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We introduce and investigate an open many-body quantum system in which kinetically constrained
coherent and dissipative processes compete. The form of the incoherent dissipative dynamics is
inspired by that of epidemic spreading or cellular-automaton-based computation related to the
density-classification problem. It features two non-fluctuating absorbing states as well as a Z2-
symmetric point in parameter space. The coherent evolution is governed by a kinetically constrained
Z2-symmetric many-body Hamiltonian which is related to the quantum XOR-Fredrickson-Andersen
model. We show that the quantum coherent dynamics can stabilize a fluctuating state and we
characterize the transition between this active phase and the absorbing states. We also identify a
rather peculiar behavior at the Z2-symmetric point. Here the system approaches the absorbing-state
manifold with a dynamics that follows a power-law whose exponent continuously varies with the
relative strength of the coherent dynamics. Our work shows how the interplay between coherent and
dissipative processes as well as symmetry constraints may lead to a highly intricate non-equilibrium
evolution and may stabilize phases that are absent in related classical problems.

I. INTRODUCTION

A paradigmatic setting for the study of nonequilibrium
phenomena is provided by stochastic processes featuring
absorbing states [1, 2], i.e., configurations which, once
reached by the dynamics, can no longer be left. These
systems typically follow elementary rules but display in-
triguingly complex nonequilibrium behavior. They de-
scribe the dynamics of epidemic spreading, the propaga-
tion of opinions in a group of voters and also relate to
computing tasks, such as the density-classification prob-
lem [3–8]. Despite their microscopic simplicity, systems
with absorbing states show phase transitions, even in
one dimension, with universal behavior that possesses
no counterpart in equilibrium. Already in the classi-
cal domain these models are challenging to investigate
and analytic solutions remain scarce [1]. They become
even more complex when quantum effects, such as co-
herence and entanglement, are introduced, which makes
them ideal benchmark problems for numerical methods
[9, 10] as well as for gauging the capabilities of quantum
simulators [11–15].

The directed percolation hypothesis asserts that generic
(classical) models with a single absorbing state should
display emergent physics in the directed percolation uni-
versality class [16, 17]. This “rule” is rather general, but
it can be broken by introducing additional symmetries.
An example is the so-called Domany-Kinzel cellular au-
tomaton [18], which — at a particularly symmetric point
— features two absorbing states and a universality class
known as compact directed percolation [1, 2]. Recently, it
has been shown that also quantum effects may alter the
universal physics of many-body systems with absorbing
states. This was demonstrated in the context of Marko-
vian open quantum systems [19–26] featuring kinetically-

constrained dynamics [9, 27–39], which are of interest
also in closed-system settings [40–44]. Recent works have
shown that a quantum version of the so-called contact
process [1] — possessing a single absorbing state — does
not belong in the directed percolation universality class
[9, 10] and that quantum effects even allow for a novel
type of absorbing-state phase transitions [45].

In this paper, we introduce a kinetically-constrained
open quantum system, depicted in Fig. 1(a-b), which al-
lows us to investigate how quantum effects impact on the
critical behavior of nonequilibrium processes with two
absorbing states. By analyzing both stationary and dy-
namical properties we unveil a rich nonequilibrium phase
diagram and obtain two key results. First, we show the
existence of a fluctuating phase — stabilized by quan-
tum effects — which prevents the system from approach-
ing the absorbing-state manifold [as shown in Fig. 1(c)].
Such a novel phase is not supported by classical dynam-
ics but can solely be observed when quantum coherence
exceeds a certain strength. Second, at a Z2-symmetric
point — in which the classical dynamics of our model re-
sembles that of the (symmetric) Domany-Kinzel cellular
automaton — we observe critical power-law relaxation
towards the absorbing-state manifold. The associated
exponent appears to continuously vary from diffusive be-
havior t−1/2 for vanishing quantum coherence — as ex-
pected for compact directed percolation [2] — to a su-
perdiffusive one [46] for large coherent rates [as sketched
in Fig. 1(d)]. Our findings demonstrate that open quan-
tum systems with two absorbing states can display in-
triguing nonequilibrium physics, where quantum effects
lead to novel stationary phases and dynamical behavior.
Our numerical results suggest that this phenomenology
can be observed even in one-dimensional quantum sys-
tems.
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FIG. 1. Open quantum system with two absorbing states. (a) Quantum chain made of two-level sites, which can assume
the states • and ◦. Each site can undergo a (classical) incoherent state change ◦/• •/◦, occurring a rate γ•/◦ = γ(1± κ) per
neighbor in the state •/◦ [see Eq. (4)]. Sites can further coherently change their state with rate (“Rabi frequency”) Ω(1− α),
if its neighbours are both in the same state, or Ω(1 + α), otherwise [see Eq. (2)]. (b) This system is dual to a domain-wall
model, with kink (◦•) domain-wall particles A and anti-kink (•◦) domain-wall particles B. For α = 1 (absorbing-state regime),
these can only hop, both coherently and incoherently, and annihilate with rates 2γ•/◦. (c) For large (in modulus) values of the

parameter Γ = κγ2/Ω2 and α = 1 the stationary state is one of two absorbing states, according to the sign of Γ. For small
|Γ|, instead, a stationary fluctuating phase emerges, as predicted by Eq. (5). (d) The density of domain-wall particles nDW

