
Developing GDPR Compliant Apps For The
Edge ?

Tom Lodge1[0000−0003−0857−7341], Andy Crabtree1[0000−0001−5553−6767], and
Anthony Brown2[0000−0001−5465−8009]

1 School of Computer Science, University of Nottingham, UK
{thomas.lodge,andrew.crabtree}@nottingham.ac.uk

2 Horizon Digital Economy Research, University of Nottingham, UK
anthony.brown@nottingham.ac.uk

Abstract. We present an overview of the Databox application devel-
opment environment or SDK as a means of enabling trusted IoT app
development at the network edge. The Databox platform is a dedicated
domestic platform that stores IoT, mobile and cloud data and executes
local data processing by third party apps to provide end-user control
over data flow. Key challenges for building apps in edge environments
concern (i) the complexity of IoT devices and user requirements, and
(ii) supporting privacy preserving features that meet new data protec-
tion regulations. We examine how the Databox SDK can ease the burden
of regulatory compliance and be used to sensitize developers to privacy
related issues in the very course of building apps.

Keywords: Internet of Things · edge computing · Databox · data pro-
tection · GDPR · trusted application development · SDK.

1 Introduction

The predominant paradigm for computing is centred in the cloud. However,
as the Internet of Things (IoT) emerges, the requirement to push increasing
volumes of data to the network for centralized storage and processing will impact
system resilience, network traffic, latency and privacy. An alternative approach
is to “extend the cloud to where things are” [1] and shift data storage and
processing to the edge of the network. In this model, nodes at the edge perform
the bulk of storage and processing, keeping data off the core network, reducing
latency and improving the potential for data privacy. The model has gained
significant traction in recent years, and the IDC [2] predicts investment in edge
infrastructure will reach up to 18% of total spend by 2020.

The domestic space is seeing a growth in dedicated hardware that brings
more data storage and processing to the edge [3–7]. Many of these products
unify access to connected home devices and provide facilities (voice, web UIs,

? This work was supported by the Engineering and Physical Sciences Research Council
(Grant Numbers EP/M001636/1, EP/N028260/1, EP/M02315X/1).

2 T. Lodge et al.

apps) for automation and control. With new General Data Protection Regula-
tion (GDPR) in Europe [8], and growing concern amongst ordinary people about
the (ab)use of personal data, we anticipate this space will grow to include new
domestic platforms that take a more principled approach to exploiting personal
data generated by IoT devices, mobile and cloud services. The Databox platform
[9] provides one of several [10–12] instantiations of domestic ‘privacy-preserving’
edge-based solutions, running data processors (apps) within a sandboxed en-
vironment where access to and use of data is constrained by user-negotiated
contracts.

The distinguishing feature of such platforms is that processing moves to the
data, rather than data to the processing, and data distribution is limited to the
results of local queries enabling the ‘data minimisation’ that is required under
GDPR. Developing apps that run on these platforms is challenging. There are
challenges that are already familiar to IoT developers: (i) processing data from
an increasingly heterogeneous range of data sources, (ii) across a wide variability
of domestic environments and (iii) competing systems with inconsistent patterns
of behaviour [13], plus (iv) the need to support multiple users with diverse re-
quirements. There are also new challenges that come from the need to meet
new data protection regulation and (thereby) gain user trust. This requires that
developers demonstrably respond to the requirements of data protection regu-
lation in the apps they produce [14]. Moreover ‘developers’ is a broad category
including makers, hobbyists, and enthusiasts. Development environments must
therefore enable data protection across a broad cohort while providing devel-
opers and end-users alike with the tools they need to build the (often niche)
functionality that they require.

Our end-user development environment (SDK) has been designed to build
apps for the Databox platform and to: (i) simplify IoT app development for
domestic environments, in particular data processing across multiple devices
and sensors; (ii) open up development to a broad cohort of developers and (iii)
enable compliance with key features of GDPR. Though our SDK addresses all
of these challenges, this paper focuses exclusively upon (iii), i.e. how developers
can be supported when creating domestic IoT privacy preserving apps that are
compliant with the letter and spirit of GDPR.

This paper has two main contributions: (i) an assessment of the implications
of GDPR upon the creation of edge-based personal data processing systems (ii)
design and implementation of a development environment for building GDPR
compliant domestic apps. This latter contribution has relevance beyond a de-
scription of design and implementation choices; it points to a new set of general
features we expect will be of value to any development environment geared to-
wards writing code that operates upon personal data.

