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ABSTRACT: Sub-nanometre Re clusters confined in a single-walled carbon nanotube are 

activated by the 80 keV electron beam to promote the catalytic growth of a new carbon nanotube. 

Transmission electron microscopy images the entire process step-by-step, with atomic resolution 

in real time, revealing details of the initial nucleation followed by a two-stage growth. The atomic 

dynamics of the Re cluster correlate strongly with the nanotube formation process, with the growth 

accelerating when the catalyst becomes more ordered. In addition to the nanotube growth catalysed 

by Re nanoclusters, individual atoms of Re released from the nanocluster play a role in the 

nanotube formation. 

 

Chemical vapor deposition (CVD) is one of the most valuable synthetic processes where 

inexpensive, abundant small molecules, such as methane or ethanol, are transformed, in a single 

step, into high-value materials, such as graphene1 or carbon nanotubes2. The harsh conditions of 

CVD (e.g. high temperature, highly dynamic gas-solid interface) prohibit the use of traditional 

analytical methods and, therefore, preparative CVD has been developing mainly through 

empirical, trial-and-error approaches3. In the context of carbon nanotubes, CVD is recognized as 

the only viable method for mass production of these materials, but atomistic mechanisms of 

nanotube growth are still uncertain, for example, the state of the metal catalyst (molten or solid), 

the composition of the catalyst (e.g. pure metal or metal carbide), and the pathways of carbon atom 

transport (e.g. across the surface or through the bulk of the catalyst) are still debated. In this study, 

we shed light on the fundamental aspects of the nanotube formation process by establishing a 
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relationship between nanotube nucleation and growth, and the atomic structure of the nanocatalyst. 

In our experiments, transformations are promoted by energy of the electron beam, rather than heat, 

laser or electric arc, which allows us to follow the entire process at the atomic scale, capturing 

images of all key stages, allowing us to monitor directly the state of the catalyst nanocluster and 

simultaneously the nanotube growth, using rhenium nanoclusters as an archetypal catalyst. 

 

Figure 1. a) The 80 keV electron beam of TEM supplies kinetic energy to carbon atom (ET) 

insufficient to overcome the barrier for irreversible displacement (Ed). However, b) in the presence 

of metal atom inside nanotube the barrier is lower (Ed’) such that C-atoms are selectively removed 

from SWNT in vicinity of the metal, either leaving the system (top) or remaining adsorbed on the 

metal (bottom, adsorbed C-atoms are highlighted yellow). The carbon atoms displacement from 

SWNT and retention on metal leads to formation of new structures inside nanotube. A comparison 

of nanotube formation in CVD c) with ChemTEM (d) demonstrates that reactive carbon atoms are 

formed via metal catalysed decomposition of molecules or carbon nanotube sidewall respectively, 
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in both cases leading to diffusion of carbon atoms across the nanocatalyst to form a new nanotube 

structure (outlined with dotted lines). 

Amongst analytical methods, environmental transmission electron microscopy (ETEM) is able 

to recreate the conditions of CVD synthesis and image nanotube growth at the individual nanotube 

level. ETEM showed, for example, that FeC3 catalyst nanoparticles behave as fluctuating solid 

nanocrystals during nanotube formation, and revealed an ‘incubation period’ characterised by a 

reversible formation of metastable carbon caps, preceding a period of fast nanotube growth.4 

Similarly, another ETEM study shows a slow initial stage of carbon cap nucleation on Ni, followed 

by a period of fast growth.5 Nucleation of the carbon cap (also known as the ‘yarmulke’ 

mechanism),6 that determines the diameter, chiral indices [n,m] and functional properties of the 

nanotube, is recognized as a rate-limiting stage in CVD with an activation barrier of ~2.7 eV.5 

Theoretical modelling predicts that the stability of a carbon cap is dictated by a match of its atomic 

structure to the atomic lattice of metal catalyst during the nucleation step 7, suggesting significant 

epitaxial character in the nanotube formation process. In addition, Rodríguez-Manzo et. al. directly 

observed the nucleation of a nanotube on the surface of a relatively large metal nanoparticle at 

600 °C in ETEM with the 300 keV e-beam being suggested to facilitate the growth of nanotube.8 