[cf. panel (b)] decays with time t as a power-law for α = 1 and κ = 0. The decay law varies from a diffusive behavior for
Ω/γ = 0, to a superdiffusive one, t−δ with 1/2 < δ < 1, for Ω/γ 6= 0 [see Fig. 4(b) below].

II. THE SYSTEM

We consider a quantum chain, with periodic boundary
conditions, made of sites that can either be in state |•〉 or
in state |◦〉 [cf. Fig. 1(a)]. For convenience, we introduce
the Pauli matrices: σx = |•〉〈◦|+ |◦〉〈•|, σy = −i|•〉〈◦|+
i|◦〉〈•| and σz = |•〉〈•| − |◦〉〈◦|.

The dynamics of the system state ρ(t) is governed by
the quantum master equation [47–49]

ρ̇(t) = −i[H, ρ(t)] +D[ρ(t)]. (1)

The quantum Hamiltonian is given by

H = Ω

L∑
k=1

Kkσ
x
k , with Kk = 1− ασzk−1σ

z
k+1, (2)

which describes coherent transitions at site k occurring
with a rate (“Rabi frequency”) which depends on the
state of its neighboring sites [cf. Fig. 1(a)], as enforced
by the operator Kk for α > 0. For the special value
α = 1, Kk implements a so-called hard constraint: tran-
sitions take place solely when neighbouring sites are in
different states, as shown in Fig. 1(a), analogously to the
so-called XOR-Fredrickson-Andersen model [50]. Note
that H possesses a Z2 symmetry, since it is invariant
under the transformation σxk → σxk and σzk → −σzk.

The second contribution in Eq. (1) accounts for dissi-
pative classical processes and has the form

D[ρ] =
∑
k,ν

[
Lk,νρL

†
k,ν −

1

2

{
L†k,νLk,ν , ρ

}]
, (3)

where the Lk,ν are the so-called jump operators. The
rules depicted in Fig. 1(a) can be implemented through
four types of jump operators (ν = {◦+, ◦−, •+, •−}):

Lk,•± =
√
γ•σ

+
k nk±1 , Lk,◦± =

√
γ◦σ
−
k (1− nk±1), (4)

with σ± = (σx ± iσy)/2 and n = σ+σ− = |•〉〈•|. The
jump operators Lk,•± effectuate the transition |◦〉 |•〉

at site k when the right (k+ 1), respectively, left (k− 1)
neighbor of k is in state |•〉. Analogously, the operators
Lk,◦± effectuate the transition |•〉  |◦〉 at site k when
the right (left) neighbor of k is in state |◦〉 [cf. Fig. 1(a)].
We parametrize the corresponding classical transition
rates as γ•/◦ = γ(1 ± κ). Here, γ sets the overall rate
while κ ∈ [−1, 1] introduces a bias in the different pro-
cesses, making the transition |◦〉  |•〉 more likely for
κ > 0. By construction, the map in Eq. (3) possesses the
absorbing states |...◦◦◦...〉 and |...•••...〉. For α = 1 — in
the following referred to as the absorbing-state regime —
these are also eigenstates of the Hamiltonian in Eq. (2)
so that, in this regime, these are absorbing states for the
open quantum dynamics in Eq. (1). We note that the
above model may be, in principle, realized with Rydberg
atoms, as discussed in Refs. [39, 50].

