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Abstract: While the equations of general relativity take the same form in any coordinate system,
choosing a suitable set of coordinates is essential in any practical application. This poses a challenge
in background-independent quantum gravity, where coordinates are not a priori available and need
to be reconstructed from physical degrees of freedom. We review the general idea of coupling
free scalar fields to gravity and using these scalars as a “matter reference frame”. The resulting
coordinate system is harmonic, i.e., it satisfies the harmonic (de Donder) gauge. We then show how
to introduce such matter reference frames in the group field theory approach to quantum gravity,
where spacetime is emergent from a “condensate” of fundamental quantum degrees of freedom
of geometry, and how to use matter coordinates to extract physics. We review recent results in
homogeneous and inhomogeneous cosmology, and give a new application to the case of spherical
symmetry. We find tentative evidence that spherically-symmetric group field theory condensates
defined in this setting can reproduce the near-horizon geometry of a Schwarzschild black hole.
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1. Introduction

Diffeomorphism symmetry is one of the cornerstones in the foundations of general relativity.
A local choice of coordinate system is conventional and carries no physical meaning in itself;
physical quantities (observables) must be invariant under diffeomorphisms, or changes of the
coordinate system. In physics language, diffeomorphisms form the gauge symmetries of general
relativity. Fixing this vast gauge freedom is essential in practical applications of the theory, and key
to extracting physical predictions. For spacetimes with isometries, using coordinates adapted to
the symmetry simplifies the equations greatly; in cosmology, perturbations of a highly symmetric
homogeneous and isotropic “background” spacetime must be classified as being gauge-invariant or
gauge-dependent [1].

As a gauge symmetry, diffeomorphism symmetry must also be taken into account when answering
questions about the dynamical structure of general relativity, such as whether the initial value problem
is well-posed. It turns out that a useful gauge choice for this is the harmonic gauge, in which
the Einstein equations have a well-posed initial value problem [2]. The harmonic gauge (and its
generalisations) can also be used to address the initial value problem in more general theories
of gravity [3].

The harmonic gauge is defined by requiring the coordinates xα to satisfy a wave equation,

∇µ∇µxα ≡ 1√−g
∂µ

(√
−ggµα

)
= 0 ⇔ gµνΓα

µν = 0 . (1)

This statement is not generally covariant since the coordinates xα do not form a vector, as it
must be for this to be a gauge condition fixing diffeomorphism invariance. The use of harmonic
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coordinates has a long history in general relativity. Famously, their use was advocated by Fock as
preferred coordinate systems in general relativity [4], in order for the structure of the theory to be as
close as possible to that of special relativity (see, e.g., [5]). Proving the famous nonlinear stability result
for Minkowski spacetime is easier in harmonic coordinates [6]. The harmonic gauge and generalised
versions of it are also being successfully used in numerical relativity [7]. While not all solutions of
Einstein’s equations admit a global harmonic coordinate system, such coordinates can clearly be used
for a wide variety of situations of physical interest.

In quantum theory, one needs to verify that classical gauge symmetries are implemented
without anomalies at the quantum level. In canonical loop quantum gravity (LQG), for instance,
the question whether there is an anomaly-free representation of the Poisson algebra of spacetime
diffeomorphisms, the hypersurface-deformation algebra [8], is the focus of ongoing work [9–11].
In a diffeomorphism-invariant quantum theory, it might then be possible to do calculations in a
suitable gauge, as one can do for U(1) symmetry in quantum electrodynamics. However, making
an appropriate gauge choice is only possible even in principle if the theory still contains enough
diffeomorphism-variant structure, i.e., gauge degrees of freedom. In canonical LQG, the starting
point is the quantisation of continuum fields on a three-dimensional manifold; but in the covariant
(spin foam) formalism, one abstracts from the underlying manifold and only works with combinatorial
structures [12]. In this and other discrete settings for quantum gravity, the conventional notion of
diffeomorphism symmetry is lost and needs to be recovered in a continuum limit [13,14]. In general,
(partial or full) background independence in such approaches implies that physical statements
are formulated in relational terms, i.e., concern physical degrees of freedom relative to another
without reference to external structures [12]. Background independence is conceptually important in
implementing key principles of general relativity, but obstructs the possibility of extracting physical
predictions, which, as we mentioned, is usually done in suitable coordinates.

In a fully-background-independent setting, where no background manifold structure supplying a
conventional notion of coordinates is available, one needs to identify suitable relational “coordinates”,
i.e., use the values of suitably-chosen dynamical fields to parametrise the evolution of the remaining
fields. If the theory under consideration only admits asking diffeomorphism-invariant questions,
the conventional and convenient separation between coordinates and physical degrees of freedom
breaks down. This paper illustrates various contexts in the group field theory approach in which
scalar fields can serve as such relational coordinates. In general, the choice of particular matter fields
as coordinates will only work locally, just like for any coordinate system, so that basic notions such
as the unitarity of the resulting quantum theory may not be easily definable. Furthermore, general
covariance of the resulting quantum theory must still be demonstrated, independently of whether one
chooses to use some matter degrees of freedom as coordinates.

