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Movement of Palladium Nanoparticles in Hollow Graphitised 
Nanofibres: the Role of Migration and Coalescence in 
Nanocatalyst Sintering during the Suzuki-Miyaura Reaction 

Rhys. W. Lodge,[a] Graham. A. Rance, [a,b] Michael. W. Fay[b] and Andrei. N. Khlobystov*,[a,b] 

The evolution of individual palladium nanoparticle (PdNP) catalysts, in graphitised nanofibres (GNF), in the liquid-phase 

Suzuki-Miyaura (SM) reaction has been appraised. The combination of identical location-transmission electron microscopy 

(IL-TEM) and a nano test tube approach allowed spatiotemporal continuity of observations at single nanopartcile level, 

revealing that migration and coalescence is the most significant pathway to coarsening of the nanocatalyst, rather than 

Ostwald ripening. IL-TEM gave unprecedented levels of detail regarding the movement of PdNP on carbon surfaces at the 

nanoscale, including size-dependent migration and directional movement, opening horizons for optimisation of future 

catalysts through surface morphology design.

Introduction 

The palladium-catalysed Suzuki-Miyaura (SM) cross-coupling of 

an organoboronic acid and an organohalide is one of the most 

important, and versatile, reactions utilised for the formation of 

carbon-carbon bonds in the synthesis of a wide range of anti-

cancer agents, natural products and other structurally-complex 

motifs.[1-3] The application of supported palladium 

nanoparticles (PdNP) as catalysts of cross-coupling reactions 

has been rapidly increasing in recent times,[4-5] exploiting the 

high surface area to volume ratio and low coordination number 

of surface atoms in PdNP[6-8] and the ease of extraction and 

recyclability of the catalyst.[9-11] However, the highly dynamic 

nature of metal nanoparticles often leads to increasing 

nanoparticle sizes during catalytic cycles, which decreases the 

number of active surface atoms and reduces catalytic activity. 
[12-14] Consequently, there has been a significant drive to better 

understand the fundamental mechanisms (Figure S1) that lead 

to undesired nanoparticle growth and deactivation – with the 

majority of reports identifying Ostwald ripening as the most 

important factor in particle coarsening – and thus guide the 

development of novel nanoscale materials where these 

disadvantageous processes are inhibited.[15-17] Although a 

multitude of microscopy techniques have previously been used 

to appraise the growth of nanoparticles, one of the most widely 

utilised is transmission electron microscopy (TEM), with two 

specific imaging strategies, namely the sampling (Figure 1A, S2) 

and in-situ environmental TEM (ETEM) methods (Figure S3), 

commonly employed.[18-21]  The sampling methodology involves 

inspection of the size and shape of nanoparticles before and 

after the reaction and conclusions are drawn by averaging their 

structural characteristics over the ensemble.[22,23] However, 

whilst the sampling technique is simplistic, it is limited by its 

inability to relocate unique regions of a sample between 

treatments. As a consequence, the spatiotemporal continuity 

for assessing the dynamics of individual nanoparticles cannot be 

achieved and, thus atomistic mechanisms leading to any 

observed changes in the catalyst remain unknown, if the 

identity of nanoparticles is not preserved throughout the 

process.[24,25] With ETEM, specialist sample holders allow for 

individual nanoparticles to be imaged or filmed with atomic 

resolution under elevated temperatures and gaseous 

environments, providing mechanistic details under realistic 

working conditions.[26-28] However, in ETEM analysis there is 

typically a compromise between imaging the sample to obtain 

the required information and preventing electron beam 

damage to the material.[29] Additionally, the efficacy of ETEM for 

liquid-phase reactions is hindered by: i) strong interactions of 

the e-beam with material of the sample holder window and 

solvent molecules, precluding high resolution imaging; ii) the 

formation of radical species from the solvent, due to knock-on 

damage, causing a divergence from realistic reaction 

conditions; and iii) liquid-phase reaction times often occurring 

over extended time periods.[30-32] 

 

Simple TEM imaging of nanocatalysts before and after a 

reaction (Figure 1A) cannot explain how and why the sintering 

process occurs due to the inherent non-uniformity of 
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nanoparticles. However, identical location TEM (IL-TEM) – 

pioneered by Mayrhofer et al[33] nearly a decade ago, where the 

material is deposited onto a finder grid, analysed, exposed to 

selected reaction conditions, and then re-analysed in a location 

identical to that prior to the reaction (Figure 1B) – is a further 

TEM analysis method which critically enables direct evaluation 

of individual nanoparticle evolution in ex-situ liquid-phase 

reactions (Table S1). Yet, to the best of our knowledge, the 

application of IL-TEM is currently limited to studying the 

coarsening of nanoparticles in electrocatalytic chemical 

reactions.[34-37] In this study, we combine the IL-TEM strategy 

with our nano test tube approach to provide a powerful 

methodology enabling preservation of the spatial continuity of 

nanocatalyst observation in preparative, liquid-phase, cross-

coupling reactions with nanoscale precision. Surprisingly, we 

revealed that PdNP undergo migration and coalescence during 

catalysis of the SM reaction, rather than increasing their size 

through dissolution-precipitation or Ostwald ripening which are 

commonly accepted key mechanisms of nanocatalyst sintering. 

