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ABSTRACT
The primary difficulty in measuring dynamical masses of galaxy clusters from galaxy data
lies in the separation between true cluster members from interloping galaxies along the line of
sight. We study the impact of membership contamination and incompleteness on cluster mass
estimates obtained with 25 commonly used techniques applied to nearly 1000 mock clusters
with precise spectroscopic redshifts. We show that all methods overestimate or underestimate
cluster masses when applied to contaminated or incomplete galaxy samples, respectively. This
appears to be the main source of the intrinsic scatter in the mass scaling relation. Applying
corrections based on a prior knowledge of contamination and incompleteness can reduce the
scatter to the level of shot noise expected for poorly sampled clusters. We establish an empirical
model quantifying the effect of imperfect membership on cluster mass estimation and discuss
its universal and method-dependent features. We find that both imperfect membership and the
response of the mass estimators depend on cluster mass, effectively causing a flattening of
the estimated–true mass relation. Imperfect membership thus alters cluster counts determined
from spectroscopic surveys, hence the cosmological parameters that depend on such counts.
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1 IN T RO D U C T I O N

Virtually all studies of clusters of galaxies rely on accurate mea-
surements of their mass. Cluster global masses (defined within some
physical radius, such as the virial radius, within which the cluster
should lie near dynamical equilibrium) and cluster mass profiles
can be extracted by various astronomical techniques (see below).
The primary challenge is that clusters are viewed in projection in
the sky: our distance estimators are insufficient to enable the re-
construction of a precise three-dimensional (3D) mass distribution.
This projected view of clusters affects all methods of cluster mass
estimation, including the analysis of X-ray observations of the hot
diffuse cluster gas (assumed to be in hydrostatic equilibrium) or of
the statistical shear of galaxy shapes caused by weak gravitational
lensing. Mass measurements of clusters using (optically selected)
galaxies as kinematic tracers of their gravitational potential is par-
ticularly difficult, because of the small number of accurate mea-
surements on one hand, and because of the inevitable confusion,
caused by the Hubble flow, with other galaxies (some belonging to
groups or clusters) up to 10–20 virial radii along the line of sight
(LOS; Mamon, Biviano & Murante 2010). This makes most of the
galaxy-based methods for measuring dynamical masses particularly
prone to the effects of inaccurate membership (Wojtak et al. 2007).
Despite these limitations imposed by imperfect membership, many
galaxy-based methods of cluster mass estimation have been used for
a variety of applications. Various case studies based on kinematics
have provided numerous constraints on the cluster mass profiles,
the mass–concentration relation and the anisotropy of galaxy orbits
(Wojtak & Łokas 2010; Munari, Biviano & Mamon 2014; Mamon
et al., in preparation).

Moreover, clusters are cosmological tools, since the evolution of
the cluster mass function depends strongly on cosmological parame-
ters. In the optical domain, these parameters were constrained using
scaling relations of mass with richness for optical galaxy clusters
detected in the Sloan Digital Sky Survey (SDSS) data (Rozo et al.
2010) or with velocity dispersion using clusters detected through
the Sunyaev–Zel’dovich (Sunyaev & Zeldovich 1970) effect with
the South Pole Telescope (Bocquet et al. 2015). Undoubtedly, the
role of galaxy-based methods for constraining cluster mass profiles
on one hand and cosmological parameters on the other will grow
even more with the advent of large-scale imaging and spectroscopic
cosmological surveys such as Euclid1 and the Large Synoptic Sur-
vey Telescope (LSST).2 Such ‘cluster cosmology’ will improve the
present constraints on extensions of a standard � cold dark matter
(�CDM) model, driven thus far primarily by X-ray observations
of galaxy clusters, such as modified gravity (Cataneo et al. 2015),
neutrino physics (Mantz et al. 2015), or the dark energy equation of
state (Mantz et al. 2014).

