
Hyperpolarization Methods for MRS 

 

Boyd M. Goodson, Nicholas Whiting, Aaron M. Coffey, Panayiotis Nikolaou, Fan Shi, 

Brogan M. Gust, Max E. Gemeinhardt, Roman V. Shchepin, Jason G. Skinner, Jonathan R. 

Birchall, Michael J. Barlow, Eduard Y. Chekmenev* 

 

Boyd M. Goodson 

Southern Illinois University, Department of Chemistry and Biochemistry 

Carbondale, IL, 62901, United States 

 

Nicholas Whiting 

The University of Texas MD Anderson Cancer Center, Department of Cancer Systems 

Imaging 

Houston, TX, 77030, United States 

 

Aaron M. Coffey 

Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology 

Nashville, TN, 37232, United States 

 

Panayiotis Nikolaou 

Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology 

Nashville, TN, 37232, United States 

 

Fan Shi 

Southern Illinois University, Department of Chemistry and Biochemistry 



Carbondale, IL, 62901, United States 

 

Brogan M. Gust 

Southern Illinois University, Department of Chemistry and Biochemistry 

Carbondale, IL, 62901, United States 

 

Max E. Gemeinhardt 

Southern Illinois University, Department of Chemistry and Biochemistry 

Carbondale, IL, 62901, United States 

 

Roman V. Shchepin 

Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology 

Nashville, TN, 37232, United States 

 

Jason G. Skinner 

University of Nottingham, School of Medicine 

Nottingham, NG7 2UH, UK 

 

Jonathan R. Birchall 

University of Nottingham, School of Medicine 

Nottingham, NG7 2UH, UK 

 

Michael J. Barlow 

University of Nottingham, School of Medicine 

Nottingham, NG7 2UH, UK 



 

Eduard Y. Chekmenev* 

Vanderbilt University, Institute of Imaging Science (VUIIS), Department of Radiology, 

Department of Biomedical Engineering, Department of Biochemistry, Vanderbilt-Ingram 

Cancer Center (VICC) 

Nashville, TN, 37232, United States 

1161 21st Ave South 

MCN AA-1105 

Nashville, TN 37232, United States 

E-mail: eduard.chekmenev@vanderbilt.edu 

Phone: 615-322-1329 

Fax: 615-322-0734 

Short Biographies: 

Boyd Goodson graduated from Princeton University in 1995 and earned his PhD in chemistry 

in 1999 with Alexander Pines at U.C. Berkeley. Following postdoctoral work with Ahmed 

Zewail at Caltech, in 2002 Goodson joined the faculty at Southern Illinois University 

Carbondale and was promoted to full professor in 2014. Goodson’s research interests concern 

NMR/MRI sensitivity enhancement and hyperpolarization. 

Nicholas Whiting, b1983. PhD (supervisor Prof. Boyd Goodson) 2010, Southern Illinois 

University, Carbondale, IL, USA. NSF International Research Fellow at the University of 

Nottingham, UK (with Dr. Michael Barlow and Prof. Peter Morris). Odyssey and NCI Cancer 

Prevention Fellow (with Prof. Pratip Bhattacharya) at UT MD Anderson Cancer Center. 

Aaron M. Coffey, PhD 2014, Vanderbilt University, Nashville, TN, USA. Postdoctoral 

Fellow at Vanderbilt University Institute of Imaging Science (with Prof. Eduard Y. 

Chekmenev). Co-authored >30 peer-reviewed articles covering advanced MR detection 



hardware and utilizing hyperpolarization techniques to enable MR contrast agents for in vivo 

molecular imaging for improved human health. 

Panayiotis Nikolaou, b1978, PhD (supervisor Prof. Boyd Goodson) 2010, Southern Illinois 

University, Carbondale, IL, USA. Currently: Post-Doctoral Fellow, Vanderbilt University, 

Nashville, TN USA (with Dr. Eduard Chekmenev) at the Institute of Imaging Science. 

Fan Shi. After graduating with BS/MS degrees from Zhengzhou University (China), he 

joined the Goodson Lab at SIUC (USA) in 2011. His research has concerned the 

development and application of SABRE catalysts—particularly under heterogeneous 

conditions ("HET-SABRE"). Fan graduated with a PhD in 2015, and is now an intern with 

Cabot Labs in Chicago, IL. 

Brogan Gust graduated with a B.S. degree in chemistry from Southern Illinois University 

Carbondale in 2013. While at SIUC, he was under the guidance of Boyd Goodson 

researching NMR enhancement using Xenon-129 hyperpolarization. 

Max Gemeinhardt joined the Goodson Lab at SIUC in 2011 as undergraduate working on 

pH-sensing SPIONs. He graduated in 2012 with a B.S. degree and is currently pursuing a 

M.S. degree at SIUC in the Goodson Lab, where his current research interests include 

cryptophane host-guest inclusion complexes and SABRE NMR enhancement. 

Roman V. Shchepin, b1978, PhD (Prof. Patrick Dussault) 2006 in University of Nebraska-

Lincoln (Lincoln, NE). Postdoctoral Fellow at Vanderbilt University Department of 

Chemistry (2007-2009) with Prof. Ned A. Porter and VUIIS (2010-2013) with Prof. Eduard 

Y. Chekmenev. He is currently Research Instructor at VUIIS with main focus on the 

chemistry of hyperpolarized NMR/MRI. Coauthored >30 peer-reviewed original research 

publications. 

Jason G. Skinner. b1989. M.Phys., 2012. PhD research student (supervisors: Prof. I. Hall, 

Prof. P. Morris, Dr. M. Barlow), University of Nottingham, UK. Research interests include 



spin-exchange optical pumping, hyperpolarised noble gas lung MRI, and disease detection 

via exhaled volatile organic compounds. 

Jonathan R. Birchall, b1991, M.Phys., 2013, PhD research student (supervisors: Prof. I. Hall, 

Dr. M. Barlow, Prof. J. Owers-Bradley), University of Nottingham, UK. Research interests 

include development and analysis of Spin-Exchange Optical Pumping techniques for 

functional human lung imaging. 

Michael J. Barlow, b1958, PhD (Supervisor Prof. Brian Ridley FRS) 1988 University of 

Essex, UK. Postdoctoral Fellow at MOD Malvern, Durham University, Surrey University, 

Imperial College London and Rutherford Appleton Lab, Oxford. Instrument Manager - MAG 

team NASA Cassini Mission. Faculty Fellow University of Nottingham. Co-authored >20 

peer-reviewed publications in the areas of semiconductor physics, space physics, solid state 

NMR, laser physics and hyperpolarized MRI. 

Eduard Y. Chekmenev, b1977, PhD (supervisor Prof. Richard J. Wittebort) 2003, University 

of Louisville, KY, USA. Postdoctoral Fellow at NHMFL, Tallahassee, FL, USA (with Prof. 

Timothy Cross) and at Caltech (with Prof. Daniel P. Weitekamp) and HMRI (with Dr. Brian 

D. Ross). Co-authored >70 peer-reviewed original research publications in the areas of solid-

state NMR of proteins and hyperpolarized NMR/MRI. Research interests include 

development of methods of hyperpolarization for Biomedical applications. 

 

Keywords: Hyperpolarization, DNP, PHIP, Parahydrogen, Xenon, SABRE, Carbon-13, 

SEOP. 

  



Abstract 

This chapter covers the fundamental principles and practice of NMR hyperpolarization 

techniques, which are proving useful for in vivo Magnetic Resonance Spectroscopy (MRS) 

studies of metabolism in animal models, and clinical trials with hyper-enhanced sensitivity. 