To see all of this more concretely, we focus on the well-known example of a flat homogeneous,
isotropic FLRW (Friedmann–Lemaître–Robertson–Walker) universe with metric:

ds2 = −N2(t)dt2 + a2(t)dx2
3 (2)

where dx2
3 is a fiducial flat metric on R3. Such a universe is foliated by homogeneous,

isotropic hypersurfaces with flat intrinsic geometry; the geometry of these hypersurfaces relative
to one another is parametrised by the scale factor a(t). The dynamics of this universe are determined
by the Friedmann equation: (

1
aN

da
dt

)2
=

8πG
3

ρ (3)

where ρ(t) is the energy density of matter and N(t) is the lapse function. The lapse is an arbitrary
function of coordinate time t, incorporating the freedom under time reparametrisations t 7→ t(t′) under

which N(t) 7→ N(t(t′))
(

dt′
dt

)−1
so that (3) is invariant. Proper time N = 1 or conformal time N = a

are often useful coordinate choices for describing the evolution of the universe.
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Standard Wheeler–DeWitt quantisation of the flat FLRW universe now leads to a wavefunction
ψ(a, χ) where χ is a label for all matter degrees of freedom. There are operators corresponding to phase
space functions, i.e., functions of a and χ and their momenta, but no operator corresponding to time t,
which after all was just an arbitrary label. One can still ask relational questions, such as the evolution
of matter fields χ(a) with the size of the universe, but the convenience of working in proper time is no
longer available. While proper time by definition always increases towards the future, this may not be
true for physical degrees of freedom such as a, which may turn around (for a, this is a recollapse of the
universe), leading to a breakdown of the parametrisation χ(a).

A popular way out of these technical complications is to introduce a matter field that can play the
role of a “matter clock”. The standard candidate for this is a free and massless scalar field φ satisfying
the Klein–Gordon equation:

∇µ∇µφ = 0 . (4)

In an FLRW universe, the Klein–Gordon equation reduces to:

d
dt

(
a3

N
dφ

dt

)
= 0 ⇒ a3

N
dφ

dt
= constant . (5)

Assuming the constant is not zero, the evolution of φ is monotonic, and hence, φ provides a good
clock: it can never turn around. We can then write φ = φ0T, where the constant φ0 has dimensions
of mass to make T dimensionless, and use T as “scalar field time”. The Klein–Gordon equation then
becomes a harmonic coordinate condition on T,

∇µ∇µT = 0 ⇒ d
dT

(
a3

N

)
= 0 ⇒ N =

a3

p
, p 6= 0 . (6)

As expected, the harmonic condition fixes the lapse function; it is a gauge-fixing of time
reparametrisations. For a flat FLRW universe only filled with this scalar field, the only remaining
equation to solve is the Friedmann constraint equation:(

da
dT

)2
=

4πG
3

φ2
0 a2 (7)

with two independent solutions:

a(T) = a0 exp

(
±
√

4πG
3

φ0T

)
≡ a0 exp

(
±
√

4πG
3

φ

)
(8)

corresponding to an expanding and contracting FLRW universe, respectively. The constant p can be
expressed in proper time tp as:

p =
a3

N
= a3 dT

dtp
, (9)

i.e., φ0 p corresponds to the usual conserved momentum of the scalar field. The upshot of all this
is that φ now serves as a preferred, harmonic “matter time variable”, with respect to which the
equations can be solved. Predictions of a (so far unspecified) quantum theory for gravity coupled to a
massless scalar can then be compared to the classical solutions (8). This idea has been used since the
early days of quantum cosmology [15] and is fundamental in constructing the foundations of loop
quantum cosmology [16], where quantisation ambiguities related to the choice of lapse function can be
circumvented by requiring the time coordinate to be harmonic.
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One of the main points we want to make is that this construction can be generalised. Namely, for a
problem in quantum gravity that, after imposition of isometries, is effectively k-dimensional, we add k
free, massless scalars φi and introduce “matter coordinates”. They will satisfy harmonic conditions:

∇µ∇µxi = 0 , φi = φ0xi (10)

by virtue of the φi obeying the free Klein–Gordon equation. The xi are physical scalar fields, which
contribute to the energy-momentum tensor and thus backreact on spacetime. We saw this already in the
FLRW case where the solution is not Minkowski spacetime, but an expanding or contracting universe.
Nevertheless, their contribution can be negligible in certain regimes, as we will discuss below. We will
show how the idea of adding massless scalar fields as matter coordinates is implemented in the setting
of group field theory, where it has been employed to provide relational dynamics for an FLRW universe
and, more recently, for perturbative inhomogeneities. Sections 2–4 are a review of these known results,
as developed in [17–21]. In Section 5, we then give a new application to the case of spherical symmetry.
While ultimately unsatisfactory to describe the real universe (which does not contain free scalars, as
far as we know) and limited in that the “coordinates” themselves are not properly quantised, we
argue that this formalism can be useful in connecting quantum gravity to the vast experience with
harmonic coordinates that we have in classical general relativity and in overcoming some difficulties
in extracting physical statements from a fundamentally background-independent framework.

2. Group Field Theory with Reference Matter

This section provides a short self-contained overview of the group field theory formalism for
quantum gravity and matter, specifically its canonical formulation where one can define group field
theory condensates, a proposal for states that describe a regime in which an effective macroscopic
spacetime emerges dynamically. For general reviews of group field theory as a research programme for
quantum gravity, see [22–24], and for reviews of group field theory condensates and their application
to (homogeneous) cosmology, see [25,26].