Moreover, we show that the migration of PdNP appears to be 

dependent on their size and position on the support. 

Entrapment of catalyst nanoparticles within carbon nano test 

tubes, such as carbon nanotubes (CNT) and hollow graphitised 

nanofibres (GNF) (Figure 1C, D and E) permits effective control 

of the activity, selectivity and recyclability of nanocatalysts,[38-

41] whilst providing improved manoeuvrability and an excellent 

imaging platform for single-particle analysis by TEM. We 

combined and exploited all of these aspects in this study by 

selectively depositing PdNP within the GNF (PdNP@GNF).[42] 

Thus formed nanoparticles of metallic palladium have an 

average diameter of 6.87 ± 3.20 nm (N = 75) with >80% 

deposited within the internal channel of GNF (Figure 1F, G and 

H).  The corrugated interior of GNF produces regions known as 

step-edges that enable localisation of the nanoparticles 

(Figure 1)[22,23]  – ideal for catalytic reactions and subsequent 

analysis of individual, uniquely identifiable PdNP by IL-TEM. 

 

 

Figure 1. Schematics of the sampling (A) and IL-TEM (B) methods for the analysis of nanoparticle catalysts materials by TEM. Low and high magnification electron 
micrographs (C, E, F and G) and schematics (D and H) highlight the different internal and external structures of GNF. The int ernal step-edges provide effective anchoring 
points for metallic nanoparticles (G). A schematic overlaid on image G (H) highlights the step-edges (black lines) and shows that the nanoparticles (dark grey ellipses) 
are located adjacent to them, reflecting the maximization of van der Waals surface area and subsequent interactions. Scale bars are 20 nm (C), 5 nm (E), 50 nm (F) and 
10 nm (G and H). 

Experimental 

Catalyst Preparation 

PdNP@GNF preparation was carried out following the method 

outlined in Cornelio et al.[42] Materials characterisation is 

reported in Section C of the supporting information file. 

 
 



Journal Name  ARTICLE 

  

Please do not adjust margins 

Please do not adjust margins 

IL-TEM Experimental Procedure 

Loading of the nanocatalyst onto the TEM grid for the IL-TEM 

experiments was carried out as follows: to PdNP@GNF (10 μg, 

1 mol%) was added methanol (0.5 mL) and the resulting 

suspension was sonicated for 5 seconds. The suspension was 

deposited onto a gold mesh, graphene oxide on lacey carbon 

film TEM finder grid (EM Resolutions) suspended between 

tweezers, allowing for solvent evaporation between drops, until 

all the suspension had been deposited. The SM reaction 

conditions were obtained from Cornelio et al.[42] In a typical 

reaction for the IL-TEM experiments, to 4-iodonitrobenzene 

(14.0 mg, 0.056 mmol, 1 eq.) in a two-necked round-bottomed 

flask was added, phenyl boronic acid (8.9 mg, 0.073 mmol, 

1.3 eq), sodium acetate (10.6 mg, 0.13 mmol, 2.3 eq.) and the 

PdNP@GNF/TEM finder grid. A degassed solution of methanol 

(5 mL) was added via cannula and the resulting suspension 

heated under an inert atmosphere of argon at 70 °C for 24 h 

with no stirring. The TEM grid was removed and left to dry 

under ambient conditions. The solvent was removed in vacuo 

and the resulting solid analysed by 1H NMR spectroscopy 

(Bruker DPX-300, 300 MHz, CDCl3) for determination of TOF. 

TEM was performed using a JEOL 2100F transmission electron 

microscope with an accelerating voltage of 200 kV (field 

emission electron gun source, information limit 0.19 nm). EDX 

spectroscopy was performed using an Oxford Instruments 

XMax 80 T silicon drift detector with INCA Energy 250 

Microanalysis system.  

Results and Discussion 

Although the conventional sampling approach (Figure 1A) 

cannot provide any specific information for individual 

nanoparticles, using PdNP@GNF deposited on a TEM finder-grid 

allows for changes in individual nanoparticles to be monitored 

subsequent to immersion in a liquid reaction mixture by TEM. 