A close relationship between the atomic structure of the catalyst surface and the nanotube structure 

was also proposed on the basis of highly chirality-selective nanotube growth, attributed to a well-

defined atomic interface between the growing nanotube and the metal catalyst particle, for NixFe1-

x and W6Co7.
9,10 However, presently there is no methodology that can probe directly the nanotube-

catalyst interface, with atomic resolution, during the process of nanotube formation. While the 

recent developments in ETEM analysis are instructive for studying catalysis on nanoparticles, this 

methodology is not suitable for metal nanoclusters due to their extremely dynamic nature, and 
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inability to decouple the thermal effects from the contribution of the e-beam. Hence the overall 

atomic dynamics of nanotube nucleation and growth is not sufficiently understood to enable CVD 

synthesis to be rationalized. 

In a CVD process, carbon is delivered to the catalyst in the form of adsorbed molecules, 

followed by their decomposition activated by heat or plasma. Thus, liberated reactive carbon atoms 

diffuse across the catalyst and join together to form a nanotube (Figure 1c). Our approach is 

different to ETEM as we employ a pre-formed single-walled carbon nanotube (SWNT) as a 

substrate for catalytic metal nanoclusters positioned within the nanotube cavity (denoted as 

M@SWNT). Instead of heat, we merely employ the kinetic energy of the 80 keV electron beam, 

a well-defined fraction of which is transferred directly to carbon atoms thus moving them from 

equilibrium positions, breaking bonds and generating reactive carbon atoms knocked out of the 

SWNT in the vicinity of the catalyst (Figure 1). The choice of the energy of the e-beam is very 

important, as the 80 keV e-beam transfers an amount of kinetic energy (ET) to the individual carbon 

atoms that is just below the threshold required to knock a C-atom from the carbon framework of a 

pristine SWNT, e.g. the SWNT remains virtually intact under these conditions (Figure 1a) unless 

the nanotube atoms are ‘activated’ by direct contact with the transition metal 11,12 shown in our 

previous work to lower the threshold for displacement of carbon from the SWNT by the e-beam 

(Figure 1b).13 Similar to CVD, the metal nanocluster in our experiments acts as a catalyst for 

dissociation of C-C bonds (Figure 1d), and immobilization of the catalyst inside the SWNT enables 

continuous, atomically-resolved imaging of its structure during chemical reactions promoted by 

the catalyst. Harnessing the electron beam as a promoter of chemical reactions and an imaging tool 

at the same time enables imaging of atomic dynamics in direct space and real time: when ET 

exceeds the activation barrier for atom displacement (Ed) a reaction takes place, with the reaction 
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rate being controlled by the dose rate of the electron beam (j, e/nm2·s).14 Both, ET and j are 

determined exclusively by the experimental settings of the TEM which can be readily tuned to 

image chemical transformations of organic or inorganic molecules – an approach named 

ChemTEM,11,15,16 which has been successfully applied to image the atomistic mechanisms of 

polycondensation reactions15,17, fullerene formation18 and graphene nanoribbon growth19, as well 

as the Stone-Wales rearrangement in graphene20. In this approach, the chemical nature of the metal 

inside the SWNT is crucially important as the metal must both be sufficiently active towards the 

activation of C-C bonds and be able to retain adsorbed atomic carbon generated from the SWNT 

by the e-beam, such that a reactive environment with a steady supply of carbon is created around 

the catalyst (Figure. 1b) which replicates CVD conditions. Previously, we demonstrated the 

unusual ability of individual Re atoms to promote rearrangement of carbon atoms in the SWNT 

sidewall21, and in this study we utilize small clusters of ca. 30-60 Re atoms, embedded within 

SWNTs (Re@SWNT), in order to elucidate atomistic mechanisms of nanotube growth (Figure 

1d). 
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Figure 2. Time series of AC-HRTEM images following the formation of a carbon nanotube on a 

nanocluster of Re embedded within a host-SWNT (Re@SWNT). Orange, green, red, blue and 

purple short arrows indicate the direction of nanotube nucleus formation (carbon shell), positions 

of dynamic single Re atoms, single atom contact sites in nanotube, newly nucleated SWNT wall 

and diffused Re atoms respectively. 