Fundamentally, hyperpolarization methods enhance nuclear spin polarization by orders-of-

magnitude, resulting in concomitant improvement in NMR detection sensitivity. The 

hyperpolarization methods described here—Dynamic Nuclear Polarization (DNP), 

Parahydrogen Induced Polarization (PHIP), Signal Amplification By Reversible Exchange 

(SABRE) and Spin-Exchange Optical Pumping (SEOP)—are capable of achieving nuclear 

spin polarization approaching the theoretical maximum of unity on nuclear spin sites of 

molecular or atomic agents suitable for in vivo administration. Importantly, hyperpolarization 

is inherently non-equilibrium in nature: the duration of the hyperpolarization is frequently 

short-lived, being limited by the in vivo spin-lattice relaxation times (T1) which are on the 

order of seconds to a minute. Nevertheless, sufficient amounts of nuclear spin polarization 

can survive the process of preparation, administration, and in vivo circulation to provide 

extraordinary enhancement of the hyperpolarized agent. The chemical shift dispersion of 

these agents at the molecular location of interest reports on functional, metabolic and other 

processes at the molecular level, enabling true molecular MRS imaging. 

  



1. INTRODUCTION 

The sensitivity and signal-to-noise ratio (SNR) of the Nuclear Magnetic Resonance 

(NMR) experiment is directly proportional to the nuclear spin polarization factor P, which 

represents the fraction of the alignment of the nuclear spin ensemble with an applied 

magnetic field B0. In conventional NMR, P ≈ għB0/2kT under thermal equilibrium conditions 

governed by the Boltzmann distribution (with g= the gyro magnetic ratio; ħ=Plank’ s 

constant/2π; k=Boltzmann’s constant; and T=absolute temperature). In vivo conditions imply 

temperatures in excess of 300 K. As a result, even if a high-field magnet—e.g. a 3 Tesla (T) 

clinical MRI scanner—is employed for magnetic resonance (MR) spectroscopy (MRS), the 

value of P of proton (1H) and carbon-13 (13C) nuclear spins is only 1´10-5 and 2.5´10-6 

respectively. Therefore, the vast majority of the nuclear spin ensemble does not in fact 

contribute to the NMR signal. For this reason, NMR in general and MRS in particular are 

frequently considered insensitive probes. 

However, P can be artificially increased significantly relative to the thermal equilibrium 

level, via a process called NMR hyperpolarization. Several hyperpolarization techniques 

realize enhancements of P by several orders-of-magnitude over the Boltzmann level, and 

allow P to approach the theoretical maximum of unity. The corresponding enhancement 

factor, e, is field-dependent and defined as a ratio of P in the hyperpolarized (HP) state to that 

in the thermal-equilibrium state (e.g. e = 104 to 105 for 13C at 3 T).1 

The fundamental concept of NMR hyperpolarization and its use in MRS is attractive 

because it offers extraordinary advantages over conventional MRS.2 First, the SNR can be 

significantly improved even using much lower concentrations of detected compounds than 

are present endogenously. Second, the data acquisition time can be dramatically decreased 

from tens of minutes down to sub-second scans. Third, an HP contrast agent (HCA) entering 

the biological system (i.e., excised organ, living organism, etc.) and reporting on metabolic 



functional events can provide insightful dynamic information on in vivo metabolism in real 

time compared to the static picture typically obtained with conventional single or multi-voxel 

MRS. Not surprisingly, biomedical applications represent the major driving force behind the 

fields of NMR hyperpolarization and HCA development, owing to their potential for 

revolutionizing medical diagnostics, drug therapy development, and probing physiological 

mechanisms. 

However, HP NMR techniques are no panacea, as they have inherent disadvantages and 

shortcomings that must frequently be confronted during HCA production. First, HCAs are 

nearly always prepared exogenously in a hyperpolarization apparatus, frequently requiring 

sophisticated and expensive hardware. Second, HCAs must retain a HP state sufficiently long 

for quality assurance, transport, administration, in vivo delivery and NMR/MRS 

measurement. These requirements limit the number of molecular sites (i.e. moieties of 13C, 

15N, 129Xe, etc.) suitable for HP MRS, to those whose spin lattice relaxation times (T1) are 

long enough to accomplish all this. Finally, the decay of the HP state to thermal equilibrium 

is irrecoverable. Therefore, signal acquisition must be fast and efficient to account for 

polarization losses via T1 relaxation, RF pulsing (for detection), and the effects of in vivo 

metabolism and dilution.3 

This chapter describes four hyperpolarization techniques: (1) Dynamic Nuclear 

Polarization (DNP), (2) Parahydrogen Induced Polarization (PHIP), (3) Signal Amplification 

By Reversible Exchange (SABRE) and (4) Spin-Exchange Optical Pumping (SEOP) of 

129Xe. These techniques have already proven effective for preparing HCAs that can be used 

for tracking metabolic and functional processes in vivo (see emrstm12533), because they are 

capable of achieving P approaching the theoretical maximum of unity on nuclear spin sites of 

molecular or atomic HCAs. Moreover, the HCAs for MRS fundamentally offer a wide 

dynamic range of chemical shift dispersions either through metabolism (e.g. 13C metabolites) 



or by their sensitivity to the local environment (e.g. 129Xe). Many HCAs have been validated 

in animal models,2 while some HCAs (e.g. HP 13C-pyruvate and 129Xe) are being tested in 

clinical trials.4 

The primary focus in this chapter is on the fundamentals of these hyperpolarization 

techniques (i.e. how they are generated and their physical and chemical properties), their 

existing or emerging MRS relevance and a description of the hyperpolarization equipment 

(frequently referred to as hyperpolarizers) required to perform these techniques. Accordingly, 

the chapter describes and cites only selected works in these areas, and the reader may 

additionally benefit from some recent comprehensive reviews.2, 5-9 

2. DYNAMIC NUCLEAR POLARIZATION (DNP) 

2.1 Fundamentals 

Despite the demonstration by Overhauser in the early 1950s of the underlying basis of 

DNP—that P could be enhanced by cross-relaxation with nearby electrons due to differences 

in their gyromagnetic ratios (ge/gI ~660)—only recently has interest in its potential 

applications for biomedical MRI and MRS emerged.10 While various methods fall under the 

DNP umbrella, the “dissolution DNP” (d-DNP) method is the most commonly used method 

for in vivo applications.1, 9 In biological d-DNP MRS experiments, the general preparation 

procedure involves: (i) mixing the MR-active species of interest with a paramagnetic source 

of free electrons; (ii) placing the mixture in a high magnetic field at low cryogenic 

temperatures; (iii) subsequent irradiation with a microwave source resonant on the electron 

spin resonance (ESR) frequency to mediate the transfer of electron polarization to nearby 

nuclei11 followed by (iv) rapid sample thawing using a hot solvent to warm the frozen 

polarized sample and transfer to the MR scanner for in vivo injection as a liquid. These 

conditions generate electron spin polarizations that can approach unity as shown in Figure 1, 



with a significant fraction of the prepared P largely surviving the rapid dissolution in step 

(iv). 