Interestingly, we found that the TEM grid composition, 

including both the film upon which PdNP@GNF is mounted and 

the metallic grid mesh that supports the film itself, is of critical 

importance. Systematic analysis of a variety of film 

(SiO/formvar, graphene oxide/lacey carbon and lacey carbon) 

and mesh (Cu and Au) combinations after exposure to the 

conditions of a typical SM reaction indicated that a graphene 

oxide on lacey carbon film supported on a gold mesh was the 

most suitable for IL-TEM analysis (Section D, SI). With the 

optimum composition identified, the IL-TEM experiments were 

performed as follows: (i) PdNP@GNF were deposited onto the 

finder grid and analysed by TEM (Figure 2B, E and H); (ii) the 

TEM grid, supporting the nanoreactor catalyst, was placed into 

a round-bottom flask containing 4-iodo-1-nitrobenzene, phenyl 

boronic acid, sodium acetate and methanol and the mixture 

heated with no agitation for 24 h at 70 °C; (iii) the grid was 

carefully removed from the flask and analysed by TEM (Figure 

2C, F and I); (iv) the procedure was repeated (Figure 2G and J). 

To ensure the PdNP were catalytically active in the SM reaction, 

the reaction mixture was analysed by 1H NMR spectroscopy 

after removal of the TEM grid from the reaction flask; a 

calculated turnover frequency (TOF) based on the available 

active sites of 4.2 x 104 h-1 was determined. A TOF value based 

on mol% of catalyst of 0.1 mol mol-1 h-1 was additionally 

calculated and found to be similar to both that observed in the 

bulk preparative reactions using our current catalyst (Section E, 

SI) and to that reported previously.[42]  

 

Figure 2. The Suzuki Miyaura reaction (A) and a series of TEM images comparing 
PdNP@GNF nanoreactors as prepared (B, E and H) and after their first (C, F and I) 
and second use (D, G and J) in the Suzuki-Miyaura reaction. Further analysis 
beyond the second use is complicated by the fragility of current TEM grids. 
Nanoparticle migration was observed in all cases, with some numbered to aid their 
identification. Amorphous material was noted within the internal channel of the 
nanofibres, attributed to solvent and reactant molecules (C, D and J). The mean 
diameter of nanoparticles imaged in panels B – D were 5.52±1.31, 5.60±1.32 nm 
and 5.59±1.33 nm (N = 8, pixel width = 0 .13 nm), respectively. This indicates that 
no growth had occurred in this region and highlights the issue of sole statistical 
treatment of images in that specific information relating to movement and growth 
of nanoparticles may be lost. In addition to carbon and palladium, EDX 
spectroscopy of the PdNP@GNF in panels E – G confirmed the presence of sodium 
and oxygen, attributed to the sodium acetate base used in the reaction (J) (gold 
originated from the mesh of the TEM grid). No change in the interplanar d-spacing 
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obtained by HR-TEM from different PdNPs before the first (L) and after the second 
use (M) confirmed that the oxygen observed in the EDX spectra was not due to 
oxidised PdNP. Scale bars are 20 nm (B – G), 50 nm (H – J) and 5 nm (L and M). 

Comparing TEM images of PdNP@GNF prior to and after one 

and two uses (Figure 2B - J), the IL-TEM methodology allows the 

fate of individual PdNP to be followed by directly imaging their 

positions and sizes. IL-TEM imaging revealed that, from one 

reaction cycle to another, the nanoparticles do not dissolve or 

move far away from their original locations meaning individual 

NPs can be numbered and reliably monitored. Investigation of 

the particle size evolution indicates no significant contribution 

of Ostwald ripening under the SM reaction conditions, which 

has a distinct signature of smaller particles decreasing and 

larger particles increasing in size.[43] Indeed, careful analysis of 

the nanoparticles encircled in Figure 3A and B shows smaller 

nanoparticles in the vicinity of a larger one increasing in size 

after exposure to the reaction conditions, thus providing clear 

evidence of nanoparticle migration and coalescence controlling 

the coarsening dynamics. The observation of organic material 

within the nanofibre (Figure 3B, dashed white line,) is due to 

reactant and solvent molecules, thus confirming their 

accessibility to the catalyst nanoparticles. 

 

Figure 3. An increase in the size of small PdNPs (A) after cycle 1 (B) was noted, 
indicating that particle migration and coalescence accounts for PdNP coarsening. 
No obvious increase in the size of the larger adjacent nanoparticle would appear 
to rule out the role of Ostwald ripening under these conditions. The region of 
contrast highlighted by the dashed white line shows that the reagents were able 
to access the internal cavity of the GNF. Scale bars are 20 nm. 

