∈.

Lemma 40: Functional relations are causal.

Proof: For a functional relation [〈idA, f〉] : A→ B, take α = idA×B and h = f .

(idA×B, h) ∈ [〈idA, h〉]

≡ { def ∈ }

idA×B ◦ 〈idA, h〉 ≈ 〈idA, h〉

≡ { products }

〈idA, h〉 ≈ 〈idA, h〉

≡ { ≈ is reflexive }

true

Lemma 41: Complete relations are causal.

Proof: For a complete relation [〈πA, πB〉] : A → B, take α = π1 : (A × B) × 1 →
A×B and h = !(A×B) : A×B → 1, where 1 is any terminal object in C, and !X

denotes the unique arrow X → 1 in C. (Complete relations can be viewed as causal

relations for which both the domain and range components are inputs.)

(π1, !(A×B)) ∈ [〈πA, πB〉]

≡ { def ∈ }

π1 ◦ 〈idA×B, !(A×B)〉 ≈ 〈πA, πB〉

≡ { projections }

idA×B ≈ 〈πA, πB〉

≡ { products }

true

44



Lemma 42: Causal relations are closed under converse.

Proof: Let (α, h) ∈ [〈f, g〉]. Then (〈π2, π1〉 ◦ α, h) ∈ [〈f, g〉]−1.

(〈π2, π1〉 ◦ α, h) ∈ [〈f, g〉]−1

≡ { def }

(〈π2, π1〉 ◦ α, h) ∈ [〈g, f〉]

≡ { def ∈ }

〈π2, π1〉 ◦ α ◦ 〈id, h〉 ≈ 〈g, f〉

≡ { shunting }

〈π2, π1〉 ◦ α ◦ 〈id, h〉 ≈ 〈π2, π1〉 ◦ 〈f, g〉

⇐ { Liebniz }

α ◦ 〈id, h〉 ≈ 〈f, g〉

≡ { def ∈ }

(α, h) ∈ [〈f, g〉]

Lemma 43: Causal relations are closed under products.

Proof: Let (α, h) ∈ [〈f, g〉] and (β, k) ∈ [〈i, j〉]. Then (γ ◦ α×β ◦ γ, h × k) ∈
[〈f, g〉]× [〈i, j〉], where γ = 〈π1 × π1, π2 × π2〉.

(γ ◦ α×β ◦ γ, h×k) ∈ [〈f, g〉]× [〈i, j〉]

≡ { def }

(γ ◦ α×β ◦ γ, h×k) ∈ [〈f×i, g×j〉]

≡ { def ∈ }

γ ◦ α×β ◦ γ ◦ 〈id, h×k〉 ≈ 〈f×i, g×j〉

≡ { shunting }
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γ ◦ α×β ◦ γ ◦ 〈id, h×k〉 ≈ γ ◦ 〈f, g〉×〈i, j〉

⇐ { Liebniz }

α×β ◦ γ ◦ 〈id, h×k〉 ≈ 〈f, g〉 × 〈i, j〉

≡ { shunting }

α×β ◦ 〈id, h〉×〈id, k〉 ≈ 〈f, g〉 × 〈i, j〉

≡ { bifunctors }

(α ◦ 〈id, h〉)× (β ◦ 〈id, k〉) ≈ 〈f, g〉 × 〈i, j〉

⇐ { products }

α ◦ 〈id, h〉 ≈ 〈f, g〉 ∧ β ◦ 〈id, k〉 ≈ 〈i, j〉

≡ { def ∈ }

(α, h) ∈ [〈f, g〉] ∧ (β, k) ∈ [〈i, j〉]

4.3 Networks

Ruby programs denote binary relations. Ruby programs also have a pictorial inter-

pretation, although the process by which one makes a picture is mostly informal. In

this section we introduce the related but formal notion of the network of relations

denoted by a Ruby program. The difference between pictures and networks is that

the layout of the nodes and wires has some significance in a picture, whereas in a

network only the connectivity between nodes is important.

Definition 44: Let V be a set of wire names. A wire is either an element

of V , or a finite tuple of wires. A node is a triple 〈D,P,R〉 where D,R

are wires (the domain and range wires for the node) and P is a binary

relation. A network is a triple 〈N,D,R〉 where N is a set of nodes and

D,R are wires (the domain and range wires for the network).

For example, the Ruby program (and ; not) denotes the network

〈{〈〈a, b〉, and, c〉, 〈c, not, d〉}, 〈a, b〉, d〉.
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This network corresponds to the following picture:

and not

a

b
c d

.

That the and and not relations are connected to one another is made explicit in the

network by the repeated appearance of the wire c.

Here are some other examples of programs and their networks:

fork ; and 7→ 〈{〈〈a, a〉, and, b〉}, a, b〉

anda b
;

[not, not−1] 7→ 〈{〈a, not, b〉, 〈c, not, d〉}, 〈a, d〉, 〈b, c〉〉

not

not−1

a

d

b

c

;

fork ; fork 7→ 〈∅, a, 〈〈a, a〉, 〈a, a〉〉〉

a

a
a

a
a

.

Ignoring naming of wires, a Ruby program denotes a unique network. Moreover,

such a network contains sufficient information to calculate the relation denoted by

the original Ruby program. In the remainder of this section we present an LML

47



program which translates a Ruby program to a network; it is this program that

forms the basis of the Ruby interpreter in chapter 5.

We begin by defining types for Ruby programs and networks:

type prog = PRIM prim + SWAP + FORK +

SEQ prog prog + PAR prog prog + INV prog

type prim = AND + NOT

type network == (List node # wire # wire)

type node == (wire # prim # wire)

type wire = NAME Int + TUPLE (List wire)

(In reality of course, the prog and prim types have many more variants, but the

few given above suffice here.) Our task now is to define a function

translate : (prog # Int) -> (network # Int)

that converts a program to a network. The integer argument is assumed to be a

fresh wire name, as are all integers larger than this argument; an integer is returned

by translate because some wire names may be consumed during translation. We

ignore here the possibility that the translation process might fail.

We begin by showing how to translate the program PRIM AND:

translate (PRIM AND,x) =

let dom = TUPLE [NAME x; NAME (x+1)]

and rng = NAME (x+2)

in (([(dom,AND,rng)],dom,rng),x+3)

Wiring primitives translate to networks that don’t have any nodes. For example,

SWAP is translated as follows:
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translate (SWAP,x) =

(([],TUPLE [NAME x;NAME (x+1)],

TUPLE [NAME (x+1);NAME x]),x+2)

A program INV p is translated by first translating program p, then exchanging

the resulting domain and range wires:

translate (INV p,x) =

let ((ns,d,r),y) = translate (p,x) in ((ns,r,d),y)

A program PAR p q is translated by translating p and q independently, combin-

ing the resulting sets of nodes, and then tupling the domain and range wires:

translate (PAR p q,x) =

let rec ((ns1,d1,r1),y) = translate (p,x)

and ((ns2,d2,r2),z) = translate (q,y)

in ((ns1@ns2,TUPLE[d1;d2],TUPLE[r1;r2]),z)

Translating SEQ p q is more complicated, since the range wire from the trans-

lation of p must be joined to the domain wire of the translation of q. This joining

is handled by unifying the wires, that is, finding a most general substitution for the

component wires names under which both wires are identical. (The algorithm that

performs unification is well known [44], being used to implement polymorphic type

inference in languages such as Miranda and Lazy ML.) Since these wire names might

occur at other places in the network, the resulting substitution must be applied to

the domain and range wires of each node in the translation of SEQ p q:

translate (SEQ p q,x) =

let rec ((ns1,d1,r1),y) = translate (p,x)

and ((ns2,d2,r2),z) = translate (q,y)

and s = unify (r1,d2)

and f (d,prm,r) = (apply s d, prm, apply s r)

in ((map f (ns1 @ ns2), apply s d1, apply s r2),z)
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Here are some example translations:

translate (SEQ (PRIM AND) (PRIM NOT),1) =

(([(TUPLE [NAME 1;NAME 2],AND,NAME 4);

(NAME 4,NOT,NAME 5)],

TUPLE [NAME 1;NAME 2],NAME 5),6)

translate (SEQ FORK (PRIM AND),1) =

(([(TUPLE [NAME 3;NAME 3],AND,NAME 4)],NAME 3,NAME 4),5)

translate (PAR (PRIM NOT) (INV (PRIM NOT)),1) =

(([(NAME 1,NOT,NAME 2);(NAME 3,NOT,NAME 4)],

TUPLE [NAME 1;NAME 4],TUPLE [NAME 2;NAME 3]),5)

translate (SEQ FORK FORK,1) =

(([],NAME 1,TUPLE [TUPLE [NAME 1;NAME 1];

TUPLE [NAME 1;NAME 1]]),3)

4.4 Implementations

In this section we define what it means for a Ruby program to be an implementation,

by defining what it means for a network to be executable.

Informally, a network is executable if, given a value for some of the external

wires (the inputs), the value of each remaining wire in the network (in particular,

the external outputs) can be computed as functions of the values of wires. Such

executable networks are like functional data-flow networks [45] in that the values

of wires are computed as functions of the values of other wires, but more general

in that we don’t restrict input wires to the left-side of our nodes, nor output wires

to the right-side, and thus for some networks there may be several possible choices

of input and output wires. The extra generality is motivated by the intention that

executable networks represent circuits. A typical circuit has data flowing in many
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Figure 4.1: A 2-slow systolic correlator

different directions: data-flow is functional, but data is not restricted to flowing from

left to right across the circuit board. An example is a ‘2-slow systolic correlator’

[59]. Data in this circuit flows both from left-to-right and from right-to-left, as

shown in figure 4.4. (The triangles in this figure represent delay elements.)

Definition 45: A Ruby program is an implementation if it denotes a

network that is executable. A network is executable if every occurrence

of a wire name in the network can be labelled in or out such that the

following three constraints are satisfied:

• The labelling of the domain and range wires for each primitive

relation R in the network corresponds to a direction from Rd.

• Each wire name in the network is labelled out precisely once.

• There are no cyclic dependencies in the network. That is, the value

of an input wire to a primitive must not depend upon the value of

an output wire from the same primitive.

(For the domain and range wires of each node in a network, a labelling x : in means

that the node uses the value of wire x, and x : out means that the node sets the
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value of wire x. For the domain and range wires of the network as a whole, x : out

means that the outside world must set the value of wire x, and x : in means that

it can read the value of wire x.) Executable networks are like functional data-flow

networks, except that the nodes are causal relations rather than functions. If a

program is an implementation then it necessarily denotes a causal relation. Since

a causal relation can be functional in more than one way, there may be more than

one way in which the network for an implementation is executable.

Definition 46: Let R and S be Ruby programs. We say that R is

implementable (able to be implemented) if it denotes a causal relation.

We say that R implements S if the programs R and S denote the same

relation, and R is an implementation.

We illustrate definitions 45 and 46 with some examples. We begin with three

programs R1, R2, and R3 that denote the identity relation idB = {(F, F ), (T, T )}
on the booleans. The relation idB is causal, with (idB)d = {(in, out), (out, in)}, and

is hence implementable. Program R1 = and−1 ; and can be viewed as a specification

for the relation idB. Given that andd = {((in, in), out)} there is only one candidate

for a properly labelled network for R1,

〈{〈〈b : in, c : in〉, and, a : out〉, 〈〈b : in, c : in〉, and, d : out〉}, a : in, d : in〉

�
-

-
-

�

�

and−1 and
a

b

c
d

,

but it is not acceptable, because wires b and c are never labelled out. The program

R2 = fork ; and is an implementation of R1, because in the labelled network

〈{〈〈a : in, a : in〉, and, b : out〉}, a : out, b : in〉

-

-

and -
a b
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each wire is labelled out precisely once. Note however that the network for R2

is only executable from domain to range, while the relation idB denoted by R2 is

functional also from range to domain.

The program R3 = not ; not is also an implementation of R1. Given that

notd = {(in, out), (out, in)}, there are four possible labelled networks for R3:

〈{〈a : in, not, b : out〉, 〈b : in, not, c : out〉}, a : out, c : in〉

- - -not not
a b c

;

〈{〈a : out, not, b : in〉, 〈b : out, not, c : in〉}, a : in, c : out〉

� � �not not
a b c

;

〈{〈a : in, not, b : out〉, 〈b : out, not, c : in〉}, a : out, c : out〉

- -� �not not
a b c

;

〈{〈a : out, not, b : in〉, 〈b : in, not, c : out〉}, a : in, c : in〉

� - -�not not
a b c

.

Only the first and second of these networks are acceptable; in the third network wire

b is labelled out more than once, and in the fourth network wire b is never labelled

out. Since R3 is executable in both ways that the specification R1 is functional, we

say that R3 is a full implementation of R1.

We turn now to an example of a program that denotes a cyclic network:

R = π1
−1 ; snd fork ; rsh ; fst + ; fork−1.

We showed in section 3.4 that R has the following connectivity:
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+
.

There are two possible labelled networks for R:

〈{〈〈a : in, b : in〉,+, b : out〉}, a : out, b : in〉,

〈{〈〈a : out, b : in〉,+, b : in〉}, a : in, b : out〉.

The second is acceptable, and tells us that program R is executable from range to

domain. The first satisfies the requirement that each wire be labelled out precisely

once, but not the requirement that there be no cyclic dependencies: the output

of the + primitive is connected to one of its own inputs. If we are working with

a version of Ruby in which relations are between streams of values rather than

just single values, such a cyclic dependency can be removed by placing a delay Ds
somewhere in the feedback path. For example, the program

R′ = π1
−1 ; snd fork ; rsh ; [+,Ds−1] ; fork−1

is executable from domain to range, because the input to + at time t depends upon

its output at time t − 1 rather than t. Note that R′ is not executable from range

to domain, because delays are only functional from domain to range.