2 Related Work

We briefly consider 3 interconnected areas of work: (i) domestic smart hubs, (ii)
privacy preserving environments and (iii) developer support.

Developing GDPR Compliant Apps For The Edge 3

2.1 Domestic Smart Hubs

The multitude of different standards, network and data protocols employed
within the domestic IoT space has resulted in the emergence of IoT ecosys-
tems aimed at providing (i) interoperability across devices (ii) control interfaces
for device management, and (iii) support for home automation. Within the open
source community, many IoT systems have also been designed to run on local
hardware, whether ARM, x86 or embedded system such as Arduino and Rasp-
berry Pi [15–18]. These systems are aimed at technically competent users and
are underpinned by programming frameworks to support further extension.

There is also a highly competitive startup scene, with a range of products
on the market aimed at the general consumer [19–21], typically offering easy
integration with IoT devices and polished control interfaces. The most significant
inroads have been made by the large Internet companies. Amazon’s ‘Echo’ [3] is
installed in tens of millions of households, for example, and Google’s ‘Home’ [5]
is gaining market share as is Apple’s HomePod [4]. These systems perform some
local storage and processing as a means of reducing latency and reliance on an
upstream network, but still use companion cloud-based systems when needed.
However, the mechanisms and processes utilised by these cloud systems remain
opaque to the end user. Not only is there a lack of transparency around the flow
and use of data, there are notably few features enabling users to restrict data
flow or exploit it for individual purposes.

2.2 Privacy Preserving Environments

Personal Data Management Services, whether cloud-based [22] or at the edge [23]
store consumer data and provide explicit contracts to underpin data exchange.

The Databox platform is a privacy preserving domestic smart hub that per-
mits controlled access to a data subject’s personal data, set out in explicit user-
agreed contracts called Service Level Agreements (SLAs). The system provides
abstractions for data sources (IoT devices or cloud-based services such as Twit-
ter), drivers (privileged code that communicates with datasources), datastores
(local repositories of user data) and apps (code that processes data). Apps are
untrusted code, and can only ever communicate with datastores (to read data or
actuate a device) with explicit consent from a user. All components (including
apps) run in isolated Docker3 containers. Restrictions are enforced through an
arbiter. Fig.1 (1,2 and 3) shows the token exchange. At app install time the SLA
is parsed, and permissions granted (the arbiter is informed app X can do action
Y). Tokens are not minted until the app requests one (usually just before it per-
forms an action). Tokens have expiry dates and can be cached and reused until
expiry, after which a new one must be requested. The wider Databox ecology
consists of an app store; a repository of databox apps that can be downloaded
to an individual Databox, and an SDK; a web-based development environment
for constructing apps. Users interact with the Databox through a web frontend,

3 https://www.docker.com

4 T. Lodge et al.

Fig. 1. Databox platform architecture

which provides a set of interfaces for installing new apps (part of which will
require users to review the app contract) and to view/monitor/remove running
apps. The platform is responsible for auditing all accesses to datastores and
enforcing SLAs.

2.3 Developer support

The matter of developer support for IoT hubs is not straightforward. Commercial
and open source ecosystems provide development environments that support the
creation of new product integrations or bespoke functionality oriented around
a product’s features [24–27] and are typically targeted at competent and/or
professional programmers. However, Newman [28] has noted that the burgeoning
array of connected domestic devices makes it intractable for developers to build
applications to keep pace with the needs of users. He thus argues for the need to
support end-user programming to allow a diverse cohort of people to “compose
the functionality that they need”. Perhaps as a result of these observations, we
have seen a proliferation of graphical end-user programing environments [29–32]
aimed at masking device/service/protocol heterogeneity and helping connect IoT
and webservices in new and interesting ways. The most popular, IFTTT, enjoys
a considerable user base [33]. However, given the focus upon technical simplicity,
privacy preserving features are given scant regard. Indeed [34] found that 50% of
the nearly 20,000 IFTTT ‘recipes’ they examined contained secrecy or integrity
violations that could lead to harm.

Developing GDPR Compliant Apps For The Edge 5

3 GDPR compliance and its influence on developers

In GDPR a data controller “determines the purposes and means of processing
personal data”. When developing applications that run upon IoT hubs, if app
developers receive personal data, they are controllers. Similarly, if developers
create the app on behalf of a third party they must demonstrate ‘privacy by
design’ principles. Development environments, therefore, must take this into ac-
count. Article 5(2) states: “the controller shall be responsible for, and be able to
demonstrate, compliance with the principles [of GDPR]”.