As sketched in Fig. 1(b), the considered quantum sys-
tem is dual to a domain-wall model [51–54]. In the dual
lattice formed by bonds (and not by sites), one recog-
nizes two types of particles: particle A representing the
(kink) domain wall ◦• and particle B representing the
(anti-kink) domain wall •◦. These particles alternate in
space, delimiting the extension of clusters of consecutive
• or ◦ sites. Because of the rules introduced above, such
particles can both coherently and incoherently hop, and
be annihilated or generated in pairs AB or BA with dif-
ferent rates. Importantly, for α = 1, their number can-
not increase since pairs can only be annihilated and the
model becomes a two-species “reaction-diffusion process”
[1, 55, 56] with an additional quantum coherent dynam-
ics. In this case, the absorbing states are identified by
the states without AB or BA pairs. Thus, the density
of domain walls is a valid order parameter in the dual
lattice. Details of the mapping are provided in Appendix
A.
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FIG. 2. Mean-field phase diagram. (a) Magnetization
ZSS in stationary state I as a function of α and Γ. (b) Same
as in panel (a) for stationary state II, which also provides the
fluctuating phase shown in Fig. 1(c) for α = 1. Highlighted
in the plot are the α = 1 line, the absorbing-state phase tran-
sition points [cf. Fig. 1(c)], the two Ising-like critical points,
and the associated direction manifesting Ising criticality. (c)
Stationary magnetization ZSS along the dashed line crossing
the Ising critical point at Γ > 0 in panel (b).

III. MEAN-FIELD ANALYSIS

To qualitatively understand the nonequilibrium be-
havior of our system, we perform a mean-field analy-
sis, expected to be valid in sufficiently high dimensions.
The equation of state for the average “magnetization”,

Z =
∑L
k=1〈σzk〉/L, in the mean-field stationary state,

which we denote as ZSS, is [see Appendix B for details]

Ω2ZSS

(
1− αZ2

SS

)2
= γ2κ

(
1− Z2

SS

)
. (5)

This equation solely depends on the dimensionless pa-
rameter Γ = κγ2/Ω2, quantifying the relative strength
between classical and coherent dynamics, modulated by
the asymmetry parameter κ.

For α = 1, Eq. (5) features two solutions ZSS = ±1,
corresponding to the two absorbing states. However, for
Γ < 0 (Γ > 0) only the state with ZSS = −1 (ZSS = 1)
is stable, as shown in Fig. 1(c) [cf. stationary solution I
in Fig. 2(a)]. For large enough values of |Γ|, these are
the only physical solutions. However, moving within the
absorbing-state regime towards Γ → 0 with Ω 6= 0, a
stable fluctuating phase emerges at Γc = ±2/(3

√
3), as

shown in Fig. 2(b) and anticipated in Fig. 1(c). The
emergence of such “bi-stable” regime is reminiscent of
a first-order phase transition, which also appears in the
(mean-field) quantum contact process [30, 31].

To get insights into the origin of the nonequilibrium
phase transition, we soften the Hamiltonian constraint
and expand the analysis beyond the absorbing-state
regime, i.e., we consider α 6= 1, for which there exist no
absorbing states. The phase diagram in the Γ− α-plane
is shown in Fig. 2(a-b). The emergence of the station-
ary state II, shown in Fig. 2(b), is a consequence of the
appearance of two critical points, located at

(±Γc, αc) =

±4

5

√
8
√

6− 3

5
,

1

25
(11 + 4

√
6)

 , (6)

with stationary magnetization Zc = ±
√

2
√

2/3− 1. To

investigate the universal behavior of the system, we per-
form a perturbative expansion around the critical points.
For both points there is a special line in the Γ−α-plane,
parametrized by λ, along which there appears the break-
ing of an emergent symmetry [57]. The order parameter
behaves as |ZSS−Zc| ∝ ±|λc−λ|1/2, shown in Fig. 2(c),
with λc coinciding with the critical point. This is rem-
iniscent of a mean-field Ising model: for λ > λc, the
system is “paramagnetic” while for λ < λc two “ferro-
magnetic” solutions emerge with a stationary exponent
equal to 1/2.

IV. SINGLE-CLUSTER DYNAMICS

In the following we investigate whether signatures of a
fluctuating phase are already visible in a one-dimensional
system. We start by considering the case in which the
initial state of the system features a single cluster of sites
in |•〉, or, equivalently, a single pair of A-B domain-wall
particles [cf. Fig. 1(b)]. In the absorbing-state regime,
the number of clusters cannot increase. The only relevant
degree of freedom is thus the cluster length, equal to the
number of bonds between particles A and B, counted
from A onward. Such a single-cluster setting reduces to
an effective single-body problem, as detailed in Appendix
C.