In section 7.3 we introduce the term representation changer for a Ruby program

R specified by the requirement that R = f ; g−1 for functional relations f and g.

In practice, many such specifications will already be implementations according to

definition 45, but not executable in the direction that they are intended to be used.

For example, let f = [b, b] ; + and g = [b ; ∗2, b] ; +, where b = {(0, 0), (1, 1)} is

the identity relation on {0, 1}. Both f and g are functional relations; f gives the

sum of two bits, and g converts a 2-bit binary number to the corresponding natural

number. Consider now the program HA = f ; g−1:

•

•
+ +−1

∗2−1 •

•

.
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The program HA is a specification for a 2-bit adder (a half-adder) that gives the

binary carry and sum of a pair of bits. In fact HA is already an implementation,

with any three of the external wires in the network for HA being inputs, and the

remaining wire being the output. The program HA is not however an implementa-

tion in the direction in which we want to use it, namely from domain to range. It

is in this sense that HA is a specification of a half-adder.

We conclude this section with two final examples:

• π1
−1 ; + is a full implementation of the cartesian product Z × Z on the

integers. The direction set for both programs is {(in, in)}.

• π1
−1 ; snd {(a, a)} ; + and (+a) are full implementations of one another. The

direction set for both programs is {(in, out), (out, in)}.

55



Chapter 5

The Ruby Interpreter

In chapter 4 we defined what it means for a Ruby program to be an implementation.

The definition is general, but not completely formal. In this chapter we give a formal

definition for a natural sub-class of the implementations, and present an interpreter

for such Ruby programs. Interpreters for functional versions of Ruby have been

made in the past; see for example [57, 46]. Our interpreter is the first that does not

require that the Ruby program be in fact a functional program.

Section 5.1 defines the class of networks that the interpreter executes. Section 5.2

introduces the interpreter by means of a number of worked examples. Section 5.3

gives some reference material about the interpreter. And finally, section 5.4 suggests

some ways in which the interpreter could be extended.

5.1 Executable networks

We say that a wire name x occurs in a node 〈D,P,R〉 if x occurs in either of the

wires D and R. A wire name occurs in a network 〈N,D,R〉 if it occurs in any of

the nodes N , or in either of the wires D and R. If 〈N,D,R〉 is a network and x

is a wire name that occurs in this network, then x is called external if it occurs in

D or R, and internal otherwise. Finally, the dependents for a node 〈D,P,R〉 in a

network is the set of wire names given by the union of the names in D and the

dependents for all nodes 〈D′, P ′, R′〉 in the network for which the wire names in R′
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and those in D are not disjoint. There is one special case: the dependents of a node

〈D,P,R〉 for which P is a delay primitive is the empty-set ∅. We can now define

the class of networks that the Ruby interpreter is able to execute:

Definition 47: A network is executable if:

• For every node 〈D,P,R〉 the relation P is functional;

• For each internal (external) wire name x there is precisely one (at

most one) node 〈D,P,R〉 for which x occurs in the range wire R,

and moreover, x must occur only once in this R;

• For each node 〈D,P,R〉 the dependents for this node and the wire

names in R are disjoint sets.

That is, an executable network is a network of functions for which each wire name

is an output wire name for precisely one function (or at most one function if the

wire name is external), and for which there are no cyclic dependencies between the

input and output wire names to any function in the network.

Figures 5.1 and 5.2 give examples of executable and non-executable networks.

5.2 Worked examples

In this section we illustrate the features of the Ruby interpreter by working through

a number of example programs. The Ruby interpreter is written in the functional

language Lazy ML (LML), and is used under the interactive LML system. Both

the Ruby interpreter and the LML compiler are available by anonymous ftp from

Chalmers University (internet address ftp.cs.chalmers.se or 129.16.225.66) in

directories pub/misc/ruby and pub/haskell/chalmers respectively.

To begin with, we load the interactive LML system:

graham% lmli
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Term Network Executable

not ; not
- - -not not

a b c

〈{〈a, not, b〉, 〈b, not, c〉}, a, c〉

yes

not−1 ; not−1
� � �not−1 not−1
a b c

〈{〈b, not, a〉, 〈c, not, b〉}, a, c〉

yes

not ; not−1
- -� �not not−1

a b c

〈{〈a, not, b〉, 〈c, not, b〉}, a, c〉

no

(b is driven twice)

not−1 ; not
� - -�not−1 not
a b c

〈{〈b, not, a〉, 〈b, not, c〉}, a, c〉

no

(b is undriven)

fst (not−1) ; fork−1 ; not � - -�not−1 not
a

b

c

〈{〈b, not, a〉, 〈b, not, c〉}, 〈a, b〉, c〉

yes

[not−1, not]
�

-

not−1

not

�

-

a

b

c

d

〈{〈c, not, a〉, b, not, d}, 〈a, b〉, 〈c, d〉〉

yes

Figure 5.1: Examples of executable and non-executable Ruby terms
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Term Network Executable

π1
−1 ; snd not ; fork−1

�

not
-

a

b

〈{〈b, not, a〉}, a, a〉

no

(b is undriven)

fork ; snd not ; π1
-

- not
a

b

〈{〈a, not, b〉}, a, a〉

yes

fork ; snd not ; fork−1 �

-

-

not
a a

〈{〈a, not, a〉}, a, a〉

no

(cyclic dependency)

fork ; [DF−1, not] ; fork−1
�

-

DF−1

not

�

-
a b

〈{〈a, not, b〉, 〈b,DF , a〉}, a, b〉

yes

Figure 5.2: More examples of executable and non-executable Ruby terms
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Welcome to interactive LML version 0.999.4 SPARC 1993 Mar 16!

Loading prelude... 348 values, 41 types found.

Type "help;" to get help.

Now we load the Ruby interpreter:

> source "rubysim";

+------------------------------+

| ‘The Ruby Interpreter’ |

| |

| Copyright 1993 Graham Hutton |

| graham@cs.chalmers.se |

+------------------------------+

(In the above, ‘>’ is the LML prompt, and ‘;’ is the command terminator.)

Ruby programs are compiled using the rc function, which translates a program

to a network. The function rc takes an argument of type prog, which is the LML

type of Ruby programs. What the Ruby programmer need know about the prog

type is explained in section 5.3. (The main differences from standard Ruby notation

is that composition is written as .., converse is written as inv, and product is

written as !!.) As a first example, let us compile the program not ; not:

> rc (NOT .. NOT);

Name Domain Range

----------------------------------

NOT w1 w2

----------------------------------

NOT w2 w3

----------------------------------
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Primitives - 2

Delays - 0

Longest path - 2

Parallelism - 0%

Directions - in ~ out

Wiring - w1 ~ w3

Inputs - w1

In this example, the network has two nodes: 〈w1, not, w2〉 and 〈w2, not, w3〉. Below

the network, Wiring gives the domain and range wires for the network as a whole,

Inputs tells which of these wire names are inputs (all other external wire names are

outputs), and Directions is derived from Wiring by replacing each wire name with

in or out as appropriate. Primitives and Delays are the number of non-delay and

delay primitives in the network. Longest path is the length of the longest path

through the network that does not include a delay primitive. Parallelism gives

an absolute measure of the available concurrency in the network, being the ratio

of the total number of primitives in the network (both delay and non-delay) to the

length of the longest path, scaled to a percentage.

The most recently compiled Ruby program is stored in a file ruby-prog, and

is executed using the rsim function. This function takes a string as its argument,

containing a value for each of the input wires as named in the Wiring part below

the network. You can supply more than one set of input values, with successive

sets of input values being separated by a semi-colon. For example,

> rsim "F;T";

0 - F ~ F

1 - T ~ T
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verifies that not ; not denotes the identity relation on booleans. As shown in this

example, for each set of input values supplied, the rsim function gives the Wiring

part for the network, with wire names replaced by the values obtained by executing

the network with these input values. So the output 0 - F ~ F above says that

supplying wire w1 with value F resulted in wire w2 having value F. The number 0

indicates that this is the result for the first set of input values.

Here are some other examples from figures 5.1 and 5.2:

> rc (NOT .. inv NOT);

ERROR: multiple output to single wire

> rc (inv NOT .. NOT);

ERROR: undriven internal input

> rc (first (inv NOT) .. inv fork .. NOT);

Name Domain Range

----------------------------------

NOT w1 w2

NOT w1 w3

----------------------------------

Primitives - 2

Delays - 0

Longest path - 1

Parallelism - 100%

Directions - <out,in> ~ out
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Wiring - <w2,w1> ~ w3

Inputs - w1

> rc (fork .. second NOT .. inv fork);

ERROR: unbroken loop in {NOT}

> rc (fork .. (inv (bdel false) !! NOT) .. inv fork);

Name Domain Range

----------------------------------

NOT w1 w2

----------------------------------

D_F w2 w1

----------------------------------

Primitives - 1

Delays - 1

Longest path - 2

Parallelism - 0%

Directions - out ~ out

Wiring - w1 ~ w2

Inputs - none

LML can be used as a meta-language to define new primitives and combining

forms in terms of those pre-defined by the interpreter. For example, a program

sort2 that sorts a pair of numbers can be defined and compiled as follows:
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> let sort2 = fork .. (MIN !! MAX);

sort2: prog

> rc sort2;

Name Domain Range

----------------------------------

MIN <w1,w2> w3

MAX <w1,w2> w4

----------------------------------

Primitives - 2

Delays - 0

Longest path - 1

Parallelism - 100%

Directions - <in,in> ~ <out,out>

Wiring - <w1,w2> ~ <w3,w4>

Inputs - w1 w2

For example,

> rsim "4 7";

0 - (4,7) ~ (4,7)

> rsim "7 4";

0 - (7,4) ~ (4,7)
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As well as supplying numbers as inputs to sort2, we can supply symbolic values,

which are just strings. Using symbolic values allows us to see how the outputs from

the program are constructed in terms of the inputs:

> rsim "a b";

0 - (a,b) ~ (a min b,a max b)

Let us aim now to define a program that sorts n numbers, rather than just 2.

We begin by using sort2 to define a generic primitive minim that takes an n-tuple

(n > 1) of numbers, and returns a pair comprising the minimum number and an

(n− 1)-tuple of the remaining numbers:

> let minim n = inv (apr (n-1)) .. col (n-1) sort2;

minim: Int->prog

For example,

> rc (minim 4);

Name Domain Range

----------------------------------

MIN <w1,w2> w3

MAX <w1,w2> w4

----------------------------------

MIN <w5,w3> w6

MAX <w5,w3> w7

----------------------------------

MIN <w8,w6> w9

MAX <w8,w6> w10

----------------------------------
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Primitives - 6

Delays - 0

Longest path - 3

Parallelism - 20%

Directions - <in,in,in,in> ~ <out,<out,out,out>>

Wiring - <w8,w5,w1,w2> ~ <w9,<w10,w7,w4>>

Inputs - w8 w5 w1 w2

Notice that the primitives in the network above are divided into blocks, separated

by dashed lines. Each block contains all the primitives whose output depends only

upon external inputs, and outputs of primitives in earlier blocks. (Operationally

this means that blocks must be executed sequentially, from the first to the last. All

the primitives within a block can however be executed in parallel, since they are

independent of one another.) Note also that the Longest path is just the number

of blocks in the network for the program. A picture of the network above is helpful

in understanding the definition for minim (the boxes represent sort2):

w8

w5

w1

w2

w10

w7

w4

w9

w6

w3

.
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Executing the network with symbolic values confirms that the first component of

the result is the minimum of the 4 input values:

> rsim "a b c d";

0 - (a,b,c,d) ~ (a min (b min (c min d)),

(a max (b min (c min d)),

b max (c min d),

c max d))

Note that the name sort2 does not appear in the network for minim 4, but

rather its definition has been unfolded at each instance. We can prevent such

unfolding and treat sort2 as a new primitive by using the function NAME of type

String -> prog -> prog. For example, if we make the definitions

> let sort2 = NAME "sort2" (fork .. (MIN !! MAX));

sort2: prog

> let minim n = inv (apr (n-1)) .. col (n-1) sort2;

minim: Int->prog

then the compilation produces the following result: (we have to define minim again

because the existing version refers to the old binding for sort2)

> rc (minim 4)

Name Domain Range

----------------------------------

"sort2" <w1,w2> <w3,w4>

----------------------------------
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"sort2" <w5,w3> <w6,w7>

----------------------------------

"sort2" <w8,w6> <w9,w10>

----------------------------------

Primitives - 6

Delays - 0

Longest path - 3

Parallelism - 20%

Directions - <in,in,in,in> ~ <out,<out,out,out>>

Wiring - <w8,w5,w1,w2> ~ <w9,<w10,w7,w4>>

Inputs - w8 w5 w1 w2

Using the NAME function can reduce compilation time, particularly when named

programs are used as arguments to generic combining forms. A named program

is compiled once and its network instantiated at each instance, rather than the

definition being unfolded at each instance and hence compiled many times.

Using minim we can define a sorting program. An n-tuple (n > 0) of numbers

can be sorted by first selecting the minimum number, and then recursively sorting

the remaining (n− 1)-tuple of numbers. A 1-tuple of numbers requires no sorting,

and forms the base-case for the recursive definition:

> let rec mysort 1 = par [rid]

|| mysort n = minim n .. second (mysort (n-1)) .. apl (n-1);

mysort: Int->prog

Let us compile a sorter for 4 numbers:
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> rc (mysort 4);

Name Domain Range

----------------------------------

"sort2" <w1,w2> <w3,w4>

----------------------------------

"sort2" <w5,w3> <w6,w7>

----------------------------------

"sort2" <w8,w6> <w9,w10>

"sort2" <w7,w4> <w11,w12>

----------------------------------

"sort2" <w10,w11> <w13,w14>

----------------------------------

"sort2" <w14,w12> <w15,w16>

----------------------------------

Primitives - 12

Delays - 0

Longest path - 5

Parallelism - 12%

Directions - <in,in,in,in> ~ <out,out,out,out>

Wiring - <w8,w5,w1,w2> ~ <w9,w13,w15,w16>

Inputs - w8 w5 w1 w2

Here is a picture of this network:
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w9 w13 w15 w16

w8

w5

w1

w2

w6

w3

w10

w7

w14

w11

w4

w12

.

