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1 Introduction

It has long been known that the Hot Big-Bang (HBB) model cannot provide a complete
description of the evolution of the early universe. For instance, it is unable to provide
explanations for the horizon problem, the flatness problem and the absence of relic exotic
particles (e.g., magnetic monopoles). These observations motivate the need for an additional
theory that provides a more complete description. To date, the prevailing theory offering
solutions (at least in part) to these problems is that of inflation, initially proposed by Guth
in 1980 [1] and further developed by Linde [2], and Albrecht and Steinhardt [3]. However,
a consequence of the rapid expansion of the early universe driven by the inflaton field φ
is that, once inflation terminated, the universe was super-cooled, with effectively all of the
available energy contained in the inflaton potential V (φ). In the post-inflationary epoch,
one is therefore left with the problem of how to transfer this vast potential energy back into
the universe in order to enter the HBB phase. This important stage in the evolution of the
universe is called reheating [4–6] (for a review, see Ref. [7]).

In early studies of reheating, it was assumed that one could treat the decay of the
inflaton field perturbatively, i.e. that individual quanta of the inflaton field (inflatons) decayed
independently of one another to populate the universe with relativistic particles. It was soon
realized, however, that this approach ignores non-perturbative effects and, most importantly,
the fact that the inflaton field is not a superposition of asymptotically free single inflaton
states but rather a coherently oscillating condensate. This coherent behaviour leads to a
parametric resonance of the amplitudes of the field modes coupled to the inflaton. As a
result, the energy transfer from the inflaton to these fields is extremely rapid and highly non-
adiabatic, giving rise to explosive particle production. This phase is referred to as preheating
and was first analyzed in detail by Kofman, Linde and Starobinsky [8, 9] (see also Ref. [10])
and studied further by many others (see, e.g., Refs. [11–17]). For a comprehensive review of
non-perturbative post-inflationary dynamics, we refer the reader to Ref. [18].
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In the case of chaotic inflation [19], and soon after inflation ends, the inflaton condensate
φ(t) undergoes coherent oscillations about the minimum of its potential with an amplitude
of order the (reduced) Planck mass. It is during this phase that the inflaton condensate
begins to decay through its interactions with other fields, resulting in the production of rel-
ativistic particles (see, e.g., Ref. [18, 20]). If this production process is sufficiently slow, and
the couplings between the fields are sufficiently small, one can treat the dynamics pertur-
batively [21]. Moreover, such gradual reheating allows for almost immediate thermalization
of the produced particles [7]. On the other hand, in the early stages of reheating, non-
perturbative processes can dominate, leading to explosive particle production that occurs on
time-scales much shorter than those needed for the produced particles to thermalize. Within
the chaotic inflation scenario, preheating begins in the broad resonance regime, wherein the
particle number grows exponentially across wide bands of momentum [9]. Due to the decay
of the amplitude of the inflaton condensate, and the expansion of the universe, the dynamics
eventually transition to the narrow resonance regime, where the growth of particle number
is restricted to ever narrower bands of momentum. At this stage, the backreaction from the
created particles and the Hubble expansion continue to conspire to reduce the efficiency of
the parametric resonance [22]. Specifically, the backreaction alters the structure of the res-
onance bands, the cosmological expansion redshifts the momenta of the produced particles
and both effects cause the created particles to be shifted out of the resonance bands. The
resonance can also be blocked by the onset of effective thermal masses [23]. In any case, as the
parametric resonance becomes increasingly narrow and inefficient, the dynamics inevitably
transition to the perturbative regime [8, 9], and it is during this final stage of reheating that
scatterings redistribute the occupancy of the momentum modes, leading to the eventual ki-
netic equilibriation of the primordial plasma. While the time-scales for preheating are much
shorter than those needed for thermalization, the processes driving that thermalization are
still relevant during the preheating phase. In particular, semi-classical lattice simulations
have shown that sufficiently large self-interactions of the produced particles can suppress or
prevent the resonant particle production [24].

The early thermal history of the universe depends strongly on how the primordial plasma
attained kinetic equilibrium [21]. This has motivated the extensive study of thermalization
both in perturbative reheating [25–31] and after the phase of preheating [21, 32–39], and the
relevant relaxation rates can be calculated by means of thermal quantum field theory [29,
40, 41]. The value of the reheat temperature, for instance, has important consequences for
leptogenesis (see, e.g., Ref. [42]) and for the generation of dark matter relic densities (see, e.g.,
Ref. [43]). Importantly, the reheat temperature should be larger than a few MeV to allow
for the standard Big-Bang Nucleosynthesis (BBN) [44], and requiring that thermalization
occur before nucleosynthesis imposes an upper bound on the inflaton mass as a function
of the reheat temperature [45]. In the case of supersymmetric theories, the potential over-
production of gravitinos [46, 47] can spoil the generation of the light elements, providing an
upper bound on the reheat temperature.

The aims of this article are to recast the problem of preheating in the density matrix
formalism [48] and to study the impact of scatterings on preheating by means of a system
of quantum Boltzmann equations. These Boltzmann equations are able to go beyond the
usual mode-function analysis of preheating, based on the Mathieu equation, by accounting
simultaneously for both the resonant particle production and the collisional processes. We
show that the resonant particle production proceeds via the population of pair correlations
of the form Mk ∼ 〈â−k(t)âk(t)〉 and M∗k ∼ 〈â

†
k(t)â†−k(t)〉, requiring us to solve the coupled
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system of Boltzmann equations for the number density Nk ∼ 〈â†k(t)âk(t)〉 and these “particle-
anti-particle” correlations. The presence of such pair correlations is expected in the absence
of time translational invariance, as was identified in the context of preheating in Refs. [50–
52] by means of the Schwinger-Keldysh closed-time-path [53, 54] and Kadanoff-Baym [55]
formalisms of non-equilibrium quantum field theory (see also Refs. [56, 57]). Therein, the
number density must be carefully defined [58], and the pair correlations can then be ac-
counted for in the non-equilibrium Green’s functions by working with coherent quasi-particle
approximations [59–61] or directly in terms of the operator algebra by means of the so-called
interaction-picture approach [62, 63]. Particle-anti-particle pair correlations have also been
studied in the density matrix formalism in the context of neutrino kinetics, where they may
play a role in core-collapse supernovae [64–68]. Here, we show that the pair correlations in
fact play the pivotal role in mediating the particle production, and without them no particle
production occurs. This leads to a powerful generalization of the previous observation by
Morikawa and Sasaki [69] that small perturbations to such a system would destroy coherences
between particle and anti-particle states. Indeed, it follows that any processes that cause
such pair correlations to decohere will suppress, or shut off, the resonant particle production.

In order to make the problem tractable and to deal with the time-dependent phase
space, we apply a Wigner-Weisskopf approximation [70], such that the collisions are effec-
tively treated as occurring only during the periods of adiabatic evolution. Even with this
approximation, we find that the lowest-order scatterings have a non-negligible effect on the
resonant particle production from the earliest stages of preheating, in agreement with the
analysis of Ref. [24]. In addition, we show that the pair correlations, although of compara-
ble magnitude to the number density, can be neglected in the collision integrals when the
collisional processes occur more slowly than the free-phase oscillations of the pair correlations.

The remainder of this article is organized as follows. In Sec. 2, we provide an overview
of preheating and the standard analysis of the resonant particle production by means of
the Mathieu equation. We then proceed in Sec. 3 to recast the problem of preheating in the
density matrix formalism, deriving quantum Boltzmann equations for the number density and
pair correlations. The numerical solution of the resulting system of equations is presented
in Sec. 4 for an illustrative set of benchmark parameters. Our conclusions are presented in
Sec. 5, and further technical details are included in the appendices.

2 Parametric resonances and preheating

In order to make a concrete comparison with the density matrix formulation, we shall first
provide a brief overview of the standard theory of preheating. We consider a simple toy
model described by the Lagrangian density

L = − 1

2
∂µφ∂µφ −

1

2
m2
φ φ

2 − 1

2
∂µχ∂µχ −

1

2
m2
χχ

2 − g

4
φ2χ2 , (2.1)

where φ is the inflaton field and χ is a real scalar field, which we might imagine as a proxy for,
or being coupled to, the Standard Model fields. While fermionic particle production can occur
via parametric resonance (see, e.g., Refs. [71–73]), we restrict our attention to scalar fields to
avoid the additional technical complications of dealing with spinor fields. Throughout this
article, we work with the metric signature (−,+,+,+).