In the canonical formulation of group field theory, the elementary degrees of freedom of geometry
and matter are created as excitations of a bosonic, complex quantum field ϕ, itself defined on an abstract
group manifold (not to be thought of as a spacetime). For models based on the Ashtekar–Barbero
formalism for general relativity in terms of an SU(2) connection and with a scalar field coupled to
gravity, ϕ is a function:

ϕ : SU(2)4 ×R→ C , (gI , φ) 7→ ϕ(gI , φ) . (11)

The arguments of ϕ parametrise the elementary degrees of freedom of a “chunk of space”.
In a formula,

ϕ̂†(g1, g2, g3, g4, φ)
∣∣∅〉 = ∣∣∣∣∣

〉
•
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defines a one-particle state created from the Fock vacuum |∅〉; the state can be interpreted as
an elementary tetrahedron, with four parallel transports gI of the gravitational SU(2) connection
associated with links through its four faces, and with a label φ specifying the value of the (matter)
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scalar field. The role of ϕ̂† as an elementary creation operator derives from the fundamental
commutation relations:[

ϕ̂(gI , φ), ϕ̂†(g′I , φ′)
]
= δ(φ− φ′)

∫
SU(2)

dh
4

∏
I=1

δ(g′Ihg−1
I ) (12)

with all other commutators vanishing. The integration over SU(2) on the right-hand side ensures
consistency with the “gauge invariance” property of the ϕ field, namely its invariance under diagonal
right multiplication:

ϕ(g1, . . . , g4, φ) = ϕ(g1h, . . . , g4h, φ) ∀h ∈ SU(2) (13)

which is interpreted as an elementary SU(2) transformation acting on the central vertex.
One can generate states of arbitrary particle number N by acting N times with ϕ̂†(gI , φ) on

|∅〉 in the usual fashion; the GFT Hilbert space is a Fock space spanned by all of the subspaces
corresponding to different values of N. Each such N-particle subspace can be associated with a “graph”
of N disconnected four-valent open vertices. Graph connections can be introduced by integrating over
the arguments corresponding to the links that one wants to glue: consider for instance a “dipole state”:∫

SU(2)4
d4h ϕ̂†(h−1

1 g1, h−1
2 g2, h−1

3 g3, h−1
4 g4, φ1)ϕ̂†(h1, h2, h3, h4, φ2)|∅〉 (14)

which can be interpreted as a state on two tetrahedra with all four faces identified, i.e., a triangulation
of the three-sphere. It is important to note that GFT states defined in this way do not “know” about the
graph used to construct them: unlike in LQG, there is no unambiguous identification of an N-particle
state with a graph or even a graph topology. For further discussion of the relation between the LQG
and GFT Hilbert spaces, see [27]. ([28] also discusses this issue in a simplified toy model.)

One now looks for states that can represent a macroscopic continuum geometry; it is clear that
these cannot be states with a small number of excitations over the Fock vacuum, but that instead, a large
number of particles (often idealised to infinite) is needed. Being macroscopic means that expectation
values of geometric observables such as the total three-volume are required to be large compared to
the fundamental (Planck) scale of the theory; semiclassical properties are imposed by focusing on field
coherent states, similar to the coherent states used to describe Bose–Einstein condensates in condensed
matter physics or macroscopic electromagnetic fields in quantum optics.

Such states are called group field theory condensates. The simplest example of a group field
theory condensate is given by a mean-field coherent state of the form (up to normalisation):

|σ〉 ∝ exp
(∫

SU(2)4×R
d4g dφ σ(g1, g2, g3, g4, φ)ϕ̂†(g1, g2, g3, g4, φ)

)
|∅〉 (15)

where σ is the analogue of the condensate wavefunction in condensed matter physics. The state |σ〉 is
an eigenstate of the field operator ϕ̂ and thus satisfies the symmetry breaking property:

〈σ|ϕ̂(gI , φ)|σ〉 = σ(gI , φ) (16)

which clearly distinguishes it from the Fock vacuum in which 〈∅|ϕ̂(gI , φ)|∅〉 = 0. Moreover, in this
state, all normal-ordered n-point functions are simply products of σ and its complex conjugate, e.g.,

〈ϕ̂†(gI , φ)ϕ̂†(g′I , φ′)ϕ̂(g′′I , φ′′)ϕ̂(g′′′I , φ′′′)〉 = σ(gI , φ)σ(g′I , φ′)σ(g′′I , φ′′)σ(g′′′I , φ′′′) . (17)

The latter property implies an infinite tower of relations between all n-point functions, whose
violation will signal the breakdown of this mean-field approximation. See [29] for further background
on the definition of these condensate states, their interpretation as macroscopic continuum geometries
and limits to the validity of the approximation. In group field cosmology, the validity of the mean-field



Universe 2018, 4, 103 6 of 17

approximation, at least away from the Planck regime and for large universes, is assumed as a working
hypothesis. It has been shown, at least in simple GFTmodels, how a phase transition can lead to
symmetry breaking and the formation of a condensate phase [30,31]; see also [32] for recent work on
GFT phase transitions using Landau–Ginzburg theory.