For example,

> rsim "4 2 3 1";

0 - (4,2,3,1) ~ (1,2,3,4)

> rsim "a 3 1 2";

0 - (a,3,1,2) ~ (a min 1,

(a max 1) min 2,

((a max 1) max 2) min 3,

((a max 1) max 2) max 3)

Note from the last example that symbolic values are not simplified. We can see

however that the output 4-tuple in this example is equal to (a min 1, (a max 1)

min 2, (a max 2) min 3, a max 3), which makes clear how the symbolic value

‘a’ is routed to one of the 4 components in the output tuple.

To finish off, we take a closer look at wiring primitives. Networks produced by

the interpreter have two kinds of wires. Monomorphic wires start with the letter

w and are restricted to carrying boolean, integer, and symbolic values; polymorphic
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wires start with p and can also carry tuples of such values. The wiring primitives

of Ruby (id, fork, π1, . . . ) have networks with polymorphic wires, and can be used

to defined other programs with polymorphic wires. For example,

> let swap = fork .. (p2 !! p1);

swap : prog

> rc swap;

Wiring - <p1,p2> ~ <p2,p1>

Inputs - p1 p2

Note that the polymorphic primitive fork is being used here to duplicate a pair of

values. Since the wires in the network produced above are polymorphic, they are

not restricted to carrying just basic values. For example, we can swap pairs:

> rsim "(a,b) (c,d)";

0 - ((a,b),(c,d)) ~ ((c,d),(a,b))

New wiring primitives (like swap) need not be defined in terms of the existing

wiring primitives, but can also be defined directly using the function wiring of type

(expr # expr) -> prog. Values of type expr are built using two functions: wire

of type Int -> expr and list of type List expr -> expr. An example shows

how these three functions are used to define wiring primitives:

> let swap = wiring (list [wire 1; wire 2], list [wire 2; wire 1]);

swap: prog
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> rc swap;

Wiring - <p1,p2> ~ <p2,p1>

Inputs - p1 p2

5.3 Converting Ruby terms to LML syntax

In this section we explain the LML syntax for Ruby terms as used by the Ruby in-

terpreter. Because of syntactic constraints imposed by LML, some Ruby primitives

and combining forms have different names from normal in LML syntax:

Ruby LML
r ; s r .. s

[r, s] r !! s

r−1 inv r

rn repeat n r

id rid

π1 p1

π2 p2

fst r first r

snd r second r

mapn r rmap n r

zipn rzip n

r ↔ s r $beside s

r l s r $below s

Two programs are placed in parallel using !!. For other than two programs use the

function par, which takes a list of programs as its argument; for example, [r, s, t]

in Ruby becomes par [r; s; t] in LML. Note that all infix Ruby combining forms

have the same precedence when written in LML notation, and associate to the right.

For example, r !! s .. t would be interpreted as r !! (s .. t).

Delays are made using one of three functions (bdel, idel, or sdel), depending

on whether the starting value is boolean, integer, or symbolic. Constant relations

are made using bcon, icon, or scon. For example, the delay D5 is written as idel

5 in LML and the constant relation {(T, T )} is written as bcon true.
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A number of logical and arithmetic functions are built-in to the interpreter:

AND 〈a, b〉 ⇔ a ∧ b

OR 〈a, b〉 ⇔ a ∨ b

NOT a ⇔ ¬a

LT 〈m,n〉 ⇔ m < n

GT 〈m,n〉 ⇔ m > n

EQ 〈m,n〉 ⇔ m = n

IF 〈b, 〈x, y〉〉 =

{
x if b = true
y if b = false

BTOI b =

{
0 if b = false
1 if b = true

ITOB n =

{
false if n = 0
true if n = 1

MUX n 〈i, xs〉 = xsi {0 ≤ i < n}

ADD 〈m,n〉 = m+ n

SUB 〈m,n〉 = m− n

MULT 〈m,n〉 = m ∗ n

DIV 〈m,n〉 = max {i | n ∗ i ≤ m}

MOD 〈m,n〉 = m− n ∗ (m div n)

EXP 〈m,n〉 = mn

LOG 〈m,n〉 = max {i | in ≤ m}

MAX 〈m,n〉 = max {m,n}

MIN 〈m,n〉 = min {m,n}

GCD 〈m,n〉 = max {i | m mod i = n mod i = 0}

FAC n = 1 ∗ 2 ∗ . . . ∗ n

The wiring primitives of Ruby are not built-in to the interpreter, but are defined

as ordinary LML definitions using the wiring function:
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rid = wiring (wire 1,wire 1)

p1 = wiring (list [wire 1;wire 2],wire 1)

p2 = wiring (list [wire 1;wire 2],wire 2)

fork = wiring (wire 1,list [wire 1;wire 1])

rsh = wiring (list [wire 1;list [wire 2;wire 3]],
list [list [wire 1;wire 2];wire 3])

lsh = wiring (list [list [wire 1;wire 2];wire 3],
list [wire 1;list [wire 2;wire 3]])

swap = wiring (list [wire 1;wire 2],list [wire 2;wire 1])

rev n = let vs = map wire (1 $to n)
in wiring (list vs,list (reverse vs))

apl n = let vs = map wire (1 $to (n+1))
in wiring (list [hd vs; list (tl vs)], list vs)

apr n = let vs = map wire (1 $to (n+1))
in wiring (list [list (head n vs); last vs], list vs)

distl n = let vs = map wire (1 $to (n+1))
in wiring (list [hd vs; list (tl vs)],

list [list [hd vs;x] ;; x <- tl vs])

distr n = let vs = map wire (1 $to (n+1))
in wiring (list [list (head n vs); last vs],

list [list [x;last vs] ;; x <- head n vs])

flatr n = let f e es = LIST [e;es]
and vs = map wire (1 $to n)
in wiring (foldr1 f vs, LIST vs)

pair n = let rec vs = map wire (1 $to (2*n))
and pairup [] = []
|| pairup (x.y.ys) = list [x;y] . pairup ys
in wiring (list vs, list (pairup vs))

halve n = let vs = map wire (1 $to (2*n))
in wiring (list vs, list [list (head n vs); list (tail n vs)])
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rzip n = let rec vs = map wire (1 $to (2*n))
and (v1,v2) = (head n vs, tail n vs)
and zipped = [list [x;y] ;; (x,y) <- v1 $zip v2]
in wiring (list [list v1;list v2], list zipped)

Of the combining forms of Ruby only composition, converse, and product are

built-in to the interpreter. All the other combining forms, including all generic

combining forms, are defined just as ordinary LML definitions:

first r = r !! rid

second r = rid !! r

repeat n r = foldr (..) rid (rept n r)

rmap n r = par (rept n r)

r $beside s = rsh .. first r .. lsh .. second s .. rsh

r $below s = inv (inv r $beside inv s)

row n r = second (inv (flatr n))
.. foldr1 ($beside) (rept n r)
.. first (flatr n)

col n r = inv (row n (inv r))

grid (m,n) r = row m (col n r)

rdl n r = row n (r .. inv p2) .. p2

rdr n r = col n (r ..inv p1) .. p1

tri n r = par [repeat x r ;; x <- 0 $to (n-1)]

irt n r = rev n .. tri n r .. rev n

5.4 Extending the interpreter

In this section we suggest some ways to improve the Ruby interpreter.
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5.4.1 Simplifying symbolic expressions

Symbolic simulation is useful in seeing how result values are built up inside a pro-

gram. For example, applying a sorting program built using max and min (in fact,

Batcher’s bitonic sorter [60]) to (5,1,3,a) might give the following result:

((1 min (a max 3)) min (5 min (a min 3)),

(1 min (a max 3)) max (5 min (a min 3)),

(1 max (a max 3)) min (5 max (a min 3)),

(1 max (a max 3)) max (5 max (a min 3)))

It is only after manually simplifying this result to

(1 min a, 1 max (a min 3), (a max 3) min 5, a max 5)

that it becomes clear how ‘a’ can be routed to any of the four output positions.

Having the interpreter itself make such simplifications would be very useful.

5.4.2 Causal primitives

Ruby wiring primitives are treated properly as causal relations within the inter-

preter, being able to be used in any way in which they are functional. The arith-

metic and logical primitives however are restricted to being used from domain to

range as functional relations. For example, the NOT primitive cannot be used from

range to domain even though it is functional in this way. It would be interesting

to implement all primitive relations properly as causal relations. Such an extension

would make the interpreter more flexible, but gives no extra power: using just the

functional primitives one can bend wires around to get components that are func-

tional in other ways than from domain to range. For example, the ((out, in), in)

instance of + can be expressed by fst (−)−1 ; lsh ; snd fork−1 ; π1.
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5.4.3 A relational interpreter

The interpreter at present works only with Ruby programs that are implementa-

tions. It would be useful to be able to simulate arbitrary Ruby programs. If external

wires are constrained to carrying only a small number of values (as is typical of many

Ruby programs) it might be possible that such information could be used to reduce

the otherwise (potentially) huge search space during a relational simulation.

5.4.4 Type inference

The type checking done by the interpreter at present is very basic; all that is checked

is that wires are connected together in an acceptable way. One could implement an

ML-style type inference system for Ruby, the only complication being that Ruby

programs can contain size variables. For example, consider programs

apln : (α, αn)↔ αn+1,

halvem : β2m ↔ (βm, βm).

In the above typings, α and β are type variables, while αn is the type of an n-tuple of

elements of type α. Deducing the type (γ, γ2t+1)↔ (γt+1, γt+1) for the composition

apln ; halvem means, in addition to the normal work of type inference, having to solve

the size equation n + 1 = 2m. At first glance one might think that simple rules of

arithmetic could be applied, giving solutions n = 2m−1 and m = (n+ 1)/2. There

is a problem however: size variables range over the natural numbers. Putting m = 0

in the first solution gives n = −1, which is not an acceptable size; putting n = 0 in

the second solution gives m = 1/2, which is again not an acceptable size. In fact,

the most general solution to n+1 = 2m is given by n = 2t+1 and m = t+1, where

t is a fresh size variable.

Equations whose variables range over the natural numbers are called Diophan-

tine equations . It is known to be undecidable whether or not an arbitrary Diophan-

tine equation has a solution. (Note that such problems do not arise with equations

whose variables range over the integers rather than the naturals.) Provided that we
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work only with simple equations however, such as those of the form ax+ b = cy+d,

algorithms to compute the most general solution do exist.

Polymorphic type inference is a delicate algorithm (having in fact worse than

exponential time complexity in the worst case.) Making types more informative,

for example by adding size information, is very tempting, but one always has to be

careful not to end up with a type inference algorithm that is intractably slow. It

seems likely however that restricting ourselves to linear size expressions will give a

reasonable trade–off between types that are informative and a tractable inference

algorithm. Programs that naturally have types with non–linear sizes, for example

++n,m : (αn, αm) ↔ αn+m can be given valid but less informative types; for

example, replace n+m above by a fresh size variable p. Alternatively, such programs

could be restricted to being used at instances in which their sizes are in fact linear,

as is the case for fork ; ++n,n : αn ↔ α2n.

In a Ruby program, some size arguments to generic primitives and combining

forms might be redundant, being able to be deduced by examining the context in

which the generic appears in the program. For example, the most general way to

fill in the missing sizes in the program apl ; map R is as apln ; mapn+1 R. So–

called unsized generic combining forms can be defined in terms of normal generic

combining forms. For example, map R can be defined by
⋃ {mapn R | n ∈ N}.

Alternatively, one can give a direct recursive definition; for example,

() (map R) () ≡ true
(x.xs) (map R) (y.ys) ≡ x R y ∧ xs (map R) ys

One can admit unsized generics in program by (prior to type inference) replacing

each instance by a sized generic with a fresh size variable.

Here are some examples of programs before and after such a type inference:

[R, S] ; map T 7→ [R, S] ; map2 T ,

fork ; [mapn+1 R,map S] 7→ fork ; [mapn+1 R,mapn+1 S],

apl ; map R 7→ apln ; mapn+1 R,

apl ; halve 7→ apl2n+1 ; halven+1.
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One might ask why a type of sized lists is not provided in any of the standard

functional languages? The reason is that sizes of tuples in Ruby programs are fixed

at compile–time (Ruby programs denote static networks), whereas sizes of lists in

functional programs can depend upon run–time values. For example, the length

of the list produced by the functional program filter p depends not only upon the

length of the argument list, but upon the elements of the argument list.
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Chapter 6

Pers and Difunctionals

In this chapter we introduce the idea of partial equivalence relations (pers) as types

in the relational calculus. Pers are now adopted as types in both the spec calculus

[70, 71] and Ruby [43, 38]. In the spec calculus it was the desire to have ‘types with

laws’ that motivated working with pers; in Ruby the choice of pers as types arose

naturally from experience in deriving programs. Section 6.1 introduces the theory

of pers. Section 6.2 introduces the difunctional relations, which generalise pers

in a natural way. Our interest in pers and difunctionals is in their application in

chapter 7 to deriving programs. For a more theoretical treatment, including proofs

of many of the results that we state, see Voermans forthcoming thesis [70].

6.1 Partial equivalence relations

Recall that a partial equivalence relation (per) on a set S is a symmetric and tran-

sitive relation on S; such a per that is also reflexive on S is an equivalence relation.

