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Abstract

Ultracold fermionic atoms in an optical lattice, with a sudden position-dependent
change (a quench) in the effective dispersion relation, have been proposed by
Rodŕıguez-Laguna et al. as an analogue spacetime test of the Unruh effect. We
provide new support for this analogue by analysing a massless scalar field on a
(1 + 1)-dimensional continuum spacetime with a similar quench: an early time
Minkowski region is joined at a constant time surface, representing the quench, to
a late time static region in which left and right asymptotically Rindler domains
are connected by a smooth negative curvature bridge. We show that the quench is
energetically mild, and late time static observers, modelled as a derivative-coupling
Unruh-DeWitt detector, see thermality, in a temperature that equals the Unruh
temperature for observers in the asymptotic Rindler domains. The Unruh effect
hence prevails, despite the energy injected into the field by the quench and despite
the absence of a late time Killing horizon. These results strengthen the motivation
to realise the experimental proposal.

1 Introduction

In relativistic quantum field theory, an observer’s measurements of a quantum field
depend on the observer’s motion. A celebrated example is the Unruh effect [1, 2, 3],
in which a linearly uniformly accelerated observer in Minkowski spacetime reacts to
a field in its Minkowski vacuum by excitations and de-excitations characteristic of a
thermal state, in the Unruh temperature a~/(2πckB), where a is the observer’s proper
acceleration (for textbooks and reviews, see [4, 5, 6]). An experimental confirmation of
the Unruh effect has remained elusive, due to the required magnitude of acceleration (for
a discussion of the magnitudes, and a proposal to enhance the effect through the Berry

∗This is a peer-reviewed, un-copyedited version of an article published in Class. Quant. Grav. 35,
205006 (2018). IOP Publishing Ltd is not responsible for any errors or omissions in this version of the
manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/1361-
6382/aadb34.

1



phase, see [7]). A related effect exists for nonlinear uniform accelerations [8], including
circular motion [9, 10, 11, 12], and the circular motion version is related to the spin
depolarisation of particle beams in accelerator storage rings [13, 14, 15, 16], originally
predicted by different methods [17, 18] and observed [19], but also here establishing
a direct connection between the observation and the circular motion Unruh effect has
remained elusive [16]. The prospects to observe versions of the Unruh effect with high-
power laser systems are discussed in [20, 21, 22, 23]. An experimental confirmation of
the Unruh effect would be significant since the mathematics underpinning the effect is
closely related to the mathematics in Hawking’s prediction of black hole radiation [24]
and to the mathematics of the early universe quantum effects that may be responsible
for the origin of structure in the present-day Universe [25, 26].

It is by now well recognised that classical and quantum field theory phenomena in
relativistic spacetimes can be simulated in laboratory systems described by mathemat-
ically similar effective field theories, classical or quantum [27]. Recent experimental
work includes the observation of a classical mode conversion that underlies the Hawking
effect in the quantum theory [28], the observation of classical superradiance [29], the
observation of quantum phenomena characteristic of an expanding cosmology [30], and
observations interpreted as analogue Hawking radiation [31, 32]. Laboratory analogues
of the Unruh effect have been proposed in a Bose-Einstein condensate [33] and in ultra-
cold fermionic atoms in an optical lattice [34, 35], and related proposals are discussed
in [36, 37]. A laboratory analogue of the Gibbons-Hawking effect, a curved spacetime
counterpart of the Unruh effect, has been proposed in [38, 39].

The purpose of this paper is to provide new evidence that the optical lattice proposal
of [34, 35] has the requisite properties to simulate the Unruh effect, despite having
energetic and causal properties that differ from those in the usual setting of the Unruh
effect.