 

Time-series aberration-corrected high-resolution TEM (AC-HRTEM) images of Re@SWNT 

reveal that activated by the 80 keV e-beam at the dose rate of 1 × 106 e-/nm2·s, the Re nanocluster 

catalyzes the ‘parasitic growth’ of a new SWNT within the inner cavity of the original SWNT 

(Figure 2, Video S1). The identity of the metallic clusters in the nanotubes was confirmed by 

energy dispersive X-ray (EDX) spectroscopy using a focused 100 keV electron beam to irradiate 

a small bundle of 5–10 filled SWNTs (Figure 3a). The presence of Re in the SWNT clearly lowers 

the barrier for displacement of C-atoms (Ed’) below the maximum ET received by the carbon atoms 

in collisions with the 80 keV electrons and, as a result, the metal effectively promotes the formation 

of small defects in the SWNT sidewall. When the first one or two carbon atoms are removed from 

the graphenic lattice, the threshold for removal of subsequent C-atoms form the SWNT is 

significantly reduced by approximately 4-7 eV (Ed’’<< ET), such that the defect in the SWNT 

provides a consistent supply of atomic carbon to the metal nanocluster. Some metals, such as Os 

under these conditions are not able to retain atomic carbon, leading to fast defect propagation and 

rupture of nanotube12, however Re nanoclusters appear to be able not only to activate the removal 

of C-atoms from the SWNT but also be able to adsorb an appreciable amount of C-atoms, retaining 

them in the SWNT cavity. A Re nanocluster confined in the middle of a SWNT (with another Re 

nanocluster to the right; Figure S1) and irradiated by the e-beam, catalyzes formation of a semi-
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circular carbon shell after only a few seconds (Figure 2, 0 s-9 s frames). There is a clear induction 

period in nanotube growth (7 s–12 s) as the carbon shell capping the nanocluster grows with a 

slow rate of ~0.005 nm/s, whilst the shape and orientation of the carbon cap change rapidly and 

continuously (indicated with an orange arrow, Figure 2, frames 0 s–12 s), until an elongated shape 

aligned with the SWNT axis is formed (Figure 2, 12 s–17 s frames). The growth of the carbon cap 

is blocked in certain directions by steric hindrance from the wall of the host SWNT. Benefiting 

from the flexible atomic structure of the Re cluster, the carbon cap easily reorganizes its orientation 

on the surface of the Re cluster. During this process the carbon cap becomes the nucleus of the 

future nanotube.  
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Figure 3. a). EDX spectroscopy confirms the identity of the metal clusters within the SWNT as 

Re; Cu-peaks are due to the TEM specimen grid. b) Schematics of the e-beam stimulated SWNT 

growth catalyzed by Re nanocluster. c) Plot showing the changing length of the growing nanotube 

measured by AC-HRTEM as a function of time. The growth starts from 7 s. The exponential decay 

function from 7 s to 112 s includes the Nucleation Stage (7 s-17 s) and Growth Stage 1 (17 s–112 

s). The linear increase from 113 s-159 s is Growth Stage 2. Blue dashed lines are fitted by an 

exponential decay function and a linear equation respectively. The key events during the growth 

of the SWNT are highlighted by red arrows. The error in the measured length for each data point 

is ± 0.03 nm due to the size of the pixels in the individual TEM images; the error of the reaction 

times given for each data point is ± 1.0 s due to the exposure time used. 

 

The Nucleation Stage (7 s–17 s) and Growth Stage 1 (Figure 2, 17 s-112 s) are described by an 

exponential function (nanotube length, l, nm; time, t, s; variance R2 = 0.967; Figure 3):  

𝑙 = −0.96 × 𝑒(−
𝑡

110.53
) − 0.95 × 𝑒(−

𝑡
19.63

) + 1.63 

where the Re nanocluster continues re-shaping and re-structuring, switching between crystal-like 

and liquid-like states (Figure 2, 7 s-103 s frames). The individual Re atoms increasingly engage in 

interactions with the host SWNT (Figure 2, green arrows). In this stage, the SWNT grows on the 

interface between the Re nanocluster and the SWNT indicating the diffusion of carbon atoms 

through the body of the Re nanocluster.8,22 Towards the end of this period, the rate of new nanotube 

growth decelerates due to the depletion of readily available atoms of carbon augmented by the 

energy barrier for SWNT formation, which is a common characteristic of such chemical reactions.  