Throughout this chapter A,B,C denote pers, and we omit the ‘on S’ part when

talking of pers. The notion of being a per has a simple point–free formulation:

Definition 48: per .A =̂ A = A−1 ∧ A ; A ⊆ A.

The first term in this definition expresses symmetry, the second transitivity:

Lemma 49: symmetric.R ≡ R = R−1.
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Lemma 50: transitive.R ≡ R ; R ⊆ R.

For example, the transitivity result is proved as follows:

R ; R ⊆ R

≡ { def ⊆ }

x (R ; R) z ⇒ x R z

≡ { def ; }

∃y. (x R y ∧ y R z) ⇒ x R z

≡ { predicate calculus }

x R y ∧ y R z ⇒ x R z

Two other formulations for per.A prove useful:

Lemma 51: per .A ≡ A = A−1 ∧ A ; A = A.

Lemma 52: per .A ≡ A = A ; A−1.

Here is a proof of the non-immediate part of lemma 51:

A ; A

⊇ { transitive.A }

A ; A ; A

= { symmetric.A }

A ; A−1 ; A

⊇ { triple rule; see lemma 84 }

A

For some (fixed) per A and an element a ∈ dom A, the equivalence class [a] of

a under A is defined by [a] = {b | a A b}. We write S2 for the full relation S×S.

Using these two definitions, here are three well–known properties of pers: (Proofs

of point–free versions of these properties can be found in [35].)
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Lemma 53: For any per A,

(a) Equivalence classes are either identical or disjoint:

[a] = [b] ∨ [a] ∩ [b] = ∅.

(b) A is completely determined by its equivalence classes:

A =
⋃ {[a]2 | a ∈ dom A}.

(c) Decomposition in terms of disjoint full relations is unique:

Let X be a set of disjoint non–empty sets. Then,

A =
⋃ {S2 | S ∈ X} ≡ X = {[a] | a ∈ dom A}.

In summary, “pers can be written in a unique way as the union of disjoint non–

empty full relations, each such relation representing an equivalence class of the per.”

For example, the per {(a, a), (a, b), (b, a), (b, b), (c, c)} can be written in terms of full

relations as {a, b}2 ∪ {c}2; here is a picture:

�
��@
@@

c

b

a

c

b

a

.

We observe that pers are closed under converse, intersection, and par, but

not under union or composition. To see that pers are not closed under ∪, take

A = {a, b}2 and B = {b, c}2; then A ∪ B = {a, b, c}2 − {(a, c), (c, a)} is not a

per, where “−” means set difference. For composition, take A = {a, b}2 ∪ {c}2

and B = {a}2 ∪ {b, c}2; then A ; B = {a, b, c}2 − {(c, a)} is not a per.

82



6.1.1 Orderings

In this section we introduce three orderings on pers.

We begin by defining operators ` and a that are useful in defining other con-

structions involving pers. If a relation S can be composed on the right of R without

affecting R we say that R right–guarantees S, written R ` S:

Definition 54: R ` S =̂ R ; S = R.

Here are some properties of ` [42]:

Lemma 55: R ` S ⇒ (T ; R) ` S.

Lemma 56: R ` (S ; T ) ⇒ (R ; S) ` (T ; S).

Lemma 57: R ` (S ; T ) ∧ (T ; U) ` V ⇒ (R ; U) ` V .

The left–guarantees operator a is dual to `:

Definition 58: S a R =̂ S ; R = R.

Lemma 59: S a R ≡ R−1 ` S−1.

We write ` as � when both arguments are pers:

Definition 60: A � B =̂ A ` B.

Pers are partially ordered by �; in fact we have the following result:

Lemma 61: Pers form a complete lattice under �.

The least element in this complete lattice of pers is ⊥⊥, the greatest element is id.

See Voermans [69] or van der Woude [65] for details of the
∨

and
∧

operators for

�. For example, here is the lattice of pers on the universe {a, b}:
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∅

{a, b}2

�
�
�
�

@
@
@
@

{a}2 {a, b}2 {b}2

�
�
�
�

@
@
@
@

{a}2 ∪ {b}2

.

The per lattice is in general neither complemented nor distributive. Recall that

a lattice is complemented if every element A has a unique element B satisfying

A ∪ B = >> and A ∩ B = ⊥⊥. Complements exist in the per lattice, but are not

unique; for example, both {a, b}2 and {b}2 in the example lattice above satisfy

the properties expected of a complement to {a}2. The per lattice is distributive if

A
∨

(B
∧
C) = (A

∨
B)

∧
(A
∨
C). Taking A = {a}2, B = {a, b}2, and C = {b}2 in

the lattice above shows that this equation does not hold: {a}2 6= {a}2 ∪ {b}2.

In [35] it is shown that A � B expresses that equivalence classes in A are the

union of equivalence classes in B, i.e. that A is formed by discarding, copying, and

combining classes from B. We read � then as “is a per on”. For example,

{a, b, c}2 ∪ {d, e}2 � {a, b}2 ∪ {c}2 ∪ {d, e}2 ∪ {f}2 ;

that is, the equivalence class {a, b, c} in A is formed by combining the equivalence

classes {a, b} and {c} from B, while the equivalence class {d, e} is copied unchanged

from B to A, and {f} in B is discarded when moving from B to A.

Two other orderings on pers are defined using �:

Definition 62: A ≤ B =̂ A � B ∧ A ⊆ B.

Definition 63: A �| B =̂ A � B ∧ A ⊇ B.

Pers form a meet semi–lattice under ≤, and a join semi–lattice under �|. Writing

A ≤ B says that A is formed from B by copying and discarding equivalence classes,
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but no classes are combined; read ≤ as “is a sub–per of ” [35]. Writing A �| B says

that A is formed from B by copying or combining equivalence classes, but no classes

are discarded; read �| as “is an equivalence relation on” [35]. For example,

{a, b}2 ∪ {c}2 ≤ {a, b}2 ∪ {c}2 ∪ {d, e}2,

{a, b}2 ∪ {c}2 �| {a} ∪ {b} ∪ {c}.

6.1.2 Pers as types

In relational calculus it is common to write R ⊆ A × B in the form of a typing

judgement R ∈ A ↔ B. Beginning with the observation that R ∈ A ↔ B is

equivalent to idA a R ∧ R ` idB, where idX denotes the identity relation on a

set X , Backhouse [4] explores the use of identity relations as types in relational

calculus. In this section we introduce the idea of using pers as types.

For a relation R ⊆ A × B, it may be the case that many elements in A have

the same image under R, or conversely, that many elements in B have the same

inverse image under R. It is the desire that such information be able to be encoded

in types that motivates working with partial equivalence relations as types rather

than with identity relations as types. We begin with the following definition:

Definition 64: A left domain of R is a per A for which A a R.

The condition A a R expresses that equivalent elements under A have the same

image under R, and that A is big enough in that dom A ⊇ dom R [35]. A relation

can have many left domains; in section 6.1.3 we define an operator < that gives the

smallest such domain with respect to the � ordering on pers.

Of course, there is also the dual notion of a right domain:

Definition 65: A right domain of R is a left domain of R−1, or equiv-

alently, a right domain of R is a per B for which R ` B.

We write R ∈ A↔ B when A is a left domain of R and B is a right domain:
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Definition 66: R ∈ A↔ B =̂ A a R ∧ R ` B.

The two parts of this definition can be combined in a single equality:

Lemma 67: R ∈ A↔ B ≡ A ; R ; B = R.

One can now give type inference rules for Ruby. Here are some examples:

Lemma 68:

R ∈ A↔ B ∧ S ∈ B ↔ C ⇒ R ; S ∈ A↔ C,

R ∈ A↔ B ≡ R−1 ∈ B ↔ A,

R ∈ A↔ B ∧ S ∈ C ↔ D ⇒ [R, S] ∈ [A,C]↔ [B,D],

R ∈ A↔ B ⇒ mapn R ∈ mapn A ↔ mapn B,

R ∈ [A,B]↔ [C,A] ⇒ rown R ∈ [A,mapn B] ↔ [mapn C,A],

R ∈ [A,B]↔ A ⇒ rdln R ∈ [A,mapn B] ↔ A.

These rules are consequences of familiar properties of the combining forms. For

example, the proof of the rule for map relies on a distributivity property:

mapn R ∈ mapn A ↔ mapn B

≡ { lemma 67 }

mapn A ; mapn R ; mapn B = mapn R

≡ { distribution (29) }

mapn (A ; R ; B) = mapn R

⇐ { Leibniz }

A ; R ; B = R

≡ { lemma 67 }

R ∈ A↔ B
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6.1.3 Domain operators

In this section we introduce operators < and > that give the best left and right types

for a relation. The reader is referred to [69, 65, 71] for proofs of the results that we

give in this section. We begin with the following definition:

Definition 69: a Ŕ b =̂ ∀x. (a R x ≡ b R x).

Elements a and b are related by Ŕ if they have the same image under R. As usual,

for calculation we prefer a point–free formulation. Using that

a (R/S) b ≡ ∀x. (b S x ⇒ a R x),

we see that Ŕ can be expressed using factors:

Lemma 70: Ŕ = (R/R) ∩ (R/R)−1.

One can verify now that Ŕ is a left domain of R, and moreover, that it is the largest

left domain of R under the inclusion ordering ⊆ on relations. Not surprisingly, Ŕ

is also the �–smallest equivalence relation (on the implicit universe) that is a left

domain of R. (We note in passing that Ŕ is a special case of Freyd and Scedrov’s

symmetric division operator; see section 2.35 in [28].)

The definition for Ŕ does not require that image sets are non–empty. Discarding

from Ŕ the equivalence class comprising elements with empty image sets (that is,

elements outwith dom R) gives a relation that we write as R<:

Definition 71: a R< b =̂ a, b ∈ dom R ∧ a Ŕ b.

Again we can make a point–free version:

Lemma 72: R< = (R ; R−1) ∩ Ŕ.

One can verify now that R< is the �–smallest left domain of R:
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Lemma 73: R< a R.

Lemma 74: A a R ⇒ R< � A.

Reflecting its unique status, we refer to R< as the left domain of R.

Here are some properties of the < operator:

Lemma 75: (A ; R)< � A.

Lemma 76: (R ; S)< � R<.

Lemma 77: (R ; S)< � (R ; S<)<.

Lemma 78: A a R ≡ R< � A.

Lemma 79: per.R ≡ R< = R.

Lemma 80: [R, S]< = [R<, S<].

Of course, there is also a domain operator > that gives the �–smallest right

domain of a relation. The > operator is defined as the dual to <:

Definition 81: R> =̂ (R−1)<

In chapter 7 we find that the preconditions to ‘induction’ laws that are applied

when deriving programs using Ruby often work out to be assertions of the form A a
R. In the past, such assertions have been verified by informal arguments or by using

predicate calculus, rather than by applying algebraic laws from Ruby. In chapter 7

we verify such assertions without stepping outside Ruby, by first expressing them

in the equivalent form R< � A using lemma 78, which can then be verified using

the algebraic properties given above for the < operator.
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6.2 Difunctional relations

In this section we introduce the difunctional relations, a class of relations that gen-

eralise pers in a natural way. Difunctionals were first studied by Riguet in the late

1940’s [54]. They have also been called ‘regular’ relations and ‘pseudo–invertible’

relations [36], and ‘abstractions’ [61]. Section 6.2.1 shows that the domain operators

have a simple formulation for difunctional relations, and gives conditions (involving

types) under which difunctionals are closed under composition. Sections 6.2.2 to

6.2.4 present different ways to think about difunctionals.

The notion of a relation being difunctional is defined as follows:

Definition 82: difun.R =̂ a R b ∧ c R b ∧ c R d ⇒ a R d.

In calculation we always use a point–free formulation:

Lemma 83: difun.R ≡ R ; R−1 ; R ⊆ R.

Proof

R ; R−1 ; R ⊆ R

≡ { def ⊆ }

a (R ; R−1 ; R) d ⇒ a R d

≡ { def ; }

∃b, c.(a R b ∧ b R−1 c ∧ c R d) ⇒ a R d

≡ { predicate calculus }

a R b ∧ b R−1 c ∧ c R d ⇒ a R d

≡ { def −1 }

a R b ∧ c R b ∧ c R d ⇒ a R d

Every relation satisfies the reverse inclusion, which we call the triple rule [35]:
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Lemma 84: R ; R−1 ; R ⊇ R

Proof

R ; R−1 ; R

⊇ { lemma 72 }

R< ; R

= { domains }

R

The two previous results are combined in a single equality:

Lemma 85: difun.R ≡ R ; R−1 ; R = R.

There are larger but equivalent formulations. For example,

Lemma 86: difun.R ≡ R ; R−1 ; R ; R−1 ; R = R.

Proof “⇒”

R ; R−1 ; R ; R−1 ; R

= { difun.R }

R ; R−1 ; R

= { difun.R }

R

Proof “⇐”

R ; R−1 ; R

⊆ { triple rule (84) }

R ; R−1 ; R ; R−1 ; R

= { assumption }

R
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In general, for all naturals n > 0:

Lemma 87: difun.R ≡ R ; (R−1 ; R)n = R.

For a ∈ dom R, the image of a under R is defined by a.R = {b | a R b}.
The inverse image of b ∈ rng R under R is defined by R.b = b.(R−1). We saw

in section 6.1 that pers can be written in terms of disjoint full relations S ×S.

Difunctionals generalise pers in a natural way, being able to be expressed in terms

of disjoint complete relations S×T , where sets S and T may differ:

Lemma 88: For any difunctional relation R,

(a) Image sets are either identical or disjoint:

a.R = a′.R ∨ a.R ∩ a′.R = ∅

R.b = R.b′ ∨ R.b ∩ R.b′ = ∅.

(b) Image sets are in one–to–one correspondence:

{a.R | a ∈ dom R} ∼= {R.b | b ∈ rng R}.