We proceed by making a mean-field approximation, describing the inflaton condensate
by the time-dependent background field ϕ(t) := 〈φ̂(t,x)〉 (and assuming 〈χ̂(t,x)〉 = 0), where
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t is the cosmic time. The resulting effective Lagrangian for the fluctuations in the χ field

Leff(t,x) = − 1

2
∂µχ(t,x)∂µχ(t,x) − 1

2
m2

eff(t)χ2(t,x) (2.2)

then contains a time-dependent mass

m2
eff(t) = m2

χ + g ϕ2(t)/2 . (2.3)

Note that we have omitted the interactions between the χ and inflaton fluctuations, which
give rise to perturbative decays that play a subdominant role in the particle production. The
modes of the χ fluctuations evolve according to

χ̈k(t) + 3H(t)χ̇k(t) + ω2
k(t)χk(t) = 0 , (2.4)

where H(t) := ȧ(t)/a(t) is the Hubble rate, a(t) is the scale factor and ω2
k(t) = k2/a2(t) +

m2
eff(t).

The evolution of the background value of the inflaton field ϕ(t) is described by the
following equations of motion:

ϕ̈(t) + 3H(t)ϕ̇(t) + m2
φ ϕ(t) = 0 , (2.5a)

3M2
PlH

2(t) =
1

2
ϕ̇2 + V (ϕ) , (2.5b)

where MPl is the reduced Planck mass. At the start of reheating, the solution to Eqs. (2.5a)
and (2.5b) asymptotically approaches [8]

ϕ(t) = ϕ0(t) cos(mφt) , (2.6)

where ϕ0(t) = 2
√

6MPl/(3mφt) is a slowly decaying amplitude. This solution neglects the
dissipative effects of particle production and its backreaction on the inflaton condensate,
which increases the rate of decay. However, this backreaction is expected to be subdominant
in the early stages of preheating that we study here [8, 9].

Assuming that the rate of post-inflationary expansion is small relative to the rates of
particle production and thermalization, we can take ȧ ≈ 0 and ϕ0(t) ≈ const. We can then
recast the mode equation (2.4) in the form of a Mathieu equation as

χ′′k(z) +
[
Ak − 2q cos(2z)

]
χk(z) = 0 , (2.7)

where z := mφt + π/2, Ak := (k2 + m2
χ)/m2

φ + 2q and q := gϕ2
0/(8m

2
φ). An important

feature of the solutions to Eq. (2.7) is that, within certain regions of momentum space,1

there exist exponential instabilities χk(z) ∝ exp(µkz), whose growth rate is parameterized
by the instability parameter µk. The latter depends on both q and Ak and is given by

µk =
1

π
ln

∣∣∣∣√F 2
k +

√
F 2
k − 1

∣∣∣∣ , (2.8)

1Note that for narrow resonance, i.e. q � 1, these regions of instability occur within certain narrow bands
of frequencies ∆k(n) (labelled by an integer index n), corresponding to a set of instability parameters µ

(n)
k . In

the case of broad resonance, i.e. q � 1, the instability occurs for a wide range of momenta, across a continuous
spectrum, and the amplification is much more efficient than in the case of narrow resonance.
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where

Fk = 1 +

[
d

dz
χ̃

(1)
k (z = π/2)

]
χ̃

(2)
k (z = π/2) , (2.9)

and χ̃
(1)
k and χ̃

(2)
k are solutions to Eq. (2.7), satisfying the initial conditions {χ̃(1)

k = 1,

dχ̃
(1)
k /dz = 0} and {χ̃(2)

k = 0, dχ̃
(2)
k /dz = 1} at z = 0 [74, 75]. Note that parametric

resonance occurs whenever Fk > 1.
These instabilities lead to the exponential growth of occupation numbers of quantum

fluctuations Nk(t) ∝ exp(2µ
(n)
k z). This particle production is a consequence of the effective

frequency ωk(t) repeatedly violating the adiabaticity condition [9]∣∣∣∣ ω̇k(t)

ω2
k(t)

∣∣∣∣ � 1 (2.10)

as ϕ(t) passes through the minimum of its potential at ϕ(t) = 0.
The occupation number can be extracted in one of two ways:

(i) The effective Hamiltonian can be written in the form

Ĥeff(t) =

∫
d3k

(2π)3
Ĥ0

k(t) = Vol

∫
d3k

(2π)3
ωk(t)

[
N̂k(t) +

1

2

]
, (2.11)

where

N̂k(t) =
â†k(t)âk(t)

Vol
(2.12)

is the number operator and Vol = (2π)3δ(3)(0). The energy per momentum mode is
then given as follows:

〈Ĥ0
k(t)〉 =

1

2
|χ̇k|2 +

1

2
ω2
k(t)|χk|2 = Volωk(t)

[
Nk(t) +

1

2

]
, (2.13)

and we can therefore extract the occupation number Nk(t) = 〈N̂k(t)〉 (per momentum
mode) as [9]

Nk(t) =
1

2 Volωk(t)

[
|χ̇k|2 + ω2

k(t)|χk|2
]
− 1

2
. (2.14)

The total number per unit volume N(t) is then obtained by integrating over all mo-
mentum space, i.e.

N(t) =

∫
d3k

(2π)3
Nk(t) . (2.15)

(ii) The second way is to consider the Bogoliubov transformation [76]

âk(t) = αk(t, t′)âk(t′) + β∗k(t, t′)â†−k(t′) , (2.16a)

â†k(t) = α∗k(t, t′)â†k(t′) + βk(t, t′)â−k(t′) , (2.16b)

where αk(t, t′) and βk(t, t′) satisfy

αk(t, t′) = α−k(t, t′) , βk(t, t′) = β−k(t, t′) , (2.17)
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along with the following boundary conditions:

αk(t, t) = 1 , βk(t, t) = 0 . (2.18)

Since the Bogoliubov transformation mixes creation and annihilation operators, the
vacuum state at the initial time |00〉 appears to the annihilation operator at the later
time as an excited state with a non-vanishing occupation number given by

Nk(t) =
1

Vol
〈00|â†k(t)âk(t)|00〉 = |βk(t)|2 , (2.19)

where βk(t) := βk(t, 0).

The above descriptions do not take into account the thermalization that may begin to
take place during the process of preheating. In order to do so, one must go beyond the mode
analysis, and we will describe an approach based on the density matrix formalism in the
sections that follow.

3 Preheating in the density matrix formalism

In this section, we will reformulate the problem of preheating in the so-called density matrix
formalism [48]. This will enable us to derive a self-consistent set of quantum Boltzmann
equations that describe the evolution of the (scalar) particle number densities throughout
preheating. In particular, we will be able to account for collisional processes, which we take
to arise from a quartic self-interaction potential for the χ field

Leff
int(t,x) = − λ

4!
χ4(t,x) , (3.1)

which we append to the effective Lagrangian density in Eq. (2.2), where λ is a dimensionless
coupling constant.

We note that the additional effective interaction Leff
int ⊃ −gϕ(t)φχ2/2, generated from

the coupling between φ and χ, gives rise to φ mediated two-to-two scatterings of χ particles.
An immediate concern is that these processes may dominate over those arising from Eq. (3.1).
However, a comparison of the cross-sections of the two different scattering processes reveals
that this is not the case for a range of suitable couplings. Let us consider the two regimes
of each oscillation interval of ϕ, namely the intervals of adiabaticity and non-adiabaticity.
In the adiabatic regimes, the momenta of the produced particles will typically be |k| . mφ,
in which case the centre-of-mass energy scales as

√
s ∼

√
2gϕ0. One can then show that

the t- and u-channels dominate the φ-mediated processes.2 However, their combined cross-
section is still suppressed by O(10−3) relative to that of the self-interaction for the values
of g ∼ 10−7 and λ ∼ 0.1 that we take in this analysis (see section 4). In the non-adiabatic
regimes, the time-dependent coupling gϕ(t) → 0, and the total cross-section vanishes (even
for the smallest centre-of-mass energies

√
s→ 2mχ). We are therefore safe to proceed under

the assumption that the dominant collisional processes arise from Eq. (3.1).