<Figure 1 near here> 

<Figure 2 near here> 

 

2.2 Dissolution DNP (d-DNP) Instrumentation 

Both commercial and home-built d-DNP devices have been extensively used for in vivo 

MRS. While each polarizer design may have unique characteristics, they are all comprised of 

the same basic components: a superconducting magnet that provides a B0  of 3-7 T, a liquid 

helium cryostat for sample cooling to 1-4 K, a microwave source to transfer polarization from 

the electrons to nuclei (~100 mW), and a mechanism that rapidly dissolves the frozen sample 

pellet and delivers the solution for collection.9 Step (i) of the typical d-DNP experiment 

proceeds as follows: the species of interest is mixed with a radical source and a glassing 

agent in a typically flat sample container (up to a few hundred m L) and lowered into the 

cryostat, as depicted in Figure 2. There in step (ii), the sample is frozen into an amorphous 

solid at low temperatures either by submersion into a liquid helium bath (where vacuum-

pumping reduces the vapor pressure, and hence bath temperature) or by exposure to a stream 

of continuously flowing liquid helium. The microwave source, whose frequency is set to the 

ESR line of the chosen radical species at the B0 of the polarizer (typically within ~80-140 

GHz, with a ~0.5 GHz sweep range), irradiates the sample for ~1 hr in step (iii), using an 

antenna that takes advantage of the large flat surface area of the sample container. An on-

board NMR system can check the HP signal while sweeping the microwave source to allow 

for optimization of the microwave frequency and excitation power (Figure 1c), and for 

monitoring the build-up of hyperpolarization over time (Figure 1d). 



Step (iv) of the procedure requires a superheated solvent with high heat capacity, which is 

typically satisfied by pH-buffered saline. This is injected into the sample cup inside the 

cryostat. The lifetime of the HP signal is determined by the T1 of the HCA, so to mitigate P 

losses, the rapid dissolution is performed at high B0 to minimize the sudden depolarizing 

effects of the paramagnetic centers as the temperature rises above ~4 K. Dissolution also 

reduces the relative concentration of radicals and lowers their contribution to the nuclear spin 

relaxation rate9 as the sample volume expands by an order of magnitude (this process also 

dilutes the HP agent). The room-temperature (RT) T1 values of most HCAs used for 

biomedical MRS are ≤ 1 min but B0 changes between the polarizer and MR scanner may 

further reduce T1. Rapid shuttling of the sample from the polarizer to the scanner is key, and 

is typically performed pneumatically using helium gas through small diameter tubing. There, 

the polarized solution is quickly filtered to remove persistent radicals using anion-exchange 

or polyethylene filters9 and injected into the subject (Figure 2). 

A commercially available d-DNP device for clinical use has recently been developed 

(SPINlab; GE Healthcare) that operates at 5 T and 1.1 K.12 The system uses an on-board 

helium recycling system that dramatically lowers the consumption of liquid helium, which is 

expensive. While many other features of its design and operation are similar to that described 

above, additional quality-control steps are incorporated to ensure that the injectable solution 

meets clinical criteria for pH, temperature, P value, sterility, purity and residual radical specie 

concentration. In general, the larger sample volumes required for human use necessitate 

longer dissolution, transport, quality-control, and injection periods, such that significant time 

(e.g. >65 s) may elapse between the initial dissolution and final injection. Nevertheless 

typical 13C P values are ~15-20% after quality control, which is certainly sufficient to 

perform HP MRI/MRS in human patients with great advantage vs. conventional MRS with P 

~10-3 %.4 



2.3 Common HP agents produced with d-DNP 

2.3.1 13C-labelled small biomolecules 

The overall P, T1, and biological relevance of the agent are the main criteria for choosing 

a HP species for MRS applications. Further considerations include the ability to form a glassy 

matrix in a sufficiently high concentration to mitigate dilution effects from the dissolution 

step; sufficient chemical shift range to differentiate the primary polarized species from any 

downstream products; the cost of isotopic enrichment; the ability to lessen the depolarization 

effects of nearby protons via deuteration;13 and toxicity. While a number of MR-active nuclei 

are eligible for DNP, the most commonly pursued are 13C-labelled carboxyl sites of 

metabolites. Of the latter, 13C-pyruvate has garnered the most attention because of its 

relatively high P values (>50 %), long T1 (~60 s), and ability to probe the tricarboxylic acid 

(TCA) cycle and glycolysis within a T1-relevant timescale.14 Additional notable 13C-labelled 

small molecules pursued for DNP studies include urea,1 fumarate, glutamine, fructose, 

lactate, glucose, diethyl succinate, and acetate.2, 13 

2.3.2 Extension to other nuclei 

Beyond 13C, the most commonly pursued d-DNP species for MRS studies are biologically 

relevant 15N-labelled compounds, such as urea and choline. However, despite some benefits 

(the T1 of 15N-choline ~4 min),13 the lower gyromagnetic ratio makes 15N MRS more 

challenging for achieving useful signal intensities and gradient strengths for spatial 

localization with typical scanner hardware. Other species that can be hyperpolarized by DNP 

and may have potential for future in vivo applications include: 1H, 6Li, 29Si, 31P, 89Y, 107Ag, 

and 129Xe. 

2.3.3 Secondary and co-polarization 

The enhanced signal from isotopically labeled HP small molecules may be translated into 

their chemical reaction products. This process, referred to as secondary polarization, allows 



the study of biologically relevant molecules that may not polarize well on their own, but have 

metabolic predecessors that do. This process can either be enzymatically regulated, such as 

with [1,1-13C2]acetic anhydride breaking into different [1-13C]N-acetylated amino acids,13 or 

non-enzymatically regulated—for instance, the reaction of 1,2-13C-pyruvate with H2O2 to 

form 13CO2, 13C-acetate, and 13C-bicarbonate.15 Co-polarization of a single “batch” of 

different small molecules using d-DNP during agent production allows the simultaneous 

study of different biophysical parameters and processes such as pH, metabolism, necrosis, 

and perfusion.13 While the commingled molecules’ solid-state polarization P and T1 values 

are often similar to their individual values, drawbacks include lower concentrations of, and 

potential interactions among, the small molecules involved. 

2.4 Radicals and Glassing Agents 

2.4.1 Choice of radical species 

The build-up time and hyperpolarization level for all species are highly dependent on the 

choice of radical used to mediate the DNP. Typical radical concentrations range from 15-60 

mM, and may persist post-thawing, requiring filtering before administration. The most 

widely used sources of free electrons for 13C DNP have been the trityl and 1,3-

bisdiphenylene-2-phenylallyl (BDPA) radicals. Because their ESR lines are narrower than the 

1H resonance frequency dispersion, the probability of cross-polarization with 1H is lowered, 

which increases the chances of polarizing nearby 13C nuclei. 

Further improvements in the P level and reductions in buildup time can be gained by the 

addition of a Gd3+ complex to the trityl radical solutions. The highly efficient electron-1H 

cross-polarization of nitroxyl radicals (e.g., TEMPO;	2,2,6,6-tetramethylpiperidine-1-oxyl) 

can also be used in conjunction with a 1H-13C cross-polarization scheme to decrease 13C 

polarization time, albeit with lower overall 13C polarization compared to trityl or BDPA 

radicals. Liquid-state P can be further increased using a deuterated solvent for the nitroxyl 



radicals.9 Additional gains have been reported using bi-radicals comprised of two TEMPO 

radicals tethered by a polyethylene chain.16 

2.4.2 Choice of glassing agent 

The DNP process is most efficient when the HP molecule is homogenously mixed with 

the radical species and formed into a glass, as already noted. This amorphous state allows the 

paramagnetic centers to achieve close contact with nearby nuclei, which is not the case in a 

crystalline lattice. Typical glassing agents include glycerol and dimethyl sulfoxide (DMSO), 

which act to prevent crystallization. Some HP molecules such as neat 13C-pyruvate, are 

capable of self-glassing17, which allows for a higher concentration of 13C nuclei that speeds 