(c) R is completely determined by its image sets:

R =
⋃ {R.b× a.R | a R b}.

(d) Decomposition in terms of disjoint products is unique. Let X ,Y
be indexed sets of disjoint non–empty sets, with |X |=|Y |= n. Then,

R =
⋃ {X i × Y i | 0 ≤ i < n}

⇒
X = {R.b | b ∈ rng R} ∧ Y = {a.R | a ∈ dom R}.

For example, the difunctional relation

{(a, c), (a, d), (b, c), (b, d), (e, f), (e, g), (e, h)}

can be written in terms of disjoint products as

{a, b}×{c, d} ∪ {e}×{f, g, h}
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Note that pers and functional relations are difunctional. Moreover, just as for

pers, difunctionals are closed under converse, intersection, and par, but not under

union or composition [35]. To see that difunctionals are not closed under compo-

sition, take R = {(a, x), (a, y), (b, z)} and S = {(x, c), (y, d), (z, d)}; then R and S

are both difunctional (R is the converse of a functional relation, S is a functional

relation), but their composition R ; S = {(a, c), (a, d), (b, d)} is not difunctional,

being in fact the simplest non–difunctional relation:

@
@@

@
@@

b

a

z

y

x

d

c

.

In section 6.2.1 we give a necessary and sufficient condition (involving types) for

the composition of two difunctionals being difunctional.

6.2.1 Domains

The domain operators have a simple formulation for difunctionals:

Lemma 89: difun.R ≡ R< = R ; R−1.

Lemma 90: difun.R ≡ R> = R−1 ; R.
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Proof 89

R< = R ; R−1

≡ { lemma 72 }

R< ⊇ R ; R−1

≡ { lemma 72 }

(R ; R−1) ∩ (R/R) ∩ (R/R)−1 ⊇ R ; R−1

≡ { glbs }

(R ; R−1 ⊇ R ; R−1) ∧ (R/R ⊇ R ; R−1) ∧ ((R/R)−1 ⊇ R ; R−1)

≡ { calculus }

R/R ⊇ R ; R−1

≡ { factors }

R−1 ⊇ R−1 ; R ; R−1

≡ { def }

difun.R

These results are used to prove that difunctionals are closed under composition

precisely when the composition of the smallest intermediate domains is transitive:

(Sheeran [61] gives an alternative proof using the operators a and `.)

Lemma 91: difun.R ∧ difun.S ⇒

difun.(R ; S) ≡ transitive.(R> ; S<).

Proof “⇒”

(R> ; S<) ; (R> ; S<)

= { difun.R ∧ difun.S }

R−1 ; R ; S ; S−1 ; R−1 ; R ; S ; S−1
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= { converse }

R−1 ; R ; S ; (R ; S)−1 ; R ; S ; S−1

⊆ { difun.(R ; S) }

R−1 ; R ; S ; S−1

= { difun.R ∧ difun.S }

(R> ; S<)

Proof “⇐”

difun.(R ; S)

≡ { def }

R ; S ; S−1 ; R−1 ; R ; S ⊆ R ; S

≡ { difun.R ∧ difun.S }

R ; S< ; R> ; S ⊆ R ; S

≡ { domains }

R ; R> ; S< ; R> ; S< ; S ⊆ R ; R> ; S< ; S

⇐ { monotonicity }

R> ; S< ; R> ; S< ⊆ R> ; S<

≡ { def }

transitive.(R> ; S<)

In practice, one of two sufficient conditions can often be used to show that the

composition of two difunctionals is difunctional:

Lemma 92: difun.R ∧ difun.S ⇒

difun.(R ; S) ⇐ (R> � S< ∨ S< � R>).

Proof
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difun.(R ; S)

≡ { lemma 91 }

transitive.(R> ; S<)

≡ { def }

R> ; S< ; R> ; S< ⊆ R> ; S<

≡ { R> � S< ∨ S< � R> }

true

6.2.2 Difunctional ≡ Factorisable

It is well known that every relation R can be expressed in the form f−1 ; g, for f

and g some functional relations. For example, take f = idR ; π1 and g = idR ; π2,

where idR is the identity relation on the set of pairs comprising R. One can verify

now that f and g are functional relations, and that R = f−1 ; g.

Turning things around, we find that the composition of a functional relation and

the converse of a functional relation is always difunctional:

Lemma 93: fn.f ∧ fn.g ⇒ difun.(f ; g−1).

Proof

(f ; g−1) ; (f ; g−1)
−1

; (f ; g−1)

= { converse }

f ; g−1 ; g ; f−1 ; f ; g−1

⊆ { fn.f ∧ fn.g }

f ; id ; id ; g−1

= { identity }

f ; g−1
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Moreover, every difunctional can be factorised in this way:

Lemma 94: difun.R ⇒ ∃f, g. (fn.f ∧ fn.g ∧ R = f ; g−1).

See [36] for a proof. Combining the two results above: “Precisely the difunctional

relations can be expressed as the composition of a functional relation and the con-

verse of a functional relation.” All the programs that we derive in chapter 7 are

difunctional programs specified as such a composition.

6.2.3 Difunctional ≡ Invertible

An inverse of a function f : A → B is a function g : B → A satisfying g ◦ f = idA

and f ◦ g = idB. We can make such a definition in relational calculus:

Definition 95: An inverse of a relation R ∈ A ↔ B is a relation

S ∈ B ↔ A for which R ; S = A and S ; R = B.

Not every relation R ∈ A ↔ B is invertible, but those that are have R−1 as a

unique inverse: (See lemma D22 in [4] for the proof.)

Lemma 96: S ∈ B ↔ A is an inverse of R ∈ A↔ B ⇒ S = R−1.

Which relations can be inverted? Precisely the difunctionals:

Lemma 97: R ∈ A↔ B is invertible ⇒ difun.R.

Lemma 98: difun.R ⇒ R ∈ R<↔ R> is invertible.

Definition 95 assumes that A and B are pers. Is it possible to separate the in-

vertibility result from a specific choice of types? Perhaps one can define an inverse

of a relation R as an S satisfying R ; S ; R = R and S ; R ; S = S? Using this def-

inition however, R−1 is no longer the unique inverse of R. Take R = {(a, a), (a, b)}
and S = {(a, a)}, then R ; S ; R = R and S ; R ; S = S, but S 6= R−1.
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6.2.4 Difunctional ≡ Per–functional

The notion of a functional relation depends upon our choice of types. In this section

we give a brief argument that when pers are types, difunctionals relations are the

functional relations. A more formal argument is given in [35].

In the standard approach to relational calculus, equivalent to working with

partial identity relations (pirs) A ⊆ id as types, a relation R is functional if

R−1 ; R ⊆ id. Working with pirs, the right domain of a relation R is defined by

R> = (R−1 ; R) ∩ id [4]. We observe now that functionality can be expressed in

terms of the domain operator: R is functional ≡ R−1 ; R = R>.

Working with pers, the right domain of R is given by R> = (R−1 ; R) ∩ Ŕ−1.

Taking the lead from the observation for pirs, we make the following definition:

Definition 99: R is per–functional =̂ R−1 ; R = R>.

Applying lemma 90, we conclude that the per–functional relations are precisely the

difunctional relations: (It is interesting to note that, because difun.R ≡ difun.R−1,

the converse of a per–functional relation is also per–functional!)

Lemma 100: R is per–functional ≡ R is difunctional.

6.3 Counting pers and difunctionals

We end this chapter with a bit of fun. The space of relations on a universe A is

given by the powerset P (A×A). If A has n elements, then the space of relations

has 2n×n elements. In this section we define Miranda functions that compute how

many of these relations are equivalence relations, pers, and difunctional relations.

Writing such programs helps in becoming familiar with the three notions.

We begin by defining a function eqvs: (The function rep used below takes a

number n and a value x, and gives a list of n copies of x.)
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eqvs 0 = [0]

eqvs (n+1) = concat [i+1 : rep i i | i <- eqvs n]

The length of the list eqvs n is the number of equivalence relations on a set with n

elements. Each element of eqvs n is the number of classes in one such equivalence

relation; for example, eqvs 3 = [3,2,2,2,1] tells us that there are 5 equivalence

relations on a set with 3 elements, one having 3 classes, three having 2 classes, and

one having 1 class. Let us explain how eqvs works: if an equivalence relation has

i classes then adding a new point to the universe gives i equivalence relations with

i classes (one for each class the new point can be placed in) and one equivalence

relation with i+ 1 classes (in which the new point forms a completely new class).

The pers function is defined just as for eqvs, except that we have an extra

relation with i classes, in which the new point is not added to any class:

pers 0 = [0]

pers (n+1) = concat [i+1 : rep (i+1) i | i <- pers n]

Now for difuns. If a difunctional comprises i products, then adding a new point

to the universe gives 3i + 1 difunctionals with i products: one for adding the new

point to none of the products, and one each for adding the new point to the left

side, right side, and both sides of each product. In addition, we get one difunctional

with i+ 1 products, in which the new point gives rise to a completely new product.

difuns 0 = [0]

difuns (n+1) = concat [i+1 : rep ((3*i)+1) i | i <- difuns n]

Here are the number of eqvs, pers and difuns on sets with 0 . . . 9 points:

[#(eqvs n) | n <- [0..9]]

= [1,1,2,5,15,52,203,877,4140,21147]

[#(pers n) | n <- [0..9]]
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= [1,2,5,15,52,203,877,4140,21147,115975]

[#(difuns n) | n <- [0..9]]

= [1,2,7,35,214,1523,12349,112052,1120849,12219767]

Note that the pers list is the eqvs list with the first element removed: pers n =

eqvs (n+1). This is explained by noting that a per A can be seen as an equivalence

relation with an extra equivalence class comprising points outside dom A.
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Chapter 7

Calculating Programs

In this chapter we put everything we have developed into practice. We use Ruby

to derive some programs specified as the composition of a functional relation and

the converse of a functional relation, and run the resulting implementations on the

Ruby interpreter. Preconditions of the ‘induction’ laws used within the derivations

are verified using algebraic properties of the domain operators < and >.

7.1 More Ruby laws

Laws for some primitive relations and combining forms were given in section 3.4. In

this section we give some laws about arithmetic primitives and generic combining

forms. Proofs of these laws can be found in the earlier Ruby articles. Thinking in

terms of pictures is very helpful in understanding the laws for the generic combining

forms; see for example the pictures that follow lemma 113.

The first four laws are about the primitives + and ∗. The first two are dummy–

free versions of the standard associativity and distributivity rules; the second two

are relational properties that are much used when deriving programs:

Lemma 101: (associativity)

fst + ; + = lsh ; snd + ; +.
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Lemma 102: (distribution)

+ ; ∗n = [∗n, ∗n] ; +.

Lemma 103: fst ∗n ; + ; ∗n−1 = snd ∗n−1 ; +.

Lemma 104: + ; +−1 = snd +−1 ; rsh ; fst +.

The next two laws express that the argument to map can be pushed inside left

reductions and columns. (Of course, similar laws hold for right reductions and

rows, but we don’t have need for them in this thesis.) These laws are used in the

left–to–right direction, to bring together the argument of a map and the argument

of a left reduction (or column) so that they can be manipulated together:

Lemma 105: (map through left–reduce)

snd (mapn R) ; rdln S = rdln (snd R ; S).

Lemma 106: (map through column)

fst (mapn R) ; coln S ; snd (mapn T ) = coln (fst R ; S ; snd T ).

The next two laws express that a transformation of a certain form (essentially

a ‘shunting transformation’) can be rippled through a left reduction or a column of

components: (Again, similar laws hold for right reductions and rows.)

Lemma 107: (left–reduce induction)

fst R ; S = T ; R

⇒
fst R ; rdln S = rdln T ; R.

Lemma 108: (column induction)
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snd R ; S = T ; fst R

⇒
snd R ; coln S = coln T ; fst R.

Column induction is commonly used to push a type constraint on the domain of a

column through to the argument program. Column induction gives the ‘rippling’

law below by taking R = A (where A is a per) and T = snd A ; S ; fst A: (Note

that we have used coln (R ; fst A) ` fst A, which follows from the type inference

rule for column, to eliminate the trailing fst A from the column rippling rule.)

Lemma 109: (column rippling)

snd A ; S ` fst A

⇒
snd A ; coln S = coln (snd A ; S ; fst A).

The precondition above asserts that fst A is a right domain of snd A ; S. For simple

programs, one can verify such a precondition by applying shunting–like laws. See

for example the use of column rippling in the derivation of the binary addition

program in section 7.4. When deriving more complicated programs however, such

as the base–conversion program in section 7.6, we take a different approach: the

precondition is first expressed in the form (snd A ; S)> � fst A using lemma 78,

which is then verified using the algebraic properties of the > operator.

The term Horner’s rule usually refers to

an.x
n + . . . a2.x

2 + a1.x
1 + a0.x

0 = (((an.x+ . . . )x+ a2)x+ a1)x+ a0,

which shows how to evaluate polynomials more efficiently. Bird and Meertens have

used a variant of Horner’s rule to great effect in deriving functional programs [8, 49].

The two laws below are variants of Horner’s rule that are used in Ruby:

Lemma 110: (Horner’s rule for left–reduce)
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[R,R] ; S = S ; R

⇒
trin+1 R ; apln

−1 ; rdln S = apln
−1 ; rdln (fst R ; S).

Lemma 111: (Horner’s rule for column)

fst R ; S ; [T, T ] = snd T ; S

⇒
fst (trin R) ; coln S ; [T n, trin T ] = coln (S ; fst T ).

Our final two laws combine a reduction and the converse of a reduction to give

a column; the application of one of these rules is a key step in all our derivations:

Lemma 112: (sliding reductions)

R ; S−1 = snd S−1 ; rsh ; fst R

⇒
rdrn R ; (rdln S)−1 = coln (R ; S−1).