The system analysed in [34, 35] consists of fermionic atoms held in an optical lattice,
with a dispersion relation that can be adjusted to depend on both space and time.
The detailed experimental implementation is described in [34, 35]. Mathematically,
the system is a spatially discretised fermionic field in an effective (2 + 1)-dimensional
spacetime whose spatial sections are flat but the time-time component of the metric,
determining the effective dispersion relation, may depend on both space and time. To
simulate the Unruh effect, the spacetime metric is engineered to undergo a sudden
change, a quench, from the (2 + 1)-dimensional Minkowski metric to a metric given by
the (1 + 1)-dimensional part

ds2 = −χ2dη2 + dχ2 (1.1)

plus one flat spatial dimension. (We set from now on c = ~ = kB = 1.) It is shown in
[34, 35] by a combination of analytic and numerical methods that the field’s behaviour
at constant χ, sufficiently far from χ = 0 in terms of the lattice scale, has thermal
characteristics, in a position-dependent temperature that approximates 1/(2π|χ|). This
thermality is interpreted as an analogue of the Unruh effect, on the grounds that the
regions χ > 0 and χ < 0 of (1.1) each cover one Rindler wedge of Minkowski spacetime,
the worldlines of constant χ 6= 0 have proper acceleration 1/|χ|, and the usual Unruh
effect states that an observer in a Rindler wedge at constant χ experiences the Minkowski
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vacuum as thermal at the Unruh temperature 1/(2π|χ|) [1, 2, 3, 4, 5, 6].
The optical lattice quench and the usual Unruh effect setup have however three

qualitative differences, each of which could potentially limit the ability of the lattice
to simulate the Unruh effect. First, in the usual setup the field is prepared in its
Minkowski vacuum, implying in particular that the field’s stress-energy tensor has a
vanishing expectation value (see [40, 41] for a recent reinforcement of this point). By
contrast, a sudden quench can be expected to inject energy into the field, potentially
lots of it, and the spatial inhomogeneity of the quench suggests that the post-quench
energy may not remain static: does the post-quench stress-energy tensor remain small,
in some controllable sense? Second, the degeneracy of (1.1) at χ = 0 gets regularised
in [34, 35] in terms of the spatial lattice. How sensitive are the Unruh effect results
to this regularisation, which does not feature in the usual setup? Third, the lattice-
regularised metric does not have a counterpart of the Minkowski spacetime future and
past quadrants that join the two Rindler wedges in the usual setup. Yet the arrangement
of the four quadrants is essential when the thermality in the Unruh effect is described
in terms of the entanglement between two opposing Rindler wedges [1, 2, 3, 4, 5, 6], and
new phenomena emerge when this arrangement is modified [42]. Does the quench still
create spacelike entanglement, similar to that in the usual setup?

In this paper we address the first two of these questions in a simplified, analytically
solvable quench model that shares the potentially troublesome features of the optical lat-
tice. We consider a massless scalar field in the (1 + 1)-dimensional continuum spacetime
in which the singularity of (1.1) at χ = 0 is regularised by modifying the ηη compo-
nent to remain negative everywhere, including at χ = 0. We find that the post-quench
renormalised stress-energy tensor is well defined and nonvanishing, and the ‘total en-
ergy’, defined as the integral of the energy density over the constant η surface, is finite.
When the regulator is small, in a sense that we describe, the stress-energy tensor is
small everywhere except in a narrow region near χ = 0. In this sense, the regularised
quench is energetically mild. We then probe the thermality of the post-quench region
by an Unruh-DeWitt detector on a worldline of constant χ. The detector’s late time
response is Planckian, in a χ-dependent temperature, and for nonzero χ this temper-
ature approaches the Unruh temperature when the regulator is taken to zero; further,
when the regulator is small, the response is Planckian in the usual Unruh temperature
also at times shortly after the quench. In this sense, the Unruh-type thermality in the
post-quench region is relatively insensitive to the regulator.

In short, we find that the Unruh effect prevails, despite the energy injected into the
field by the quench and despite the absence of a late time Killing horizon. While our
model is simplified, these results do strengthen the motivation to realise the experimental
proposal of [34, 35].

Given our results, particularly our closed expression for the post-quench Wightman
function, post-quench spacelike entanglement could be investigated by the harvesting
techniques of [42, 43, 44, 45, 46]. We shall comment on the prospects and challenges of
such harvesting in Section 7.

The plan of the paper is as follows: We begin by introducing in Section 2 a regulari-
sation of the double Rindler metric (1.1). Section 3 presents the regularised quench, and
quantises the scalar field individually in the pre-quench and post-quench regions. The
Wightman function in the post-quench region, with the field prepared in the Minkowski
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vacuum of the pre-quench region, is evaluated in Section 4. The stress-energy tensor
is analysed in Section 5 and the response of an Unruh-DeWitt detector in Section 6.
Section 7 presents a summary and a brief discussion.