13C spin diffusion resulting in a more homogenously-polarized sample.18 

2.5 DNP Advantages, Limitations, and Future Prospects 

As a hyperpolarization method, DNP’s versatility lies in its ability to hyperpolarize a 

variety of biologically relevant molecules not easily polarized by other methods. Target 

molecules can achieve high P with sufficiently long T1 values for probing metabolic 

pathways, and clinical trials are already underway for HP 13C-pyruvate. The main limitations 

thus far are the high cost of purchase, maintenance, and infrastructure required for the 

polarizers. Improvements in cryogen recovery and solid-state cooling can lower operational 

costs, and further optimization of the physical and chemical environment of the HP species 

should improve P and T1 values, as would the ability to store the enhanced polarization in a 

singlet state until it is ready for MRS applications. Finally, the demonstration of a clinically 

important application of HP MRI—such as using 13C-pyruvate to study prostate cancer or 

heart dysfunction—will greatly hasten the development of all d-DNP aspects.9 

3. PARA-HYDROGEN (para-H2) PRODUCTION 

In addition to its more recent applications in HP MRS, the properties of para-hydrogen 

(para-H2) have proved important for hydrogen’s use as a rocket fuel by minimizing boil-off 



due to state conversion, and even earlier, para-H2 served as a prototypical system during the 

development of quantum theory. The di-hydrogen molecule possesses two nuclear spin 

isomers, denoted as “ortho-“ and “para-“ states, comprised of a nuclear triplet state and a 

singlet state, respectively. Importantly, while representing the simplest nuclear singlet state, 

para-H2, per se, has net spin I = 0 and is therefore NMR invisible. As will be seen in the 

following sections, its use in NMR/MRS is as an extremely powerful vector for transferring 

HP to HCAs of interest. For further discussion of the physics of parahydrogen, we direct the 

interested reader to the books by Farkas on hydrogen19 and Linus Pauling on quantum 

mechanics20, and the review by Green and co-workers.5 

Inter-conversion of ortho-hydrogen (ortho-H2) to para-H2 (with a heat of conversion of 

670 J/g) is forbidden according to the selection rules of quantum mechanics. It thus occurs 

very slowly. Spontaneous emission of radiation was calculated by Wigner to result in a 

conversion rate of ~10-10 sec-1, or approximately one transition per 1 gram every three 

hundred years.19 In 1930, Hall and Oppenheimer calculated that molecular collisions at 

atmospheric pressure result in a rate of one per ~108 sec/1 g for the ortho-para transition half 

lifetime, or about 3 years.19 While such a slow inter-conversion rate is nominally unfavorable 

to para-H2 production, Bonhoeffer and Harteck discovered in 1929 that paramagnetic 

catalysts, including for example, activated charcoal, nickel, and hydrated iron-III oxide, 

greatly accelerate the establishment of thermodynamic equilibrium for the ratio of ortho-

H2/para-H2. 

<Figure 3 near here> 

The instrumentation used to generate high-purity para-state dihydrogen is commonly 

called a “parahydrogen generator,” shown in Figure 3. The essential purpose of the generator 

is to pass bulk H2 at RT (i.e. ~293 K) over a paramagnetic catalyst at a cryogenic temperature 

of ~20 K to rapidly equilibrate the 75% ortho-H2 fraction to the lower-temperature 



Boltzmann thermal equilibrium, thereby creating para-H2 with nearly 100% para-fraction. 

Typically, the gas flows through a catalyst chamber attached to a two-stage, Joule-Thomson 

effect, helium cryocooler cold-head. The flow is regulated with either: (i) flow restrictors 

such as mass flow controllers, snubbers, or needle valves;21, 22 or (ii) by releasing small 

batches of compressed H2 between automatically-sequenced solenoid valves.23 After 

separation of the para-H2 from the catalyst and subsequent storage at RT, quantum-

mechanical symmetry selection rules forbid re-establishment of the RT equilibrium. Provided 

the para-H2 storage vessel contains no paramagnetic impurities (as is the case for those glass-

lined or of aluminum, although the absence of O2 is also important), the relaxation rate of the 

para-hydrogen back to the RT equilibrium can be on the order of months.21-23 Thus para-H2 

experiments are possible long after production. 

 

4. PARA-HYDROGEN INDUCED POLARIZATION (PHIP) 

4.1 Fundamentals 

While the para-H2 molecule is itself NMR invisible, Bowers and Weitekamp24 have 

demonstrated that the para-H2 singlet can be unlocked via the chemical reaction of 

hydrogenation provided that the para-H2 is added in a pairwise manner (best exemplified in 

the molecular mechanism of H2 addition), and that the nascent protons in the resulting 

hydrogenation product are no longer magnetically equivalent. This phenomenon of symmetry 

breaking the para-H2 nuclear singlet state via hydrogenative processes is termed 

“parahydrogen induced polarization” (PHIP).25 

<Figure 4 near here> 

While the para-H2 singlet can be preserved for weeks and months, once the symmetry is 

broken and the para-H2 pair is incorporated into the molecular framework of a product 

molecule (Figure 4), the relaxation decay processes (via T1 and the spin-spin relaxation time, 



T2) are significantly more efficient (on a time-scale of seconds)—leading to rapid 

depolarization. For the majority of metabolically relevant injectable contrast agents that can 

be envisioned, fast T1 relaxation limits any meaningful preparation of HCA for biomedical 

use. 

This initial fundamental PHIP challenge was overcome in the early 2000s, when an 

adjacent 13C carboxyl (and potentially 15N or others) with significantly longer T1 was 

introduced by Golman26 and Goldman.27 In addition, deuteration of the PHIP molecular 

precursor can extend the T1 lifetime of the nascent protons, which has proven especially 

useful in PHIP of gases.28 In the PHIP process, polarization from nascent para-H2 protons is 

efficiently transferred to the 13C nucleus via the network of J-couplings using either magnetic 

field-cycling or radiofrequency (RF) pulse-based methods. Regardless of the approach used, 

the chemical reaction between para-H2 and the unsaturated substrate molecule must be 

performed on a relatively fast time scale (seconds), i.e. significantly shorter than the effective 

relaxation times of the nascent para-H2 protons, in order to minimize polarization losses 

during the reaction. Post-reaction, the polarization is typically transferred to the 13C nucleus 

within a second. Moreover, even in the case of RF-based polarization transfer, which has 

proven to be more efficient, as gauged by the %P delivered to 13C, to date, the PHIP method 

is relatively low cost because the PHIP process can be performed at very low magnetic fields 

(a few mT) using relatively simple NMR hardware. 

4.2 Molecular Precursors and Contrast Agents 

The design of PHIP precursor molecules for biomedical applications and MRS is a 

challenging process that must meet critical requirements. In particular, the molecule must 

possess an unsaturated (typically C=C) bond adjacent to 13C to provide a J-coupling contact 

between the nascent para-H2 protons and the 13C to enable efficient polarization transfer. 

Furthermore, the efficiency of this polarization transfer in RF pulse-based polarization 



transfer methods can greatly benefit from deuteration of the precursor molecule29 as a means 

to keep the nuclear spin system effectively constrained to just the three involved spins: the 

two nascent parahydrogens and the 13C nucleus.27 Lastly, because the hydrogenation reaction 

may be incomplete, both the precursor and product molecules should have relatively low in 

vivo toxicity. Meeting all these requirements represents the main disadvantage of PHIP, and 

only a limited number of potentially amenable precursor molecules and HCAs have qualified 

for in vivo use, so far. 

Those that have been successfully hyperpolarized and used for in vivo MRS include HP 

13C-succinate, which highlights metabolites of the TCA cycle30; 13C-tetrafluoropropyl 

propionate, for sensing lipids in atherosclerotic plaques,31 and 13C-phospholactate29 for 

preparation of HP 13C-lactate, which has been shown to be useful for in vivo metabolic 

imaging of elevated glycolysis in tumors. 