In working through the regulation we posit that IoT app developers are impli-
cated in two broad areas: (i) transparency and (ii) articulating and appropriately
reducing risk. GDPR explicitly mentions a requirement for risk assessment in
Article 35 (data protection impact assessments), though the mention of risk and
mechanisms for its reduction are sprinkled throughout various clauses. Article
25 (1) explicitly requires risk assessment and reduction is performed “at the time
of the determination of the means for processing”, i.e. at app development time.

GDPR’s risk concerns are oriented around data disclosure and automated
profiling. Other risks such as physical risk (e.g. switching on an empty kettle,
closing an automatic garage door), fall outside its scope, though clearly must be
given due consideration by developers. Automated profiling relates to harms from
unfair, inaccurate algorithmic decisions (whether deliberate or unintentional)
that have socially consequential outcomes (e.g. denial of credit / employment /
healthcare). This is a burgeoning area of research [35–37] and we have begun
early exploration with two new features in our SDK (see our special purpose
profiling node and runtime inspection interface in Section 4).

Transparency relates to adequate provision of information relating to the col-
lection, processing and use of personal data in order that users have information
to (i) provide informed consent and (ii) control (restrict, extend, halt) its use.
Transparency is in itself advocated in GDPR as a tool to reduce risk, and many
of the basic “rights” enshrined by the regulation are predicated upon it, i.e. the
right to object, the right to be informed and the right to restrict processing.

When considering the impact of GDPR upon developers, we assume the
platform (i.e. IoT hub, such as Databox) will take most responsibility for data
security, notification of breaches, ongoing data storage and access (Articles 5, 16,
17, 20, 25, 30, 32-34). That is not to disregard their importance or to suggest
that the developer can be disconnected from these concerns, only that they sit
outside the scope of this work.

Given this scope, Tables 1a and 1b distil the 99 key parts of the Articles
(5, 7, 12, 13, 21, 22, 25, 35) that implicate developers with regard to data
disclosure risk and/or transparency requirements. The 3rd column (R/T) marks
each clause as either relating to risk (R) or transparency (T). Note that for the
sake of brevity we do not include Article 13’s list of information to be provided;
interested readers are directed to Article 13(1) in the full text [8]. A few clauses
remain open to interpretation and have garnered considerable debate in the legal
and academic communities. Nevertheless, it is our view that the spirit of GDPR
is clear and developer tools have a necessary role in helping meet requirements.

6 T. Lodge et al.

Table 1a. GDPR clauses relevant to developers

Art Relevant Clauses R/T

5

(a) processed lawfully, fairly and in a transparent manner in relation to the
data subject (‘lawfulness, fairness and transparency’);

(b) collected for specified, explicit and legitimate purposes and not further
processed in a manner that is incompatible with those purposes;

(c) adequate,relevant and limited to what is necessary in relation to the pur-
poses for which they are processed (‘data minimisation’)

T

T

R

7

4. Where processing is based on consent, the controller shall be able to
demonstrate that the data subject has consented to processing of his or
her personal data.

8. The data subject shall have the right to withdraw his or her consent at
any time. [. . .] It shall be as easy to withdraw consent as to give it.

T

T

12

1. provide any information [. . .] relating to processing to the data subject in
a concise, transparent, intelligible and easily accessible form, using clear
and plain language

7. The information to be provided [..] may be provided in combination with
standardised icons in order to give in an easily visible, intelligible and
clearly legible manner a meaningful overview of the intended processing.

T

T

13

2 (f) the existence of automated decision-making, including profiling, re-
ferred to in Article 22(1) and (4) and, at least in those cases, meaningful
information about the logic involved, as well as the significance and the
envisaged consequences of such processing for the data subject.

T

21

1. The data subject shall have the right to object, on grounds relating to
his or her particular situation, at any time to processing of personal data
concerning him or her which is based on points (e) or (f) of Article 6(1),
including profiling based on those provisions.

T

22

1. The data subject shall have the right not to be subject to a decision based
solely on automated processing, including profiling, which produces legal
effects concerning him or her or similarly significantly affects him or her

2. Paragraph 1 shall not apply if the decision is: c) based on the data sub-
ject’s explicit consent

R

T

Developing GDPR Compliant Apps For The Edge 7

Table 1b. GDPR clauses relevant to developers, ctd.