Lemma 113: (zipping reductions)

fst R ; S ; T−1 = lsh ; snd W ; rsh ; fst S

⇒
fst (rdln R) ; S ; (rdln T )−1

=

lsh ; snd (coln W ) ; rsh ; fst S.

Here is a picture of the precondition to lemma 113:

R S T−1 =

S

W

;
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here is a picture of an instance of the consequent:

[l]R

[l]R

[l]R

[r]T−1

[r]T−1

[r]T−1

S

=
W

W

W

S

.

7.2 Representing numbers

All the programs that we derive in this chapter work with numbers. In this section

we give some basic definitions involving numbers, and some laws.

Definition 114: sumn+1 =̂ aprn
−1 ; rdrn +.

Definition 115: ladn x =̂ trin (∗x) ; sumn.

The program sumn relates an n–tuple (n > 0) of numbers to their sum; ladn x

relates an n–tuple of numbers to their weighted sum, where the ith component of

the tuple (reading from right to left and starting from 0) is given weight xi. For

example, (1, 2, 3, 4) sum4 10 and (a, b, c, d) lad4 2 8a+ 4b+ 2c+ d.

Here are some useful properties: (the first three are consequences of the asso-

ciativity of addition, the last that ∗ distributes over +.)

Lemma 116: sumn+1 = apln
−1 ; rdln +.

Lemma 117: fst sumn ; + = rdrn +.
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Lemma 118: snd sumn ; + = rdln +.

Lemma 119: [ladn x, ladn x] ; + = zipn ; mapn + ; ladn x.

An n–digit number in base x will be represented as an n–tuple of integers in the

range 0 to x− 1. The leftmost value in the tuple is assumed to be most significant.

For example, the tuple (2, 0, 2, 1, 0) is the representation of the decimal number 183

as a 5–digit number in base 3; that is, 2.34 + 0.33 + 2.32 + 1.31 + 0.30 = 183. The

same number represented as an 8–digit number in base 2 is (1, 0, 1, 1, 0, 1, 1, 1). The

program evaln x converts an n–digit number in base x to a natural number: (For

n > 0, |n | abbreviates the identity relation [[0, . . . , n− 1]].)

Definition 120: evaln x =̂ mapn |x | ; ladn x.

The following picture is helpful in reading this definition: (• represents |x |)

∗x

∗x

∗x

+ + +

∗x

∗x

∗x

• • • •

.

Here are some properties of evaln x:

Lemma 121: evaln x is a bijection.

Lemma 122: (evaln x)> = |xn |.

Lemma 123: (evaln x)< = mapn |x |.
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Since multiplication distributes over addition (lemma 102), Horner’s rule for left–

reduce (lemma 110) can be applied to eliminate many of the multiplications:

Lemma 124: evaln x = mapn |x | ; apln−1
−1 ; rdln−1 (fst ∗x ; +).

An alternative formulation with a hidden 0 is sometimes useful:

Lemma 125: evaln x = mapn |x | ; π2
−1 ; fst [[0]] ; rdln (fst ∗x ; +).

We write b for the type of binary digits:

Definition 126: b =̂ [[0, 1]].

The program binn converts an n–bit binary number to a natural number:

Definition 127: binn =̂ evaln 2.

A carry–save number is like a binary number in that digits have weight 2i, but

different in that acceptable digits are {0, 1, 2}, and that a digit is represented as a

pair of bits whose sum is that digit. For example, ((1, 0), (1, 1), (0, 1)) is a carry–

save representation of 9, because (1 + 0).22 + (1 + 1).21 + (0 + 1).20 = 9. A number

can have many carry–save representations; e.g. ((1, 1), (0, 0), (1, 0)) also represents

9. The program csvn converts an n–wide carry–save number to a natural number:

Definition 128: csvn =̂ mapn ([b, b] ; +) ; ladn 2.

Here are some properties of csvn:

Lemma 129: csvn is functional.

Lemma 130: csvn> = |2n+1 − 1 |.

Lemma 131: csvn< �| mapn [b, b].
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Results 130 and 131 together express that every carry–save number represents one

natural number and a natural number can have many carry–save representations.

(Recall that A �| B says that per A is ‘an equivalence relation on’ per B.)

Binary and carry–save numbers are related by the following laws:

Lemma 132: [binn, binn] ; + = zipn ; csvn.

Lemma 133: [binn, csvn] ; + = zipn ; mapn ([b, [b, b] ; +] ; +) ; ladn 2.

We prove lemma 132 below; lemma 133 follows by a similar argument:

[binn, binn] ; +

= { def 127 }

[mapn b ; ladn 2,mapn b ; ladn 2] ; +

= { par }

[mapn b,mapn b] ; [ladn 2, ladn 2] ; +

= { ladders (119) }

[mapn b,mapn b] ; zipn ; mapn + ; ladn 2

= { shunting (30) }

zipn ; mapn [b, b] ; mapn + ; ladn 2

= { def 128 }

zipn ; csvn

7.3 Representation changers

We use the term representation changer for a program that converts an abstract

value from one concrete representation to another. A simple example of a represen-

tation changer is a base-conversion function conv that converts an n–digit number

in base x to an m–digit number in base y. In this case, abstract values are natural
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numbers, and concrete values are numbers in base x and base y. Representation

changers have a natural specification as a composition R ; S−1, where R is a relation

that converts from one concrete type to the abstract type, and S converts from the

other concrete type to the abstract type. For example, the function conv can be

specified by the requirement that conv = evaln x ; (evalm y)−1.

In many cases the components R and S of a representation changer R ; S−1

will be functional relations. In section 6.2.2 we observed that precisely the difunc-

tional relations can be expressed as the composition of a functional relation and

the converse of a functional relation. In making the following definitions, Jones

and Sheeran [43, 42] generalise a little, allowing the components to be difunctional

relations, but still requiring that the composition be difunctional:

Definition 134: A representation changer is a difunctional program

specified as a composition R ; S−1, where R and S are also difunctional

relations. We refer to R and S as representation relations .

Definition 135: The concrete domain of a representation relation R is

the per R< = R ; R−1, and the abstract domain is the per R> = R−1 ; R.

For a representation relation R, read aR b as “concrete value a represents ab-

stract value b.” That a representation relation need not be functional means that a

concrete value can represent more than one abstract value; e.g. one might imagine

a representation relation sign with concrete domain [[−1, 0, 1]] and abstract domain

int, in which −1 represents the negative integers, 0 represents 0, and 1 represents

the positive integers. That a representation relation need not be the converse of a

functional relation means that an abstract value can have more than one concrete

representation; e.g. under + both (1, 1) and (2, 0) represent 2.

Commonly for representation changers it is easy to define R and S, but not

obvious how to implement R ; S−1. Refinement of a program specified in this way

proceeds by sliding parts of R and S through one another (using laws 112 and 113
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for example), aiming towards a new program with components that are represen-

tation changers with smaller abstract types. In this sense, ‘thinking about types’

guides our calculations. The process is repeated until the remaining representation

changers can be implemented directly using standard primitives.

A representation changer that is much used in Ruby is a half-adder , which gives

the binary carry and sum of a pair of bits. A half–adder is a representation changer

which converts a natural number n ∈ {0, 1, 2} represented as a pair of bits (x, y)

with x+ y = n to a pair of bits (x′, y′) with 2x′ + y′ = n:

Definition 136: HA =̂ [b, b] ; + ; ([b ; ∗2, b] ; +)−1.

The half–adder can be implemented as follows:

Lemma 137: HA = [b, b] ; + ; fork ; [div 2 ; b,mod 2 ; b].

This result follows quickly from the following:

Lemma 138: x > 0 ⇒ ([∗x, |x |] ; +)−1 = fork ; [div x,mod x].

We conclude with another useful representation changer; a full–adder gives the

binary carry and sum of three bits, arranged here as a single bit and a pair of bits:

Definition 139: FA =̂ [b, [b, b] ; +] ; + ; ([b ; ∗2, b] ; +)−1.

Here are two properties of FA that are used later on:

Lemma 140: lsh ; FA = [[b, b] ; +, b] ; + ; ([b ; ∗2, b] ; +)−1.

Lemma 141: FA ; fst ∗2 ; + = [b, [b, b] ; +] ; +.

Proof 140
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lsh ; FA

= { def 139 }

lsh ; [b, [b, b] ; +] ; + ; ([b ; ∗2, b] ; +)−1

= { shunting }

[[b, b] ; b] ; lsh ; snd + ; + ; ([b ; ∗2, b] ; +)−1

= { associativity (101) }

[[b, b] ; +, b] ; + ; ([b ; ∗2, b] ; +)−1

Proof 141

FA ; fst ∗2 ; +

= { def 139 }

[b, [b, b] ; +] ; + ; +−1 ; [∗2−1 ; b ; ∗2, b] ; +

= { expanding }

[b, [b, b] ; +] ; + ; +−1 ; [[[0, 1, 2]], b] ; +

= { expanding }

[b, [b, b] ; +] ; + ; [[0, 1, 2, 3]]

= { domains }

[b, [b, b] ; +] ; +

As is well known, a full–adder can be implemented using two half–adders:

Lemma 142: FA = HA↔ HA ; fst +.

7.4 Binary addition

In this section we derive our first program using Ruby. The program takes an n–bit

binary number (n > 0) and a single bit, and gives a carry bit and an n–bit sum [34].
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Given below is our specification for the addition program: R converts the binary

number to an integer and adds the bit, S−1 separates off the carry bit, and converts

the remaining integer back to binary.

Definition 143: add1n =̂ R ; S−1, where

R = [binn, b] ; +,

S = [b ; (∗2)n, binn] ; +.

Since R is functional and S is bijective, add1n = R ; S−1 is functional, and hence

implementable in the sense of definition 45. In fact, add1n is already an implemen-

tation: take any one of the range wires in its network as the output wire, and the

remaining external wires as input wires. The program is not however an imple-

mentation for the direction that we want to use it, namely from domain to range.

Moreover, one might expect that internally the binary addition program should

manipulate only 0’s and 1’s, whereas natural numbers are used with add1n as de-

fined above. We shall calculate an implementation of add1n that is executable from

domain to range and manipulates bits rather than natural numbers.

We begin with some simple rearranging steps:

add1n

= { def 143 }

[binn, b] ; + ; ([b ; (∗2)n, binn] ; +)−1

= { def 127 }

[mapn b ; trin ∗2 ; sumn, b] ; + ; ([b ; (∗2)n,mapn b ; trin ∗2 ; sumn] ; +)−1

= { sums (117,118) }

[mapn b ; trin ∗2, b] ; rdrn + ; ([b ; (∗2)n,mapn b ; trin ∗2] ; rdln +)−1

= { converse }

[mapn b ; trin ∗2, b] ; rdrn + ; (rdln +)−1 ; [(∗2)−n ; b, trin ∗2−1 ; mapn b]
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The right–reduction and converse left–reduction can now be combined using lemma

112, withR, S = +. Under these assignments, the precondition is given by lemma 104,

a property of addition much used in Ruby. We continue:

[mapn b ; trin ∗2, b] ; rdrn + ; (rdln +)−1 ; [(∗2)−n ; b, trin ∗2−1 ; mapn b]

= { sliding reductions (112) }

[mapn b ; trin ∗2, b] ; coln (+ ; +−1) ; [(∗2)−n ; b, trin ∗2−1 ; mapn b]

Now the triangles can be pushed inside the column using a variant of Horner’s rule,

lemma 111. This law is used here with R = ∗ 2, S = (+ ; +−1), and T = ∗2−1.

We verify the precondition of the law under these assignments as follows:

fst R ; S ; [T, T ] = snd T ; S

≡ { assignments }

fst ∗2 ; + ; +−1 ; [∗2−1, ∗2−1] = snd ∗2−1 ; + ; +−1

≡ { distribution (102) }

fst ∗2 ; + ; ∗2−1 ; +−1 = snd ∗2−1 ; + ; +−1

⇐ { Liebniz }

fst ∗2 ; + ; ∗2−1 = snd ∗2−1 ; +

≡ { lemma 103 }

true

Continuing with the add1n calculation:

[mapn b ; trin ∗2, b] ; coln (+ ; +−1) ; [(∗2)−n ; b, trin ∗2−1 ; mapn b]

= { Horner’s rule (111) }

[mapn b, b] ; coln (+ ; +−1 ; fst ∗2−1) ; [b,mapn b]

= { map through column (106) }

snd b ; coln (fst b ; + ; +−1 ; [∗2−1, b]) ; fst b
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Observe that the component of the column has the form of a representation changer.