4.3 Homo- and Heterogeneous PHIP Catalysis 

4.3.1 Homogeneous Catalysis in Organic Solvents 

PHIP24, 25 has attracted the attention of those working in catalysis due to its promise to 

increase the NMR sensitivity of key low-concentration species. The PHIP process of pairwise 

para-H2 addition requires an efficient catalyst to complete the process within seconds (i.e. on 

the time-scale of relaxation processes). Initially, PHIP catalytic systems were based on 

Wilkinson’s catalyst RhCl(PPh3)3,24 Vaska’s complex Ir(CO)Cl(PPh3)2, and Crabtree’s 

catalyst [(COD)Ir(PCy3)(Py)]+PF6
- , (COD = 1,4-cyclooctadiene, PCy3 = 

tricyclohexylphosphine, Py = pyridine). These transition metal-based systems catalyze the 

molecular hydrogenation reaction, where para-H2 is added to an unsaturated precursor via a 

molecular mechanism. Undergoing a molecular rather than a radical mechanism is essential 

for preserving the para-H2 spin order, which allows the observation of a PHIP effect.5, 24 A 

number of other transition metals and chelating ligands have been evaluated.5 In particular, 



implementation of bidentate ligands such as Ph2P(CH2)4PPh2 using Rh(I) as a catalyst has 

proven to be particularly effective for the ultrafast molecular addition of para-H2 to double 

and triple bonds, resulting in polarization enhancements of ~104 upon transfer to adjacent 13C 

nuclei.26 Despite the apparent synthetic success of this methodology, the approach has been 

limited to organic solvents, thus limiting biological applications where aqueous catalysts and 

substrates are desired. 

4.3.2 Homogeneous Aqueous Catalysis 

Chemical modification of phosphine-based ligands has permitted preparation of efficient 

water-soluble Rh(I)-based catalytic systems. By far, the most common variation utilizes 4-

bis[(phenyl-3-propanesulfonate) phosphine] butane di-sodium or its close variant,22 where 

Rh(I) is chelated by norbornadiene and two phosphines connected by a four- or three- carbon 

bridge.5 While aqueous homogeneous catalysts have opened the door to the first generation 

of mammalian in vivo imaging aided by PHIP30, 31, the presence of Rh(I) catalysts in the 

HCA solution is presently an obstacle to clinical applications. Replacement of homogeneous 

PHIP by heterogeneous PHIP (“HET-PHIP”) processes will likely be the key to PHIP clinical 

applications. HET-PHIP catalysis was extensively reviewed a few years ago,32 and is briefly 

discussed here in the context of recent advances and applications for aqueous media. 

4.3.3 Heterogeneous (Solid/Liquid) Catalysis 

A number of immobilized Rh complexes, based on either Wilkinson’s catalyst or closely 

related systems based on Rh(I) derived from [Rh(COD)2]+[BF4]-, have been evaluated for 

PHIP, typically using diphenylphosphinoethyl-modified silica as a stationary phase. While 

some PHIP signal was often observed, the enhancement values were generally low due to 

slow hydrogenation rates, loss of para-H2 polarization on the stationary phase surfaces, and 

chemical degradation of the catalyst. Alternatively, the application of transition metal 

nanoparticles is well-established for gas-solid PHIP (see below), and has been demonstrated 



for capped platinum nanoparticles33 in liquid-solid PHIP, where HP liquids are generated 

over solid-phase catalysts. Finally, Rh/TiO2 nanoparticles have also been used for PHIP 

processes, and PHIP hyperpolarization of acrylamide and allyl methyl in D2O solutions was 

demonstrated using these Rh/TiO2 nanoparticles. This approach is promising for in vivo 

applications in spite of the low P levels demonstrated to date. 

4.3.4 Heterogeneous (Solid/Gas) Catalysis 

A silica-embedded Wilkinson’s catalyst was also the first catalytic system enabling PHIP 

of gases at polarization levels sufficient for in vitro imaging.34 Further progress in this area 

has been driven by the development of more robust nanoparticle catalysts such as: Pt, Pd or 

Rh on TiO2, SiO2, Al2O3, or ZrO2 solid substrates. In general, better polarization transfer 

results were obtained with smaller nanoparticles: Rh and Pt provide superior results to Pd, 

while Al2O3 and especially TiO2 were superior performing substrates.32 

4.4 Hyperpolarization Instrumentation 

The controlled reaction of para-H2 with an unsaturated chemical precursor to produce a 

HCA takes place within an instrument referred to as a ‘PHIP hyperpolarizer’. The features 

and underlying polarization transfer technique differentiate the hyperpolarizers constructed to 

date.26, 35, 36 In general, inert gases such as N2 shuttle the precursor through a manifold during 

injection into a heated reactor wherein it is rapidly and thoroughly mixed with a para-H2 

atmosphere, as shown in Figure 5. Prior to injection, the precursor is typically pre-heated to 

further speed the chemical reaction of pair-wise addition. Two approaches to precursor/para-

H2 mixing have involved: (i) jet entrainment mixing;22 and more commonly (ii) spray mixing 

(Figure	5).26, 35, 36 Other differences in hyperpolarizer designs concern the method used to 

transfer the spin order of para-H2 after chemical synthesis to the heteronucleus which 

include: (i) field-cycling;26 or (ii) more efficiently,26, 35, 36 the application of RF pulses.27 In 

the latter method, RF pulses may be synchronized with the operation of the manifold by a 



LabView interface to a National Instruments data acquisition card,26, 35, 36 or by a low-field 

NMR spectrometer.36 In order to facilitate calibration of the RF pulse sequence parameters, 

and in situ NMR detection capability for the hyperpolarizer is desirable.36 The latter can 

result in a stand-alone PHIP hyperpolarizer with built-in quality assurance for the P 

produced. 

<Figure 5 near here> 

 

5. SIGNAL AMPLIFICATION BY REVERSIBLE EXCHANGE 

(SABRE) 

Another route to achieve hyperpolarization in solution is SABRE (Signal Amplification 

by Reversal Exchange), introduced by Duckett and co-workers in 2009.37 Similar to 

traditional PHIP, SABRE also takes advantage of the transfer of the spin order of para-H2 to 

a target substrate brought together by an organo-metallic catalyst. The key difference is that 

with SABRE, the transfer of spin order is not dependent upon the hydrogenation of an 

unsaturated bond of the substrate. This difference brings about two advantages: (i) the 

expansion of the range of applications of PHIP24, 25 with respect to the types of molecules that 

can serve as substrates; and (ii) that destruction or alteration of the original structure of those 

substrates is not required—one does not need to develop a precursor structure that will yield a 

desired agent upon hydrogenation. SABRE is the newest of the hyperpolarization techniques 

described in this Article, and consequently, its development for MRS/MRI is less advanced. 