The dynamics of such condensate states is now given by the analogue of what would be the
Gross–Pitaevskii equation in condensed matter physics, i.e., the expectation value of the quantum
equation of motion. Using relations such as (17), this expectation value reduces to the classical equation
of motion for the GFT, to be satisfied by the mean field σ:

〈σ| :
̂δS[ϕ, ϕ]

δϕ(gI , φ)
: |σ〉 = δS[σ, σ]

δσ(gI , φ)
= 0 . (18)

For a general GFT action:

S[ϕ, ϕ̄] = −
∫

SU(2)4×R
d4g dφ ϕ̄(gI , φ)Kϕ(gI , φ) + V [ϕ, ϕ̄] (19)

given in terms of a quadratic term including a kinetic operator K and a general potential V , the mean
field equation of motion becomes:

Kσ(gI , φ)− δV [σ, σ]

δσ(gI , φ)
= 0 . (20)

There are various directions towards choosing suitable forms for K and V . If GFT is used to
define dynamics for loop quantum gravity, they are chosen so that the Feynman amplitudes of the GFT
correspond to the amplitudes of a given spin foam model for the boundary data given by GFT Fock
states as defined above. Such a choice is possible in quite some generality, so that there is a one-to-one
correspondence of spin foam models and GFT actions [33,34]. In this construction, the kinetic term
is typically trivial, i.e., K is simply a constant in (19). Studying renormalisation in GFT requires the
introduction of a notion of scale, which is done by adding a group Laplacian into the kinetic term; such
a non-trivial kinetic term would be generated through radiative corrections [35,36]. Such results then
suggest that more general forms of K that do include derivatives with respect to all arguments of ϕ

should be considered. In any case, the potential V typically has a combinatorial type of nonlocality
corresponding to simplicial gluing of the fundamental GFT building blocks into higher-dimensional
structures. In this paper, we present results applicable to a wide range of models under the given
assumptions, and no specific forms of K or V will be used.

In general, since K and V can take rather complicated forms, the task of finding explicit solutions
to (20) is difficult. To get a first understanding of the effective dynamics of GFT condensates in
spacetime terms, one now makes two types of approximations. The first, as developed in [17–19], is to
expand the kinetic operator K in derivatives with respect to φ,

K = K0 +K2
∂2

∂φ2 + . . . (21)

and truncate after the second derivative with respect to φ. Notice that the “coefficients” in this
expansion K0 and K2 are still differential operators with respect to the SU(2) variables gI . For GFT
models for a massless, free scalar “matter clock,” the kinetic operator K has no explicit dependence on
φ, and the expansion (21) only contains even derivatives. This is because the GFT action is invariant
under shifts φ 7→ φ + φ0 and time reversal transformations φ 7→ −φ, the symmetries of such a
clock field.

A second approximation often made is to consider a weak-coupling limit in which the potential V
is neglected. To some extent, this approximation reflects a need for self-consistency: the mean-field
coherent state |σ〉, in which all GFT quanta are uncorrelated, must be a good approximation to
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an exact physical state of the theory. Indeed, for Bose–Einstein condensates, such states describe
a weakly-coupled regime and are not suitable at strong coupling. Since the potential V includes
higher powers of σ relative to the kinetic term, it becomes more and more relevant with a growing
particle number (which grows as |σ|2), so that the free approximation can be expected to be valid in a
mesoscopic regime in which the particle number is large, but not too large. Interaction terms can be
included in the cosmological analysis, as in [37], where they become important at late times and can
lead to a recollapse of the universe analogous to a negative cosmological constant.

The weak-coupling limit is closely related to the choice of coherent state |σ〉, and its failure is
often seen in a breakdown of this mean-field treatment. Strong interactions typically correspond to a
dynamical regime in which higher n-point functions no longer approximately follow (17).

3. Effective Cosmological Dynamics

Within this mean-field approximation for GFT condensates, one now computes expectation
values of geometric observables in order to derive an effective cosmological dynamics from the GFT
Gross–Pitaevskii Equation (20). The simplest such observable is the total three-volume of the universe
at a given value φ of the matter clock field, which corresponds to the GFT Fock space operator [17–19]:

V̂(φ) =
∫

SU(2)4×SU(2)4
d4g d4h V(gI , hI)ϕ̂†(gI , φ)ϕ̂(hI , φ) (22)

where V(gI , hI) are the matrix elements of the LQG volume operator, calculated between two spin
network states |gI〉 and |hI〉 on a single open four-valent vertex. The expectation value V(φ) ≡ 〈V̂(φ)〉
then satisfies an effective Friedmann equation, which can be compared to the equations for a(T)
(parametrised by matter time T), which appeared in the classical discussion around (8).

It turns out that the simple approximations used up to this point already allow the extraction
of physically reasonable effective dynamics from GFT condensates [17–19]. In the mean-field
approximation and weak-coupling limit, the GFT Gross–Pitaevskii Equation (20) becomes simply:(

K0 +K2
∂2

∂φ2

)
σ(gI , φ) = 0 . (23)

We should stress again that the weak-coupling limit, which is here made for simplicity
and self-consistency, is an assumption of what follows. We will see that interesting physically relevant
cosmological dynamics can already be derived within this simplest possible approximation.

As is often the case in LQG, Equation (23) is best analysed in a Peter–Weyl expansion of functions
on SU(2) into irreducible representations. One can restrict this expansion to isotropic modes, the
modes characterising building blocks that are themselves isotropic, with geometric interpretation as
equilateral tetrahedra. The Peter–Weyl expansion then takes the form:

σ(gI , φ) = ∑
j∈N0

2

σj(φ)Dj(gI) (24)

where only a single spin j labelling an irreducible representation of SU(2) appears. Notice that all gI
dependence is now in the Dj(gI), which are an appropriate convolution of four Wigner D-matrices
with intertwiners, taking care of SU(2) gauge invariance. The restriction to a single j in the expansion
is purely for convenience: isotropic modes are sufficient to capture the dynamics of an FLRW universe.
Further modes with different j labels for the four faces of a tetrahedron can be included, and their
effects on the effective dynamics can be studied [38].