Art Relevant Clauses R/T

25

1. [..] the controller shall, both at the time of the determination of the means
for processing and at the time of the processing itself, implement appro-
priate technical and organisational measures, such as pseudonymisation,
[..] such as data minimisation.

2. The controller shall implement appropriate technical and organisational
measures for ensuring that, by default, only personal data which are nec-
essary for each specific purpose of the processing are processed.

R

R

35

1. Where a type of processing in particular using new technologies, and tak-
ing into account the nature, scope, context and purposes of the processing,
is likely to result in a high risk to the rights and freedoms of natural per-
sons, the controller shall, prior to the processing, carry out an assessment
of the impact of the envisaged processing operations on the protection of
personal data.

R

4 The Databox SDK

The SDK is a fully featured web-based environment for building Databox apps.
It provides facilities for testing, tools for data visualisation, context-sensitive
help, skeleton code generation, basic static type checking and code management
(Fig.2).

The SDK models apps as information flows (inspired by the flow-based pro-
gramming paradigm [38]) and abstracts the Databox platform architecture into
four ‘node’ types: datastores, processors, profilers and outputs. Datastores rep-
resent all devices (or services) that generate data. Datastores are device inde-
pendent, i.e. a smart plug datastore will present a consistent data schema in the
SDK, independent of the specific device or manufacturer it maps to at runtime.
Processor nodes operate on data; it is here custom behaviours and logic are en-
coded. Processor nodes typically consume one or more inputs and send results
to one or more outputs. Profiler nodes are a special category of processing node
that infer new information about a data subject. In treating profilers differ-
ently from processing nodes, we aim (in subsequent iterations of the SDK) to
sensitise developers to GDPR’s more restrictive covenants around “automated
profiling” by providing facilities to assess the fairness of profiling on target users
[35]. Output nodes perform an action, such as actuation, visualization, or data
export.

When developers publish an app from the SDK, they are prompted for infor-
mation needed to construct the SLA (user-negotiated contract). Once deployed,
the app’s datasource nodes interact with the Databox platform API to request
permissions to access data according to the terms of the SLA. This functionality
is transparently provided by the SDK, insulating developers from the detail.

8 T. Lodge et al.

Fig. 2. Inputs, processors, profilers and outputs

4.1 Features Enabling GDPR Compliance

In Section 3 we presented the set of GDPR clauses that will implicate developers
building apps for domestic IoT hubs. We scoped the problem into (i) assessing
and reducing disclosure risk and (ii) transparency on what/how/why personal
data is being processed.

Our SDK sensitizes developers to data disclosure risk by (i) providing ongoing
risk breakdowns as developers build apps (ii) tracking personal data as it moves
through an app. Our SDK addresses GDPRs requirements for transparency by
(i) creating GDPR compliant contracts that embed the information required for
data-subjects to provide informed consent, (ii) automatically providing facilities
for runtime data flow inspection. We expand on each of these in turn.

Provision of ongoing risk breakdown. Our development environment gen-
erates an overall risk rating for apps, based on the aggregate risk of the nodes
from which it is composed. Our environment also reflects risks that fall outside
the remit of GDPR (such as physical risks mentioned earlier). Each node in the
development environment has an in-built schema (provided by the environment,
not the developer) that provides, amongst other things, a risk score and break-
down based upon current configuration (e.g., the hardware it works with, the
proposed data rate, the particular actuation to be performed). As configuration
options are modified and nodes are introduced or removed, the score and break-
down will update to reflect the changes (Fig.3). Those characteristics of a node
that will most influence the global risk score are currently i) whether it exports
any data off the box, ii) it triggers physical actuation, iii) it utilizes insecure /
leaky / non-compliant hardware, iv) it uses unverified code or libraries.

Developing GDPR Compliant Apps For The Edge 9

Fig. 3. SDK risk overview

It may be reasonably argued that “risk” is a subjective concept that covers
an indeterminate number of possibilities, and will be influenced by more than
just an app’s construction and configuration (e.g., the deployment environment
can profoundly influence risk likelihood and harms). However we would counter
that in conceptualising even a crude notion of risk, the environment will sensitize
developers to important concerns in the course of building apps, i.e. at the point
where they are likely to enact change. We view our risk overview as a “place-
holder” and expect that further research and subsequent iterations will lead to
improved risk calculations.

Our final risk rating and breakdown is also made available to app store users
to further motivate and drive the development of low risk and even ‘no risk’
apps.