2Here, we consider only tree-level processes, as higher-order contributions will be loop suppressed.
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3.1 Canonical quantization with a time-dependent mass

We canonically quantize the χ field in the presence of a time-dependent mass by specifying
that χ̂(t,x) and its canonical conjugate momentum π̂χ(t,x) satisfy the following equal-time
commutation relations:[

χ̂(t,x), χ̂(t,y)
]

= 0 =
[
π̂χ(t,x), π̂χ(t,y)

]
, (3.2a)[

χ̂(t,x), π̂χ(t,y)
]

= iδ(3) (x− y) . (3.2b)

This canonical approach was also applied in Ref. [69].
We work in the (modified) interaction picture and expand χ̂(t,x) in terms of its Fourier

modes as

χ̂(t,x) =

∫
k

[
âk(t) e+ik·x + â†k(t) e−ik·x

]
, (3.3)

where the operators â†k(t) := â†(t,k) and âk(t) := â(t,k) create and destroy quanta with
instantaneous frequency ωk(t), given by ω2

k(t) = k2+m2
eff(t) (for the scale factor a ≈ const. =

1). Throughout this article, we use the shorthand notation∫
k

:=

∫
d3k

(2π)3

1√
2ωk(t)

. (3.4)

The creation and annihilation operators have mass dimension − 3/2 and satisfy the canonical
commutation relation [

âk(t), â†k′(t)
]

= (2π)3δ3(k− k′) , (3.5)

with all other commutators vanishing. This convention has the advantage that the right-hand
side of the Eq. (3.5) is time-independent.

The creation and annihilation operators âk(t) and â†k(t) can be expressed in terms of
the field χ̂(t,x) and its conjugate momentum π̂χ(t,x) as

âk(t) =
1√
2

∫
x
e−ik·x

[
ω

1/2
k (t) χ̂(t,x) + i ω

−1/2
k (t) π̂χ(t,x)

]
, (3.6a)

â†k(t) =
1√
2

∫
x
e+ik·x

[
ω

1/2
k (t) χ̂(t,x) − i ω

−1/2
k (t) π̂χ(t,x)

]
. (3.6b)

Since χ̂(x) and π̂χ(x) are canonical variables, they have no explicit time-dependence. This
is not true of the creation and annihilation operators: the time-dependence of the effective
(instantaneous) frequency generates an explicit time-dependence for âk(t) and â†k(t). Their
full time-evolution is governed by the (interaction-picture) Heisenberg equations

˙̂ak(t) = i
[
Ĥ0(t), âk(t)

]
+

1

2

ω̇k(t)

ωk(t)
â†−k(t) , (3.7a)

˙̂a†k(t) = i
[
Ĥ0(t), â†k(t)

]
+

1

2

ω̇k(t)

ωk(t)
â−k(t) , (3.7b)

where the right-most terms have resulted from the time-dependence of the free effective
Hamiltonian. We see that the explicit time-dependence mixes the creation and annihilation
operators, and this will result in non-trivial pair correlations that are essential to the non-
adiabatic particle production of preheating.
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The effective (normal-ordered) Hamiltonian operator Ĥeff
0 (t) can be written as

Ĥeff
0 (t) =

∫
d3k

(2π)3
ωk(t)â†k(t)âk(t) , (3.8)

from which it follows that

˙̂ak(t) = − iωk(t)âk(t) +
1

2

ω̇k(t)

ωk(t)
â†−k(t) , (3.9a)

˙̂a†k(t) = + iωk(t)â†k(t) +
1

2

ω̇k(t)

ωk(t)
â−k(t) . (3.9b)

For completeness, we note that the canonical momentum operator

π̂χ(t,x) = i

∫
k
ωk(t)

[
â†k(t)e−ik·x − âk(t)e+ik·x

]
(3.10)

is consistent with π̂χ(x) = ˙̂χ(x).
Ultimately, we are interested in deriving rate equations that describe the evolution of the

number density of χ quanta. Due to the mixing of the creation and annihilation operators in
Eq. (3.9), the number operator N̂k(t), defined in Eq. (2.12), has an explicit time-dependence,
evolving according to3

˙̂
Nk(t) =

ω̇k(t)

ωk(t)
Re M̂k(t) , (3.11)

where we have defined the pair operators

M̂k(t) :=
â−k(t)âk(t)

Vol
, (3.12a)

M̂ †k(t) :=
â†k(t)â†−k(t)

Vol
, (3.12b)

which evolve according to

˙̂
Mk(t) = − 2iωk(t)M̂k(t) +

1

2

ω̇k(t)

ωk(t)

(
2N̂k(t) + 1

)
. (3.13)

Notice that if there were no non-adiabaticity in the evolution of the system, the expectation
values of the pair operators M̂k(t) and M̂ †k(t) would vanish. In this case, particle production
would cease, and the number density

Nk(t) :=
〈
N̂k(t)

〉
t

= Tr
[
ρ̂(t)N̂k(t)

]
(3.14)

would become an adiabatic invariant. We take the density operator ρ̂(t) to be normalized to
unity, i.e. Tr ρ̂(t) = 1.

3Re gives the Hermitian part for operator-valued arguments.
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3.2 Master equations

The time-evolution of the number density is given by

Ṅk(t) =
d

dt
Tr
[
ρ̂(t)N̂k(t)

]
= Tr

[
ρ̂(t)

˙̂
Nk(t)

]
+ Tr

[
˙̂ρ(t)N̂k(t)

]
, (3.15)

and the density operator ρ̂(t) evolves according to the quantum Liouville equation

˙̂ρ(t) = − i
[
Ĥint(t), ρ̂(t)

]
. (3.16)

Integrating Eq. (3.16) with respect to time, applying the method of successive substitution
and finally differentiating again with respect to t, we can recast the time-evolution of ρ̂(t) in
the form

˙̂ρ(t) = − i
[
Ĥint(t), ρ̂(t0)

]
−
∫ t

t0

dt′
[
Ĥint(t),

[
Ĥint(t

′), ρ̂(t′)
]]
. (3.17)

Here, t0 is the intitial time. Substituting this result into Eq. (3.15) and making use of
Eq. (3.11), we have

Ṅk(t) =
ω̇k(t)

ωk(t)
ReMk(t) − iTr

{[
Ĥint(t), ρ̂(t0)

]
N̂k(t)

}
−
∫ t

t0

dt′ Tr
{[
Ĥint(t),

[
Ĥint(t

′), ρ̂(t′)
]]
N̂k(t)

}
, (3.18)

where Mk(t) := Tr
[
ρ̂(t)M̂k(t)

]
and M∗k(t) := Tr

[
ρ̂(t)M̂ †k(t)

]
. Using the cyclicity property of

the trace, this can be rewritten as

Ṅk(t) =
ω̇k(t)

ωk(t)
ReMk(t) − i

〈[
N̂k(t), Ĥint(t)

]〉
t0
−
∫ t

t0

dt′
〈[[

N̂k(t), Ĥint(t)
]
, Ĥint(t

′)
]〉
t′
.

(3.19)

Proceeding similarly for Mk(t) and M †k(t), we obtain the following evolution equation
for the pair correlation Mk(t)

Ṁk(t) = − 2iωk(t)Mk(t) +
1

2

ω̇k(t)

ωk(t)

(
2Nk(t) + 1

)
− i

〈[
M̂k(t), Ĥint(t)

]〉
t0

−
∫ t

t0

dt′
〈[[

M̂k(t), Ĥint(t)
]
, Ĥint(t

′)
]〉
t′
, (3.20)

along with its complex conjugate.
Equations (3.19) and (3.20) compose a coupled set of self-consistent Boltzmann equa-

tions that describe the complete evolution of the system, including non-Markovian memory
effects. The latter make the solution of this system technically challenging. However, under
the assumption that the non-Markovian effects are subdominant, we can make the system
tractable by means of a Wigner-Weisskopf (or Markovian) approximation [70]. This relies on
two assumptions:

1. molecular chaos: momentum correlations are lost between collisions.