Its abstract domain is however still a large type, namely the identity relation

idZ on the integers. We make it a small type, in fact [[0, 1, 2, 3]], by pushing the

type constraint snd b on the domain of the column through to the argument pro-

gram, using column rippling (lemma 109). This law is used here with A = b and

S = fst b ; + ; +−1 ; [∗2−1, b]. Let us verify the precondition:

snd A ; S ` fst A

≡ { assignments }

[b, b] ; + ; +−1 ; [∗2−1, b] = [b, b] ; + ; +−1 ; [∗2−1 ; b, b]

We verify this identity as follows:

[b, b] ; + ; +−1 ; [∗2−1, b]

= { addition }

[b, b] ; + ; [[0, 1, 2]] ; +−1 ; [∗2−1, b]

= { converse }

[b, b] ; + ; ([∗2, b] ; + ; [[0, 1, 2]])−1

= { shunting }

[b, b] ; + ; ([∗2 ; [[−1, 0, 1, 2]], b] ; +)−1

= { shunting }

[b, b] ; + ; ([b ; ∗2, b] ; +)−1

= { converse }

[b, b] ; + ; +−1 ; [∗2−1 ; b, b]

The precondition can also be verified, as shown below, in the form using >:

(snd A ; S)> � fst A

≡ { assignments }
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([b, b] ; + ; +−1 ; [∗2−1, b])> � fst b

We verify this approximation as follows:

([b, b] ; + ; +−1 ; [∗2−1, b])>

� { composition (77) }

(([b, b] ; +)> ; +−1 ; [∗2−1, b])>

= { addition }

([[0, 1, 2]] ; +−1 ; [∗2−1, b])>

= { duality (81) }

([∗2, b] ; + ; [[0, 1, 2]])<

= { shunting }

([∗2 ; [[−1, 0, 1, 2]], b] ; +)<

= { shunting }

([b ; ∗2, b] ; +)<

� { composition (75) }

[b, b]

� { par }

fst b

Continuing with the add1n calculation:

snd b ; coln (fst b ; + ; +−1 ; [∗2−1, b]) ; fst b

= { column rippling (109) }

coln ([b, b] ; + ; +−1 ; [∗2−1 ; b, b]) ; fst b

= { def 136 }

coln HA ; fst b
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Under our assumption that n > 0 we have coln HA ` fst b, i.e. the range constraint

fst b can be eliminated. This does not hold if n = 0. The half–adder HA (a simple

representation changer) can be implemented directly by using standard primitives,

as shown in lemma 137. This completes the derivation of the binary addition

program, which is now in the form of an implementation.

In summary, we have made the following transformation:

add1n

= { by definition }

[binn, b] ; + ; ([b ; (∗2)n, binn] ; +)−1

= { by calculation }

coln ([b, b] ; + ; fork ; [div 2 ; b,mod 2 ; b])

The addition program that we have derived is a functional program, in that

one could define functional versions of the Ruby combining forms in a language

such as ML, and execute the addition program. What has been gained in deriving

the program within a relational language? Our answer is that while the addition

program is deterministic as a whole, it has a natural specification as a term with

considerable internal non-determinism, which the derivation process eliminates.

The sequence of transformations “converse, sliding reductions, Horner’s rule,

and map through column” as used in the derivation of the binary addition program

is used again in this chapter. We combine the sequence in a single law:

Lemma 144:

fst (mapn R ; ladn x) ; + ; ([(∗x)n,mapn S ; ladn x] ; +)−1

=

coln (fst R ; + ; ([∗x, S] ; +)−1).

Omitting the constraints b, the implementation for add1n can be translated
directly into the notation of the Ruby interpreter presented in chapter 5:
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> let add1 n =

let rec con2 = inv p1 .. second (icon 2)

and halfadd = ADD .. fork .. ((con2 .. DIV) !! (con2 .. MOD))

in col n halfadd;

Now we compile the program for some size, say n = 2:

> rc (add1 2);

Name Domain Range
----------------------------------
ADD <w1,w2> w3
----------------------------------
DIV <w3,2> w4
MOD <w3,2> w5
----------------------------------
ADD <w6,w4> w7
----------------------------------
DIV <w7,2> w8
MOD <w7,2> w9
----------------------------------

Primitives - 6
Delays - 0
Longest path - 4
Parallelism - 10%

Directions - <<in,in>,in> ~ <out,<out,out>>

Wiring - <<w6,w1>,w2> ~ <w8,<w9,w5>>

Inputs - w6 w1 w2

Now we can do some simulation:

> rsim "0 0 0; 0 0 1; 0 1 0; 0 1 1; 1 0 0; 1 0 1; 1 1 0; 1 1 1";

0 - ((0,0),0) ~ (0,(0,0))
1 - ((0,0),1) ~ (0,(0,1))
2 - ((0,1),0) ~ (0,(0,1))
3 - ((0,1),1) ~ (0,(1,0))
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4 - ((1,0),0) ~ (0,(1,0))
5 - ((1,0),1) ~ (0,(1,1))
6 - ((1,1),0) ~ (0,(1,1))
7 - ((1,1),1) ~ (1,(0,0))

7.5 Binary addition II

In this section we derive a program that takes two n–bit binary numbers (n > 0)

and a carry–in, and gives a carry–out and an n–bit sum. This program generalises

that of the previous section, being implemented in terms of a column of full–adders

rather than half–adders. Given below is our specification; R converts the binary

numbers to integers and adds them together with the carry–in, S−1 separates off

the carry–out, and converts the remaining integer back to binary:

Definition 145: addn =̂ R ; S−1, where

R = [[binn, binn] ; +, b] ; +,

S = [b ; (∗2)n, binn] ; +.

In deriving an implementation for addn, much of the work in deriving an implemen-

tation for add1n in the previous section can be reused:

addn

= { def 145 }

[[binn, binn] ; +, b] ; + ; ([b ; (∗2)n, binn] ; +)−1

= { lemma 132 }

[zipn ; csvn, b] ; + ; ([b ; (∗2)n, binn] ; +)−1

= { defs 128,127 }

[zipn ; mapn ([b, b] ; +) ; ladn 2, b] ; + ; ([b ; (∗2)n,mapn b ; ladn 2] ; +)−1

= { as for add1n (144) }

[zipn, b] ; coln (fst ([b, b] ; +) ; + ; +−1 ; [∗2−1, b]) ; fst b

117



= { column rippling (109) }

fst zipn ; coln ([[b, b] ; +, b] ; + ; +−1 ; [∗2−1 ; b, b]) ; fst b

= { lemma 140 }

fst zipn ; coln (lsh ; FA) ; fst b

The full–adder FA can be implemented in terms of the half–adder, as shown in

lemma 142. This completes the derivation of the binary addition program, which

is now in the form of an implementation. A picture is given below:

!!
!!
!!#

#
#
#
#
#

%
%
%
%
%
%
%%

aaaaaac
c
c
c
c
c

e
e
e
e
e
e
ee

FA

FA

FA

FA

.

Note that column rippling is used in the derivation above with A = b and S =

fst ([b, b] ; +) ; + ; +−1 ; [∗2−1, b]. Verifying the precondition in this case differs

little from that for add1n, but is included for completeness:

snd A ; S ` fst A

≡ { assignments }

[[b, b] ; +, b] ; + ; +−1 ; [∗2−1, b] = [[b, b] ; +, b] ; + ; +−1 ; [∗2−1 ; b, b]

We verify this identity as follows:

[[b, b] ; +, b] ; + ; +−1 ; [∗2−1, b]

= { addition }

[[b, b] ; +, b] ; + ; [[0, 1, 2, 3]] ; +−1 ; [∗2−1, b]
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= { converse }

[[b, b] ; +, b] ; + ; ([∗2, b] ; + ; [[0, 1, 2, 3]])−1

= { shunting }

[[b, b] ; +, b] ; + ; ([∗2 ; [[−1, 0, 1, 2, 3, ]], b] ; +)−1

= { shunting }

[[b, b] ; +, b] ; + ; ([[[0, 1]] ; ∗2, b] ; +)−1

= { converse }

[[b, b] ; +, b] ; + ; +−1 ; [∗2−1 ; b, b]

The precondition can also be verified, as shown below, in the form using >:

(snd A ; S)> � fst A

≡ { assignments }

([[b, b] ; +] ; + ; +−1 ; [∗2−1, b])> � fst b

We verify this approximation as follows:

([[b, b] ; +] ; + ; +−1 ; [∗2−1, b])>

� { composition (77) }

(([[b, b] ; +] ; +)> ; +−1 ; [∗2−1, b])>

= { addition }

([[0, 1, 2, 3]] ; +−1 ; [∗2−1, b])>

= { duality (81) }

([∗2, b] ; + ; [[0, 1, 2, 3]])<

= { shunting }

([∗2 ; [[−1, 0, 1, 2, 3]], b] ; +)<

= { shunting }
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([b ; ∗2, b] ; +)<

� { composition (75) }

[b, b]

� { par }

fst b

7.6 Base conversion

In this section we derive a Ruby program that converts an n–digit number repre-

sented in base x to an m–digit number in base y, for n,m, x, y > 0. The circuit

comes from pages 162–165 of the book “Digital systems, with algorithm implemen-

tation” [18]. Here is our specification for the conversion program:

Definition 146: conv n x m y =̂ evaln x ; (evalm y)−1.

The derivation of an implementation proceeds as follows:

conv n x m y

= { def 146 }

evaln x ; (evalm y)−1

= { lemma 125 }

mapn |x | ; π2
−1 ; fst [[0]] ; rdln (fst ∗x ; +) ; (evalm y)−1

= { shunting }

π2
−1 ; [[[0]],mapn |x |] ; rdln (fst ∗x ; +) ; (evalm y)−1

= { map through left–reduce (105) }

π2
−1 ; fst [[0]] ; rdln ([∗x, |x |] ; +) ; (evalm y)−1

Now we use the induction rule for left–reduce (lemma 107), with R = (evalm y)−1,

S = fst evalm y ; [∗x, |x |] ; + ; (evalm y)−1, and T = [∗x, |x |] ; +. We verify the

precondition of the law under these assignments as follows:
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fst R ; S = T ; R

≡ { assignments }

fst ((evalm y)−1 ; evalm y) ; [∗x, |x |] ; + ; (evalm y)−1

= [∗x, |x |] ; + ; (evalm y)−1

≡ { lemma 122 }

fst |ym | ; [∗x, |x |] ; + ; (evalm y)−1 = [∗x, |x |] ; + ; (evalm y)−1

≡ { guarantees }

fst |ym | a [∗x, |x |] ; + ; (evalm y)−1

≡ { best domains (78) }

([∗x, |x |] ; + ; (evalm y)−1)< � fst |ym |

We verify this approximation as follows:

([∗x, |x |] ; + ; (evalm y)−1)<

= { composition (77) }

([∗x, |x |] ; + ; (evalm y)−1
<)<

= { lemma 122 }

([∗x, |x |] ; + ; |ym |)<

= { shunting }

(∗x ; [[−x+ 1, . . . , ym − 1]], |x |] ; +)<

= { shunting }

([[[0, . . . , ym − 1 div x]] ; ∗x, |x |] ; +)<

� { composition (75) }

[[[0, . . . , ym − 1 div x]], |x |]

� { par }

fst [[0, . . . , ym − 1 div x]]
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� { arithmetic }

fst |ym |

We continue now with the conv calculation:

π2
−1 ; fst [[0]] ; rdln ([∗x, |x |] ; +) ; (evalm y)−1

= { left–reduce induction (107) }

π2
−1 ; fst [[0]] ; fst (evalm y)−1 ; rdln ([evalm y ; ∗x, |x |] ; + ; (evalm y)−1)

= { fst R ; π2 = fst R< ; π2, lemma 123) }

π2
−1 ; fst (mapm [[0]]) ; rdln ([evalm y ; ∗x, |x |] ; + ; (evalm y)−1)

It remains now to implement the underlined term, which we call C1. Here is a

picture of C1, in which ◦ represents |y | and • represents |x |:

◦
◦
◦
◦

◦
◦
◦
◦

∗x +

•

.

Looking at this picture, the pattern of external wiring suggests that we should aim

to express C1 as a column. We begin by unfolding the definition of C1: (For the

remainder of the calculation, a+ abbreviates fst ∗a ; +)

C1

= { def }

[evalm y ; ∗x, |x |] ; + ; (evalm y)−1

= { lemma 124 }

[mapm |y | ; aplm−1
−1 ; rdlm−1 y+ ; ∗x, |x |] ;

+ ; (mapm |y | ; aplm−1
−1 ; rdlm−1 y+)

−1
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= { converse }

[mapm |y | ; aplm−1
−1 ; rdlm−1 y+ ; ∗x, |x |] ;

+ ; (rdlm−1 y+)−1 ; aplm−1 ; mapm |y |

The two left–reductions can now be combined to give a column using lemma 113.

