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Quantum Darwinism posits that information becomes objective whenever multiple observers in-
directly probe a quantum system by each measuring a fraction of the environment. It was recently
shown that objectivity of observables emerges generically from the mathematical structure of quan-
tum mechanics, whenever the system of interest has finite dimensions and the number of environ-
ment fragments is large [F. G. S. L. Brandão, M. Piani, and P. Horodecki, Nature Commun. 6, 7908
(2015)]. Despite the importance of this result, it necessarily excludes many practical systems of
interest that are infinite-dimensional, including harmonic oscillators. Extending the study of Quan-
tum Darwinism to infinite dimensions is a nontrivial task: we tackle it here by using a modified
diamond norm, suitable to quantify the distinguishability of channels in infinite dimensions. We
prove two theorems that bound the emergence of objectivity, first for finite mean energy systems,
and then for systems that can only be prepared in states with an exponential energy cut-off. We
show that the latter class includes any bounded-energy subset of single-mode Gaussian states.

How does the objective classical world emerge from
an underlying quantum substrate? The theories of de-
coherence and Quantum Darwinism (QD) can provide a
rigorous framework to answer this question [1–7]. Firstly,
in decoherence we acknowledge that realistic systems are
rarely isolated, but rather are coupled to an inaccessi-
ble environment. It can then be shown that, under suit-
able assumptions on the system-environment interaction,
only states of a certain basis — the pointer basis — sur-
vive the system-environment interaction, while superpo-
sitions of these pointer states are suppressed. QD extends
this by considering observers who interact indirectly with
the system by having access to fragments of the environ-
ment, as illustrated in Fig. 1: each observer measuring
the system only has access to a single fragment of the
environment (for example, we observe everyday objects
by measuring a small fragment of the vast photon en-
vironment). This formalism can now be used to prove
the emergence of objectivity: it has been shown, using
various models [8–19], that multiple observers measuring
the same system will invariably agree on the outcomes
of their measurements, and hence their outcomes can be
regarded as objective.

To obtain a complete description of objectivity, we
must also describe how the objectivity of observables
emerges – namely, why do multiple observers measure
the same observables? Indeed, if different observers had
access to inequivalent observables, the very notion of
objectivity of the measurement outcomes would be ill-
defined. Objectivity of observables has been studied in
numerous contexts, where it was shown that, when an
observer only has access to a single fragment of the en-
vironment, the only information available is information
about certain preferred observables, which correspond to
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FIG. 1. In Quantum Darwinism, the objective classical real-
ity (image of a cat, subsystem A in the middle) emerges from
an underlying quantum mechanical description (bottom layer,
illustrating superposition effects) through the observation of
multiple environment fragments (subsystems B1 . . . BN , de-
picted as painting artists). Here we show that the objec-
tivity of observables is generic even when A is an infinite-
dimensional quantum system, subject to suitable energy con-
straints. Artwork by Joseph Hollis.

the preferred basis [3–19]. Until recently, the majority of
research consisted of studying specific models; the ques-
tion then remained of whether the emergence of objec-
tivity is a generic feature, or only a model-specific one.

This changed with a result by Brandão et al. [20],
who showed that objectivity of observables is a generic
phenomenon that emerges in a model-independent way
from the basic mathematical structure of quantum me-
chanics, whenever the number of environment fragments
gets large. Objectivity was there intended in the sense
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of information available and agreed upon about some
general measurement performed indirectly on the sys-
tem and described by a positive-operator-valued measure
(POVM) [21]. However, there was one caveat: the au-
thors of [20] required the system of interest to live in a
finite-dimensional Hilbert space. Despite the appeal of
finite-dimensional results, they do not cover the physi-
cally very relevant case of continuous-variable systems.