2. separation of time-scales: the evolution of the system is slow compared with the mi-
croscopic QFT processes.
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The former of these two assumptions enables us to express the correlation functions (within
the collision integrals) in terms of (products of) single-particle distribution functions, viz. the
number density and pair correlations. In order to make use of the latter assumption, and
closely following Ref. [63], we consider the integral

I =

∫ t

t0

dt′ Tr
{[
F̂ (t), Ĥint(t

′)
]
ρ̂(t′)

}
, F̂ (t) :=

[
N̂k(t), Ĥint(t)

]
. (3.21)

Inserting the Fourier transforms of both F̂ (t) and Ĥint(t
′), we have

I =

∫ t

t0

dt′
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
eiωteiω

′t′ Tr
{[ ˆ̃F (ω), ˆ̃Hint(ω

′)
]
ρ̂(t′)

}
, (3.22)

and after making a change of variables ω → ω − ω′, we can re-express this as

I =

∫ t

t0

dt′
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
eiωt eiω

′(t′−t) Tr
{[ ˆ̃F (ω − ω′), ˆ̃Hint(ω

′)
]
ρ̂(t′)

}
. (3.23)

The exponential eiω
′(t′−t) oscillates rapidly when t � t′, and, as long as ˆ̃F (ω − ω′) is not

strongly peaked, the integral over ω′ is dominated by t ∼ t′. We can therefore replace ρ̂(t′)
by ρ̂(t) and extend the lower limit of the t′ integral to −∞. Subsequently making the judicious
change of variables t′ → t′ − t, we obtain

I '
∫ 0

−∞
dt′
∫ +∞

−∞

dω

2π

∫ +∞

−∞

dω′

2π
eiωt eiω

′t′ Tr
{[ ˆ̃F (ω − ω′), ˆ̃Hint(ω

′)
]
ρ̂(t)

}
. (3.24)

We can now rewrite the integral over t′ by means of the identity∫ 0

−∞
dt′ eiω

′t′ =
1

2

∫ +∞

−∞
dt′ eiω

′t′ − iP 1

ω′
, (3.25)

where P denotes the Cauchy principal value. Doing so, we find

I ' 1

2

∫ +∞

−∞
dt′ Tr

{[[
N̂k(t), Ĥint(t)

]
, Ĥint(t

′)
]
ρ̂(t)

}
− iP

∫ +∞

−∞

dω′

2π

eiω
′t′

ω′
Tr
{[[

N̂k(t), Ĥint(t)
]
, ˆ̃Hint(ω

′)
]
ρ̂(t)

}
. (3.26)

The collision terms arise from the first term in Eq. (3.26); the second term gives rise to
dispersive corrections, which we hereafter neglect.

Implementing the above approximations, we arrive at the following coupled set of Marko-
vian master equations for the number density Nk(t), and the pair correlations Mk(t) and
M∗k(t), valid at order λ2:

Ṅk(t) ' ω̇k(t)

ωk(t)
ReMk(t) − i

〈[
N̂k(t), Ĥint(t)

]〉
t0

− 1

2

∫ ∞
−∞

dt′
〈[[

N̂k(t), Ĥint(t)
]
, Ĥint(t

′)
]〉
t
, (3.27a)
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Ṁk(t) ' − 2iωk(t)Mk(t) +
1

2

ω̇k(t)

ωk(t)

(
2Nk(t) + 1

)
− i
〈[
M̂k(t), Ĥint(t)

]〉
t0
− 1

2

∫ ∞
−∞

dt′
〈[[

M̂k(t), Ĥint(t)
]
, Ĥint(t

′)
]〉
t
, (3.27b)

Ṁ∗k(t) ' + 2iωk(t)M∗k(t) +
1

2

ω̇k(t)

ωk(t)

(
2Nk(t) + 1

)
− i
〈[
M̂ †k(t), Ĥint(t)

]〉
t0
− 1

2

∫ ∞
−∞

dt′
〈[[

M̂ †k(t), Ĥint(t)
]
, Ĥint(t

′)
]〉
t
. (3.27c)

While we focus here on the context of preheating, these Markovian master equations can
be applied more generally to describe the evolution of any interacting scalar field with a
time-dependent mass term. We emphasize again that the particle production terms in the
master equation for the number density, Eq. (3.27a), are proportional to Mk(t) and M∗k(t).
We see, therefore, that non-adiabatic particle production depends crucially on the existence
and non-vanishing values of pair correlations, such that any processes that destroy these
coherences will suppress (and eventually shut off) the resonant production (cf. Ref. [69]).4

We further note from Eq. (3.27) that, since Mk(t) and M∗k(t) source Nk(t), one should expect
their values to be of the same order of magnitude during the preheating phase, so long as
|ω̇k/ω

2
k| ∼ O(1), which is true during intervals of non-adiabaticity.

3.3 Collision terms

We now wish to express the master equations entirely in terms of Nk(t), Mk(t) and M∗k(t),
so as to obtain a self-consistent set of evolution equations. In order to do so, we first need
to solve the Heisenberg equations for âk(t) and â†k(t) (see Eq. (3.7)), so that we can evolve
all of the operators appearing in the collision terms to equal times, namely the time t of the
density operator.

To this end, we assume a Bogoliubov ansatz of the form given by Eq. (2.16), writing
the field at time t′ ≤ t as

χ̂(t′,x) =

∫
d3k

(2π)3

[
χ̃k(t′, t)âk(t)e+ik·x + χ̃∗k(t′, t)â†k(t)e−ik·x

]
, (3.28)

where the mode function χ̃k(t′, t) is given by

χ̃k(t′, t) :=
1√

2ωk(t′)

[
αk(t′, t) + βk(t′, t)

]
. (3.29)

Its evolution can be cast in the form a Mathieu equation, as in Eq. (2.7). Since Bogoliubov
transformations preserve the canonical algebra, the functions αk(t′, t) and βk(t′, t) satisfy the
constraint ∣∣αk(t′, t)

∣∣2 − ∣∣βk(t′, t)
∣∣2 = 1 , (3.30)

4Note that, in a realistic scenario, the inflaton condensate will decay. Once it has completely diminished,
the production terms in the master equations will vanish and the system will continue to thermalize. At
this point, the evolution of the system will become adiabatic, and the pair correlations Mk(t) and M∗k(t) will
decohere.
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and we can invert Eq. (2.16) in order to relate the creation and annihilations operators at
times t′ ≤ t to those at time t:

âk(t′) = αk(t′, t)âk(t) + β∗k(t′, t)â†−k(t) , (3.31a)

â†k(t′) = α∗k(t′, t)â†k(t) + βk(t′, t)â−k(t) . (3.31b)

Moreover, we can show that

αk(t, t′′) = αk(t, t′)αk(t′, t′′) + β∗k(t, t′)βk(t′, t′′) , (3.32a)

βk(t, t′′) = βk(t, t′)αk(t′, t′′) + α∗k(t, t′)βk(t′, t′′) . (3.32b)

We now recall the Wigner-Weisskopf approximation of the collision terms, described
earlier in subsection 3.2, wherein we argued that the collision integral is dominated by times
t′ ∼ t. This allowed us to replace ρ̂(t′) by ρ̂(t) and extend the upper and lower limits of
the integration over t′ to positive and negative infinity, respectively. Once all of the creation
and annihilation operators have been evolved to the time t, we are therefore interested in
the Bogoliubov coefficients only for times t′ near t, while treating the integration over this
neighbourhood in t′ as effectively infinite as far as the dynamics of the fast modes is concerned.
It follows from Eq. (3.31) that βk vanishes for t′ = t, and we therefore make use of the
following approximate solutions in the collision integral (see Appendix A):

αk(t′, t) ' e+iω̄k(t−t′) , (3.33a)

βk(t′, t) ' 0 , (3.33b)

where

ω̄k =

(
1− gϕ2

0

8ω2
k|max

)
ωk|max , ωk|max :=

√
k2 +m2

χ + gϕ2
0/2 , (3.34)

is (approximately) the time-averaged energy.
The above approximation imposes adiabatic evolution in the collision integral between

the times t and t′. Since the periods of non-adiabatic particle production are much shorter
than the intervening periods of adiabatic evolution, this is expected to be a valid procedure,
so long as the time-scale for the collisions is much larger than that of each burst of particle
production. For broad resonance, the production rate is Γ∗ := 1/∆t∗ ∼ (

√
g/2mφϕ0)1/2, and

the produced particles typically have momenta lying in the interval 0 ≤ |k| . mφ(q/4)1/4

≈ 4mφ <
√
g/2ϕ0 for q = O(103) [9]. During the very early stages of preheating, we can

therefore estimate the total number density to be N ∝ m3
φ. The collision rate is given by