We consider a system of length L that contains initially
a cluster of size L/2 (L even), focusing on the regime
κ ∈ [0, 1]. Here we calculate the probability P•(t) for
finding that, at time t, the cluster has length L, i.e., that
the system ended up in the absorbing state preferred by
the incoherent dynamics for κ > 0 [cf. Fig. 1(a)]. As
shown in Fig. 3(a), the approach to the stationary state
is slower the larger the ratio Ω/γ and the stationary value
of P• is smaller, see Fig. 3(b). This means that, while
the system ends up in the absorbing-state manifold, for
increasing Ω/γ the probability of finding the system in
state |... • • • ...〉 decreases. This is due to the fact that
the coherent dynamics gives rise to symmetric domain-
wall hopping. Thus, in the large Ω/γ regime, the asym-
metry introduced by κ becomes less relevant and there
are higher chances that the system approaches the state
|... ◦ ◦ ◦ ...〉. While this may suggest that a fluctuating
phase could emerge in the single-cluster setting, the de-
pendence of P• on the system size L shows that this is
not case. The stationary probability P• indeed converges
exponentially to 1, as shown in Fig. 3(c), indicating that
even in the presence of quantum effects the system be-
haves as in the classical limit, Ω = 0.

We now analyze whether quantum effects impact on
the dynamics at the Z2-symmetric point (κ = 0). In the
classical limit (Ω = 0) the system falls here into the com-
pact directed percolation universality class — just like
the (symmetric) Domany-Kinzel cellular automaton [18].
This can be seen, for instance, by studying the behav-
ior of the single-seed survival probability, S(t), defined
as the probability of being outside the absorbing-state
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FIG. 3. Single-cluster dynamics. (a) Probability P•(t)
of finding a cluster of length L as a function of time and of
Ω/γ, for κ = 0.5 and L = 50. (b) Stationary behavior of
P• for a system of L = 50 sites, as a function of Ω/γ and
κ. (c) Stationary probability 1 − P• as a function of L for
Ω/γ = 1.5, 2, 2.5 and κ = 0.5. (d) Behavior of the single-seed
survival probability S as a function of t for Ω/γ = 1, κ = 0,
and different values of L. Upon increasing L, a power-law
behaviour ≈ t−1/2 is approached.

manifold, at time t, when starting from a single site in
|•〉 [1, 2]. Such a single-seed initial condition has also
been widely investigated for the contact process, both
in its classical [1, 2] and, more recently, in its quantum
version [10, 34]. For the compact directed percolation
universality the probability S(t) displays power-law dy-
namics S(t) ≈ t−1/2. As shown in Fig. 3(d), this scaling
does not appear to change when coherent processes are
introduced, i.e., Ω increases.

V. MANY-BODY DYNAMICS IN 1D

So far the results suggest that, even in the presence of
coherent dynamical processes, the model behaves exactly
as in the classical limit, Ω = 0. However, we now show
that this is not the case and that quantum effects become
relevant when considering a genuine many-body setting.
We still focus on the absorbing-state regime (α = 1)
and take as initial state the Néel state |• ◦ •...◦〉. To in-
vestigate this setting, we use matrix product states and
employ a time-evolving-block-decimation algorithm [58–
60] that we developed using the package [61] which im-
plements basic algebraic operations [62]. We considered
system sizes up to L = 14, with periodic boundary con-
ditions, and used different bond dimensions and discrete
time-steps to check consistency of our results. In par-
ticular, we find that a bond dimension χ = 64 correctly
captures the time evolution of the considered observables
for all the cases we have simulated.

First, we investigate whether an emergent fluctuating

FIG. 4. Many-body tensor-network simulations. (a)
Magnetization Z, starting from the Néel state, for α = 1 and
κ = 0.1. The different sets of curves are for Ω/γ = 0, 0.5, 2, 3.
For each Ω/γ, we display results for L = 4, 6, . . . , 14. For
sufficiently large values of Ω/γ, upon increasing the system
size L, a fluctuating phase in which the magnetization remains
small emerges. The inset shows an estimated phase diagram.
(b) Estimate — fit of the numerical data for γt ∈ [1, 2] —
of the dynamical critical exponent δ as a function of Ω/γ,
for κ = 0 and L = 14. The insets show, in a log-log plot,
the domain-wall density, nDW, as a function of time, for L =
4, 6, . . . 14, with Ω/γ = 0 (left) and Ω/γ = 1 (right). The
results presented are for a bond dimension χ = 64.