It has some intrinsic advantages including simplicity, low cost, scalability, and the potential 

for continuous agent production, which are promising for biomedical applications. Indeed, it 

has already achieved substantial polarization enhancements in solution, with polarizations 

reaching ~10%.38-40 



In order for SABRE to work, the catalyst must transiently bind both the target substrate 

and the atoms of para-H2 with residence times that are long enough to allow the transfer of 

spin order or polarization to occur, but short enough to allow rapid turnover and subsequent 

accumulation of HP substrate in the solution. The process is illustrated in Figure 6. Although 

multiple organometallic complexes have been tested for SABRE, all to date use an iridium 

atom at the center—including the most successful SABRE catalyst, IrCl(COD)(IMes), where 

IMes = 1,3-bis(2,4,6-trimethyl-phenyl)imidazol-2-ylidene, and COD = cyclooctadiene. While 

the latter is not commercially available, its preparation is straightforward for those 

experienced with synthesis in inert-atmosphere environments.41 

<Figure 6 near here> 

As with many catalysts used in traditional PHIP, the basic iridium-based SABRE catalyst 

must first be activated before use. This typically involves dissolving the catalyst in an organic 

solvent along with excess substrate such as pyridine or a structural derivative: attempting to 

activate the catalyst without excess substrate can lead to irreversible de-activation of the 

catalyst.42 The solution is charged with para-H2, either by loading a few atm of para-H2 over 

the sample within a pressure-resistant vessel, or by continuously bubbling the para-H2 within 

a specially designed apparatus/tube, such as that depicted in Figure 7. Step-wise 

hydrogenation of the molecular COD-ring and binding of the H2 to the Ir leads to loss of the 

eight-carbon ring, and the formation of a six-coordinate site complex, with ligands 

comprising the IMes group, two hydrides, and three substrates, two of which are 

exchangeable. The progress of activation may be followed by observing changes in the 

characteristics of hydride resonances of transient species and the final activated structure.42 

<Figure 7 near here> 

SABRE experiments can be divided into two types: ex situ and in situ, depending on the 

location of the sample vessel during polarization transfer with respect to the MR magnet.  



The vast majority of SABRE experiments are performed ex situ: spin order is transferred via 

scalar couplings between the involved nuclear spins during the lifetime of the catalyst 

complex. The spin flips must be nearly energy-conserving: thus, the magnetic field must be 

sufficiently low to make the frequency difference between the hydride spins and the substrate 

spins similar to the scalar coupling between them. This corresponds to ~6 mT for 1H and 

~1µT for 15N.40. Thus the sample must be outside the MR magnet or within a fringe field for 

polarization transfer, and the sample rapidly moved to the magnet for detection. However, 

SABRE enhancements can also be observed in situ at high field.41 In this case, the 

mechanism appears to be mediated by dipolar cross-relaxation between the HP hydride spins 

and the substrate spins.41, 42 While much less efficient, in situ SABRE does not require 

sample shuttling. In addition, the application of RF pulse sequences, for example, to allow 

mixing of spin states by driving the spins into level anti-crossing regimes,43 may dramatically 

improve the efficiency of SABRE in situ. 

To date, only a limited number of HCAs have been hyperpolarized via SABRE. Besides 

pyridine (with 1H and 15N polarizations approaching ~10%38, 40), SABRE enhancements of 

amino acids and small peptides have been reported at low field.44 Most attention has been 

directed at biologically relevant pyridine derivatives. For example, 1H enhancements of ~230 

and ~1400 vs. conventional MRS were reported for the tuberculosis drugs isoniazid and 

pyrazinamide in deuterated methanol at 700 MHz, respectively corresponding to 1H P values 

(PH) of nearly ~1.3 and ~8%.39 Nicotinamide was used to demonstrate SABRE in pure water, 

albeit with a more modest enhancement of ~33 fold at 9.4 T,42 by first activating the catalyst 

in ethanol, drying it, and reconstituting it in an aqueous solution. 

Finally, in addition to the limitations imposed by the catalysts and substrates that are 

presently available and the need to perform SABRE in biologically compatible media, the 

catalysts themselves present an obstacle to the application of SABRE in the clinic. The 



catalysts are expensive and potentially toxic, making their recovery desirable after agent 

hyperpolarization. In this regard, following efforts of heterogeneous PHIP (“HET-PHIP”) by 

Koptyug and co-workers,32 “HET-SABRE” enhancement of pyridine using SABRE catalysts 

that were covalently immobilized onto solid substrates of microscale polymer beads has been 

achieved.45 Although the enhancements were small (~5-fold), the feasibility of creating 

separable catalysts for the creation of pure SABRE HP agents was demonstrated. 

6. SPIN-EXCHANGE OPTICAL PUMPING (SEOP) 

Hyperpolarization of noble gases via spin-exchange (SE) optical pumping (OP) was first 

demonstrated by Bouchiat et al. in 1960, following earlier pioneering work involving OP of 

alkali metal vapors by Kastler and others.46 Over time the technique has been refined with an 

aim to increase efficiencies of the OP and SE steps, as well as to reduce spin-relaxation or 

“spin-destruction” rates, to enable the production of HP gases with sufficiently high P in 

large enough quantities for NMR/MRI applications. Major technical advances in these areas 

came with the implementation of high-power laser diode arrays (LDAs)47 and the 

introduction of buffer gases and cell coatings.46 These improvements have contributed to 

increases in noble gas polarization, including values as high as ~90% for 129Xe (e.g., Ref. 48), 

upon which our discussion will focus. 

Although the complexity of SEOP setups may vary, one minimally needs: (i) an OP 

“cell” that contains the noble gas of interest (129Xe) and a small amount of alkali metal (Rb in 

the following discussion); (ii) a source of circularly polarized light resonant with the Rb 

electronic transition; (iii) a heater for the cell (to vaporize the Rb); and (iv) a magnetic field 

source. Circularly polarized laser light is used to optically pump Rb electrons into a selected 

spin state, as shown in Figure 8. A usually weak (~30 Gauss) magnetic field provides 

hyperfine Zeeman splitting of the Rb electronic energy states. Angular momentum is then 

transferred from the Rb electrons to the 129Xe nuclear spins (Figure 8b) via gas-phase 



collisions.46 Provided the OP/SE rates respectively exceed the electron and nuclear spin-

relaxation rates, 129Xe polarization can be increased far above thermal equilibrium according 

to49: 

𝑃"#(𝑡&) =
)*+

γ*+,)-
𝑃./ (1 − 𝑒3 )*+3)- 45),   (1) 

where PXe and PRb represent the polarizations of xenon nuclei and rubidium electrons 

respectively, γse is the spin-exchange rate, γw is the rate of 129Xe spin destruction, and tp is 

the polarization time. Also present is N2 as a buffer gas, which at a pressure of ~100-200 Torr 

is sufficient to collisionally quench alkali metal fluorescence, thus avoiding re-emission of 

photons with random polarization that would otherwise decrease PRb.46, 50 One challenge for 

hyperpolarizing 129Xe is that most Rb/Xe collisions tend to depolarize Rb atoms without 

conserving spin angular momentum, making the Rb spin-destruction rate effectively 

proportional to the xenon nuclear density [Xe]—an issue that can be mitigated through the 

use of higher resonant laser fluxes (albeit with greater demands on thermal regulation50) 

and/or lower Xe partial pressures. Conducting SEOP for 129Xe at lower total cell pressures 

also enables more efficient spin exchange through three-body van der Waals collisions, in 

addition to the binary spin exchange that is dominant at higher gas pressures.51 On the other 

hand, higher cell pressures can broaden the Rb spectral lines resulting in more efficient 

absorption of the light.49 Finally, silicon coatings are often used to reduce Xe nuclear spin 

destruction, and all the components of the SEOP setup must be chosen to minimize exposure 

of the HP gas to paramagnetic centers, strong field gradients, and zero-crossings of the 

magnetic field. 

<Figure 8 near here> 

Many different polarizers have been developed to maximize the achievable polarization, 

PXe, and/or the rate of production of HP Xe. Their designs are typically grouped into two 

categories. First, in the continuous-flow (CF) method illustrated in Figure 9 49, 51, a xenon gas 



mixture is polarized as it passes continuously through the OP cell and is subsequently 

collected using a cryogenic “cold finger”,49 where it is stored at high field (>500 G) before it 

is carefully warmed52 to allow transfer to a secondary vessel with minimal losses of PXe. For 

example, Ruset et al. (Figure 9a) employed a number of features—including a Rb pre-

saturator upstream of a ~1.8 m optical cell, a high laser power (~90 W), a carefully designed 

optical path, and a relatively low Xe density and total pressure (allowing it to exploit the 

more efficient 3-body van der Waals spin-exchange interaction)—to attain a peak 129Xe 

polarization of ~67%, and a high output rate of 6 L Xe/h at %PXe=22%.51 

<Figure 9 near here> 

Second, the stopped-flow (SF) method (Figure 9b48, 53) takes place in a closed system 

where gas delivery, SEOP, and collection are performed sequentially. The cell is loaded with 

the desired gas mixture, and the gas is illuminated by the laser for ~10-30 min. until PXe nears 

a steady state. Prior to collection, the SEOP cell is cooled to condense the alkali metal vapor. 