Γ(χχ → χχ) ∼ |vrel|Nσ(χχ → χχ). The relative velocity scales as |vrel| ∼ 2|k|/meff(t),
and herein we assume that this is of order one to obtain a conservative estimate for the
collision rate. When m2

eff ' gϕ2
0/2 is maximal, |k| . meff, and the two-to-two scatter-

ing cross-section scales as σ(χχ→ χχ) ∼ λ2/(64π gϕ2
0). On the other hand, when ϕ nears

the turning point of an oscillation and for modes with |k| . mχ, the cross-section scales
as σ(χχ→ χχ) ∼ λ2/(128πm2

χ). For modes with |k| . mφ, the cross-section scales as
σ(χχ→ χχ) ∼ λ2/(128πm2

φ). Hence, in order to achieve the separation of scales required
above, i.e. Γ(χχ→ χχ)� Γ∗, we need λ2m

5/2
φ (

√
g/2ϕ0)−1/2{1/(gϕ2

0/2), 1/m2
χ, 1/m

2
φ}/(128π)

� 1, and all three cases can be satisfied for λ = O(0.1).
At this point, we note that the particle number can become extremely large during

preheating, in which case the system can become effectively strongly coupled [32], such that
many-to-many processes dominate over the two-to-two scatterings that we consider here.
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However, we are interested only in the first few oscillations of the inflaton, wherein the
particle number remains relatively small and the collision integral amounts to perturbatively
small corrections to the Boltzmann equations. Nevertheless, one would anticipate that such
strong coupling would only increase the impact of the collisions on the dynamics of the
resonance.

We can now proceed to evaluate the remaining expectation values in the Markovian
master equations [Eq. (3.27)]. (We refer the reader to Appendix B for all the gory details.)
In order to do so, we make two additional assumptions about the system: (i) that the state
is (approximately) Gaussian so that all higher-order correlations can be expressed in terms
of one- and two-point functions by Wick’s theorem and (ii) that the system is spatially
homogeneous, such that momentum-space two-point correlation functions can be written in
the form 〈

Ôp(t)Ôk(t)
〉

=
(2π)3

Vol
δ(3)(p + k)

〈
Ô−k(t)Ôk(t)

〉
, (3.35a)〈

Ô†p(t)Ôk(t)
〉

=
(2π)3

Vol
δ(3)(p− k)

〈
Ôk(t)Ôk(t)

〉
. (3.35b)

Moreover, we are interested only in the collision terms, arising at O(λ2), that drive the
thermalization. We neglect the radiative corrections to the χ mass, which arise from both
the O(λ) and O(λ2) terms in Eq. (3.27).

The final Boltzmann equations are as follows:

Ṅk(t) ' ω̇k(t)

ωk(t)
ReMk(t) + Re C(N)

k [N,M ; t] , (3.36a)

Re Ṁk(t) ' + 2ωk(t) ImMk(t) +
1

2

ω̇k(t)

ωk(t)

(
2Nk(t) + 1

)
+ Re C(M)

k [N,M ; t] , (3.36b)

Im Ṁk(t) ' − 2ωk(t) ReMk(t) + Im C(M)
k [N,M ; t] , (3.36c)

where the C’s are the collision terms. The latter can be written in the form

C(O)
k [N,M, t] =

1

2

∫ ∞
−∞

dt′
∫
x,y

[
Π<(x, y)G>Ok

(y, x) − Π>(x, y)G<Ok
(y, x)

]
, (3.37)

where O ∈ {N, M}, xµ = (t,x) and yµ = (t′,y), with t′ < t. In addition, we have defined

G>Ok
(x, y) :=

〈
χ̂(t,x)

[
Ôk(t), χ̂(t′,y)

]〉
t
, (3.38a)

G<Ok
(x, y) :=

〈[
Ôk(t), χ̂(t′,y)

]
χ̂(t,x)

〉
t
, (3.38b)

Π>(x, y) :=
λ2

3!

〈
χ̂(t,x)χ̂(t′,y)

〉3

t
, (3.38c)

Π<(x, y) :=
λ2

3!

〈
χ̂(t′,y)χ̂(t,x)

〉3

t
. (3.38d)

The G≶
Ok

(x, y) are related to the positive- (>) and negative-frequency (<) Wightman prop-
agators and the Π≶(x, y) correspond to the two cut self-energies.

While we calculate the collision terms directly from the operator algebra, we have writ-
ten them in terms of the self-energies and Green’s functions so as to make contact with
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(a) (b)

Figure 1: The forward (a) and backward (b) cuts of the scalar two-loop “sunset” diagram.
The small shaded circles indicate coincident points, and the crossed boxes indicate insertions
of the operator Ôk. The net energy flow is from the unshaded to shaded regions.

approaches based on non-equilibrium quantum field theory (see, e.g., Refs. [56, 57]). In this
case, the collision terms can be associated with the absorptive cuts of the non-equilibrium
self-energies, which can be calculated by means of the Kobes-Semenoff [77, 78] cutting rules
that generalize those of Cutkosky [79], and ’t Hooft and Veltman [80]. The gain and loss
terms are then associated with the forward and backward cuts of the two-loop sunset dia-
gram, as depicted in Fig. 1, wherein all cut lines are placed on-shell with the net energy flow
proceeding from the unshaded to the shaded regions.

The Wigner-Weisskopf approximation enforces quasi-energy-momentum conservation5

at each interaction vertex. As a result, the only kinematically allowed collisional processes
are two-to-two scatterings. The collision terms then reduce to

C(O)
k [N,M, t] ' λ2

2

∫
dΠp,q,k f

(O)
p,q,k[N,M ; t] , (3.39)

where

dΠp,q,k =
d3p

(2π)3

d3q

(2π)3
2πδ(ω̄k + ω̄p+q−k− ω̄p− ω̄q)

∏
κ

1

2ω̄κ
, κ ∈ {k, p, q, (p+q−k)} .

(3.40)
Notice that the time-dependent energies in the phase-space measures (cf. Eq. (3.4)) have
been replaced by ω̄κ so as to be consistent with the approximate solution for αk(t′, t) in
Eq. (3.33a). The functions f

(O)
p,q,k[N,M ; t] contain the statistical weights and are given in full

5The “quasi-energy” conservation refers to the fact that it is not the instantaneous time-dependent energies
that are conserved but rather their approximate time averages.
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in Appendix B. Their real and imaginary parts are given by

Ref
(N)
p,q,k[N,M ; t] = − Ref

(M)
p,q,k[N,M ; t]

= Re
[
(1 +Nk −Mk)

(
Np +M∗p

) (
Nq +M∗q

)
(1 +Np+q−k +Mp+q−k)

− (Nk −M∗k) (1 +Np +Mp) (1 +Nq +Mq)
(
Np+q−k +M∗p+q−k

)]
,

(3.41a)

Imf
(M)
p,q,k[N,M ; t] = Im

[
(Nk +M∗k) (1 +Np +Mp) (1 +Nq +Mq)

(
Np+q−k +M∗p+q−k

)
− (1 +Nk +Mk)

(
Np +M∗p

) (
Nq +M∗q

)
(1 +Np+q−k +Mp+q−k)

]
,

(3.41b)

comprising the gain and loss terms that arise from two-to-two scattering processes. These are
shown diagrammatically in Fig. 2, where we have treated the contributions from Nk and M

(∗)
k

separately. We draw attention to the relative signs between the N ’s and M ’s in the factors
corresponding to the external momentum k in Eq. (3.41), which do not occur for the internal
statistical factors. These have arisen because the gain and loss terms are interchanged in the
contributions from the external pair correlation Mk relative to those arising from the number
density Nk.

4 Numerical example

In this section, we present numerical solutions to the Boltzmann equations in Eq. (3.36) for
the very early stages of preheating. Throughout this analysis, we have focused on the case
of broad resonance (i.e. that which occurs over a broad range of momenta and corresponds
to the condition q = (gϕ2

0)/(8m2
φ)� 1), since reheating becomes extremely efficient, thereby

enabling a relatively large occupancy for each momentum mode to build up in just a few
oscillations of the inflaton field. In this case, one expects the effect of the collision terms to
be more pronounced at these early stages compared to the regime of narrow resonance. With
this in mind, we choose the model parameters as follows: ϕ0 = 105mφ, mχ = mφ/10 and
g = 5× 10−7, such that q ∼ O(103).