phase [cf. Fig. 1(c)] can be observed in this many-body
setting. To this end, we study the time-evolution of the
average magnetization Z, considering κ > 0. As shown in
Fig. 4(a), for small values of Ω/γ, Z tends to a stationary
value associated with an appropriate statistical mixture
of the two absorbing states. Upon increasing the system
size L, the stationary magnetization increases towards
the value 1. This indicates that the stationary state con-
verges to the absorbing state |... • • • ...〉, which is the one
preferred by positive values of κ. This scenario is identi-
cal to that in the classical limit (Ω = 0), suggesting that
for small values of Ω/γ the Hamiltonian (2) acts as a per-
turbation which merely introduces an additional diffusive
contribution with rate Ω2/γ [27] (see also Appendix D).
However, when Ω/γ surpasses a “critical” threshold, a
completely different phenomenology emerges. As shown,
e.g., by the curve with Ω/γ = 3 in Fig. 4(a), the sys-
tem sustains here a “meta-stable” phase, characterized
by small (in modulus) values of the magnetization. In
this regime, quantum fluctuations due to the coherent dy-
namics are strong enough to keep the system away from
the absorbing-state manifold. Due to finite-size effects,
clearly the system eventually approaches the absorbing-
state manifold. However, the trend shown upon increas-
ing L, i.e., the emergence of a plateau value for the mag-
netization and the fact that the meta-stable phase sur-
vives for longer times when L is larger, suggests that
such a fluctuating phase may become stable in the limit
L → ∞. In the inset of Fig. 4(a), we provide an esti-
mated phase diagram showing where the emergence of
such a phase may be expected. This is obtained by con-
sidering which parameters lead to an initial decrease in
the modulus of Z for increasing system sizes.

Finally, we analyze the Z2-symmetric point κ = 0 for
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α = 1. In this case, the density of domain walls

nDW =
1

L

L∑
k=1

〈nk−1(1− nk) + (1− nk−1)nk〉 , (7)

always decays to zero. Interestingly, however, it does so
by showing a power-law decay nDW ≈ t−δ, which is sus-
tained for longer and longer times for increasing system
sizes [cf. Fig. 4(b)]. The power-law exponent δ continu-
ously varies from the (classical) diffusive value δ = 1/2
[1, 2] to a super-diffusive one (δ > 1/2) for increasing
Ω/γ. The largest δ is between 1/2 and 1 — also observed
in Ref. [46] for different models. As shown in Fig. 4(b),
this value is close to the value δ ≈ 0.7, reminiscent of a
superdiffusive exponent 2/3. Quantum effects thus ap-
pear to accelerate the domain-wall annihilation process
in the Z2-symmetric regime.

VI. DISCUSSION

We introduced a nonequilibrium quantum system fea-
turing two absorbing states [cf. Fig. 1]. Its mean-field
phase diagram in Fig. 2 displays a bi-stable regime with
two possible stationary states. Within the absorbing-
state regime, we have shown that sufficiently strong
quantum effects can lead to the emergence and the stabi-
lization of a novel fluctuating phase, which is not possible
in classical regimes. At the Z2-symmetric point (κ = 0),
a fluctuating phase does not exist in one dimension, not
even in the presence of quantum effects. On the con-
trary, the coherent dynamics leads to a speed-up of the
(power-law) approach to the absorbing-state manifold.
The associated algebraic (power-law) exponent, shown
in Fig. 4(b), seems to continuously vary with Ω/γ. This
is reminiscent of the so-called quantum contact process,
in which the decay of the particle density at the critical
point also follows a power-law with a continuously vary-
ing exponent [10]. Moreover, also in that system, the
dynamics of a single initial seed (corresponding to our
single-cluster dynamics) shows no qualitative deviations
from the classical problem, similar to what we observe in
our model [cf. Fig. 3(d)].
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Appendix A: Mapping to the domain wall model

In this section, we explain the mapping of the system
discussed in the main text, see Eqs. (1)-(4), to a model of
domain walls with the Kramiers-Wannier duality trans-
formation, see, e.g., Ref. [51–54]. In particular, for the
sake of simplicity in the explanation of the mapping, we
follow the notation convention of Ref. [54], where a chain
of L + 2 sites with open boundary conditions is consid-
ered. The two spins at the boundary points of the chain
0 and L+ 1 are fixed to be down.

Within the duality transformation a one-dimensional
“dual lattice” is associated to the original one-
dimensional spatial lattice. Sites of the dual lattice cor-
respond to the bonds of the original lattice (and vice
versa). On each site k of the dual lattice a set of dual
spin operators µαk (α = x, y, z) is defined as

σxk = µxkµ
x
k+1, σyk = (−1)k+1

(
k−1∏
l=1

µzl

)
µykµ

x
k+1,

σzk = (−1)k+1
k∏
l=1

µzl ,

(A1)

with the inverse transformation given by

µxk =

(
k−1∏
l=1

σxl

)
, µyk = −σyk−1σ

z
k

(
k−2∏
l=1

σxl

)
,

µzk = −σzkσzk−1.