Spacetime points are denoted by sans serif letters. Overline denotes complex conju-
gate and dagger Hermitian conjugate. sgn(x) denotes the signum function, equal to 1
for x > 0, −1 for x < 0, and 0 for x = 0.

2 Regularised double Rindler

We consider the spacetime

ds2 = −
(
b2 + χ2

)
dη2 + dχ2 , (2.1)

where −∞ < η < ∞, −∞ < χ < ∞, and b is a positive constant. A conformally flat
form, obtained by the coordinate transformation χ = b sinh y, is

ds2 = b2 cosh2y
(
−dη2 + dy2

)
, (2.2)

where −∞ < η <∞ and −∞ < y <∞.
The spacetime is curved, with the Ricci scalar

R = − 2b2(
b2 + χ2

)2 = − 2

b2 cosh4y
. (2.3)

It is static, with the timelike Killing vector ∂η. The integral curves of ∂η are timelike
worldlines of constant χ, and their proper acceleration is

aχ =
|χ|

b2 + χ2
. (2.4)

It can be verified that the spacetime is geodesically complete.
Comparison of (1.1) and (2.1) shows that the spacetime consists of asymptotically

Rindler regions at χ � b and χ � −b, joined by a negative curvature bridge whose
effective length is of the order of b. In the limit b → 0, (2.1) reduces to (1.1), which
has exact Rindler wedges at χ > 0 and χ < 0 and a degeneracy at χ → 0±, where the
Rindler horizons would be. We may think of b as a regulator of the degeneracy of (1.1)
at the Rindler horizon. Note that the regularised spacetime does not have a Killing
horizon since ∂η is everywhere timelike.

The behaviour of gηη near χ = 0 in (2.1) is reminiscent of the near-throat region of
the (2+1)-dimensional and (3+1)-dimensional static wormhole spacetimes discussed in
[47, 48, 49], where a regulator analogous to our b was introduced to remove a black hole
Killing horizon. Interpreting (2.1) as a wormhole spacetime would however be stretching
the reminiscence because (2.1) has no transverse dimensions whose size would attain a
minimum at χ = 0.
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3 Quench

3.1 Quench spacetime

Our quench spacetime consists of the η > 0 half of the regularised double Rindler
spacetime (2.1) joined to the t < 0 half of Minkowski spacetime, given by

ds2 = −dt2 + dx2 , (3.1)

so that x = χ at t = 0 = η. The metric has a discontinuous time-time component at
the quench but the other components are continuous.

We wish to quantise a massless minimally coupled scalar field φ on the quench
spacetime. The field equation is �φ = 0. We discuss the pre-quench region and the
post-quench region first separately and then connect the two.

3.2 Quantum scalar field: pre-quench region

In the pre-quench region, t < 0, we employ a standard Fock quantisation adapted to the
Killing vector ∂t. A standard basis of mode functions that are positive frequency with
respect to ∂t is

uω,ε =
1√
4πω

exp[−iω(η − εx)] , (3.2)

where ω > 0 and ε ∈ {1,−1}. The mode functions with ε = 1 are right-movers and
the mode functions with ε = −1 are left-movers. Adopting the conventions of [4], the
Klein-Gordon (indefinite) inner product on a constant t hypersurface reads

(φ, ψ) = −i
∫ ∞
−∞

(
φ∂tψ − ψ∂tφ

)
dx , (3.3)

and the mode functions are normalised in this inner product to

(uω,ε, uω′,ε′) = −(uω,ε, uω′,ε′) = δεε′δ(ω − ω′) , (3.4)

with the mixed inner products vanishing.
The quantised scalar field is expanded as

φ =
∑
ε

∫ ∞
0

(
aω,εuω,ε + a†ω,εuω,ε

)
dω , (3.5)

where
[
aω,ε, a

†
ω′,ε′
]

= δεε′δ(ω−ω′) and the other commutators vanish. The Fock space is
built in the usual way on the Minkowski vacuum |0M 〉 that is normalised and satisfies
aω,ε|0M 〉 = 0.