Next, in Growth Stage 2 (Figure 3, 113 s-159 s) described by the linear function (R2 = 0.944): 

𝑙 = 0.017 × 𝑡 − 0.52 
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the behavior of the catalyst nanocluster is strikingly different: Re atoms become ordered into a 

stable crystal-like lattice (Figure 2, 113 s-159 s frames), and the wall of the growing nanotube 

appears to emanate from a specific facet of the Re nanocrystal (Figure 2, blue arrows), resulting 

in a spurt of growth with a constant rate of ~0.02 nm/s, which indicates the catalytic growth of the 

SWNT in Growth Stage 2 is a zero-order chemical reaction. This observation is more consistent 

with the surface diffusion rather than the body diffusion mechanism in Stage 1.23 This is consistent 

with the expectation that an ordered atomic metal lattice can provide a stable surface effectively 

lowering the energy barrier for SWNT formation. The degree of crystallinity of the Re cluster in 

the two growth stages is quantified and discussed in Figure S6 (Supporting Information). In similar 

fashion to Growth Stage 1, single Re atoms released from the cluster play an important role – 

associated with the sites of defects in the host SWNT, they act as a vehicle for drawing carbon 

atoms from the host SWNT to the nanocatalyst. These dynamic Re single atoms are observed only 

when the Re cluster is reacting with the host SWNT as shown in Figure S4 (Supporting 

Information). The extensive bonding between the Re atoms of the cluster with the carbon atoms 

of the host SWNT could reduce the binding energy between Re atoms in the cluster and thus make 

the Re atoms on the surface easier to dissociate from the cluster. In addition, individual Re-atoms 

are highly mobile and can diffuse along the newly grown nanotube, interacting with carbon atoms, 

then diffusing back to re-join the nanocluster (Figure 2, 159 s-231 s frames), which affects the 

crystallinity of the Re nanocluster and further interrupts the catalysis process demonstrating the 

strong correlation between the atomic structure and the catalytic activity of the nanocatalyst 

(Figure. 3b). Similar metal catalyst diffusion effects during the growth of CNT were observed for 

bigger metal nanoparticles of ~8 nm.24 Finally, the nanotube growth is halted by a steric clash with 

another nanotube growing from a neighboring nanocluster, and when all Re atoms are gathered 
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back within the nanocluster the precise length of the final nanotube can be measured to be 2.5 nm 

(Figure 2, 256 s frame). The defect caused by the gradual loss of carbon atoms of the host SWNT 

is healed via reconstruction of host SWNT lattice, thus causing deformation where the single Re 

atoms interact with the host SWNT, as explained in Figure S5 (Supporting Information). The 

diameter of the newly formed SWNT is determined by the diameter of the Re cluster and 

additionally restricted by the host SWNT. Chiral index of the newly formed SWNT is determined 

to be (4, 8) (Figures S2, S3). 

The observed slow nucleation followed by fast growth bears a striking resemblance to CVD 

growth inferred from ETEM and other related measurements.4-10 However, unlike ETEM and other 

methods, ChemTEM imaging follows the entire dynamics of the nanocatalyst at the atomic level 

simultaneously with the growth of the nanotube, revealing strong correlation between the growth 

rate in real time and the atomic structure of the nanocatalyst. We demonstrate that the nucleus of 

the nanotube (carbon cap) and the nanocatalyst both undergo highly dynamic transformations, 

which substantiates the theoretical prediction that the metal nanocatalyst undergoes drastic 

dynamics during SWNT growth.25 Thus, the traditional view that the carbon cap restructures 

extensively until it reaches an optimum binding with the catalyst surface, which remains static, 

appears to be an oversimplification. Our observations suggest that the nanotube nucleation process 

can be described more accurately as a symbiotic relationship between the carbon shell and the 

metal nanocluster, such that they affect each other and adapt to each other’s structure at the same 

time, until a mutually stable configuration is reached. The observed fast linear growth correlates 

with the crystal-like atomic structure of the Re nanocluster and is consistent with epitaxial 

mechanisms proposed for CVD.9,10 Another significant observation, which can be revealed only 

by ChemTEM is the active participation of single metal atoms in the nanotube formation process. 
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Dissociation of individual atoms from the parent metal nanocluster was proposed for 

heterogeneous nanocatalysis, and here we demonstrate directly that single metal atoms play a role 

in the formation of the nanotube.26 Being chemically active, single Re atoms appear to activate 

carbon atoms in the host-SWNT and may be responsible for delivery of carbon to the nanocluster. 