Universe 2018, 4, 103 8 of 17

For usual GFT actions, K can contain derivatives, but no explicit g-dependence. The Peter–Weyl
decomposition then leads to a decoupling of (23) into separate equations for each j, of the form:(

−Bj + Aj
∂2

∂φ2

)
σj(φ) = 0 (25)

where Aj and Bj are now j-dependent couplings, which depend on the kinetic term of the original GFT
action; in particular, in the commonly-assumed situation where K0 and K2 are general functions of
Laplace–Beltrami operators with respect to the gI , we could define:

K0Dj(gI) =: −BjDj(gI) , K2Dj(gI) =: AjDj(gI) (26)

where each Laplacian (acting on one of the gI) would contribute an eigenvalue −j(j + 1). It is
immediate to see that the solutions to (25) have the form:

σj(φ) = α+j exp

(√
Bj

Aj
φ

)
+ α−j exp

(
−
√

Bj

Aj
φ

)
. (27)

For the simplest case in which only a single mode j = j0 is excited, the total three-volume then
asymptotes to:

V(φ) = ∑
j

Vj|σj(φ)|2 = Vj0 |σj0(φ)|
2 φ→±∞∼ Vj0 |α

±
j |

2 exp

(
2

√
Bj0
Aj0

φ

)
(28)

at late and early times (as given by φ), where we assume that
Bj
Aj

> 0. This is a bounce solution;
it interpolates between the classical expanding and contracting solutions (8) of the classical Friedmann
dynamics if we identify Bj0 /Aj0 =: 3πG as the “emergent” Newton’s constant. One can show that
a singularity (V(φ) = 0 for some φ) is only possible for special initial conditions, that for a more
general configuration in which many j are excited, a single j will dominate asymptotically in a wide
range of GFT models, and that the single j = j0 case reproduces bounce dynamics very similar to the
“improved dynamics” of loop quantum cosmology [17–20]. Together, these results show the potential
of GFT condensates to provide a realistic dynamics for cosmology, at least in the very simplest case of
a flat FLRW universe filled only with a massless scalar clock field. Most of these results can already be
found in the simpler toy model of [28].

4. Beyond Homogeneity: Adding Rods

It is desirable to extend this framework beyond the spatially homogeneous case, in order to
make contact with more realistic descriptions of cosmology in which inhomogeneities are present,
and to explore the possibility of GFT condensates describing other geometries of physical interest,
in particular black holes. If isometries are present, the problem is still effectively lower-dimensional,
but it should also be possible to include an arbitrary dependence on spacetime coordinates.

As we discussed in the Introduction, a possible way forward is now to include not one, but k
scalar fields φi that can serve as material clocks and rods. Taking these to be massless, free scalars, they
will each satisfy the Klein–Gordon equation, here interpreted as a harmonic coordinate condition:

∇µ∇µφi = 0 . (29)

Including them in the GFT formalism is entirely straightforward: the GFT field is now a function:

ϕ : SU(2)4 ×Rk → C , (gI , φJ) 7→ ϕ(gI , φJ) (30)
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on the extended configuration space SU(2)4 ×Rk of the tetrahedron. Instead of a single matter field
label φ, there are now k labels φJ attached to the vertex of each tetrahedron, corresponding to the
readings of all clock and rod fields. Dynamics are still formulated in relational terms, now using all k
fields to distinguish spacetime points in the emergent spacetime description (i.e., in the condensate
phase). This approach to extending the GFT formalism in order to describe inhomogeneous geometries
was put forward in [21] in order to include perturbative inhomogeneities; see also [39] for a related
cosmological application.1 The use of material reference frames in quantum gravity is of course
not new. Many authors have used dust matter to this effect, starting from Brown and Kuchař [42];
generalisations of the Brown–Kuchař model have been applied to LQG [43]. The general idea of using
convenient matter scalar variables as coordinates dates at least back to DeWitt [44]; see also [45] for an
extended discussion. There are also studies in LQG based on massless scalar fields [46]. As we continue
to argue in this section, adopting material reference systems in GFT leads to new ways of extracting
effective spacetime dynamics from a fundamental, non-perturbative approach to quantum gravity.

In this extended setting with k scalars, the different approximations, in particular the use of
mean-field coherent states to describe weakly interacting GFT condensates, go through in complete
analogy to the case of a single clock field. Again, one ends up with a Gross–Pitaevskii-type equation:

Kσ(gI , φJ)− δV [σ, σ]

δσ(gI , φJ)
= 0 . (31)

For concreteness, let us now assume k = 4, i.e., one has coupled sufficiently many fields to have a
linearly independent set of clocks and rods available at each point in spacetime.2 The expansion of K
in derivatives now takes the form:

K = K0 +K2
∂2

∂(φ0)2 + K̃2

3

∑
i=1

∂2

∂(φi)2 + . . . (32)

assuming the following symmetries of the GFT action: invariance under shifts in any of the φJ ;
parity and time reversal φJ 7→ −φJ ; and arbitrary rotations of the rods φi 7→ Oi

jφ
j. These are

symmetries of the classical action for massless scalar fields, and they are reasonable conditions for any
material coordinate system assuming that translation invariance, parity, time reversal and isotropy
of space are indeed fundamental symmetries of Nature (as we assume they are). We do not assume
Lorentz invariance to be fundamental, but one could do so.