Tracking personal data To help developers assess the risks of personal data
disclosure, at a minimum, we require they are able to (i) differentiate between
data that is personal, sensitive or neither and (ii) track the flow of personal
data, so that processing risk (e.g. inference attacks made possible by combining
data) and exposure risk (e.g. location data being exported off the box) can be
identified. Our goal is to help developers assess disclosure vulnerabilities prior
to deployment (i.e. statically) rather than at run-time; Databox has its own
mechanisms for managing dataflows at runtime.

All data that is output from a node has a corresponding personal data
schema. The schema allows developers not only to view the flow of personal
data through an app, but to reveal points within an app where further per-
sonal inference is possible (e.g. when multiple items of personal data or profiling
could be combined to infer a new item of personal data). Take, for example, an
algorithm that processes a user’s gender, postcode and age. These three items
may be enough, with minor effort, to infer a user’s identity (perhaps using an

10 T. Lodge et al.

Table 2. 6 personal data types

label type ordinal description example

i1 identifier primary data that directly identifies a
data subject

full name, picture

i2 identifier secondary data that indirectly identifies
a data subject

mac address, username,
(age, postcode, birthplace)

p1 personal primary data that is evidently per-
sonal

friends, mortgage, salary

p2 personal secondary inferred personal data gender, age, income (from
browsing data)

s1 sensitive primary GDPR special categories of
data

criminal convictions, health
record

s2 sensitive secondary inferred sensitive data race (from postcode), sexu-
ality (from image)

auxiliary public dataset). Less obviously, perhaps: an algorithm that utilises mo-
bile phone accelerometer data may be able, assuming a high enough sampling
frequency, to infer a user’s height, weight and gender [39] or smart metering
data may reveal personal habits [40] or occupancy [41]. As a start, inspired by
GDPR, our schema specifies six top-level personal data types (Table 2). In our
schema (Table 3), the (type, ordinal) attributes establish the top-level type and
the category, subtype and description attributes (originated by us) provide fur-
ther context. The schema has a required attribute to denote which attributes
must be present for a schema to apply. For example, if an IoT camera provides a
timestamp, bitmap and light reading, only the bitmap attribute is required for
the data to be treated as personal.

Table 3. personal data schema

attribute description

type identifier | sensitive | personal
ordinal primary | secondary
category physical | education | professional | state | contact | consumption...
subtype sensitive will include biometric, health, sexual, criminal. Personal includes

education, profession, consumption.
description details of this particular item of personal data (and method of inference

if secondary)
required list of attributes of this data that must be present in order for this to

constitute as personal data

The schema is extended for secondary (i.e. inferred) types, to specify the
conditions that must be satisfied to make an inference possible (Table 4). We
currently support two types of condition: (i) attributes – the additional set of
items of personal data items that, when combined could lead to a new inference;
(ii) granularity – the threshold sampling frequency required to make an inference.

Developing GDPR Compliant Apps For The Edge 11

Table 4. personal data schema

attribute description

confidence an accuracy score for this particular inference, ranging from 0 to 1
conditions list of granularity | attribute
evidence where possible, a set of links to any evidence that details a particular

inference method
status inferred | inferrable

When multiple attribute and/or granularity conditions are combined, all must
hold for an inference to be satisfied. Finally our status attribute distinguishes
between personal data where (i) an inference has been made, and (ii) the data
is available to make inference possible. For example, browsing data and gender
may be enough to infer whether an individual is pregnant (i.e. these two items
combined make pregnancy inferable) but if a node makes an actual determination
on pregnancy, then the resulting data is inferred. We also make two additional
assumptions:

– When building a flow, the SDK assumes all data sources belong to the same
user. Our next version will formalize this.

– The schema permits data to be tagged as personal even if it is not associated
(directly or indirectly) with an individual. Although GDPR specifies that
any data that cannot be related to a “natural person” is not personal, we
take the view that any items of personal data may still, given the necessary
context, be used to identify an individual.

When making use of the schema in the SDK, datasources will define the personal
data that they generate, whereas processing and profiling nodes will generate
schemas based on the transforms they run on their input data. For example, the
combine processing node whose job is to merge attributes from its inputs, auto-
generates an output schema by combining the schemas of all input attributes to
be merged. Thus it is the SDK’s role and not the developer’s, to calculate how
schemas propagate through an app.