As migration appeared to be the main type of PdNP dynamics, 

IL-TEM allowed us to study the directionality of nanoparticle 

movement: smaller nanoparticles (<5 nm in size) exhibited 

short-range (<20 nm) transverse migrations perpendicular to 

the GNF long axis (Figure 4Ai, particles 6 and 7 between Figure 

2B and C), but larger nanoparticles (>5 nm) displayed long-

range, longitudinal migrations parallel to the GNF long axis 

(Figure 4Aiii), in some cases by up to 50 nm (particle 11 between 

Figure 2F and G). The size-dependent migrations can be 

explained by the extent of van der Waals interactions between 

nanoparticles and the graphitic step-edges of GNF, exploited in 

preparative catalysts in our previous works.[38-41] Nanoparticles 

with smaller diameters than the height of the step-edge (<5 nm) 

have an excellent geometric fit, maximising van der Waals 

contact and consequently limiting migration to predominantly 

transverse motion around the circumference of the GNF (Figure 

4B) and, in some instances, a short-range longitudinal motion 

down the graphitic step-edge, but critically not over the step-

edge. In contrast, nanoparticles larger than the step-edge 

(Figure 4B) have a poorer geometric fit leading to weaker van 

der Waals interactions and subsequently less restricted 

migration (crossing more than eight step-edges in the case of 

particle 11 between Figure 2F and G), without preferential 

direction. Importantly, as Ostwald ripening does not appear to 

be significant, our observation of size-dependent migrations 

would suggest that growth of PdNP can be totally inhibited by 

enhancing van der Waals interactions between PdNP and the 

support material to such an extent that growth by particle 

migration and coalescence also becomes unfavourable, thus 

leading to a durable palladium nanocatalyst for wide range of 

preparative cross-coupling reactions. 

 

Figure 4. Schematics of PdNP migration in graphitised nanofibres. The observed 
behaviour can be explained by looking at the direction the nanoparticle has 
travelled. Particles can exhibit transverse movement along the step-edge, 
perpendicular to the growth axis of the nanofibre (Ai) or move away from the step-
edge, parallel to the growth axis of the nanofibre, if the van der Waals interaction 
is not sufficient, in short range longitudinal migration (Aii). If the nanoparticle has 
sufficient energy to undergo long range longitudinal migration (Aiii) it can move 
down to the next step-edge. To reverse this process would require sufficient 
energy to traverse the step-edge which is unlikely to happen because it is an 
energetically unfavourable process. The size of the nanoparticles, with respect to 
the step-edge, determines the strength of their van der Waals interaction with 
smaller nanoparticles possessing a better geometric fit relative to larger 
nanoparticles (B). 

Conclusions 

In summary, we have successfully applied an innovative 

combination of IL-TEM analysis and the nano test tube 

approach to investigate the behaviour of supported metal 

nanoparticles as catalysts of liquid-phase, preparative 

reactions. We have solved the inherent practical challenges 

associated with IL-TEM analysis of nanocatalysts used in liquid 

reactions and developed a method that can provide not only 

structural information on individual nanocatalysts, but 

complementary local-probe chemical analysis by means of EEL 

and EDX spectroscopy. We have demonstrated that IL-TEM 

analysis of PdNP within GNF allows the evolution of individually 

identifiable nanoparticles to be tracked, demonstrating that 

PdNP remain solid during the reaction (i.e. do not dissolve and 

re-precipitate as commonly perceived), and that nanoparticle 
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migration and coalescence is the principle mechanism 

decreasing the active surface area under the conditions of the 

Suzuki-Miyaura reaction. These results suggest that the pseudo-

homogeneous mechanism proposed for palladium and other 

metal nanoparticles, through dissolution-precipitation events, 

may not be as prevalent as expected from previous studies 

using the sampling approach,[25] thus highlighting the 

importance of IL-TEM for providing key mechanistic insights for 

nanocatalysis. Furthermore, the spatiotemporal continuity of 

IL-TEM allows to monitor the evolution of uniquely defined 

nanoparticles, imaged before and after the reaction cycles, 

clearly indicated that Ostwald ripening – the most widely cited, 

but hardest to control, mechanism of nanoparticle growth – is 

not solely responsible for the nanoparticle coarsening observed 

under the investigated reaction conditions. Moreover, we have 

shown that the graphitic step-edges of the nanofibres were 

essential for determining the direction and magnitude of 

nanoparticle migration during catalysis. Two different 

migrational modes – longitudinal (parallel to the long axis of the 

nanofibre) and transverse (perpendicular to the long axis of the 

nanofibre) – were identified, with a clear size-dependence to 

these migrations observed. Insights gained from our 

observations on the relationship between the growth and 

migration of nanoparticles and the morphology of the graphitic 

surface offers a powerful strategy for engineering highly 

durable carbon supports, with step-edges matching the size of 

catalytic centres. This may ultimately lead to the inhibition of 

nanoparticle growth and subsequent deactivation as coarsening 

by particle migration and coalescence can effectively be 

controlled in such a fashion. As such, we offer new hope for the 

development of future nanocatalytic materials, particularly 

those applicable to environmentally- and economically-

sustainable chemical synthesis. 
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