The results that we present were obtained by means of a fourth-order Runge-Kutta
differential solver implemented in Mathematica and involving five non-trivial phase-space
integrals over the magnitudes of the momenta p and q, the relative angle between them and
the relative angles of one of these momenta to the external momentum k. We remark that the
approximations made in order to reduce the solutions for αk(t, t′) and βk(t, t′) (cf. Eq. (3.33))
to a form yielding (quasi-)energy-conserving Dirac delta functions introduce an error of at
most ∼ 15% to the collision integrals (see Appendix A). This is, however, anticipated to be a
global error, rather than a relative error between the contributions to each collision integral,
and therefore is expected to have little impact on the inferences that follow.

In Fig. 3a, we show the evolution of the (natural) logarithm of the number density and
the pair correlation for the zero mode |k| = 0 over the first three inflaton oscillations for the
collisionless case, i.e. with λ = 0. We see that the density matrix approach correctly captures
the resonant particle production, and it therefore provides a framework within which to study
non-adiabatic particle production that is complementary to existing methods based on solving
the Mathieu equation for the field modes. In particular, we see the characteristic jumps in
the number density, occurring each time the inflaton field passes through zero. Note that the
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Figure 2: Feynman diagrams of the two-to-two scattering processes in the number density
collision integral C(N)

k [N,M, t]: (a) gain and loss terms, where the “external” momentum
k is associated with the number density; (b) gain and loss terms, where the “external”
momentum k is associated with the (complex conjugate of the) pair correlation. Note that
the momentum l = p+q−k is determined by three-momentum conservation at each vertex.

adiabatic approximation is satisfied between each jump, i.e. |ω̇k/ω
2
k| < 1, such that Nk is an

approximate adiabatic invariant and remains roughly constant. From Eq. (3.36), it is clear
that the pair correlations act to source the growth in the number density. This is corroborated
by the numerics, where, in Fig. 3b, we see that the growth in the pair correlations precedes
the growth in the number density. We reiterate that the presence of the pair correlations
plays a crucial role in the non-adiabatic particle production.

Figure 4 shows plots of Nk, |Mk|, ReMk and ImMk as a function of |k|/mφ at t =
4π/mφ. We see that the number density is non-zero for a continuous range of momenta,
typically within the interval 0 ≤ |k| . mφ(q/4)1/4 ≈ 4mφ, as is expected for broad resonance.
Importantly, Fig. 4 also confirms the expected result that Nk and |Mk| are the same order
of magnitude throughout the preheating phase. In fact, they are almost identical.

We now turn our attention to the collisional cases, i.e. λ 6= 0. In the first instance, we
set the pair correlations M and M∗ to zero in the collision terms in Eq. (3.36), so as to be
able to isolate their impact. Figure 5a shows the number density as a function of |k|/mφ for
the collisionless case and collisional cases with λ ∈ {0.1, 0.2}, neglecting the pair correlations.
While the maximum difference is at the sub-percent level (∼ 0.3%) for both the λ = 0.1 and
λ = 0.2 cases, we see that the collisions lead to a suppression of the particle production,
corresponding to a reduction in the efficiency of the resonance, as we might expect. This
suppression is also visible in Fig. 5b, where we show the time-evolution of the collisionless
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Figure 3: (a) Time evolution (measured in units of mφ/2π) of the χ particle number density
Nk (blue) and pair correlation |Mk| (orange) for the mode k = 0 in the regime of broad
resonance (q ∼ 103) for the collisionless case λ = 0. (b) Evolution of the integrated number

density (blue) and pair correlation (orange), i.e. N(t) =
∫

d3k
(2π)3

Nk and |M(t)| =
∫

d3k
(2π)3

|Mk|
up to t = 2π/mφ.

– 17 –



0 2 4 6 8 10
-100

-50

0

50

100

150

|k|/mϕ

N
k
(t
),
|M

k
(t
)|

,
R

e
M

k
(t
),

Im
M

k
(t
)

Figure 4: Plots of Nk (blue), |Mk| (orange), ReMk (green) and ImMk (purple) as a function
of |k|/mφ at t = 4π/mφ.

and collisional number densities for the same case. These results illustrate that the collisions
have an effect (albeit initially small) fairly soon after the onset of preheating. Importantly,
one would expect these effects to become more pronounced as preheating proceeds and as
the number density grows.

In Fig. 6, we plot the difference between the cases with and without the pair correlations
for the collisional case with λ = 0.1. The impact of the pair correlations is negligible, despite
the magnitudes of Nk and |Mk| being almost identical. However, by plotting the time-
evolution of the integrated collision term

d

dt
∆N(t) =

∫
d3k

(2π)3
Re C(N)

k [N,M ; t] (4.1)

for the cases with and without the pair correlations (see Fig. 7), the reason for this negligible
impact becomes apparent. Specifically, the contributions from Mk and M∗k result in highly
oscillatory contributions, which fluctuate about an average value that is only negligibly dif-
ferent from that of the case where only Nk contributes. This can be traced back to the
master equations for Mk and M∗k, obtained from Eqs. (3.36b) and (3.36c). Both contain
an oscillatory contribution with instantaneous period T ∼ 2π/ωk(t). As such, Mk and M∗k
oscillate on time-scales much shorter than those over which collisional processes take place,
and their contribution effectively averages to zero.

Therefore, with the present separation of scales, we can safely ignore any contributions
from Mk and M∗k to the collision integrals in the master equations. On the other hand, if the
collision rate becomes comparable to the rate of oscillation of the pair correlations, one might
expect a greater residual effect on the evolution of the number density. However, one might
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Figure 5: (a) Difference ∆Nk = Nλ
k−Nλ= 0

k between the collisional and collisionless number
densities as a function of |k|/mφ for λ = 0.1 (blue) and λ = 0.2 (orange) at t = 4π/mφ and
in the case where only the number density Nk participates in the collision integral. (b) Time
evolution of the total number per unit volume N(t) for λ = 0 (green), λ = 0.1 (blue) and
λ = 0.2 (orange), where the time evolution is shown in units of mφ/2π (corresponding to
the number of periods of the inflaton condensate). We have truncated the graph near to
t ∼ 4π/mφ to make the suppression visible.
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λ = 0.1 (blue) and λ = 0.2 (orange) at t = 4π/mφ.

then doubt the applicability of the approximations used here to treat the time-dependence
of the phase space, and we leave dedicated studies to future work.

By neglecting the contributions from Mk and M∗k to the collision integrals, as we have
shown to be appropriate for the present choice of parameters, the stability of the numerics is
improved. By this means, we were able to evolve the system reliably for three full oscillations
of the inflaton field. The collisionless number density is shown in Fig. 8a, having increased in
amplitude by an order of magnitude compared with the previous inflaton oscillation shown
in Fig. 4. The comparison with the collisional case is presented in Fig. 8b. We show how
the suppression of the number density increases with each full oscillation of the inflaton field
over the three periods. In particular, we see that after three periods, the maximum relative
difference has increased from the sub-percent level (∼ 0.3%) to order 1%, that is the effect
of the collision integrals has essentially doubled after only one additional cycle.

5 Conclusions

Within the density matrix formalism, we have derived a (self-consistent) set of quantum
Boltzmann equations, which are able to describe the evolution of an ensemble of self-inter-
acting scalar particles that are subject to an oscillating mass term. During the preheating
phase of the early universe, these equations can be used to determine the evolution of the
number density and pair correlations for a scalar field coupled to the inflaton, while account-
ing also for collisional processes. For a toy model of preheating, we have been able to solve for
this evolution over the first few inflaton oscillations, and our conclusions can be summarized
as follows:
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Figure 7: Behaviour of the collision integral d∆N(t)/dt as a function of time t (in units of
mφ/2π). The blue and green curves correspond to the case where only Nk contributes, for
λ = 0.1 and λ = 0.2 respectively, and the orange curve, to the case in which Mk and M∗k
are also included. The graph has been truncated at t = 1.2, since the collision integral is
negligible beforehand. In particular, it is found that the magnitude of d∆N(t)/dt for λ = 0.2
is four times larger than the λ = 0.1, as would be expected.

• We have illustrated the importance of the pair correlations during preheating. In
particular, we have shown that they play a crucial role in mediating the non-adiabatic
particle production. Moreover, we have demonstrated that the pair correlations are
of comparable magnitude to the number density throughout preheating and cannot,
therefore, be neglected a priori in the collision integrals that precipitate thermalization.

• In spite of the latter observation, we have, however, also demonstrated that the pair
correlations can safely be neglected in the collision integrals when the collision rate is
much slower than the rate of free-phase oscillations of the pair correlations. When this
is the case, the contributions of the pair correlations are effectively time-averaged away.