3.3 Quantum scalar field: post-quench region

In the post-quench region, η > 0, we employ a standard Fock quantisation adapted to
the Killing vector ∂η. A standard basis of mode functions that are positive frequency
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with respect to ∂η is

UΩ,ε =
1√
4πΩ

exp[−iΩ(η − εy)]

=
1√
4πΩ

exp
[
−iΩ

(
η − ε arsinh(χ/b)

)]
, (3.6)

where Ω > 0 and ε ∈ {1,−1}. The mode functions with ε = 1 are again right-movers
and the mode functions with ε = −1 are left-movers. The Klein-Gordon inner product
on a constant η hypersurface reads

(φ, ψ) = −i
∫ ∞
−∞

(
φ∂ηψ − ψ∂ηφ

) dχ√
b2 + χ2

, (3.7)

and the mode functions are normalised in this inner product to(
UΩ,ε, UΩ′,ε′

)
= −

(
UΩ,ε, UΩ′,ε′

)
= δεε′δ(Ω− Ω′) , (3.8)

with the mixed inner products vanishing.
The quantised scalar field is expanded as

φ =
∑
ε

∫ ∞
0

(
AΩ,εUΩ,ε +A†Ω,εUΩ,ε

)
dΩ , (3.9)

where [AΩ,ε, A
†
Ω′,ε′ ] = δεε′δ(Ω − Ω′) and the other commutators vanish. A Fock space

can be built in the usual way on the normalised state |0D〉 that satisfies AΩ,ε|0D〉 = 0,
and we may regard |0D〉 as a regularised double-sided Rindler vacuum. In what follows
we shall however not be interested in |0D〉 but instead in the post-quench state to which
the pre-quench Minkowski vacuum evolves.

4 Post-quench Wightman function

We fix the state of the field to be the pre-quench Minkowski vacuum |0M 〉. To analyse
the effects of the quench, we need to evaluate the Wightman function,

W (x, x′) = 〈0M |φ(x)φ(x′)|0M 〉 , (4.1)

when both x and x′ are in the post-quench region.
We first match the pre-quench and post-quench mode functions at the quench, us-

ing the Bogoliubov transformation formalism in the conventions of [4]. Since the left-
movers and right-movers decouple, we shall now drop the subscript ε, understand the
transformation formulas to hold separately each value of ε, and add the left-mover and
right-mover contributions to the Wightman function at the end.

With this notation, we write the Bogoliubov transformation of the modes at t = 0 =
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η as

UΩ =

∫ ∞
0

(αΩωuω + βΩωuω) dω , (4.2)

where αΩω and βΩω are the Bogoliubov coefficients. The coefficients are given by [4]

αΩω =
(
UΩ, uω

)
, (4.3a)

βΩω = −
(
UΩ, uω

)
, (4.3b)

where the Klein-Gordon inner products are taken at the quench hypersurface t = 0 = η.
Note that in these inner products the time derivative on uω is as in (3.3) and the time
derivative on UΩ is as in (3.7).

The inner products in (4.3) can be evaluated using 3.471.10 in [50], with the result

αΩω =
1

π

√
Ω

ω
eπΩ/2KiΩ(bω) , (4.4a)

βΩω = − 1

π

√
Ω

ω
e−πΩ/2KiΩ(bω) , (4.4b)

where K is the modified Bessel function of the second kind. As a consistency check, it
can be verified that the coefficients (4.4) satisfy the Bogoliubov identities [4], using the
Bessel function identity∫ ∞

0

dx

x
KiΩ(x)KiΩ′(x) =

π2

2Ω sinh(πΩ)
δ(Ω− Ω′) . (4.5)

(4.5) can be justified informally by observing that KiΩ(ez) are the (improper) eigen-
functions of the essentially self-adjoint differential operator −∂2

z + e2z, which implies
orthogonality, and considering the small argument behaviour of KiΩ(x) [51], which de-
termines the normalisation constant. A rigorous discussion of (4.5) is given in Section
4.15 of [52].