Assigning cluster membership to galaxies observed in the cluster
field can be performed in several ways. First, clusters are selected
as galaxy concentrations on the sky or directly in redshift space.
Moreover, thanks to the prominence of red galaxies in low-redshift
clusters combined with the narrowness of the red sequence of galax-
ies in colour–luminosity diagrams, one can select cluster members
appearing on a narrow red sequence in the colour–magnitude dia-
gram (several narrow sequences may signify several clusters aligned
along the LOS; Gladders & Yee 2000; Rykoff et al. 2014). LOS ve-
locities provide extra information, and thanks to the Hubble flow,

1http://sci.esa.int/euclid/
2https://www.lsst.org

obvious interlopers can be identified in several methods, such as (i)
global 3 σ clipping (Yahil & Vidal 1977), (ii) searching for gaps
in the global LOS velocity distribution (Fadda et al. 1996), (iii)
selecting maximum local absolute LOS velocities, (iv) using best
estimates of the infall velocity (den Hartog & Katgert 1996), (v) the
escape velocity identified again as LOS velocity gaps now called
‘caustics’ (Diaferio 1999), or (vi) a local 2.7 σLOS clipping (Mamon,
Biviano & Boué 2013).3 These methods (except caustics) are itera-
tive (first guessing a virial radius, and, for the latter one, assumed
mass and velocity anisotropy profiles). But as mentioned above, all
these methods suffer from inevitable contamination from galaxies
lying along the LOS within 10 or 20 virial radii from the cluster, for
which the Hubble flow is insufficient to push them beyond 2.7σ or
3 σ in the LOS velocity distribution of the intrinsic cluster members.
Stacking 100 haloes from a cosmological simulation, Mamon et al.
(2010) found that as many as 23 per cent of objects lying within the
virial cone (or cylinder) lie within the virial sphere (after filtering
out the interlopers with a local 2.7 σLOS criterion). A distinctive
approach is based on the friends-of-friends (FoF) algorithm applied
to projected phase space, but this cluster finder cannot reach perfect
membership: increasing the linking lengths improves completeness
at the expense of reliability and vice versa, making it impossi-
ble for any combination of linking lengths to jointly achieve over
83 per cent completeness and reliability for clusters of estimated
mass above 1014 M� (see Qlocal in fig. 9 of Duarte & Mamon 2014).
Moreover, with optimal linking lengths, over half the FoF clusters
of estimated mass 1014 M� turn out to be secondary fragments of
more massive clusters, and with the most optimal cluster finders as
those of Yang et al. (2007) and MAGGIE (Duarte & Mamon 2015)
this fraction remains as high as ∼15 per cent (fig. 10 of Duarte &
Mamon 2015).

For most methods, membership assignment cannot be fully sep-
arated from cluster mass measurement. Arguably all algorithms for
selecting cluster members involve either mass-dependent cuts in
projected phase space, e.g. 3σ clipping, or mass-dependent scales
of models assigning a probabilistic membership (a galaxy observed
at fixed physical distance from the cluster centre is more likely a
cluster member if its host cluster is more massive than a baseline
value). Consequently, membership is typically refined in iterative
steps based on trial estimates of cluster mass. In this sense, both
the mass estimate and the membership classification constitute the
outputs of a self-consistent algorithm processing cluster data.

Cluster membership is commonly treated as a binary feature
classifying galaxies into cluster members or interlopers. An in-
creasingly popular alternative is a probabilistic approach, i.e. where
each galaxy is assigned a membership probability, enabling deter-
mination of mass profile parameters in a self-consistently Bayesian
fashion (e.g. Wojtak et al. 2009; Mamon et al. 2013; Wojtak &
Mamon 2013), as well as the detection of the gravitational redshift
effect (Wojtak, Hansen & Hjorth 2011; Sadeh, Feng & Lahav 2015;
Jimeno et al. 2017) and the spatial anisotropy of galaxy kinematics
(Skielboe et al. 2012).