In this Letter we overcome this significant restriction
to prove that infinite-dimensional systems, under appro-
priate constraints, also exhibit objectivity of observables.
Specifically, we show that objectivity emerges generically
when considering either of the following physically moti-
vated restrictions: (i) systems with finite mean energy —
which arguably include all realistic systems of interest;
and (ii) systems with an exponential energy cut-off —
which include systems prepared in single-mode bosonic
Gaussian states. In both cases, we prove exact bounds
to show that, as the number of environment fragments
grows large, objectivity of observables emerges. In [20],
the bound on objectivity depended only on the system
dimension and the number of environment fragments; in
contrast, our bounds provide non-trivial extensions that
show an explicit dependence on the system’s mean energy
in the first case, and on the strength of the exponential
cut-off in the second. Our results rely on a combination
of mathematical techniques of potential independent in-
terest, and overall shed further light on the underlying
structure of our physical reality.

As shown in Fig. 1, the framework we study consists
of a collection of (generally infinite-dimensional) subsys-
tems. We can select any one of these as our system of
interest and label it A; the rest of the subsystems, de-
noted B1 to BN , are then taken to be the N different
fragments of the environment of A. We then consider
any completely positive trace-preserving (CPTP) map,
i.e., any quantum channel, Λ : D(A)→ D(B1⊗ . . .⊗BN )
from the system to the environments; here D(X) is the
space of density matrices of system X. The next step
is crucial to QD [3]: we assume that each observer who
wishes to measure system A can only do so by measur-
ing one fragment of the environment. To model this, we
define the channel Λj := Tr\Bj ◦ Λ as the effective dy-
namics from A to Bj , where Tr\Bj indicates the partial
trace over all fragments except Bj .

As anticipated, we shall consider restrictions on the
properties of system A, but notice that throughout this
letter the fragments B1, ..., BN do not need to satisfy any
constraint. Our main results are expressed through gen-
eralizations of the so-called diamond norm. The latter
encapsulates the notion of best possible distinguishabil-
ity between two different physical processes, as allowed
by quantum mechanics, and does not take into account
additional physical constraints, e.g. on the average en-
ergy involved in the discrimination procedure. The gen-
eralizations we will consider will instead consider said re-
strictions, e.g., focusing on systems with bounded mean
energy. Specifically, we define (see also [22–24]):

Definition 1. (Energy-constrained diamond norm) For
a Hermiticity-preserving linear map Λ : D(A) → D(B),
and a finite n̄ > 0, we define

‖Λ‖♦n̄ := sup
ρ:Tr(ρn̂A)≤n̄

‖ΛA ⊗ idC [ρ]‖1 , (1)

where C is an arbitrary system, n̂A is the number opera-
tor only for subsystem A [25], and the supremum is calcu-
lated over all physical states ρ of AC such that the energy
of the reduced state ρA respects the indicated bound.

In the above, we indicate with ‖X‖1 the trace norm of
an operator. Given two states σ0 and σ1 of a system S,
the trace norm of their difference, ‖σ0 − σ1‖1, is directly
linked to the ability to discriminate whether S was pre-
pared in either σ0 or σ1 [21]. The meaning of the energy-
constrained diamond norm is then that of providing a
measure of distinguishability of two evolutions Λ0 and
Λ1, by considering in the above definition Λ = Λ0 − Λ1

and an input state ρ that has limited mean energy. Based
on this definition, we can prove the following:

Theorem 1. Let Λ : D(A) → D(B) be a CPTP map.
Define Λj := Tr\Bj ◦ Λ as the effective dynamics from
D(A) to D(Bj) and fix a number 0 < δ < 1. Then there
exists a POVM {Mk} and a set S ⊆ {1, ..., N} with |S| ≥
(1−δ)N such that, for all j ∈ S (and for some finite mean
energy n̄), we have

‖Λj − Ej‖♦n̄ ≤
17

δ

(
2

7

) 14
17
(
n̄7

N

) 1
17

≈ 6.06

δ

(
n̄7

N

) 1
17

,

(2)

where the measure-and-prepare channel Ej is given by

Ej(X) :=
∑
k

Tr(MkX)σj,k, (3)

for states σj,k ∈ D(Bj). Here both spaces of A and B
can have infinite dimensions.