To illustrate a basic example in the SDK, consider Table 5 which outlines the
relevant parts of the accelerometer schema for the flows in Fig.4. In the left-hand

Table 5. part of the accelerometer datastore personal schema

attribute description

type personal
subtype gender
ordinal secondary
required [x,y,z]
conditions type: granularity, threshold: 15, unit: Hz

flow, p2 is output from the accelerometer to show that personal data (i.e. a user’s

12 T. Lodge et al.

gender) is inferable from the x,y,z components of its data (it is semi-transparent
to denote it is inferable rather than inferred). Similarly, with the profile node, i1
is output to show fullname is a primary identifier. When these are merged in the
combine processor, the output schema will contain the accelerometer’s p2, and
the profile’s i1. In the right-hand flow, the combine node is configured to only
combine the x and y components of the accelerometer data with the profile data.
Since x,y and z are all marked as required (Table 5) for a gender inference to be
possible, the combine node’s output schema will only contain i1 (and not p2).
The SDK will automatically recalculate and re-represent the flow of personal

Fig. 4. combining personal data in the SDK

data whenever a node or edge is removed, added or reconfigured. As flows get
more complex this becomes invaluable; it helps developers to quickly determine
how changes in configuration will alter the flow of personal data.

In tracking personal data the SDK also flags points in an app that may
require further attention. When downstream nodes use inferred data with a low
confidence score (provided by the schema), developers are warned that processing
is based on potentially incorrect data. When any personal data is being exported
off the box (i.e. connected to the export node), developers are reminded to ensure
data minimisation applies.

Creating GDPR compliant contracts. When a user installs an app on the
Databox they are presented with an SLA. The goal of the SLA is to provide
transparency and to fulfil the information to be provided to users when personal
data are collected (Articles 12-18). The SLA is a multi-layered notice that fur-
nishes the information in an easily readable format (see [42] for further details).
Where appropriate, SLAs enable end-users to exercise granular choice over data
sampling and the elements of an app’s processing they consent to. SLAs are not
static notices then, but dynamic, user-configurable consent mechanisms that sur-
face and articulate who wants to access which connected devices and what they
want to process personal data for. They are constructed from a manifest file
that sets out all possible configurations, and which is submitted alongside an

Developing GDPR Compliant Apps For The Edge 13

app when it is published. The SDK streamlines this process; given its knowledge
of an app’s construction it already knows the data sources being accessed (and
at which granularity), the processing taking place and the outputs, all of which
are automatically embedded in the manifest. At app publication time, when an
app uses multiple data sources, the developer is invited to mark each flow from
each source as compulsory or optional, which translates to a set of granular con-
sent options at install time. All that remains is for the developer to provide a
description of the app and its benefits, and the remaining statutory information
required by GDPR.

Runtime Inspection. Though the development environment ensures that the
sources of data that an app operates on and what it outputs to are made trans-
parent, the way in which the app operates, i.e., how a decision is arrived at,
or how a data flows through an app remains opaque to a user at app runtime.
This becomes an important matter to surface under Article 13 of GDPR, which

Fig. 5. App inspection interface

requires that meaningful information about the logic involved in automated pro-
cessing is provided to the data subject. All apps built in the SDK record the
path and state of all data as it moves through a flow. SDK apps are all bundled
with an interface that uses this path information to make apps ‘inspectable’
at runtime. By way of example, Fig.5 shows part of an inspection interface on
the Databox UI for an app that processes browsing and shopping data to send
coupon requests to a third party. The top of the interface shows of the app’s
datastores, in this case, browsing and shopping. A user can select any node in
the path to get a real-time feed of the data entering and exiting it. This is a
nascent first step towards satisfying Article 13. More important at this stage, is
that data flow capture is built into apps to support user-inspection interfaces.
We are already seeing alternative representations in research [43]; one interesting
approach uses ‘comic strip’ visualisation techniques to communicate the logic of
automated processing to end users [44].

14 T. Lodge et al.

4.2 Future Research for the SDK

A number of interesting challenges have emerged which we are keen to explore
in greater detail and which are, we think, of broad relevance.