Despite its growing popularity (e.g. Rykoff et al. 2014), the proba-
bilistic approach is only justified when there is an underlying model
for the interloping galaxies. For stacked clusters, quasi-uniform
distributions of interloper LOS velocities can be extracted from
cosmological simulations (as proposed by Mamon et al. 2010). But
for individual clusters, the LOS velocity distribution of interlopers

3The factor 2.7 was optimized by Mamon et al. (2010) on a stack of haloes
from a cosmological simulation.
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is the sum of many quasi-Gaussians (each one for a different cluster
along the LOS of the considered one).4

Despite a rich variety of mass estimators and techniques for se-
lecting cluster members, the literature lacks extensive studies on
how imperfect membership degrades cluster mass estimates, how
scale-dependent properties of galaxy clusters (e.g. mass-dependent
amount of substructure; de Carvalho et al. 2017; Roberts & Parker
2017; Old et al. 2018) affect selection of cluster members, and what
solutions can mitigate all these effects. With the growing role of
galaxy-based cluster mass estimations in future cosmological sur-
veys, it is timely to quantify the impact of imperfect membership on
mass scaling relations in order to envision the strategies to minimize
it. The present work is the first step in addressing these problems in
a systematic way.

We make use of the Galaxy Cluster Mass Reconstruction Project
(GCMRP) data (Old et al. 2014, 2015) to quantify the effect of
imperfect membership on cluster mass measurements. The data in-
clude estimates of mass and galaxy membership for nearly 1000
mock low-redshift galaxy clusters analysed by 25 algorithms, to-
gether with the true masses and galaxy memberships of these clus-
ters. With these data, we can quantify, for each method, how mass
bias and scatter depend on membership incompleteness and con-
tamination.

Our study is a continuation of the GCMRP. A comprehensive
framework of the project with built-in procedures of data blinding
enables us not only to compare individual mass estimation methods
exploiting a wide range of possible models, scaling relations, and
numerous algorithms for handling various steps of data processing,
but also to study generic properties of cluster mass measurements
in optical observations. In Old et al. (2015), we quantified perfor-
mances of all 25 methods and showed that those based on richness
or abundance matching return most precise cluster mass estimates,
irrespective of intrinsic assumptions of mock galaxy catalogues.
Exploiting information on dynamical substructure in our follow-up
study (Old et al. 2018), we demonstrated that all methods systemat-
ically overestimate masses of clusters with significant substructure.
This bias turned out to affect low-mass clusters more strongly than
high-mass counterparts.

This paper is organized as follows. In Section 2, we describe the
mock observations and the cluster mass reconstruction techniques.
In Section 3, we estimate the level of imperfect membership in
terms of contamination and incompleteness, and quantify its effects
on cluster mass estimates returned by each method, explaining our
adopted methodology of data analysis. We study the mass depen-
dence of imperfect membership and the response of the cluster mass
estimators in Section 4, quantifying how imperfect membership
modifies the mass scaling relations. We summarize and conclude in
Section 5.

2 DATA A N D M E T H O D S

We base our analysis on tables, generated by the GCMRP (Old et al.
2015), of estimated mass and galaxy membership for 967 clusters,
obtained with 25 different algorithms, together with the true masses
and memberships.

4Maximizing the benefits of the probabilistic approach for individual clusters
can be achieved with machine learning algorithms, whose first applications
to cluster mass estimates resulted in noticeable improvements (Ntampaka
et al. 2015, 2016).

Two mock galaxy catalogues were generated for the 25 algo-
rithms: one using a semi-analytical model (SAM), and the other
based on a halo occupation distribution (HOD) approach. In this
study, we use the outputs from all 25 mass reconstruction methods,
but only for HOD mock observations, because the true 3D clus-
ter membership assigned to galaxies in the SAM catalogue does
not conform with the assumed virial overdensity of 200ρc defining
both cluster masses in the two galaxy catalogues and 3D cluster
membership in the HOD catalogue (see Section 3.1).

The mock catalogues submitted to the algorithms were developed
in three steps: (1) extracting dark matter haloes from a cosmological
dark matter simulation; (2) extracting galaxies from the haloes; and
(3) building a mock galaxy catalogue. We describe below each step
in more detail (see Old et al. 2014, 2015 for more details).

2.1 Cosmological simulation

The mock observations were generated using the Bolshoi dissi-
pationless cosmological simulation based on a flat �CDM cos-
mological model with the matter density parameter �m = 0.27,
the rms of the density fluctuations σ 8 = 0.82, the tilt of the pri-
mordial power spectrum n = 0.95 and the dimensionless Hubble
constant h = 0.7. The simulation follows the evolution of 20483

dark matter particles of mass 1.35 × 108 h−1 M� within a box
of side length 250 h−1 Mpc (Klypin, Trujillo-Gomez & Primack
2011). It was run with the ART adaptive refinement code with a
force resolution of 1 h−1 kpc. The final halo catalogues are com-
plete down to circular velocity of 50 km s−1 (corresponding to
M200c ≈ 1.3 × 1010 h−1 M� with ∼100 particles per halo).