Notice that this extended framework with four massless scalars coupled to gravity includes all of
the homogeneous GFT condensates discussed previously as solutions: these are given by homogeneous
condensate wavefunctions of the form:

σ(gI , φJ) ≡ σ0(gI , φ0) . (33)

One can define both homogeneous and more general inhomogeneous condensates as solutions
for the same GFT action.

If we again use a Peter–Weyl decomposition and again, for simplicity, restrict the mean field to
include only isotropic modes, the generalisation of the effective dynamics (25) is now:(

−Bj + Aj
∂2

∂(φ0)2 + Cj

3

∑
i=1

∂2

∂(φi)2

)
σj(φ

J) = 0 , (34)

1 For an orthogonal approach to describing spherically symmetric spacetimes with GFT condensates, see [40,41].
2 Technically, the condition for this would be det(∂µφJ) 6= 0 in an arbitrary coordinate system, which is generically satisfied.

In the homogeneous cosmological case, this non-degeneracy condition is p 6= 0; see (6).
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with the coefficients Bj, Aj and Cj arising from a mode decomposition of the kinetic operator K
in complete analogy to (26). Again, it is obvious that if the mean field does not depend on the
“rod” fields φi, the equation reduces to the previous homogeneous case. One can perturb around
exact homogeneity,

σj(φ
J) = σ0

j (φ
0)
(

1 + ε ψj(φ
J)
)

; (35)

the field ψj(φ
J) then describes condensate perturbations analogous to phonons in a real Bose–Einstein

condensate. Using phonons to perturb GFT condensates around exact homogeneity had been proposed
already in [29], but their effective spacetime interpretation was not apparent without matter fields that
could be used as relational rods. These phonons are then perturbations in the mean field, i.e., at the
level of expectation values, interpreted directly as deviations from homogeneity in the effective
spacetime geometry.

The proposal of [21] is to go one step further and consider quantum fluctuations in the local
volume as the seeds of cosmological inhomogeneities. This is analogous to what happens in inflation,
where one computes the power spectrum of quantum fluctuations in an exactly homogeneous quantum
state (rather than a quantum state on a classically perturbed geometry). Such fluctuations must always
be there due to quantum uncertainty; they then “freeze out” and are converted into the pattern of
classical inhomogeneities observed in the CMB [47]. Similarly, quantum uncertainty sets a lower bound
on deviations from exact homogeneity in a GFT condensate [48].

In the extended GFT formalism with clock and rod fields, a local volume element operator can be
defined by:

V̂(φJ) =
∫

SU(2)4×SU(2)4
d4g d4h V(gI , hI)ϕ̂†(gI , φJ)ϕ̂(hI , φJ) . (36)

Notice the similarity with (22); V̂(φJ) now corresponds to the volume element at the “spacetime
point” specified by the values φJ of the clock and rod fields (to be precise, V̂(φJ) is a density, and a
finite volume is obtained from V̂(φJ)δ4φJ , where δ4φJ is an infinitesimal volume in field space). This is
precisely the quantity needed to characterise scalar perturbations in cosmology, which are perturbations
in the local volume element of the spacetime geometry. Physically, since in this formalism, scalar
fields need to be coupled to gravity to serve as material clocks and rods, one would expect scalar
perturbations to be present.

As shown in [21], for an exactly homogeneous mean field (33), one finds:

〈V̂(φ0, ki)V̂(φ′0, k′i)〉 − 〈V̂(φ0, ki)〉〈V̂(φ′0, k′i)〉 = (2π)3δ3(ki + k′i)δ(φ
0 − φ′0)∑

j
V2

j |σ0
j (φ

0)|2 (37)

where a Fourier transform has been performed from the rod fields φi to their wavenumbers ki in
order to bring the power spectrum to the usual Fourier space form. The right-hand side is scale
invariant with respect to the rod wavenumbers ki, and the relative amplitude of these inhomogeneities
is naturally small: it scales as 1/N, where N is the number of quanta in the condensate, which is the
typical relative size of fluctuations in a condensate. These results are the first step towards developing
a new formalism for generating cosmological perturbations purely from quantum fluctuations in a
single quantum theory for gravity and matter.

When comparing this formalism with the usual cosmology, one must take into account that
the power spectrum is given with respect to wavenumbers ki for the harmonic coordinate system
given by the scalar fields; the study of how the initial quantum fluctuations given in (37) evolve
dynamically and are converted into classical perturbations is then the next step. In usual cosmological
perturbation theory, the harmonic gauge is of advantage when studying bouncing cosmologies, where
the propagation of perturbations through a bounce can be well defined in this gauge [49]. Since GFT
condensates provide an example of a bouncing cosmology, such coordinates are particularly useful.
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5. Clocks and Rods for a Black Hole

Apart from adding inhomogeneities to an FLRW universe to do cosmology, a second application
that goes beyond spatial homogeneity is using GFT condensates with material clock and rod fields in
order to describe black holes. The results in this section are new and may pave the way towards more
detailed investigations, as we shall discuss at the end.