We prove this result (mean energy bound for brevity)
in the Supplemental Material [26], focusing here on its
interpretation. As explained in introducing the energy-
constrained diamond norm, the LHS of Eq. (2) is a mea-
sure of how well the two channels Λj and Ej can be dis-
tinguished. We see that, for a fixed fraction 1 − δ of
the environment fragments, and fixed bound n̄ on the
average input energy, any quantum channel from A to
Bj becomes arbitrarily close to the channel Ej . The lat-
ter is known as a measure-and-prepare channel (or an
entanglement-breaking channel [36]): it can be imple-
mented by first measuring the system with the POVM
{Mk}, and then preparing a state σj,k that depends on
the outcome obtained. Crucially, the measured observ-
able is the same for all these environment fragments and
hence is objective — any observer who wishes to probe
system A by measuring a fragment Bj (j ∈ S) can at
most gain information about the single POVM {Mk}.
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FIG. 2. (Color online) The number of environment fragments,
N (horizontal axis, logarithmic scale), is plotted against the
upper bound on ‖Λj − Ej‖♦n̄, denoted Υ (vertical axis, log-
arithmic scale), which expresses the ability to discriminate
between the channel Λj = Tr\Bj ◦ Λ and the measure-and-
prepare channel Ej , as given in Theorem 1. Here we take
n̄ = 1 and δ = 0.01. We include the analyical bound in
Eq. (2) (blue circles) and a numerically optimized bound (red
triangles, see Supplemental Material [26]). A power-law fit of

the numerical bound provides ‖Λj − Ej‖♦n̄ ≤ 1
δ
βN−

1
α with

β ' 6.94, α ' 15.18. All plotted quantities are dimensionless.

Note that δ can be set as close to 0 as required, but this
in turn affects the RHS and hence the minimum thresh-
old in N to provide a meaningful bound.

The RHS of Eq. (2), however, tends to zero very slowly
with N , and therefore a huge number of environment
fragments are needed to give an informative result. We
illustrate this in Fig. 2, where we set n̄ = 1 and δ = 0.01
(i.e. we ask whether objectivity of observables holds for
99% of the observers). We note that the unfavourable
∝ N−1/17 scaling can be improved slightly: in order
to obtain a neat analytical result for Theorem 1 some
approximations were taken, but a tighter bound can be
found numerically (see Supplemental Material [26]). For
the case n̄ = 1, for example, we numerically obtain a
scaling closer to ∝ N−1/15. Yet, even with this improved
result, the upper bound of ‖Λj − Ej‖♦n̄ remains of the
order of 0.1 when N = 1060.

Bounded mean energy states arguably include all phys-
ically realizable states of a continuous-variable system
(which we assume can be written in a single-mode Fock
basis) [37, 38]. Despite this, due to the unfavourable scal-
ing of the bound with the number N of environments,
Theorem 1 is of little practical use to show that objectiv-
ity of observables is generic in all such cases. To obtain a
more informative bound, we can restrict further the class
of states that are allowed in our diamond norm defini-
tion. In the following we will see that a more informative
bound, admitting a vastly improved scaling with N , can
be proved under such a restriction. The class of states we
shall consider contains all the continuous-variable density
matrices with an exponential energy cut-off in subsystem
A. Specifically, we restrict to all density matrices ρAC

such that

Tr
[
ρeωn̂A

]
≤ Ω , (4)

where Ω > 1 and ω > 0 are given constants. We show
below that the exponential cut-off states include mean-
ingful subsets of single-mode bosonic Gaussian states,
which play a focal role in continuous-variable quantum
information [39]. It is also trivial to show that any sub-
set of states that can be written as a finite expansion in
the Fock basis (up to some upper state |nmax〉) belongs
to this class. In passing, we note that it is in principle
possible to consider even more general restrictions of the
form Tr(f(n̂A)ρ) ≤ Ω, where f is a suitably chosen func-
tion. This should in turn allow us to recover the existing
results for systems with a finite dimension d [20] as a
special instance, e.g. by choosing f(n) = 1 for n ≤ d,
and f(n) = eωn for n > d, later taking the limit ω →∞.
However, such a generalization goes beyond the scope of
this paper, and will be presented in a future publication.

We can then define another variant of the diamond
norm, relevant when only states obeying Eq. (4) may be
exploited to distinguish between channels.