The HP Xe can then be cryo-collected or simply expanded into another container (e.g. a 

Tedlar® bag). 

The second approach is simpler and easier to automate, and the reduction in 

magnetization density that results from HP gas dilution with buffer gas can be mitigated by 

using high [Xe] mixes.48 Nikolaou et al. recently presented an ‘open-source’ SF polarizer 

design (Figure 9b-d54) utilizing a 200 W narrowed  (~0.27 nm FWHM) LDA capable of 

attaining polarizations of ~90%, ~57%, ~50%, ~30%, for Xe partial pressures of ~300, ~500, 

~760, and ~1570 Torr backfilled with N2 to 2000 Torr, with a throughput of ~1 L/h.48 

Standard diagnostic techniques used in SEOP experiments include in situ low-field NMR 

spectroscopy to determine and control for PXe,, and near-infrared optical absorption 

spectroscopy to monitor pump laser wavelength, absorption profile, and inferred electronic 

PRb. While not strictly necessary for HP Xe preparation, additional diagnostic techniques 



such as: Faraday rotation;55 ESR46 to measure alkali metal density and spin polarization; and 

Raman spectroscopy to map elevated gas temperatures within the OP cell, have also been 

implemented to better understand the complex processes underlying mass, energy, and 

polarization transport within the SEOP apparatus. 

MRS applications of HP Xe typically exploit the extraordinary sensitivity of xenon’s 

chemical shift to its local molecular environment (Figure 8c).7 Of the two NMR-active xenon 

isotopes—129Xe (I=1/2) and 131Xe (I=3/2)—only 129Xe has sufficiently long relaxation times 

in condensed phases to allow MRS. Xenon’s highly polarizable electron cloud also allows it 

to participate in relatively substantial van der Waals interactions with proteins, lipid 

membranes, and living tissues. Xenon is not naturally found in the body in appreciable 

concentrations, which is both an advantage and a limitation: HP 129Xe spectra will be 

background-free, but achieving efficient HP Xe delivery to the body is key. Delivery options 

are: respiration and dissolution into the blood from the lungs; direct or intravenous injection 

of Xe-saturated solutions;7 or ex vivo gas dissolution into the blood or other solutions using 

off-the-shelf gas-exchange modules.56 

When Xe is dissolved in bodily tissues, a number of resonances corresponding to 

different cellular and tissue compartments may be observed generally within a range ~185-

215 ppm downfield from the gas reference at ~0 ppm.7 For example, the shift of 129Xe is so 

sensitive that its resonance in red blood cells responds to changes in blood oxygenation.57 

Functional studies of the brain are thus possible. The large 129Xe shift between xenon in the 

lung space and that dissolved in tissues may be exploited for a variety of pulmonary 

functional MRS/MRI studies, including studies of gas exchange efficiency in healthy versus 

pathological tissues. Nevertheless, without further intervention xenon’s concentration in the 

body is generally too low—and its interactions too weak and non-specific—for 129Xe MRS to 

provide much more in the way of specific biomolecular information. 



To overcome this low sensitivity and improve its specificity, HP 129Xe can be augmented 

with a host molecule, which can be functionalized to act as a biosensor as exemplified in 

Figure 10.58 The approach exploits the strong interaction between xenon and cryptophanes, 

which are molecules that can bind Xe atoms within their internal hydrophobic cavities. 

Indeed, cryptophanes are an excellent choice for the superstructure of xenon biosensors, not 

only because of their relatively high xenon affinity (Ka~103-104 M-1), but also because the 

exchange and relaxation timescales are compatible with MRS. Moreover, they can be 

chemically functionalized to facilitate both aqueous solubility and covalent linkage to a 

chosen functional group to target specific bioanalytes. In principle, almost any ligand or 

antibody can be used as a functional group for the purposes of biosensing,8 and multiple 

cages/biosensors could be simultaneously employed to allow multiplexed bioanalyte 

detection. The key feature empowering the biosensor approach is that the chemical shift of 

Xe within a biosensor cage that has bound a bioanalyte is measurably different from that of 

Xe residing within an unbound cage—thereby allowing the binding event to be detected via 

HP 129Xe MRS. It is expected that for in vivo applications, rather than delivering Xe-loaded 

biosensors to the body in a single bolus, one would first administer the biosensors to the 

subject and allow them time to bind to their biomolecular targets. Then later, HP Xe may be 

delivered (using an above method) so that it would have the opportunity to locate the 

biosensor cages immediately prior to MRS. 

<Figure 10 near here> 

This type of direct-detection experiment would yield three types of 129Xe peaks: one for 

unbound Xe in the bulk environment, one for Xe trapped in an unbound host biosensor 

molecule, and one for Xe residing in biosensor molecules bound to targeted analytes. 

However, if the targeted bioanalyte is in low concentration, the bound Xe signal can be 

buried in noise. One way around this problem is to employ HP chemical exchange saturation 



transfer, or Hyper-CEST.59 Hyper-CEST requires that the exchange of HP nuclei between 

sites is slow enough to give rise to unique, addressable resonances—yet fast enough to allow 

significant fractions of the populations to undergo exchange during the experiment.8 Thus, if 

a saturating RF pulse is applied at the frequency for a bound-Xe resonance, it will reduce the 

magnetization not only for the bound Xe pool, but also for the (typically much larger) bulk 

Xe pool as well: off-resonance saturation provides a control/reference signal. The greater 

sensitivity afforded by indirectly measuring the presence of activated biosensors via the more 

sensitive bulk-Xe signal allows detection of concentrations as low as ~100 nM, with further 

optimization not inconceivably improving the detection limit to the ~700 fM range.8 

 

7. CONCLUSIONS 

In summary, four hyperpolarization techniques have been described here in detail that 

either successfully enable in vivo MRS studies (d-DNP, PHIP, and SEOP/Xe), or have a 

strong potential for in vivo MRS in the near future (SABRE). Key features of these 

hyperpolarization methods from the perspective of their biomedical use are compared in 

Table 1. Some of these techniques have evolved rapidly from proof-of-principle studies using 

custom-built instrumentation to robust commercial equipment. This in turn has fueled reliable 

in vivo experimentation—including the first clinical trials in human volunteers. The ongoing 

innovations in instrumentation and the fundamental technology of hyperpolarization will 

likely continue to significantly and positively impact access and applications for the broader 

biomedical community, expanding the utility of HP methods as a new tool for probing 

fundamental biomedical questions. 

 

 

 



Table 1. Comparison of four hyperpolarization methods. 