(A2)

Note that Eqs. (A1) and (A2) apply to L+ 2 spin opera-
tors σαk defined on the original lattice sites k = 0 . . . L+1
with two fictitious down spins at the boundary points of
the chain 0 and L+ 1, as anticipated at the beginning of
this section. One has therefore L+ 1 dual lattice opera-
tors µαk defined on the dual lattice sites (the bonds of the
original lattice) k = 1 . . . L + 1. At the boundary dual
lattice sites, one accordingly has µz1 = σz1 and µzL+1 = σzL.
From Eqs. (A1) and (A2), it is also simple to check that
the operators µαk can be considered as Pauli spin opera-
tors since they satisfy the same Pauli spin algebra as the
corresponding σαk operators. We note that µzk in Eq. (A2)
feels whether neighbouring spins are aligned or not and
therefore whether a domain wall is present on the bond k
or not. The total number of domain walls operator NDW

is accordingly given by

NDW =

L∑
k=2

1 + µzk
2

. (A3)

Note that Eq. (A3) involves a sum over the L − 1 bulk
sites of the dual lattice (thereby excluding the two fic-
titious spins at the boundary sites 0 and L + 1) as a
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consequence of the open boundary conditions adopted in
this section. From the third equation in (A2), it is, how-
ever, immediate to verify that the density of domain walls
nDW = (L−1)−1NDW = (L−1)−1

∑
k(1+µzk)/2 coincides

with the expression in Eq. (7) of the main text (up to a
boundary term, irrelevant in the thermodynamic limit
L → ∞, coming from the choice of periodic boundary
conditions taken in Eq. (7)). It is, moreover, important
to emphasize that µzk is invariant under Z2 transforma-
tions and, as a matter of fact, it does not distinguish a
kink (◦• – A particle – see Fig. 1 in the main text) from
an anti-kink (•◦, B particle). The operator µxk, instead,
flips all the spins to the left of the lattice site k, and,
therefore, it creates a domain wall upon acting on a state
with all the spins pointing upwards (or downwards).

The mapping of the model in Eqs. (1)-(4) in terms of
the dual spin operators in Eqs. (A1) and (A2) is useful as
it sheds light on the emergent physics of the open quan-
tum system in terms of domain wall particles hopping
(both coherently and incoherently) and pairwise annihi-
lating. We start by writing the Hamiltonian in Eq. (2)
with the dual spin operators as

H = Ω

L∑
k=1

µxkµ
x
k+1 + αµykµ

y
k+1

=

L∑
k=1

J

(
1 + ζ

2

)
µxkµ

x
k+1 + J

(
1− ζ

2

)
µykµ

y
k+1,

(A4)

where J ≥ 0 parameterizes the ferromagnetic interaction

constant and ζ the anistropy between the couplings in
the x and the y directions. In particular J and ζ are
function of Ω and α as

J = Ω(1 + α), ζ =
1− α
1 + α

. (A5)

The Hamiltonian in Eqs. (A4) and (A5) is readily rec-
ognized as the XY spin chain with open boundary con-
ditions, which can be mapped to a free fermionic the-
ory, see, e.g., Ref. [63]. In the case α = 1, where the
constraint in the Hamiltonian (2) becomes hard, ζ = 0
and equation (A4) reduces to the XX spin chain, as re-
marked also in Ref. [54]. The transverse magnetization
M =

∑
k µ

z
k of the XY chain is equal (up to a constant)

to the total number of domain walls NDW in Eq. (A3).
The latter is, consequently, conserved only for α = 1,
i.e., in the case of the XX spin chain Hamiltonian. In
the case α 6= 1 of the XY model, as a matter of fact,
domain walls can be created or annihilated in pairs and
therefore only their parity is conserved under the Hamil-
tonian time evolution. The states with zero number of
domain walls, |... ◦ ◦ ◦ ...〉 and |... • • • ...〉, are therefore
stationary states of the Hamiltonian only for α = 1, as
stated in the main text.

To proceed with the mapping of the open quantum
system considered in the main text to the domain wall
picture we need to consider the dissipative part of the
dynamics in Eqs. (3) and (4). The four types of jump
operators in Eq. (4) residing at each lattice k in the do-
main wall picture are written as

Lk,•,+ =
√
γ•σ

+
k nk+1 =

√
γ•

(
1 + Sk+1

2

)
(µ−k µ

−
k+1 + µ+

k µ
−
k+1), (A6a)

Lk,•,− =
√
γ•σ

+
k nk−1 =

√
γ•

(
1 + Sk−1

2

)
(µ−k µ

−
k+1 + µ−k µ

+
k+1), (A6b)

Lk,◦,+ =
√
γ◦σ
−
k (1− nk+1) =

√
γ◦

(
1− Sk+1

2

)
(µ−k µ

−
k+1 + µ+

k µ
−
k+1), (A6c)