Let us first summarise the corresponding classical theory. Here, one has the Einstein equations:

Rµν −
1
2

Rgµν = 8πG ∑
J

T J
µν (38)

where T J
µν is the energy-momentum tensor for the scalar field φJ , and these are all massless, free,

non-interacting scalars. The φJ themselves, as we already mentioned several times, satisfy the free
Klein–Gordon equation, and the point is that the values of the φJ are themselves used as coordinates:
we make the (locally possible) gauge choice φJ = φ0x J where φ0 has units of mass to make x J

dimensionless. In this matter reference frame, the energy-momentum tensors take the particularly
simple form (no sum over J here):

T J
µν = ∂µφJ∂νφJ − 1

2
gµν(∂φJ)2 = φ2

0

(
δµ

Jδν
J − 1

2
gµνgJ J

)
. (39)

The right-hand side of Einstein’s equations is thus multiplied by the dimensionless factor
8πGφ2

0 ∼ (φ0/MP)
2, which one may attempt to treat as a “small number” in a perturbative expansion;

notice however that the value of φ0 is arbitrary since one can always perform a global rescaling without
changing the harmonic coordinate condition.

We are now interested in spherically symmetric condensate solutions in GFT. These will in general
depend on two directions, a timelike and a radial coordinate, corresponding to a dependence on
two reference fields φT and φR. Spherical symmetry means that we can assume that even if two
further rod fields are present, the GFT mean field is independent of these. We do not change the
fundamental definition of a condensate through mean-field coherent states such as (15), which we
consider as candidate GFT configurations for general macroscopic, effective continuum configurations.
In particular, nothing in the definition makes reference to concepts such as an event horizon, which one
would hope emerge from the effective semiclassical GFT dynamics.

At the classical level, such condensates should correspond to spherically symmetric solutions of
general relativity coupled to two free scalar fields and written in harmonic coordinates:

φT ≡ φ0T , φR ≡ φ0R . (40)

Without further assumptions, finding such solutions analytically looks like a rather daunting task.
A simpler and perhaps more natural first question would be whether there is an analogue of the

Schwarzschild solution in GFT. The Schwarzschild metric is a vacuum solution of general relativity,
whereas in our formalism, we require scalar fields with non-trivial stress-energy (i.e., not simply
constant fields) in order for them to be viable components of a matter reference frame; but this
stress-energy can be arbitrarily small as long as it is non-zero. This suggests the existence of relevant
black hole solutions which are in the vicinity of the black hole given by small perturbations of the
Schwarzschild metric, although they will globally differ (in particular, they will not be asymptotically
flat, but asymptote to an expanding or contracting FLRW metric).

As a starting point, it may then be useful to work in a vacuum, where we know that any spherically
symmetric solution to the Einstein equations is static. Of course, the solution is the Schwarzschild
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metric, but it is instructive to derive it in terms of a harmonic radial coordinate. Start with a general
spherically symmetric and static metric ansatz of the form:

ds2 = −N2(R)dT2 + A2(R)dR2 + B2(R)dΩ2 (41)

where dΩ2 is the round metric on the two-sphere, corresponding to the orbits of the isometry group
SO(3). The harmonic gauge condition then becomes:

d
dR

(
NB2

A

)
= 0 ⇒ N =

kA
B2 , k 6= 0 , (42)

again fixing the lapse function.
Because we assume the metric to be static, the problem is effectively still one-dimensional,

allowing us to solve the equations analytically. The two non-trivial Einstein equations are:

A(R)3 + 2A′(R)B(R)B′(R)− A(R)
(

B′(R)2 + 2B(R)B′′(R)
)

= 0 ,

A(R)2 + B′(R)2 − B(R)B′′(R) = 0 . (43)

The first equation is a first-order ODE for A(R) with general solution:

A(R) = ±

√
B(R)

B(R) + C
B′(R) ; (44)

the second equation then becomes:

(C + B(R))B′′(R)−
(

2 +
C

B(R)

)
B′(R)2 = 0 (45)

with general solution:

B(R) =
C

e−λ(R+R0) − 1
. (46)

The constants R0 and λ can be chosen freely (λ could always be absorbed into a redefinition of
φ0), and we set R0 = 0 and λ = 1. The metric then takes the form:

ds2 = − k2

C2 e−R dT2 +
C2 e−R

(e−R − 1)4 dR2 +
C2

(e−R − 1)2 dΩ2 . (47)

In order to recognise that this is indeed the Schwarzschild metric, introduce a new (non-harmonic!)
radial coordinate:

r =
C

1− e−R , e−R = 1− C
r

(48)

so that spheres of constant (T, r) have area 4πr2. This brings the metric into the more familiar form:

ds2 = − k2

C2

(
1− C

r

)
dT2 +

(
1− C

r

)−1
dr2 + r2 dΩ2 . (49)

We now recognise the constant C as the Schwarzschild radius rS = 2MG of the black hole.
For C ≥ 0, the radial coordinate r should also be positive, which implies that R > 0 in our original
coordinate system; positive values of R cover the exterior Schwarzschild solution, where R = 0 is
asymptotic infinity and R = ∞ corresponds to the horizon. Negative values of R (and r) would
correspond to a Schwarzschild solution with negative mass, which describes a naked singularity;
indeed the harmonic R coordinate can then be extended all the way to the singularity at R = −∞.
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In order to compare this classical black hole solution to condensate solutions in GFT, we need to
identify a suitable geometric observable in the Schwarzschild spacetime and express it in the relational
coordinates (T, R). As in the case of cosmology, a good candidate for this is the three-volume of a
region in spacetime, defined by a coordinate patch in the matter coordinates. Consider a shell between
radial coordinate values R and R + δR; its three-volume is:

Vshell(R) =
∫

d3x
√

h = 4πr3
S

R+δR∫
R

ds
e−s/2

(e−s − 1)4 ' 4πr3
S δR

e−R/2

(e−R − 1)4 . (50)