• Perhaps most importantly, our numerical analysis suggests that the collision terms have
an impact on the resulting number density even in the very early stages of preheating.
Specifically, after only three oscillations of the inflaton condensate, we find an O(1%)
deviation in the magnitude of the number density compared to the collisionless case.
This deviation is expected to increase significantly as preheating progresses, and this
motivates further numerical studies beyond the present work to establish the effect of
accounting fully for the thermalization processes during preheating (and reheating) on
the thermal history of the early universe.

Here, we have considered a simplified toy model of preheating. In a more realistic
scenario, one would need to account for the effects of the Hubble expansion both on the
decay of the inflaton condensate and the structure of the resonance bands. In addition, one
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Figure 8: (a) Plot of the number density in the collisionless case Nλ= 0
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(b) The difference ∆Nk = Nλ
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case where only the number density Nk participates in the collision integral.
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would want to account for perturbative inflaton decays, as well as the backreaction of the
particle-production processes on the inflaton condensate. In the case of broad resonance,
the cosmological expansion results in a stochastic resonance behaviour, wherein the number
density only increases exponentially on average [9, 81]. This background expansion competes
with the effects of backreactions and rescatterings in determining the efficiency of the resonant
particle production [81]. One may therefore anticipate the effects of collisional processes
during the production phases to remain significant in more realistic scenarios. We leave
the (technically challenging) exploration of these possibilities for future research. Finally, we
remark that it would be constructive to make direct comparisons between the present density
matrix approach, where the relation to canonical quantities such as the number density is
manifest, and others based on the closed-time-path formalism of non-equilibrium quantum
field theory, where one must instead employ, e.g., quasi-particle approximations in order to
extract physical observables.
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A Derivation of the approximate mode functions

In this appendix, we derive the approximate solution for the function αk(t′, t), appearing in
Subsec. 3.3, that is needed for the evaluation of the collision integrals in Appendix B.

The Bogoliubov coefficients satisfy the first-order differential equations

α̇k(t, t′) = − iωk(t)αk(t, t′) +
1

2

ω̇k(t)

ωk(t)
βk(t, t′) , (A.1a)

β̇k(t, t′) = + iωk(t)βk(t, t′) +
1

2

ω̇k(t)

ωk(t)
αk(t, t′) , (A.1b)

which follow from Eq. (3.9). For t ∼ t′, we can set βk(t, t′) ' 0, such that

α̇k(t, t′) ' − iωk(t)αk(t, t′) , (A.2)

effectively imposing adiabatic evolution in the neighbourhood of the time t. The solution to
Eq. (A.2), satisfying the boundary condition in Eq. (2.18), is

αk(t, t′) ' exp

[
− i
∫ t

t′
dt̃ ωk(t̃)

]
, (A.3)

and the inverse function αk(t′, t) can be obtained from the property αk(t′, t) = α∗k(t, t′).
The integrand in the exponent of Eq. (A.3) can be evaluated in closed form; specifically,∫ t

t′
dt̃ ωk(t̃) =

ωk|max

mφ

[
E (mφt, zk) − E

(
mφt

′, zk
)]

, (A.4)
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where E (mφt, zk) is the incomplete elliptic integral of the second kind, zk = gϕ2
0/[2(ωk|max)2]

and

ωk|max :=

√
k2 +m2

χ +
gϕ2

0

2
(A.5)

is the maximum value of ωk(t). While it is not appropriate to expand ωk(t) perturbatively in
the coupling g, since gϕ2

0 � m2
χ, a numerical analysis of Eq. (A.4) suggests that it is possible

to approximate the solution well by making a series expansion of E (mφt, zk) with respect to
zk (for zk < 1). To linear order, we obtain

E (mφt, zk) − E
(
mφt

′, zk
)
'
(

1− zk
4

)
mφ(t− t′) +

zk
4
mφ

[
t sinc(2mφt) − t′ sinc(2mφt

′)
]
.

(A.6)
For zk � 1, the relative error is ∼ 0.01%; for zk ∼ O(1), it is at most ∼ 15% (see Fig. 9).
Away from t, t′ = 0, the first term dominates, and we can neglect the terms involving sinc
functions, whose relative contributions decrease linearly with time for t > 1/mφ. Doing so,
we are left with the result ∫ t

t′
dt̃ ωk(t̃) ' ω̄k(t− t′) , (A.7)

where ω̄k, as given by Eq. (3.34), is the (approximate) time-average of ωk(t) over an interval
∆t = t− t′, i.e.

ω̄k '
1

∆t

∫ t

t′
dt̃ ωk(t̃) . (A.8)

To be consistent with this approximation, we should make the replacement ωk(t) → ω̄k in
the mode functions (cf. Eq. (3.29)) and whenever it appears in the collision integrals. In this
way, Eq. (3.29) for the mode function reduces to

χ̃k(t′, t) ' 1√
2ω̄k

e+iω̄k(t−t′) . (A.9)

Notice that, in the limit ϕ0 → 0, corresponding to the decay of the amplitude of the inflaton

oscillations, ω̄k →
√
k2 +m2

χ, and we correctly recover the usual evolution of the free field.

B Derivation of the collision terms

In this appendix, we present further technical details of the derivation of the collision terms
appearing in the Boltzmann equations in Subsec. 3.2.

The various collision terms are given by the expression

C(O)
k [N,M ; t] = − 1

2

∫ +∞

−∞
dt′
〈[[
Ôk(t), Ĥint(t)

]
, Ĥint(t

′)
]〉
t

= − 1

2

(
λ

4!

)2 ∫ +∞

−∞
dt′
∫

d3x d3y
〈[[
Ôk(t), χ̂4(x)

]
, χ̂4(y)

]〉
t
, (B.1)
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∫ t

0 dt′ ωk(t′) and its Taylor approxima-
tion (cf. Eq. (A.6)) as a function of t (in units of mφ/2π) over several periods of oscillation
of the inflaton condensate for zk ∼ O(1) (blue line) and zk � 1 (orange).

where Ôk ∈ {N̂k, M̂k}, and xµ = (t,x) and yµ = (t′,y). The double commutator can be
expanded as follows:[[
Ôk(t), χ̂4(t,x)

]
, χ̂4(t′,y)

]
= 4

[[
Ôk, χ̂

]
χ̂3, χ̂′4

]
− 6∆Ôk

[
χ̂2, χ̂′4

]
= 4

[
Ôk, χ̂

][
χ̂3, χ̂′4

]
+ 4

[[
Ôk, χ̂

]
, χ̂′4

]
χ̂3 − 6∆Ôk

[
χ̂2, χ̂′4

]
= 16∆′Ôk

(χ̂3χ̂′3 − 9∆χ̂2χ̂′2 + 18∆2χ̂χ̂′ − 6∆3
)

+ 48∆
[
Ôk, χ̂

]
χ̂2χ̂′3 − 144∆2

[
Ôk, χ̂

]
χ̂χ̂′2

+ 96∆3
[
Ôk, χ̂

]
χ̂′ − 24∆Ôk

∆
(
2χ̂χ̂′3 − 3∆χ̂′2

)
, (B.2)

where all operators with the latest time t > t′ have been commuted to the left (to simplify
their Wick contraction). Herein, we have suppressed the spacetime arguments of the various
operators and used the shorthand notations χ̂ ≡ χ̂(t,x) and χ̂′ ≡ χ̂(t′,y). In addition, we
have defined the various Pauli-Jordan-like functions

∆ ≡ ∆(x, y) :=
[
χ̂(x), χ̂(y)

]
, (B.3a)

∆′Ôk
≡ ∆Ôk

(x, y) :=
[[
Ôk(t), χ̂(x)

]
, χ̂(y)

]
, (B.3b)

∆Ôk
≡ ∆Ôk

(x, x) . (B.3c)

After taking the trace with the density operator and performing the Wick contractions, we
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obtain

C(O)
k [N,M ; t] =

1

2

∫ +∞

−∞
dt′
∫
x,y

([
Π<(x, y)G>Ok

(y, x) − Π>(x, y)G<Ok
(y, x)

]
+

λ4

2

[
G<Ok

(y, x)G>(x, y) − G>Ok
(y, x)G<(x, y)

]〈
χ̂2(x)

〉
t

〈
χ̂2(y)

〉
t

+
λ2

8

[
G<Ok

(x, x)
(
G>(x, y)