Lk,◦,− =
√
γ◦σ
−
k (1− nk−1) =

√
γ◦

(
1− Sk−1

2

)
(µ−k µ

−
k+1 + µ−k µ

+
k+1), (A6d)

with µ±k = (µxk ± iµyk)/2 the raising-lowering opera-
tor for the dual lattice spin operators. The rates are
parametrized as in the main text γ•/◦ = γ(1 ± κ). In
Eq. (A6), Sk denotes a string operator

Sk = (−1)k+1
k∏
l=1

µzl = σzk, with S2
k = 1. (A7)

One realizes that each of the jump operators describes a
superposition of a AB (or BA) pair destruction (µ−k µ

−
k+1)

process and incoherent hopping of particles A-kink (or B,

anti-kink) to the right (µ−k µ
+
k+1) or to the left (µ+

k µ
−
k+1),

as shown in Fig. 1(b) of the main text. Crucially, these
processes happen with different rates (γ• and γ◦) depend-
ing on the pair annihilated (AB or BA) and on the par-
ticle hopping being A or B and on the direction of the
hopping. The dual operators µ±k , as stated before, do
not, however, distinguish particles A from the B ones.
This is accomplished by the factors in Eq. (A6) contain-
ing the string operator Sk (A7), which constrain the hop-
ping depending on the magnetization of the left or right
neighbouring spin and therefore it identifies the nature
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of the particle involved in the process being A or B. Note
that the operator Sk is non-local in terms of the dual lat-
tice operators µzk, since the latter is not sensitive to the
direction of the magnetization, but only to the relative
alignment of neighboring spins.

The jump operators in Eq. (A6) cause the number of
domain walls to decrease in time. The vacuum states of
domain walls |... • • • ...〉 and |... ◦ ◦ ◦ ...〉 are, however,
stationary states of the full master equation (1) only for
α = 1. For α 6= 1, as a matter of fact, the Hamiltonian
can create pairs of A and B particles and the stationary
state can, consequently, exhibit a finite density of domain

walls.

Appendix B: From the Heisenberg equations to the
mean-field equation of state for the magnetization

In this section, we show how to obtain, within a mean-
field analysis the equation of state for the stationary mag-
netization presented and discussed in the main text.

The starting point is the calculation of the Heisenberg
equations of motion for the single-site spin operators.
The equations are the following

∂tσ
x
m = 2αΩσym

(
σzm−2σ

x
m−1 + σxm+1σ

z
m+2

)
− (γ• + γ◦)σ

x
m, (B1a)

∂tσ
y
m = −2Ωσzm − 2αΩ

[
σxm
(
σzm−2σ

x
m−1 + σxm+1σ

z
m+2

)
− σzm−1σ

z
mσ

z
m+1

]
− (γ• + γ◦)σ

y
m, (B1b)

∂tσ
z
m = 2Ωσym

[
1− ασzm−1σ

z
m+1

]
− (γ• + γ◦)

[
σzm −

1

2

(
σzm−1 + σzm+1

)]
+ (γ• − γ◦)

[
1− σzm

2

(
σzm−1 + σzm+1

)]
.

(B1c)

In passing, we note from Eq. (B1c) that the magnetiza-

tion
∑L
k=1 σ

z
k/L is conserved at the Z2 symmetric point

(κ = 0) only in the case the Rabi frequency Ω is set to
zero. Then, we take the expectation value of the above
equations and perform a so-called mean-field decoupling

of the correlation functions, e.g., 〈σαmσ
β
k 〉 ≈ 〈σαm〉〈σ

β
k 〉.

Further assuming a homogeneous initial state, which
amounts to 〈σαk 〉 = 〈σαh 〉, ∀k, h, we can introduce the vari-
ables X ≡ 〈σxk〉, Y ≡ 〈σ

y
k〉 and Z ≡ 〈σzk〉. Within such

a homogeneous mean-field approximation, the following
set of dynamical mean-field equations are obtained

Ẋ = 4αΩX Y Z − 2γX , (B2a)

Ẏ = −2ΩZ − 2αΩZ
(
2X2 − Z2

)
− 2γY , (B2b)

Ż = 2ΩY
(
1− αZ2

)
+ 2γκ

(
1− Z2

)
. (B2c)

To obtain the stationary state of the system, we need
to set the left-hand sides of the above equations to zero.
This yields XSS = 0, YSS = −Ω

γ ZSS

(
1− αZ2

SS

)
as well as

the equation of state for the magnetization ZSS

Ω2ZSS

(
1− αZ2

SS

)2
= γ2κ

(
1− Z2

SS

)
, (B3)

which is Eq. (5) of the main text.