Parameter d-DNP PHIP SABRE SEOP/Xe 
Wide range of agents yes no no no 
Straightforward scalability no yes yes yes 
High (>50% / order-unity) 
polarization yes yes no yes 
Moderately high (>1%) 
polarization yes yes yes yes 
Continuous generation no yes yes yes 
Different modes of 
production, i.e. continuous 
(C) vs. batch (B)/stopped-
flow (SF)) B/SF C & B/SF C & B/SF C & B/SF 

Preparation of 'pure' agents yes 
under 
development 

under 
development yes 

Preparation of concentrated 
agent suitable for in vivo 
MRS use yes yes no yes 
Long-lived in vitro agent 
(relaxation time > 1 min) yes yes no yes 
Long-lived in vivo agent 
(relaxation time > 0.5 min) yes yes no no 
Technology Cost high low low medium 
Operational Cost high low low medium 

Commercially available 
device yes/multiple 

no (but yes 
for para-H2 
generator) yes yes 

Phase of agent gas/liq/solid  liq/gas liq gas 
Environment Sensing (ES) 
and penetration of 
biochemical pathways (BP) BP BP & ES - ES 
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Figure Captions 

 

Figure 1. Effects of DNP conditions on electronic and nuclear spins. (a). Effects of 

temperature on 13C (dashed black curve) and electron (e-, solid black curve) spin 

polarizations at 5 T, along with electronic T1 relaxation time (T1,e, gray solid curve) at 0.35 T. 

The figure is reprinted with permission from A. Comment and M. E. Merritt, Biochemistry, 

2014, 53, 7333.9 Copyright 2014 American Chemical Society. (b) The response of a two-

electron nuclear spin system during the DNP process: microwave irradiation (hwe1) induces 

spin-flips of coupled electrons (left), which then cross-relax with nearby nuclei (top right), 

driving the nuclear spins into the same HP spin state (bottom right). (c) Example of a 

microwave sweep used to calibrate the optimal excitation frequency for 13C DNP. (d) 

Examplary buildup and decay of 13C polarization over time with the DNP microwave source 

engaged (increasing curve) and turned-off (decreasing curve). Parts (c) & (d) are from 

Ardenkjaer-Larsen, et al. PNAS 100.18 (2003) 10158-10163; Copyright (2003) National 

Academy of Sciences, U.S.A.1 



 

Figure 2. Overview of the d-DNP process. Within the high magnetic field of the DNP 

polarizer, high-power microwaves excite free electrons in free radical species mixed with the 

HP substrate and frozen into an amorphous solid. The electrons undergo spin-exchange with 

nearby 13C nuclei and over time, the entire sample becomes polarized via direct dipole-dipole 

interactions as well as nuclear spin diffusion involving the 1H nuclei present in the HP 

substrate or glassing agent. After polarization, the HCA sample is rapidly dissolved in hot 

solvent and shuttled into the MR scanner room, for injection into the animal or human 

subject. 



 

Figure 3. Production of para-hydrogen (para-H2). (a) H2 passes over a paramagnetic 

catalyst which rapidly increases the para-H2 fraction to the thermodynamic equilibrium at the 

given cryogenic temperature. (b) Production typically involves a “parahydrogen generator” 

built around a two-stage He cryocooled cold-head involving pressure gauges (PG), manual 

valves (MV), gas pressure regulators (R), and automated valves (AV). 

 

 



 

Figure 4. Schematics of para-H2 pairwise addition in PHIP. (a) Symmetry breaking of 

nascent para-hydrogen’s nuclear spin state via chemical reaction creates a non-symmetric 

product. (b) para-H2 state symmetry-breaking through chemical reaction with pairwise 

addition followed by polarization transfer to 13C, produces a HP contrast agent comprised of 

a 13C HP carboxyl moiety with a long T1 lifetime. 

 

 

 

 

 

 

 

 

 



 

Figure 5. Generic PHIP hyperpolarizer schematic. Optional elements are boxes with 

dotted lines. In the PHIP hyperpolarization cycle: (i) para-H2 is filled in the previously 

deoxygenated (via extensive N2 gas venting) heated reactor, (ii) “tracer PHIP precursor and 

catalyst” solution is loaded into an optional “Heater” element followed by (iii) rapid solution 

spraying in the para-H2-filled reactor under conditions of 1H decoupling; (iv) when the 

spraying is finished (a few seconds), the polarization transfer sequence immediately 

transforms (< 1 second) hyperpolarization from nascent parahydrogen protons (see Figure 

4b) to hyperpolarization on the 13C nucleus; (v) the solution containing the 13C HP compound 

is ejected from the reactor through an optional purification stage for in vivo administration. 

The system can be purged with N2 gas (typically ~1 min) to remove any residual solution 

from the PTFE lines to prepare for the next PHIP hyperpolarization production cycle. 

	
	
	
	
	
	



 

Figure 6. Schematic of the SABRE process. Reversible exchange of para-H2 and the 

substrate on a metal catalyst ([M]) leads to a HP substrate. The figure is adapted from Ref. 6. 

 

 

Figure 7. Experimental setup for SABRE. Para-H2 bubbles through a catalytic solution in 

a conventional 5 mm NMR tube. The solution sits in a medium-wall-thickness NMR tube 

where para-H2 is delivered via Teflon® tubing, and the expended gas leaves via an exhaust 

line that can be capped with a pressure-calibrated safety valve to allow SABRE at elevated 

para-H2 pressure. The figure is reprinted with permission from M. L. Truong, et al., J. Phys. 

Chem. B, 2014, 18, 13882.42 Copyright 2014 American Chemical Society. 

 

 

 



 

Figure 8. SEOP hyperpolarization and chemical-shift sensitivity of 129Xe. (a) Application 

of circularly polarized laser light and subsequent non-radiative relaxation results in depletion 

of one Rb electron (mj) level and accrual of population in the other, rendering the Rb 

electronically spin-polarized (Rb nuclear spin levels not shown).  (b) Gas-phase collisions 

allow spin-exchange between Rb electrons and 129Xe nuclei, resulting in HP 129Xe with time. 

A three-body collision is shown in this example, with N2 molecules facilitating formation and 

break-up of the complex. (c) Chemical shifts for 129Xe in different environments. Figures are 

reprinted from Nuclear magnetic resonance of laser-polarized noble gases in molecules, 

materials, and organisms. B. M. Goodson, J. Magn. Reson. 2002, 155, 157, Copyright 

(2002),7 with permission from Elsevier. 

 



 

Figure 9. Examples of 129Xe hyperpolarizers. (a). Diagram showing the CF design of Ruset 

et al. 51. Figure courtesy of W. Hersman, reprinted with permission from I. C. Ruset, S. Ketel, 

F. W. Hersman, Phys. Rev. Lett. 2006, 96, 053002. Copyright (2006) by the American 

Physical Society. (b-d). Our Consortium’s second-generation SF Xe hyperpolarizer. The 

photo in (b) shows the principal components of the device [(1) laser; (2) 3D-printed oven; (3) 

Xe gas supply; (4) microcontroller box; (5) power supplies; (6) low-frequency NMR 

spectrometer; (7) water chiller; (8) vacuum pumps; (9) electromagnetic coils].  Diagrams 

showing the oven/optical path and gas manifold are shown respectively in (c) and (d). Figure 

d is reprinted with permission from P. Nikolaou, et al., Anal. Chem., 2014, 86, 8206.54 

Copyright 2014 American Chemical Society. 

 



 

Figure 10. Structure and MR of a xenon biosensor. The chemical structure of a xenon 

biosensor molecule comprises a cryptophane cage, a linker group, and a molecule (e.g. 

biotin) to bind to a targeted bioanalyte (e.g. avidin) with high affinity and specificity.58 Below 

the structure are 129Xe spectra monitoring the binding of biotin-functionalized xenon to the 

prototypical bioanalyte avidin. The spectra show only the cryptophane-bound peaks; the 

(much larger) peak corresponding to free xenon in water is at 193 ppm.  The spectra differ by 

the absence (top) and presence (bottom) of 80 nmol avidin in solution, manifesting in the 

bottom spectrum by the appearance of a new peak at ~72.5 ppm. Adapted from figures 

courtesy of Prof. Alex Pines. 

 