)2 − G<Ok
(x, x)

(
G<(x, y)

)2
+ G>Ok

(x, x)
(
G<(x, y)

)2 − G>Ok
(x, x)

(
G>(x, y)

)2]〈
χ̂2(y)

〉
t

)
,

(B.4)

where

G>(x, y) := 〈χ(x)χ(y)〉t

=

∫
p

[
χ̃p(t′, t)e+ip·(x−y)

(
Np(t) +Mp(t)

)
+ χ̃∗p(t′, t)e−ip·(x−y)

(
1 +Np(t) +M∗p(t)

)]
,

(B.5a)

G<(x, y) := 〈χ(y)χ(x)〉t

=

∫
p

[
χ̃p(t′, t)e+ip·(x−y)

(
1 +Np(t) +Mp(t)

)
+ χ̃∗p(t′, t)e−ip·(x−y)

(
Np(t) +M∗p(t)

)]
(B.5b)

are the positive- and negative-frequency Wightman propagators, and Π≶(x, y) and G≶
Ok

(x, y)
are defined in Eq. (3.38). For illustration, we have

G>Nk
(y, x) =

1

Vol
√

2ωk(t)

([
χ̃k(t′, t)

(
1 +Nk(t)

)
+ χ̃∗k(t′, t)M∗k(t)

]
e−ik·(x−y)

−
[
χ̃k(t′, t)Mk(t) + χ̃∗k(t′, t)Nk(t)

]
e+ik·(x−y)

)
= −

[
G<Nk

(y, x)
]∗
, (B.6a)

G>Mk
(y, x) =

1

Vol
√

2ωk(t)

[
χ̃k(t′, t)Mk(t) + χ̃∗k(t′, t)Nk(t)

](
e+ik·(x−y) + e−ik·(x−y)

)
,

(B.6b)

G<Mk
(y, x) =

1

Vol
√

2ωk(t)

[
χ̃k(t′, t)Mk(t) + χ̃∗k(t′, t)(1 +Nk(t))

](
e+ik·(x−y) + e−ik·(x−y)

)
.

(B.6c)

The collision terms arise from the first line of Eq. (B.4) and, in the Markovian limit, these
terms give rise to the relevant two-to-two scattering processes. The remaining terms in
Eq. (B.4) correspond to O(λ2) shifts in the mass of the χ field, which we omit from the
present analysis.

Expanding the terms in the first line of Eq. (B.4) and inserting the approximate solution
for αk(t′, t) (cf. Appendix A), we arrive at the following general expression for the collision
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integral:

C(O)
k [N,M ; t] ' λ2

2

4∑
j= 1

∫
dΠ

(j)
p,q,k f

(O)
(j);p,q,k[N,M ; t] , (B.7)

where we have introduced the modified phase-space measure

dΠ
(j)
p,q,k =

d3p

(2π)3

d3q

(2π)3
2π δ (∆ωj)

∏
κ

1

2ω̄κ
, (B.8)

with κ ∈ {k, p, q, (p + q− k)}, and defined the set of functions {∆ωj |j = 1, 2, 3, 4}, with

∆ω1 = ω̄k + ω̄p+q−k − ω̄p − ω̄q , (B.9a)

∆ω2 = ω̄k + ω̄−p−q−k + ω̄p + ω̄p , (B.9b)

∆ω3 = ω̄p + ω̄q + ω̄k−p−q − ω̄k , (B.9c)

∆ω4 = ω̄k + ω̄q + ω̄p−k−q − ω̄p . (B.9d)

Having made the Wigner-Weisskopf (or Markovian) approximation, we restore energy conser-
vation at each interaction vertex. The only kinematically viable process is then the two-to-two
scattering, corresponding to the case j = 1 above.

The set of functions {f (O)
(j);p,q,k[N,M ; t]|j = 1, 2, 3, 4} contain the statistical factors, and
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their explicit expressions are as follows:

f
(N)
(1);p,q,k = (1 +Nk)

(
Np +M∗p

) (
Nq +M∗q

)
(1 +Np+q−k +Mp+q−k)

− Nk

(
1 +Np +M∗p

) (
1 +Nq +M∗q

)
(Np+q−k +Mp+q−k)

+ M∗k (1 +Np +Mp) (1 +Nq +Mq)
(
Np+q−k +M∗p+q−k

)
− M∗k (Np +Mp) (Nq +Mq)

(
1 +Np+q−k +M∗p+q−k

)
,

(B.10a)

f
(N)
(2);p,q,k =

1

3

[
(1 +Nk) (1 +Np +Mp) (1 +Nq +Mq) (1 +N−k−p−q +M−k−p−q)

− Nk (Np +Mp) (Nq +Mq) (N−k−p−q +M−k−p−q)

+ M∗k
(
Np +M∗p

) (
Nq +M∗q

) (
N−k−p−q +M∗−k−p−q

)
− M∗k

(
1 +Np +M∗p

) (
1 +Nq +M∗q

) (
1 +N−k−p−q +M∗−k−p−q

) ]
,

(B.10b)

f
(N)
(3);p,q,k =

1

3

[
(1 +Nk)

(
Np +M∗p

) (
Nq +M∗q

) (
Nk−p−q +M∗k−p−q

)
− Nk

(
1 +Np +M∗p

) (
1 +Nq +M∗q

) (
1 +Nk−p−q +M∗k−p−q

)
+ M∗k (1 +Np +Mp) (1 +Nq +Mq) (1 +Nk−p−q +Mk−p−q)

− M∗k (Np +Mp) (Nq +Mq) (Nk−p−q +Mk−p−q)
]
,

(B.10c)

f
(N)
(4);p,q,k = (1 +Nk)

(
Np +M∗p

)
(1 +Nq +Mq) (1 +Np−k−q +Mp−k−q)

− Nk

(
1 +Np +M∗p

)
(Nq +Mq) (Np−k−q +Mp−k−q)

+ M∗k (1 +Np +Mp)
(
Nq +M∗q

) (
Np−k−q +M∗p−k−q

)
− M∗k (Np +Mp)

(
1 +Nq +M∗q

) (
1 +Np−k−q +M∗p−k−q

)
,

(B.10d)

f
(M)
(1);p,q,k = Nk (1 +Np +Mp) (1 +Nq +Mq)

(
Np+q−k +M∗p+q−k

)
− (1 +Nk) (Np +Mp) (Nq +Mq)

(
1 +Np+q−k +M∗p+q−k

)
+ Mk

(
Np +M∗p

) (
Nq +M∗q

)
(1 +Np+q−k +Mp+q−k)

− Mk

(
1 +Np +M∗p

) (
1 +Nq +M∗q

)
(Np+q−k +Mp+q−k) ,

(B.10e)

f
(M)
(2);p,q,k =

1

3

[
Nk

(
Np +M∗p

) (
Nq +M∗q

) (
N−k−p−q +M∗−k−p−q

)
− (1 +Nk)

(
1 +Np +M∗p

) (
1 +Nq +M∗q

) (
1 +N−k−p−q +M∗−k−p−q

)
+ Mk (1 +Np +Mp) (1 +Nq +Mq) (1 +N−k−p−q +M−k−p−q)

− Mk (Np +Mp) (Nq +Mq) (N−k−p−q +M−k−p−q)
]
,
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(B.10f)

f
(M)
(3);p,q,k =

1

3

[
Nk (1 +Np +Mp) (1 +Nq +Mq) (1 +Nk−p−q +Mk−p−q)

− (1 +Nk) (Np +Mp) (Nq +Mq) (Nk−p−q +Mk−p−q)

+ Mk

(
Np +M∗p

) (
Nq +M∗q

) (
Nk−p−q +M∗k−p−q

)
− Mk

(
1 +Np +M∗p

) (
1 +Nq +M∗q

) (
1 +Nk−p−q +M∗k−p−q

) ]
,

(B.10g)

f
(M)
(4);p,q,k = Nk (1 +Np +Mp)

(
Nq +M∗q

) (
Np−k−q +M∗p−k−q

)
− (1 +Nk) (Np +Mp)

(
1 +Nq +M∗q

) (
1 +Np−k−q +M∗p−k−q

)
+ Mk

(
Np +M∗p

)
(1 +Nq +Mq) (1 +Np−k−q +Mp−k−q)

− Mk

(
1 +Np +M∗p

)
(Nq +Mq) (Np−k−q +Mp−k−q) .

(B.10h)
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