Appendix C: Effective single-cluster model

As mentioned in the main text, the single-cluster set-
ting can be investigated through an effective single-body
dynamical model. This can be obtained by defining the
states |m〉, with m = 0, 1, . . . L denoting the extension of
the cluster.

According to the dynamics of the domain-wall particles
sketched in Fig. 1(b), the open quantum dynamics for the
extension of the cluster can be constructed as follows. For
the coherent dynamics we take the Hamiltonian

H = 4Ω

L−2∑
m=1

(
|m〉〈m+ 1|+ |m+ 1〉〈m|

)
. (C1)

The above dynamics encodes the coherent hopping of the
domain walls, which results in a change of the size of the
clusters. The factor 4Ω comes from the fact that the clus-
ter can coherently increase (decrease) because of a kink
A particle moving to the left (right), with rate 2Ω or be-
cause of an anti-kink particle B moving towards the right
(left), also with rate 2Ω. The combination of these two ef-
fects, which can be seen also in the sketched in Fig. 1(b),
gives a rate 4Ω. The extremal values of the sum ap-
pearing in Eq. (C1) reflect the presence of the absorbing
states H |0〉 = H |L〉 = 0. The incoherent dynamics is
instead accounted for by a dissipative Lindblad contri-
bution characterised by two sets of jump operators. The
first consists of jump operators that can only decrease
the number of occupied sites. These are

J◦m =
√

2γ◦ |m〉〈m+ 1| , (C2)

for m = 0, 1, . . . L − 2. Here the factor 2γ◦ is also due
to the fact that an incoherent decrease of the size of the
cluster can be achieved both with the kink particle A
jumping to the right and with an anti-kink particle B
jumping to the left. The second set consists instead of
jump operators which increase the number of occupied
sites in the central region. These are, in analogy to the
previous ones, given by the following jump operators

J•m =
√

2γ• |m+ 1〉〈m| , (C3)
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for m = 1, 2, . . . L − 1. Note that also jump operators
have been chosen in such a way that state |0〉 and state
|L〉 are absorbing states for the effective model dynamics.

The overall dynamics of the single cluster is thus imple-
mented by the following quantum master equation evolv-
ing the density matrix of the system, ρt, as

ρ̇t =− i[H, ρt] +

L−1∑
m=1

(
J•mρtJ

•†
m −

1

2

{
J•†m J

•
m, ρt

})

+

L−2∑
m=0

(
J◦mρtJ

◦†
m −

1

2

{
J◦†m J

◦
m, ρt

})
.

(C4)

Appendix D: Perturbative contribution of the
quantum coherent dynamics

In this section, we show how the quantum dynam-
ics provides an additional dissipative contribution in the
limit Ω� γ. Here, the Hamiltonian (2) is considered as
perturbation to the generator of the dissipative dynamics
(3).

To derive the effective classical dynamics, we introduce
the projector

P[ρ] =
∑
C
|C〉〈C|ρ|C〉〈C|, (D1)

which projects a given density matrix ρ onto the clas-
sical basis formed by configurations |C〉. Using second
order perturbation theory [27], the density matrix pro-
jected onto the classical subspace, µ(t) = P[ρ(t)], evolves

according to

∂tµ(t) = D[µ(t)]+

∫ ∞
0

dt′ PHQ exp (Dt′)QH[µ(t)],(D2)

where Q = 1 − P is the complement of P and we have
defined H[O] = −i[H,O]. Such an equation can be ob-
tained by employing standard Nakajima-Zwanzig pro-
jector techniques [49], keeping all terms up to second-
order in the coherent rate Ω and performing a Marko-
vian approximation. The latter is needed to obtain a
time-independent generator. Evaluating the second term
yields

∂tµ(t) = D[µ(t)] +
Ω2

γ

∑
k

K2
k [σxkµ(t)σxk − µ(t)] . (D3)

This shows that in the perturbative limit the Hamilto-
nian introduces single spin-flips that take place at the
constrained rate (Ω2/γ)K2

k . Equation (D3) can be solved
efficiently using classical Monte-Carlo methods. How-
ever, here we simply want to note that, in the regime
α = 1, the coherent hopping of domain-wall particles
implemented by the Hamiltonian is effectively acting as
an incoherent one in the limit Ω � γ. Moreover, since
the rate of the Hamiltonian transition is independent on
whether the final state is • or ◦, the resulting incoher-
ent hopping of domain-wall particles is symmetric. As it
happens for stochastic exclusion processes, a symmetric
incoherent hopping of these particles is expected to give
rise to diffusion of domain walls. This is in contrast with
the dissipative channels described by D: when κ 6= 0
these have a preferred direction and thus give rise to an
overall ballistic motion of domain walls [cf. Fig. 1(b)].
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