Next, we recall [4] that

AΩ =

∫ ∞
0

(
αΩωaω − βΩωa

†
ω

)
dω , (4.6)

where we have used the reality of the Bogoliubov coefficients. Proceeding for the mo-
ment informally, we substitute (3.9) in (4.1), use (4.6) and its Hermitian conjugate,
interchange the integrals, and use the identity (4.5). Adding finally the left-mover and
right-mover contributions, we arrive at

W (x, x′) = W0(η − y, η′ − y′) +W0(η + y, η′ + y′) , (4.7)

where

W0(z, z′) =

∫ ∞
0

dΩ

8πΩ sinh(πΩ)

(
eπΩ/2e−iΩz + e−πΩ/2eiΩz

)(
eπΩ/2eiΩz

′
+ e−πΩ/2e−iΩz

′
)
.

(4.8)
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The expression (4.8) for W0(z, z′) is ill defined because of the small Ω behaviour of
the integrand. This was to be expected because of the well known infrared ambiguity
of the Wightman function of a massless scalar field in two dimensions [53]. To extract
a meaningful expression for W0(z, z′), we differentiate both sides of (4.8) with respect
to z and take the derivative on the right hand side to operate under the integral. The
resulting integral has the distributional interpretation

∂zW0(z, z′) = − i
4
δ(z − z′)− 1

8π
P coth

(
z − z′

2

)
− 1

8π
tanh

(
z + z′

2

)
, (4.9)

where P stands for the Cauchy principal value and we have used 3.981.1 and 3.981.8
in [50]. We now integrate (4.9) with respect to z, fixing the integration constant (which
a priori could depend on z′) by requiring W0(z, z′) = W0(z′, z), which a Wightman
function must satisfy. We find

W0(z, z′) = − i
8

sgn(z − z′)− 1

4π
ln

[
sinh

(
|z − z′|

2

)]
− 1

4π
ln

[
cosh

(
z + z′

2

)]
, (4.10)

up to an additive purely numerical real-valued constant, which we have dropped from
(4.10) as it will not affect what follows.

To summarise, we have arrived at the post-quench Wightman function W (x, x′) given
by (4.7) with (4.10). The infrared divergence was removed by a procedure that can be
interpreted as dropping an infinite additive constant. As a consistency check, we note
that our W (x, x′) has the correct small separation asymptotic form [53].

We record here that the asymptotic late time form of W (x, x′) is

Wlate(x, x
′) = − i

8
sgn(η − η′ + y − y′)− i

8
sgn(η − η′ − y + y′)

− 1

4π
ln

[
sinh

(
|η − η′ + y − y′|

2

)
sinh

(
|η − η′ − y + y′|

2

)]
− η + η′

2π
.

(4.11)

We shall return to the implications of (4.11) in Section 7.

5 Post-quench stress-energy

We now evaluate the post-quench renormalised stress-energy tensor.
We use Hadamard renormalisation, adapting the Feynman Green’s function formal-

ism of [53] to the Wightman function. This gives

Tab(x) = lim
x′→x

(
gb
b′∂a∂b′ − 1

2gabg
cd′∂c∂d′

) (
W (x, x′)−Wsing(x, x′)

)
+

1

48π
R(x)gab , (5.1)

where the purely geometric subtraction term is

Wsing(x, x′) = − 1

4π
ln |σ(x, x′)| − i

8
sgn(η − η′ + y − y′)− i

8
sgn(η − η′ − y + y′) , (5.2)

and σ(x, x′) is half of the geodesic distance squared between x and x′, with the convention
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that σ(x, x′) > 0 when the geodesic is spacelike and σ(x, x′) < 0 when the geodesic is
timelike. For a metric of the form ds2 = F (y)

(
−dη2 +dy2

)
, a small separation expansion

gives

σ(x, x′) = 1
2

(
(y − y′)2 − (η − η′)2

)
F (ỹ)

×

[
1 +

F ′′(ỹ)

24F (ỹ)
(y − y′)2 − 1

48

(
F ′(ỹ)

F (ỹ)

)2 (
(y − y′)2 − (η − η′)2

)
+ (cubic)

]
,

(5.3)

where ỹ := (y+ y′)/2. Using (5.3) with F (y) = b2 cosh2y, the Wightman function given
by (4.7) and (4.10), and the Ricci scalar (2.3), we find

Tηη =
1

8π cosh2y
− 1

16π

(
1

cosh2(η − y)
+

1

cosh2(η + y)

)
, (5.4a)

Tyy =
1

24π cosh2y
− 1

16π

(
1

cosh2(η − y)
+

1

cosh2(η + y)

)
, (5.4b)

Tηy =
1

16π

(
1

cosh2(η − y)
− 1

cosh2(η + y)

)
. (5.4c)

Tab is hence well defined and finite everywhere in the post-quench region. As a consis-
tency check, it can be verified that Tab is conserved, ∇aT ab = 0, and it has the correct
trace anomaly, T aa = R/(24π) [53].