Algorithmic Intelligibility for Developers. Our work on making the oper-
ation and intent of apps intelligible to end-users is at an early stage and touches
on a rapidly expanding area of research. However research into how an app’s
processing can be made intelligible to app creators (i.e. developers) is underrep-
resented in the literature. End-user oriented development environments reduce
the competencies necessary for creating apps and expand the cohort of poten-
tial app developers. In addition, access to machine learning toolkits such as
Google’s TensorFlow enable developers to utilise complex machine learning al-
gorithms whilst remaining divorced from all but a rudimentary understanding of
the models and logic involved. This makes it increasingly easy for developers to
make näıve use of machine-learning algorithms that lead to unfair, incorrect, and
ultimately harmful outcomes. Educating and sensitising developers to the im-
plications of the code they create is therefore a worthy goal. As [45] succinctly
state: “in many cases what the data subject wants is not an explanation—but
rather for the disclosure, decision or action simply not to have occurred”.

Articulating risk. Our work on risk assessment in the SDK argues for sen-
sitising developers to the implications of their choices during app construction.
Yet, as discussed, our conception of risk is relatively simple. We aim to improve
upon this by representing risk as two metrics: likelihood (what is the probability
of occurrence?) and harm (what bad things will happen if it does occur?). To
make this tractable, the SDK will need to take into account the app’s intended
deployment context in addition to the personal data it operates on. For example,
an app that visualises a user’s browsing history on a screen at home will carry
different risks from one that exposes the same data to an employer.

5 Conclusion

The emergence of the IoT is driving a shift in data storage and processing to the
edge of the network to reduce traffic and latency and to improve resilience and the
potential for data privacy. We have argued that GDPR raises an unmet challenge
in supporting IoT app development that requires: (i) a broad cohort of developers
be provided with clear information on the risks that attach to the use of personal
data and (ii) that all necessary features and information are embedded in apps
in order that end-users are provided with the information they need to provide
informed consent and the facility to examine an app’s operation at runtime. We
have presented the design and implementation of a set of developer features (risk
breakdown, personal data tracking, compliant contracts and runtime inspection)
aimed at meeting these requirements. In doing so, we have taken a step towards
identifying how we can improve support for developers who write code to process
personal data.

Developing GDPR Compliant Apps For The Edge 15

References

1. Fog Computing and the Internet of Things: Extend the Cloud to Where the Things
Are, https://www.cisco.com/c/dam/en us/solutions/trends/iot/docs/computing-
overview.pdf. Last accessed 2018/6/26.

2. IDC FutureScape: Worldwide IoT 2018 Predictions,
https://www.idc.com/getdoc.jsp?containerId=US43171317. Last accessed
2018/6/26.

3. Amazon Echo, https://en.wikipedia.org/wiki/Amazon Echo. Last accessed
2018/6/26.

4. Apple HomePod, https://www.apple.com/uk/homepod. Last accessed 2018/6/26.

5. Google Home, https://store.google.com/product/google home. Last accessed
2018/6/26.

6. Home Assistant, https://www.home-assistant.io. Last accessed 2018/6/26.

7. nCube, https://ncubehome.co.uk. Last accessed 2018/6/26.

8. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive
95/46/EC (General Data Protection Regulation). Official Journal of the European
Union, L119:1–88, April 2016.

9. Chaudhry, A., Crowcroft, J., Howard, H., Madhavapeddy, A. ,Mortier, R., Haddadi,
H., McAuley, D. : Personal data: thinking inside the box. In Proceedings of the fifth
de-cennial Aarhus conference on critical alternatives, pp. 29-32. Aarhus University
Press (2015).

10. Lee, S., Wong, E. L., Goel, D., Dahlin, M., Shmatikov, V.: PiBox: A Platform for
Privacy-Preserving Apps. In Proceedings of NSDI, pp. 501-514. (2013).

11. Giffin, D. B., Levy, A., Stefan, D., Terei, D., Mazières, D., Mitchell, J. C., Russo,
A.: Hails: Protecting Data Privacy in Untrusted Web Applications. In Proceedings
of OSDI, pp. 47-60. (2012).

12. Willis, D., Dasgupta, A., Banerjee, S.: ParaDrop: a multi-tenant platform to dy-
namically install third party services on wireless gateways. In Proceedings of the 9th
ACM workshop on Mobility in the evolving internet architecture, pp. 43-48. ACM
(2014).

13. Youngblood, G. M., Cook, D. J., Holder, L. B.: A learning architecture for au-
tomating the intelligent environment. In Proceedings of the Conference on Innova-
tive Applications of Artificial Intelligence, pp. 1576–1583. MIT Press, Cambridge,
MA (2005).

14. How GDPR Will Change the Way You Develop,
https://www.smashingmagazine.com/2018/02/gdpr-for-web-developers. Last
accessed 2018/6/26.