In the vicinity of the black hole horizon where e−R � 1, this is well approximated by:

Vshell(R) ' 4πr3
S e−R/2 δR . (51)

The R coordinate system breaks down at R = ∞, just as the Schwarzschild coordinate system
breaks down at r = 2MG. For the negative mass Schwarzschild solution with e−R � 1, we would
similarly approximate:

Vshell(R) ' 4πr3
S e7R/2 δR . (52)

We can now compare this behaviour to that of spherically symmetric GFT condensates. In the
approximations considered in this paper, such condensates satisfy (34), where we assume the GFT
mean field to only depend on one clock and one rod field, i.e.,(

−Bj + Aj
∂2

∂(φT)2 + Cj
∂2

∂(φR)2

)
σj(φ

T , φR) = 0 . (53)

For a static solution, we should also assume the field to be independent of φT . Then:

(
−Bj + Cj

∂2

∂(φR)2

)
σj(φ

R) = 0 ⇒ σj(φ
R) = aj exp

(√
Bj

Cj
φR

)
+ bj exp

(
−
√

Bj

Cj
φR

)
. (54)

The equation of motion and its solutions take the same functional form as for spatially
homogeneous condensates (25)–(27), because we are again dealing with an effectively one-dimensional
problem. However, a different coupling Cj appears, which can be different from the Aj relevant
for cosmology.

For a single spin j = j0 and only considering solutions for which aj0 = 0, we find that the GFT
shell volume operator V̂shell(φ

R) := V̂(φR)δφR has an expectation value:

Vshell(φ
R) = 〈V̂shell(φ

R)〉 = Vj0 |b|
2 exp

(
−2

√
Bj0
Cj0

φR

)
δφR (55)

which, upon setting
√

Bj0
Cj0

φ0 = 1
4 , reproduces the classical black hole near-horizon behaviour (51).

This condition leaves the values of Bj or Cj unconstrained, since the value of φ0 is arbitrary, as we
noted below (46).3 Similarly, solutions for a single spin in which bj0 = 0 give:

Vshell(φ
R) = Vj0 |a|

2 exp

(
2

√
Bj0
Cj0

φR

)
δφR (56)

3 It might appear puzzling that the correct near-horizon behaviour does not depend on the fundamental GFT couplings,
but this is at is should be: we are trying to match with a vacuum solution of general relativity, for which the value of
Newton’s constant likewise plays no role.
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and we can now set
√

Bj0
Cj0

φ0 = 7
4 to find the near-singularity behaviour of a negative mass

Schwarzschild solution (recall that the choice of φ0 is arbitrary, so that fulfilling such a condition
is always possible). There is no evidence for singularity resolution in this case, as (56) never deviates
from the classical expression for the shell volume. Given that the negative mass Schwarzschild solution
has a naked singularity, one may not want to see it resolved in quantum gravity; we should however
point out that the solutions we consider displays extreme fine-tuning, since one has to set either aj0 = 0
or bj0 = 0. Similarly finely-tuned solutions also exist in the cosmological context (27), and they are
exactly the solutions in which there is no bounce.

The coefficients |a|2 or |b|2 correspond to the number of GFT quanta in these states, which must
then be given by 4πr3

S/Vj0 to describe a black hole with Schwarzschild radius rS.
For the physically relevant case of a positive mass Schwarzschild solution, we only have the

exterior solution at our disposal, since the harmonic radial coordinate R only reaches the horizon.
This is a drawback of having to restrict to harmonic coordinates in our construction. It then does not
seem straightforwardly possible to make statements about singularity resolution in GFT black holes;
rather, a comparison to recent work on effective black-hole metrics in LQG (e.g., [50–52]) can only be
done for the exterior. Here, it is noteworthy that the exterior Schwarzschild solution can be exactly
identical to that of general relativity even if LQG-type corrections are included [53]. A second question
whose answer would require access to the interior is whether one can calculate entanglement entropy
in a GFT condensate state across the putative black hole horizon in order to recover an area law, as
was successfully done in [40,41]. If there was a GFT coherent state of the form (15) describing both
the exterior and interior of a black hole, the associated entanglement entropy would presumably be
equal to that of the GFT Fock vacuum, since this is the case for coherent states in a general scalar field
theory [54,55]. Effective studies of quasi-normal modes or perhaps even black hole evaporation might
be possible using only the exterior solution.

The presented evidence for suggesting that spherically symmetric GFT condensates can match
the near-horizon behaviour of a black hole in general relativity is tentative as it only uses the shell
volume as a single observable and not, e.g., the area of a constant (T, R) surface of codimension two
or the extrinsic or intrinsic curvature of a hypersurface in the effective geometry, which would give
further insights into the spacetime interpretation of this condensate mean field. While encouraging in
reproducing the correct classical limit, the results are also less convincing than in the FLRW case, as they
rely on fine-tuning in the choice of condensate solutions; such fine-tuning should be justified by other
considerations independent from enforcing a match with classical general relativity. Nevertheless,
this is the first foray into quantitative studies of effective black hole geometries in GFT and should be
seen as the starting point for further research aimed at extending the results found for GFT cosmology
to GFT black holes, and then other situations of physical interest. We have already seen how harmonic
matter coordinates can prove to be a valuable tool for investigating general inhomogeneous geometries
in full quantum gravity, outside of the usual symmetry-reduced models in which symmetry reduction
is applied before quantisation.
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