Definition 2. (Exponential cut-off diamond norm) For
a Hermiticity-preserving linear map Λ : D(A) → D(B),
and constants ω > 0, Ω > 1, let

‖Λ‖♦ω,Ω := sup
Tr[ρeωn̂A ]≤Ω

‖ΛA ⊗ idC [ρ]‖1. (5)

where C is an arbitrary ancillary system, n̂A is the num-
ber operator only for subsystem A, and the supremum is
calculated over all physical states ρ of AC such that the
reduced state ρA respects the indicated bound.

Using this definition, we can now show the following:

Theorem 2. Let Λ : D(A) → D(B) be a CPTP map.
Define Λj := Tr\Bj ◦ Λ as the effective dynamics from
D(A) to D(Bj) and fix a number 0 < δ < 1. Then there
exists a POVM {Mk} and a set S ⊆ {1, ..., N} with |S| ≥
(1 − δ)N such that, for all j ∈ S (and for some finite
ω > 0 and Ω > 1), we have

‖Λj − Ej‖�ω,Ω ≤
8

δ

(γ1

N

)1/3
[
1 +

1

4

(
ln(γ2N)

)4/3]
, (6)

where the measure-and-prepare channel Ej is given in
Theorem 1 and where

γ1 =
2d̃2s

3ω4
, γ2 =

3d̃ω4

16s
, d̃ =

Ωeω

eω − 1
,

ñ =
1

eω − 1
, s = (ñ+ 1) ln(ñ+ 1)− ñ ln ñ .

(7)

We prove this in the Supplemental Material [26]. The-
orem 2 can be interpreted similarly to Theorem 1: with
increasing N , provided the available resources obey the
exponential cut-off condition, any quantum channel from
A to a generic environment fragment Bj (j ∈ S) becomes
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arbitrarily close to the measure-and-prepare channel
specified by the measurement of {Mk} (again, the same
measurement for all j′s). Let us remark, however, that
the dominant scaling with N is now ∝ (lnN)4/3/N1/3,
which for N → ∞ converges to zero significantly faster
than the RHS of Eq. (2). It is instructive also to com-
pare our results to the results in [20]: their bound scales
as ∝ 1/N1/3 and therefore approaches 0 faster than our
bounds in the limit N → ∞. However, with a straight-
forward modification of the proof of Theorem 2 we can
derive a new bound applicable to large (yet finite) dimen-
sions, under the further assumption of an exponential en-
ergy cut-off as in Eq. (4). Such a bound can potentially
be more informative than the one from [20] at finite (but
still large) values of N , if the system satisfies Eq. (4) with
suitable values of ω,Ω.

It is important at this point to provide relevant exam-
ples of quantum states that satisfy the exponential energy
cut-off condition. Let us consider the case in which the
reduced density matrix of A is an arbitrary mixed single-
mode Gaussian state ρG [39], specified by a displacement

vector d =
√

2{<(α),=(α)} with α ∈ C, and by a co-
variance matrix V = diag{e2r(2m + 1), e−2r(2m + 1)},
where m ≥ 0 is the mean number of thermal photons and
we can fix without any loss of generality a real squeez-
ing parameter r > 0. Note that we may assume the
covariance matrix to be in diagonal form, since diago-
nalization can always be achieved via a phase rotation
commuting with n̂. By means of the Husimi function
Q(β) = π−1〈β|ρ|β〉, where {|β〉} with β ∈ C is the over-
complete generating set of coherent states, we can eval-
uate the LHS of Eq. (4) analytically, using the formula

Tr
[
ρeωn̂A

]
= e−ω

∫
C
d2β Q(β)e(1−e−ω)|β|2 , which may be

derived by anti-normally ordering the operator eωn̂A [40].
We then find that a Gaussian state ρG satisfies the ex-
ponential cut-off condition if and only if

〈eωn̂〉 =
2 exp

[
2<(α)2

κ2
+

+ 2=(α)2

κ2
−

]
(eω − 1)κ+κ−

≤ Ω , (8)

with κ± =
√

coth
(
ω
2

)
− (2m+ 1)e±2r. In the Supple-

mental Material [26], we exploit this formula to show
that any subset of Gaussian states with bounded energy,
i.e. Gn̄ = {ρG | Tr[ρGn̂] ≤ n̄}, obeys the desired cut-off
condition whenever the parameters ω,Ω satisfy