Dark matter haloes were found using the ROCKSTAR algorithm
(Behroozi, Wechsler & Wu 2013). The halo finder operates in full
six-dimensional (6D) phase space, enabling it to resolve more ef-
fectively haloes with spatially aligned centres. It has been shown
to recover halo properties with high accuracy and returns halo cat-
alogues that are broadly consistent with other halo finders (Knebe
et al. 2011). Halo masses were calculated using a spherical over-
density threshold fixed at 200 times that of the critical density at the
considered redshift. These overdensities were estimated considering
all particles and substructures contained in the halo.

2.2 3D galaxy catalogues

A 3D galaxy catalogue was generated using an updated HOD model
described in Skibba et al. (2006) and Skibba & Sheth (2009).
In this approach, dark matter haloes are populated with galaxies
whose luminosities and colours are assigned so that the simulated
galaxy population approximately reproduces the observed luminos-
ity function, colour–magnitude distribution, luminosity- and colour-
dependent two-point correlation function measured from the SDSS.
All galaxy properties are also assumed to be fully determined by
the parent halo mass. During the course of the GCMRP, several im-
provements regarding phase-space distribution of satellite galaxies
were developed and implemented. All modifications account for a
number of effects that are present in realistic groups or clusters of
galaxies, but were neglected in the first phase of the project, such
as non-central positions of brightest cluster galaxies, central galaxy
velocity bias (Skibba et al. 2011), or difference between the concen-
trations of dark matter versus satellite galaxies (Wojtak & Mamon
2013), as well as those of red versus blue galaxies (Collister & La-
hav 2005; Cava et al. 2017). However, the HOD has two important
simplifications: (1) haloes are truncated at the virial radius, whereas
the one-halo term of galaxy clusters extends to beyond 10 virial
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Table 1. Summary of the cluster mass reconstruction methods.

Method Initial galaxy Mass estimation Type of data Colour Reference
selection required info

(1) (2) (3) (4) (5) (6)

PCN Phase space Richness Spectroscopy No Pearson et al. (2015)
PFNa FoF Richness Spectroscopy No Pearson et al. (2015)
NUM Phase space Richness Spectroscopy No Mamon et al. (in prep.)
RM1 Red sequence Richness Central spectra Yes Rykoff et al. (2014)
RM2a Red sequence Richness Central spectra Yes Rykoff et al. (2014)
ESC Phase space Phase space Spectroscopy No Gifford & Miller (2013)
MPO Phase space Phase space Spectroscopy Yes Mamon et al. (2013)
MP1 Phase space Phase space Spectroscopy No Mamon et al. (2013)
RW Phase space Phase space Spectroscopy No Wojtak et al. (2009)
TARa FoF Phase space Spectroscopy No Tempel et al. (2014)
PCO Phase space Radius Spectroscopy No Pearson et al. (2015)
PFOa FoF Radius Spectroscopy No Pearson et al. (2015)
PCR Phase space Radius Spectroscopy No Pearson et al. (2015)
PFRa FoF Radius Spectroscopy No Pearson et al. (2015)
MVMa FoF Abundance matching Spectroscopy No Muñoz-Cuartas & Müller (2012)
AS1 Red sequence Velocity dispersion Spectroscopy No Saro et al. (2013)
AS2 Red sequence Velocity dispersion Spectroscopy No Saro et al. (2013)
AvL Phase space Velocity dispersion Spectroscopy No Von Der Linden et al. (2007)
CLE Phase space Velocity dispersion Spectroscopy No Mamon et al. (2013)
CLN Phase space Velocity dispersion Spectroscopy No Mamon et al. (2013)
SG1 Phase space Velocity dispersion Spectroscopy No Sifón et al. (2013)
SG2 Phase space Velocity dispersion Spectroscopy No Sifón et al. (2013)
SG3 Phase space Velocity dispersion Spectroscopy No Lopes et al. (2009)
PCS Phase space Velocity dispersion Spectroscopy No Pearson et al. (2015)
PFSa FoF Velocity dispersion Spectroscopy No Pearson et al. (2015)