Furthermore, single atoms of Re migrate over long distances and may catalyze transformation far 

away from the catalytic nanocluster, thus putting the classical division of the nanotube growth 

mechanisms into two simple categories – the base-growth and the tip-growth into question. The 

‘roaming’ metal atoms appear to play a significant role during the nanocatalysis, which could be 

revealed only through the ChemTEM measurements (17 s, 26 s, Figure 2). The observation of these 

single Re atoms proves the theoretical prediction that the metal nanocluster could release the 

‘dynamic single atom’ during the catalytic reaction which promotes the catalytic process.27,28 

 

In this study, we directly image the parasitic growth of SWNT catalyzed by Re metal 

nanoclusters and stimulated by e-beam, in real time and with atomic resolution. In contrast to 

ETEM and liquid cell TEM where the impact of the e-beam is treated as an undesirable and 

unavoidable side effect, our approach directly harnesses the energy transfer from the e-beam to 

the atoms to initiate specific chemical reactions. Time-series imaging reveals that nanotube growth 

on Re nanoclusters promoted by the e-beam exhibit features resembling catalytic CVD processes. 

The symbiotic relationship between the nanocatalyst and nanotube, resembling a mechanism 

predicted in one the theoretical studies29, demonstrates directly that the efficiency of nanotube 

formation depends on the crystalline order of the metal atoms in the nanocatalyst, which improves 

the mechanistic understanding of nanotube nucleation and growth. In addition, we observe directly 

the highly dynamic single Re atoms during the growth of the SWNT which appear to contribute 
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to and promote the catalytic process, as hypothesized previously for many reactions on metal 

nanoclusters or nanoparticles. 

 

Materials and Methods. Synthesis of Re@SWNT. Arc-discharge SWNTs were annealed in air to 

open their termini. A three-fold excess by weight of Re2(CO)10 and the freshly opened SWNTs 

were sealed under vacuum in a quartz ampoule and heated at a temperature slightly above the 

vaporisation point of Re2(CO)10 (150 °C) for 3 days to ensure complete penetration of the SWNT 

by the Re2(CO)10 vapors. The Re2(CO)10 molecules were then decomposed into metal clusters 

inside the nanotubes either thermally (i.e., by heating above their decomposition temperature) or 

under the e-beam of TEM. In both cases, small clusters of metals are formed within SWNTs 

Characterization. The Re@SWNT sample was dispersed in methanol and drop-cast onto lacey 

carbon- carbon coated copper TEM grids. Time-series AC-HRTEM images were carried out on 

an image-side Cs-corrected FEI Titan 80–300 TEM operated at 80 kV at room temperature. The 

TEM specimen was heated in air at 150 °C for 5 min shortly before insertion into the TEM column. 

The electron flux applied to the samples was 1 × 106 e-/nm2·s, with exposure times of either 0.5 s 

or 1.0 s. Local energy dispersive X-ray spectroscopy (EDX) was carried on a JEOL 2100F operated 

at 100 kV. The Re cluster catalyzed growth of carbon structures stimulated by the 80 keV e-beam 

is reproducible within our study, from sample to sample and area to area, in which we are careful 

to control the parameters of the e-beam and the size of the Re clusters by the SWNT confinement 

(variable parameters, such as the electron beam dose rate and total dose, or the size of the Re 

cluster may influence the overall timescale of the process, but not the principal mechanism). 
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Supporting Information.  

Additional TEM images of the sample and time series; analysis of the newly formed SWNT (file 

type, PDF) 

Supplementary video 1: the parasitic growth of SWNT catalyzed by sub-nanometre Re cluster 

stimulated by e-beam (file type, .AVI video) 
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