15. Domoticz, https://domoticz.com. Last accessed 2018/6/26.

16. OpenHAB, https://www.openhab.org. Last accessed 2018/6/26.

17. OpenRemote, http://www.openremote.com. Last accessed 2018/6/26.

18. Project Things, https://iot.mozilla.org. Last accessed 2018/6/26.

19. Cozify, https://en.cozify.fi. Last accessed 2018/6/26.

20. Fibaro, https://www.fibaro.com. Last accessed 2018/6/26.

21. Vera, http://getvera.com. Last accessed 2018/6/26.

22. Mydex, https://mydex.org. Last accessed 2018/6/26.

23. Hub of All Things, https://hubofallthings.com. Last accessed 2018/6/26.

16 T. Lodge et al.

24. Android Things, https://developer.android.com/things/index.html. Last accessed
2018/6/26.

25. Apple HomeKit, https://www.apple.com/uk/ios/home. Last accessed 2018/6/26.
26. Home Assistant, https://www.home-assistant.io. Last accessed 2018/6/26.
27. Samsung SmartThings, http://www.samsung.com/uk/smartthings. Last accessed

2018/6/26.
28. Mark. W. Newman. 2006. Now we’re cooking: Recipes for end-user service composi-

tion in the digital home. Position Paper– CHI 2006 Workshop IT@Home.
29. IFTTT, https://ifttt.com. Last accessed 2018/6/26.
30. Stringify, https://www.stringify.com. Last accessed 2018/6/26.
31. Yeti, https://getyeti.co. Last accessed 2018/6/26.
32. Zapier, https://zapier.com. Last accessed 2018/6/26.
33. Mi, X., Feng Q., Ying, Z., XiaoFeng, W.: An empirical characterization of IFTTT:

eco-system, usage, and performance. In Proceedings of the 2017 Internet Measure-
ment Conference, pp. 398-404. ACM, New York, (2017).

34. Surbatovich, M., Jassim,A., Lujo B., Anupam D., Limin, J.: Some recipes can do
more than spoil your appetite: Analyzing the security and privacy risks of ifttt
recipes. In Proceedings of the 26th International Conference on World Wide Web,
International World Wide Web Conferences Steering Committee, pp. 1501-1510.
(2017).

35. Attacking Discrimination in ML. https://research.google.com/bigpicture/attacking-
discrimination-in-ml. Last accessed 2018/6/26.

36. Eslami, M., Krishna Kumaran, S.R., Sandvig, C., Karahalios, K.: Communicating
Algo-rithmic Process in Online Behavioral Advertising. In Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, p. 432. ACM. (2018).

37. Ribeiro, M.T., Singh, S. and Guestrin, C.: Why should I trust you?: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 1135-1144. ACM. (2016).

38. Morrison, J.P.: Flow-based programming. In Proceedings of the 1st International
Workshop on Software Engineering for Parallel and Distributed Systems, pp. 25-29.
(1994).

39. Weiss, Gary M., and Jeffrey W. Lockhart.: Identifying user traits by mining smart
phone accelerometer data. In Proceedings of the Fifth International Workshop on
Knowledge Discovery from Sensor Data. pp. 61-69. ACM, (2011).

40. Smart meters review TV viewing habits. http://www.h-
online.com/security/news/item/Smart-meters-reveal-TV-viewing-habits-
1346385.html. Last accessed 2018/6/26.

41. Kim, Y., Schmid, T., Srivastava, M.B., Wang, Y.: Challenges in resource monitor-
ing for residential spaces. In Proceedings of the First ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings, pp. 1-6. ACM, (2009).

42. Crabtree, A., Lodge, T., Colley, J., Greenhalgh, C., Mortier, M.: Building account-
ability into the Internet of Things: the IoT Databox Model. In Journal of Reliable
Intelli-gent Environments. SSRN, (2018).

43. Wang, Q., Hassan, W.U., Bates, A., Gunter, C.: Fear and Logging in the Internet
of Things. In Network and Distributed Systems Symposium. (2018).

44. Schreiber, A. and Struminski, R.: Tracing personal data using comics. In Interna-
tional Conference on Universal Access in Human-Computer Interaction. pp. 444-455.
(2017).

45. Edwards, L. and Veale, M.: Slave to the Algorithm: Why a Right to an Explanation
Is Probably Not the Remedy You Are Looking for, Duke L. and Tech. Rev., 16, p.18.
(2017).