This law is used here with R = y+, S = x+ and T = y+. One might expect to

have to invent a W that satisfied the precondition fst R ; S ; T−1 = lsh ; snd W ;

rsh ; fst S to lemma 113, but we can in fact obtain such a W by calculation:

fst R ; S ; T−1

= { assignments }

fst (fst ∗y ; + ; ∗x) ; + ; +−1 ; fst ∗y−1

= { distribution (102) }

fst ([∗y ; ∗x, ∗x] ; +) ; + ; +−1 ; fst ∗y−1

= { associativity (101) }

fst [∗y ; ∗x, ∗x] ; lsh ; snd + ; + ; +−1 ; fst ∗y−1

= { shunting }

lsh ; [∗y ; ∗x, fst ∗x] ; snd + ; + ; +−1 ; fst ∗y−1

= { addition (104) }

lsh ; [∗y ; ∗x, fst ∗x ; + ; +−1] ; rsh ; fst (+ ; ∗y−1)

= { shunting }

lsh ; snd (fst ∗x ; + ; +−1) ; rsh ; fst (fst (∗y ; ∗x) ; + ; ∗y−1)

= { multiplication }

lsh ; snd (fst ∗x ; + ; +−1) ; rsh ; fst (fst (∗x ; ∗y) ; + ; ∗y−1)

= { shunting (103) }

lsh ; snd (fst ∗x ; + ; +−1) ; rsh ; fst ([∗x, ∗y−1] ; +)

= { shunting }
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lsh ; snd (fst ∗x ; + ; +−1 ; fst ∗y−1) ; rsh ; fst (fst ∗x ; +)

= { W := . . . }

lsh ; snd W ; rsh ; fst S

We continue now with the C1 calculation; by first applying a number of shunting

laws we are able to push the maps through the column:

[mapm |y | ; aplm−1
−1 ; rdlm−1 y+ ; ∗x, |x |] ;

+ ; (rdlm−1 y+)−1 ; aplm−1 ; mapm |y |

= { zipping reductions (113) }

[mapm |y | ; aplm−1
−1, |x |] ; lsh ; snd (colm−1 (x+ ; y+−1)) ;

rsh ; fst x+ ; aplm−1 ; mapm |y |

= { shunting }

[aplm−1
−1 ; [|y |,mapm−1 |y |], |x |] ; lsh ; snd (colm−1 (x+ ; y+−1)) ;

rsh ; [x+ ; |y |,mapm−1 |y |] ; aplm−1

= { shunting }

fst (aplm−1
−1) ; lsh ; [|y |, [mapm−1 |y |, |x |] ; colm−1 (x+ ; y+−1)] ;

rsh ; [x+ ; |y |,mapm−1 |y |] ; aplm−1

= { shunting }

fst (aplm−1
−1) ; lsh ; snd ([mapm−1 |y |, |x |] ; colm−1 (x+ ; y+−1)) ;

rsh ; [fst |y | ; x+ ; |y |,mapm−1 |y |] ; aplm−1

= { shunting }

fst (aplm−1
−1) ; lsh ; snd ([mapm−1 |y |, |x |] ; colm−1 (x+ ; y+−1) ;

snd (mapm−1 |y |)) ; rsh ; fst (fst |y | ; x+ ; |y |) ; aplm−1

= { map through column (106) }

fst (aplm−1
−1) ; lsh ; snd (snd |x | ; colm−1 (fst |y | ; x+ ; y+−1 ; snd |y |)) ;
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rsh ; fst (fst |y | ; x+ ; |y |) ; aplm−1

Observe that the component of the column has the form of a representation changer;

its abstract domain is however still a large type, namely the identity relation idZ on

the integers. We make it a small type, in fact |xy |, by pushing the type constraint

(snd x) on the domain of the column through to the argument program, using

column rippling (lemma 109). This law is used here withA = |x | and S = fst |y | ;
x+ ; y+−1 ; snd |y |. Let us verify the precondition:

(snd A ; S)> � fst A

= { assignments }

([|y |, |x |] ; x+ ; y+−1 ; snd |y |)> � fst |x |

We verify this approximation as follows:

([|y |, |x |] ; x+ ; y+−1 ; snd |y |)>

� { composition (77) }

(([|y |, |x |] ; x+)> ; y+−1 ; snd |y |)>

= { domains }

(|yx | ; y+−1 ; snd |y |)>

= { def }

(|yx | ; +−1 ; [∗y−1, |y |])>

= { shunting }

(+−1 ; [[[−y + 1, . . . , yx− 1]] ; ∗y−1, |y |])>

= { shunting }

(+−1 ; [∗y−1 ; |x |, |y |])>

� { composition (75) }

[|x |, |y |]
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� { par }

fst |x |

We continue again with the C1 calculation:

fst (aplm−1
−1) ; lsh ; snd (snd |x | ; colm−1 (fst |y | ; x+ ; y+−1 ; snd |y |)) ;

rsh ; fst (fst |y | ; x+ ; |y |) ; aplm−1

= { column rippling (109) }

fst (aplm−1
−1) ; lsh ; snd (colm−1 ([|y |, |x |] ; x+ ; y+−1 ; [|x |, |y |]) ; fst |x |) ;

rsh ; fst (fst |y | ; x+ ; |y |) ; aplm−1

= { shunting }

fst (aplm−1
−1) ; lsh ; snd (colm−1 ([|y |, |x |] ; x+ ; y+−1 ; [|x |, |y |])) ;

rsh ; fst ([|y |, |x |] ; x+ ; |y |) ; aplm−1

We call the underlined terms C2 and C3 respectively. The conv program now has

a grid–like layout, as shown below:

C3 C3 C3

C2 C2 C2

C2 C2 C2

C2 C2 C2

0

0

0

0

.

The program C3 is already in the form of an implementation. An implementation

for C2 is obtained simply by applying lemma 138. This completes the derivation of

the base conversion program, which is now in the form of an implementation.

In summary, we have made the following transformation:
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conv n x m y

= { by definition }

evaln x ; (evalm y)−1

= { by calculation }

π2
−1 ; fst (mapm [[0]]) ; rdln C1

where

C1 = fst (aplm−1
−1) ; lsh ; snd (colm−1 C2) ; rsh ; fst C3 ; aplm−1

C2 = [|y | ; ∗x, |x |] ; + ; fork ; [div y ; |x |,mod y ; |y |]

C3 = [|y | ; ∗x, |x |] ; + ; |y |

To get a feel for the layout of the conv implementation, mentally slot into the grid

above the pictures given below for the implementations C2 and C3.

∗x +

div y

mod y◦

•

•

◦

∗x +◦ ◦

•

Omitting the constraints |x | and |y |, the base conversion program above can
be translated directly into notation of the Ruby interpreter presented in chapter 5:

let conv n x m y =
let rec cell1 = first (inv (apl (m-1))) .. lsh

.. second (col (m-1) cell2)

.. rsh .. first cell3 .. apl (m-1)

and cell2 = first (n2 x .. MULT) .. ADD
.. fork .. ((n2 y .. DIV) !! (n2 y .. MOD))

and cell3 = first (n2 x .. MULT) .. ADD

and n2 a = inv p1 .. second (icon a)

in inv p2 .. first (rmap m (icon 0)) .. rdl n cell1;
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Suppose now that we want to convert an 8–digit binary number to a 5–digit

ternary number. First we compile the conversion program at this particular in-

stance: rc (conv 8 2 5 3). Now we can do some simulation. For example, rsim

"0 0 0 0 0 1 0 1" produces the output (0,0,0,1,2). The input in this example

is the binary representation of the number 5, the output is the ternary represen-

tation of 5. What if the n–digit base–x input number is not representible as an

m–digit base–y number? Omitting the constraints |x | and |y | from the base con-

version program (as in the interpreter version), every output digit x except the most

significant digit is guaranteed to be within the expected range 0 ≤ x < y.
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Chapter 8

Summary and Future Work

This thesis is concerned with deriving programs using the relational language Ruby.

Our contribution to Ruby divides into two parts. Firstly, we defined what it means

for a Ruby program to be an implementation, and built an interpreter for such

programs. Secondly, we showed that the operators < and > that give the best left

and right types for a relation can be used to verify the precondition of induction

laws applied during a derivation. In this chapter we summarise our achievements

in more detail, and suggest some directions for future work.

8.1 Summary

In [39] Jones and Sheeran talked briefly about the difference between an implemen-

tation and a specification in Ruby. In chapter 4 we made this idea precise, via the

notion of a causal relation, and the network denoted by a Ruby program. Causal

relations generalise functional relations; a relation is causal if it is functional in

some structural way, but not necessarily from domain to range. We presented a

categorical definition for causality (based upon the representation of relations as

subobjects of a binary product), and showed that causal relations are closed under

converse and par, but not under composition. We introduced the idea of a set Rd of

directions for a relational program R. Directions tell us which parts of a program

can be inputs, and which can be outputs. The d operator behaves well for converse
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and par, but not for composition. We defined a causal Ruby program as being an

implementation if one can label each wire in the network denoted by the program

with a direction in or out, such that a few simple conditions are satisfied. The idea

is that such a labelled network is like a data-flow network (and can be executed in a

similar way), except that the primitives are causal relations rather than functions.

Since a causal relation can be functional in more than one way, there may be more

than one way in which a network can be so labelled.

The definition of ‘implementation’ in chapter 4 is general, but not completely

formal. In chapter 5 we gave a formal definition for a natural sub-class of the

implementations, and presented an interpreter for such Ruby programs. The inter-

preter is based upon two key ideas. The first is the translation of a Ruby program

to the corresponding network of primitive relations. Executing such a network is

a simple process; trying to execute the original Ruby program directly would be

complicated by the possibility that data can flow both leftwards and rightwards

over composition. The other key idea in the interpreter is the use of Lazy ML as

a meta-language for building Ruby programs. This avoids the need for a parser,

and means that the full power of Lazy ML is available for defining new combining

forms. Of the combining forms of Ruby, only composition, converse, and product

are built-in to the interpreter. All the other combining forms, including all generic

combining forms, are defined in terms of these three operators.

Fundamental to the use of type information in deriving programs is the idea of

having types as special kinds of programs. In chapter 6 we introduced the idea of

partial equivalence relations (pers) as types in Ruby. Types are used in two different

ways in Ruby: as constraints within programs (for example, if b = {(0, 0), (1, 1)}
then composing the type [b, b] on the left of + ‘constrains’ it to working only with

bits); and as abstractions of programs (for example, if A is a left or right domain of

R, then A encodes something about the internal structure of R, and is in this sense

an ‘abstraction’ of R.) The smallest left and right domains under the ordering � on

pers are given by domain operators < and >. Pers can be viewed as those relations

that can be expressed as the union of disjoint full relations. Generalising from full
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relations S ×S to products S ×T gives rise to the notion of a difunctional relation.

Equivalently, the difunctionals are the ‘invertible’ relations, the ‘per–functional’

relations, or the relations that can be expressed as the composition of a functional

relation and the converse of a functional relation. All the programs that we derive

in chapter 7 are difunctional programs specified as such a composition.

In chapter 7 we introduced the term representation changer for a program that

converts an abstract value from one concrete representation to another concrete

representation. A great many algorithms are examples of representation changers.

It is natural to specify such programs as a composition f ; g−1, where f is a

functional relation that converts from the first concrete type to the abstract type,

and g is a functional relation that converts from the second concrete type to the

abstract type. Being a little more general, we defined a representation changer as

a difunctional program that can be specified in the form R ; S−1, where R and S

are difunctional relations. The composition of two such difunctionals is not always

difunctional; in chapter 6 we gave a necessary and sufficient condition (involving

types) for closure under composition, and some sufficient conditions that one might

use in practice to check that the composition of two difunctionals is difunctional.

In chapter 7 we use Ruby to derive implementations for a number of represen-

tation changers. Refinement of the specification R ; S−1 proceeds by sliding parts

of R and S through one another, aiming towards a new program with components

that are representation changers with smaller abstract types. In this sense, think-

ing about types guides our derivations. The process is repeated until the remaining

representation changers can be implemented directly using a few standard primi-

tives. It is encouraging to find that the same patterns of transformations are used

again and again when implementing representation changers. The preconditions

to ‘induction’ laws that are applied during derivation of such programs typically

work out to be assertions of the form A ; R = R. In the past, such assertions have

been verified by informal arguments or by using predicate calculus, rather than by

applying algebraic laws from Ruby. In chapter 7 we verify such assertions without

stepping outside Ruby, by first expressing them in the equivalent form R< � A,
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which can then be verified using algebraic properties of the < operator.

On a less technical note, in this thesis I decided to underline the parts of a

formula to which laws are being applied in moving from one step to the next in a

calculation. This has proved to be of great benefit, guiding the eye to the parts

being changed, and helping in pattern matching against the laws, particularly when

the formula properly matches the law only after some simple re–arranging. As a

byproduct, many of the hints between steps become simpler too.

8.2 Future work

When deriving Ruby programs, computer–based tools could be useful. An example

of such a tool is our interpreter for implementations. Other tools that one could

imagine include a system for checking that the steps in a derivation are valid, or

a system for helping the designer during the derivation process, pattern matching

against laws, applying transformations, and keeping track of assumptions and pre-

conditions to be verified. Such tools are practical only when derivations are fully

formal; our use of the domain operators to avoid stepping outside Ruby to verify

assertions about types is an important advance in this respect.

Difunctional relations and causal relations both generalise the notion of a func-

tional relation: difunctionals can be expressed as the composition of a functional

relation and the converse of a functional relation; causal relations must be func-

tional in some structural way, but are not restricted to having inputs in the domain

and outputs in the range. Perhaps the two classes of relations can be combined in

some useful way? A promising approach might be to define a relation as being di-

causal if it is difunctional in some structural way, rather than just being functional

in some structural way. Extending the Ruby interpreter to work with dicausal re-

lations would allow execution of many programs before they were in the form of an

implementation. By carefully exploiting the regular way in which difunctional rela-

tions are non-deterministic (difunctionals can be expressed as the union of disjoint

products of sets), such an interpreter could still be efficient.
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While many program derivations have been made using Ruby, no refinement

ordering on Ruby terms has ever been defined. The idea behind such an ordering

is to have a measure on terms that is decreased as a specification is transformed

to an executable term. There is a standard refinement ordering ≤ on relational

terms [31], defined by R ≤ S iff R ⊆ S and dom(R) = dom(S). This ordering

expresses that we can eliminate non-determinism, but must preserve the domain

of the original term. Although it has never been made precise it is clear that the

notion of refinement in Ruby is different, being more concerned with the denotation

of a term as a network of relations rather than just as a single relation. We hope

that the notion of refinement for Petri nets introduced by Brown and Gurr [11] can

be adapted to define a notion of refinement for Ruby terms.

Relations of type A ↔ B are in one-to-one correspondence with functions of

type A → PB. Why then not just stay within a functional language, for example

Squiggol, and admit sets as a type? Our answer is that the algebra of relations

is much cleaner than the algebra of set–valued functions; compare our relational

calculations with the functional calculations in [19]. Generalising from functions

to relations brings many advantages. Are there yet more general calculi with even

more advantages? In [20] de Moor observes that functions PA → PB (predicate

transformers [24]) generalise relations in the same way that relations generalise

functions. There is a wealth of work in the use of predicate transformers in deriving

programs. It would be interesting to compare with the use of binary relations.

There is much categorical literature about binary relations. Indeed, relations are

a central topic of Freyd and Scedrov’s recent book [28]. I am hopeful that categorical

results will suggest new developments in calculational programming; just recently

in fact, Bird and de Moor [20, 9] have developed a calculational paradigm based in a

category of relations. Conversely, experience with the use of relations in calculating

programs can lead to new developments in the categorical treatment of relations;

de Moor’s thesis [20] contains a number of new categorical results.
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