From the expressions in (5.4) we may make the following three observations.
First, at the quench, η → 0+, we have Tyy → −1/(12π cosh2y), while the other

components vanish. The quench creates initially a negative pressure but no energy
density.

Second, in the evolution after the quench, Tηη and Tyy each consist of a positive
static contribution, peaked around y = 0, and negative pulses travelling to the left and
right at the speed of light, peaked around y = ±η. In the late time limit at fixed y,
the pulses have passed, and we have Tηη → 1/(8π cosh2y), Tyy → 1/(24π cosh2y) and
Tηy → 0. For fixed y, the late time energy density and pressure are hence static and
positive.

Third, in view of the analogue system of [34, 35], an energetic quantity of interest is
the ‘total energy’ at constant η, defined as the integral of the energy density −T ηη over
the spatial volume,

Eη := −
∫ ∞
−∞

T ηη b cosh y dy

=
tanh2(η/2)

16πb
. (5.5)

Eη is finite for all η, and it increases monotonically from 0 to 1/(16πb) as η increases
from 0 to infinity. The initial negative pressure hence evolves at late times into a finite
and static positive total energy.

If we view the parameter b as a regulator that is small compared with length scales
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of interest, it is useful to express Tab in the coordinates (η, χ) of (2.1), with the result

Tηη =
b2

8π

(
1

χ2 + b2
− χ2 cosh(2η) + b2 cosh2η(

χ2 + b2 cosh2η
)2

)
, (5.6a)

Tχχ =
b2

8π
(
χ2 + b2

) ( 1

3
(
χ2 + b2

) − χ2 cosh(2η) + b2 cosh2η(
χ2 + b2 cosh2η

)2
)
, (5.6b)

Tηχ =
b2

8π

χ sinh(2η)(
χ2 + b2 cosh2η

)2 . (5.6c)

In these coordinates, the pointwise limit of Tab as b→ 0 vanishes for χ 6= 0 but diverges
for χ = 0. For b small but finite, Tab is large only within the narrow region |χ| . b cosh η,
and in particular it is this narrow region that contributes to the total energy Eη (5.5)
the piece that diverges as b→ 0.

In summary, the regularised quench produces a well-defined stress-energy tensor
everywhere to the future of the quench. When the regulator is small, the stress-energy
tensor is small everywhere except in a narrow wedge about χ = 0.

6 Post-quench thermality

To examine thermality in the post-quench region, we probe the field with a pointlike
Unruh-DeWitt detector [3, 54], specifically with a variant that is coupled linearly to the
field’s proper time derivative rather than the field itself, since this makes the detector
less sensitive to the infrared ambiguity in the Wightman function (for selected references
see [55, 56, 57, 58, 59, 60]). We follow the notation of [60], to which we refer for the
details.

We take the detector to follow a worldline of constant χ, that is, an orbit of the
Killing vector ∂η. Let τ be the proper time on this worldline, with the additive constant
chosen so that τ = 0 at the quench. The detector’s response is determined by the
pull-back of the Wightman function on this worldline, given by

Wχ(τ, τ ′) = − i
4

sgn(τ − τ ′)− 1

2π
ln

[
sinh

(
|τ − τ ′|

2
√
χ2 + b2

)]

− 1

4π
ln

[
cosh

(
τ + τ ′√
χ2 + b2

)
+ 1 +

2χ2

b2

]
, (6.1)

where we have dropped an additive numerical constant. Comparing (6.1) to Section 3.3
in [60] shows that if the last term in (6.1) can be neglected, and the detector operates so
long that switch-on and switch-off effects are negligible, the transition rate, evaluated to
first order in perturbation theory and dropping an overall multiplicative constant, takes
the Planckian form