Ω > 1/(1− ε) ,

ω = min

{
2ε

3/2 + 2n̄(2 + n̄)
,

1− ε
n̄

ln
(
(1− ε)Ω

)}
,

where 0 < ε < 1 is an arbitrary parameter that can
be tuned to optimize the resulting exponential cut-off
bound. Note also that, once the relevant parameters
have been fixed according to the above discussion, the
entire convex hull of Gn̄ will also satisfy the exponential
cut-off condition. For example, suppose one would like
to distinguish between Λj and Ej , only being able to
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FIG. 3. (Color online) The number of environment fragments,
N (horizontal axis, logarithmic scale), is plotted against the
upper bound on ‖Λj −Ej‖�ω,Ω, denoted Υ (vertical axis, log-
arithmic scale), given in Theorem 2. We take δ = 0.01 as
in Fig. 2. The parameters ω,Ω are optimized for each N
to provide the best possible bound attainable through our
methods, assuming a set of Gaussian resource states Gn̄ with
n̄ = 1 (these would be the input states that can be used
to discriminate between channels). Blue circles indicate the
RHS of Eq. (6), while red triangles refer to a numerically
optimized bound (see Supplemental Material [26]). A power-

law fit of the latter yields ‖Λj − Ej‖�ω,Ω ≤ 1
δ
βN−

1
α with

β ' 5839, α ' 3.20. All plotted quantities are dimensionless.

prepare mixtures of Gaussians with 〈n̂A〉 ≤ 1. Then
the results of Theorem 2 (exponential cut-off bound for
brevity) would apply, giving us much tighter constraints
on the emergence of objectivity as compared to what
Theorem 1 would tell us under the same hypothesis.
Furthermore, also in this case we can consider a numeri-
cal optimization yielding an improved upper bound for
the RHS of Eq. (6) — see Supplemental Material [26].
This is shown in Fig. 3, where fixing δ = 0.01 and n̄ = 1,
as before, we obtain ‖Λj − Ej‖�ω,Ω < 0.5× 10−3 already
for N = 1029.

It is remarkable that Theorems 1 and 2 hold for any
channel Λ. These results, together with [20], show that
objectivity of observables is built into the basic mathe-
matical structure of quantum mechanics. Despite this,
our analysis suggests that objectivity of observables may
emerge extremely slowly in the absence of further restric-
tions on the system’s properties and/or the form of its
interaction with the environment: generally a vast num-
ber of environment fragments is needed to have truly
informative bounds. This might simply be due to our
energy-based bounds not being tight, and indeed future
work should go towards improving such bounds. There
are nonetheless a number of other directions for future
studies.

Firstly, following our approach, further restrictions can
be placed on the set of states defining the generalized di-
amond norms. A bound specifically for Gaussian states
would be an interesting next step, as would be a bound
that combines [20] with our results to consider, for ex-
ample, finite-dimensional systems with a fixed energy. It
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would also be instructive to consider which states are re-
sponsible for allowing the channels in Theorems 1 and
2 to be easily distinguished. Do we expect these states
to be realistic, experimentally producible states? Alter-
natively, restrictions can be placed on the measurements
available to distinguish between the channels; considering
only coarse-grained measurements would bring us closer
to real-world scenarios where objectivity emerges.

A different line of attack would be to place restrictions
on the allowed channels. One of the big questions
that quantum Darwinism addresses is: why does our
macroscopic every-day world appear objective and
classical, despite being constructed of quantum mechan-
ical particles? With this in mind we may ask: What
general properties are shared by physically meaningful
channels? If all relevant interactions between system
and environment are ultimately due to, for example,
a combination of one- and two-body Hamiltonians,
the resulting channels may display some nontrivial
structure. Less ambitiously, one may place further
intuitive restrictions on the channels, such as the
conservation of a global number operator of the form
n̂A + n̂B1

+ ... + n̂BN or other symmetry constraints.
By investigating these generalizations of our results, it

may be possible to further clarify why our macroscopic
world is “classical”, without resorting to the task of
constructing macroscopic models and simulations, the
like of which will only be possible with macroscopic-scale
quantum computers.
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