Ḟ(E) =
E

eE/Tχ − 1
, (6.2)
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where E is the detector’s energy gap and

Tχ =
1

2π
√
b2 + χ2

. (6.3)

When (6.2) holds, Ḟ is hence thermal in temperature Tχ, in the sense of the detailed
balance condition,

Ḟ(−E) = eE/TχḞ(E) . (6.4)

We note that when |χ| → ∞ with fixed b, Tχ is asymptotically equal to aχ/(2π),
where aχ is the trajectory’s proper acceleration (2.4); conversely, for fixed χ 6= 0, taking
the regulator b to zero makes both Tχ and aχ/(2π) tend to 1/(2π|χ|), which is the Unruh
temperature on the Rindler trajectory of constant χ 6= 0 in the unregularised Rindler
metric (1.1). When (6.2) holds, the regularised quench hence makes the detector respond
identically to the Unruh effect, at scales that are large compared with the regulator b.

Now, when does (6.2) hold? That is, when does the last term in (6.1) make a
negligible contribution to ∂τ∂τ ′Wχ(τ, τ ′)? For any fixed χ and b, it is clear from (6.1)
that one regime where this happens is the late time limit. However, if we view b as a
regulator that is small compared with length scales of interest, the situation to consider
is to fix χ 6= 0 and take b � |χ|. The late time limit in which (6.2) holds is then at
proper times much larger than |χ| ln(2|χ|/b). But (6.1) shows that (6.2) then holds also
at early post-quench proper times, much smaller than |χ| ln(2|χ|/b). This might have
been expected from the stress-energy analysis of Section 5, since |χ| ln(2|χ|/b) is the
proper time at which the detector crosses a travelling peak in Tηη.

We conclude that when χ 6= 0 and b� |χ|, the detector’s transition rate is approx-
imately Planckian at approximately the usual Unruh temperature 1/(2π|χ|) at proper
times much larger and much smaller than |χ| ln(2|χ|/b). The sense of the approximations
can be made precise using (6.1) and the transition rate formalism of [60]. Inclusion of
finite time switch-on and switch-off effects would be analytically more involved (cf. [61]),
but straightforward to implement numerically.

7 Summary and discussion

We have provided new support for the proposal of [34, 35] to simulate the Unruh effect
experimentally with ultracold fermionic atoms in an optical lattice. We first identified
three qualitative differences between the optical lattice system and the usual Unruh
effect setup, in their energetic and causal properties, and in the fact that the lattice
provides a horizon regulator that has no counterpart in the usual Unruh effect. These
differences could cast doubt on the ability of the lattice to simulate the Unruh effect.
We then presented a simplified continuum field theory model that shares the potentially
troublesome features of the optical lattice, and showed that in this model the ener-
getic and causal properties can be brought under analytic control, and the Unruh effect
prevails. While our simplifications included going from effective spacetime dimension
(2 + 1) to effective spacetime dimension (1 + 1), and replacing a discrete fermion field
by a continuum scalar field, our analytic results are compatible with the analytic and
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numerical conclusions obtained in [34, 35].
In summary, our results strengthen the motivation to realise the experimental pro-

posal of [34, 35].
A key technical property that made our analysis feasible was that the Wightman

function could be written down in closed form, and we used this Wightman function to
evaluate the stress-energy tensor and to establish the thermal response of a static Unruh-
DeWitt detector. Given the Wightman function, it would be possible to study also the
spatial entanglement in the field, harvesting the entanglement by a pair of Unruh-DeWitt
detectors [42, 43, 44, 45, 46], and to compare with the entanglement that is present in
Minkowski vacuum for Rindler observers in opposing Rindler wedges [1, 2, 3, 4, 5, 6].
Because of the late time growth in the Wightman function, shown in (4.11), a pair of
Unruh-DeWitt detectors coupled linearly to the field would be problematic. A pair of
Unruh-DeWitt detectors coupled linearly to the proper time derivative of the field, used
in Section 6, would avoid this problem, but the short distance properties of the twice
differentiated Wightman function then require the detectors to be smeared in time and
space [46], increasing the parameter space of the harvesting protocol, and suggesting
the need for a numerical approach. We leave this question to future work.
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