Note. Columns are (1): acronym of algorithm; (2): physical property for initial selection of cluster members; (3): physical
property for mass estimation from the initial membership; (4): observed properties; (5): use of colour information; (6):
reference. The colours indicate five main classes of cluster mass estimation methods. See Table A1 in the appendix for
more details on each method.
aMethod did not use our initial object target list but rather performed an independent cluster search and matched the
cluster locations at the end of their analysis.

radii (Trevisan, Mamon & Stalder 2017), and (2) galaxies within
the haloes are not in local dynamical equilibrium (some of the algo-
rithms assume this equilibrium). For a complete description of all
implemented improvements we refer the reader to Old et al. (2015).

2.3 Mock galaxy catalogue

The light cone was produced using online tools of the Theoretical
Astrophysical Observatory (TAO; Bernyk et al. 2016). It subtends
60◦ by 60◦ on the sky and covers redshift range of 0 < z < 0.15.
The galaxy sample included in the cone is complete down to a
minimum r-band luminosity of Mr = −19 + 5 logh in the input
galaxy catalogue. The input provided to the algorithms consisted of
the full galaxy catalogue (sky position and redshift), as well as the
cluster centres (sky positions and redshifts) given by the locations of
the brightest cluster galaxies. In other words, the GCMRP assumes
that clusters are previously detected and their centres are known.

2.4 Mass reconstruction methods

The 25 algorithms of cluster mass reconstruction exhaust nearly all
possible ways of inferring cluster masses from galaxy data. Table 1
presents a brief overview of all basic characteristics. Following Old
et al. (2015), we divide the methods into five broad categories with
respect to what data features are effectively used by the mass esti-
mators: methods based on cluster richness (richness), radial scale
of galaxy overdensity (radius), velocity dispersion of galaxies (ve-
locity dispersion), their distribution in projected phase space (phase
space), and abundance matching (equating the cumulative galaxy

luminosity function with the cumulative theoretical halo mass func-
tion). The main motivation of introducing these categories is to
check for any possible subtrends in the analysed effects.

The algorithms for selecting cluster members form a part of the
whole data processing. In most cases, they are combined with the
mass estimators through various iterative procedures aimed at re-
fining both mass estimates and cluster membership. Every method
begins with an initial selection of galaxies, performed in several pos-
sible ways: colour–magnitude space (targeting red sequence galax-
ies), projected phase space (cuts in clustercentric distances and/or
velocities), or by applying a FoF grouping algorithm. Table 1 sum-
marizes the initial galaxy selection adopted by each method. More
detailed information regarding this matter is provided in Table A1
and in the main articles of the GCMRP: Old et al. (2014, 2015).

Since no method can recover the exact masses of clusters, one
can think of each method’s output as a recovered versus true cluster
mass scaling relation or equivalently a scaling relation between
mass bias and true mass.

3 IMPERFECT MEMBERSHI P

3.1 Definitions and raw results

We adopt a simple and intuitive definition of the cluster membership
and assume that all galaxies within the virial sphere are regarded
as cluster members. We consider the virial radius that of a sphere
enclosing a density which is 200 times the critical density of the
universe at the redshift of the cluster. We quantify the observa-
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tional selection of cluster members in terms of contamination C and
incompleteness I. The former measures the relative fraction of in-
terlopers in the selected galaxy sample, whereas the latter measures
the fraction of true cluster members that are missing in the sample
of selected galaxies, i.e.

C = Nsel,non-mem

Nsel
, (1)

I = Nnon-sel,mem

Nmem
, (2)

where Nmem is the number of true cluster members, Nsel is the num-
ber of selected galaxies, Nsel, non-mem is the number of selected in-
terlopers (non-members), and Nnon-sel, mem is the number of missing
cluster members. Contamination and incompleteness take values
between 0 and 1. For a perfect membership assignment with no
interlopers and all true cluster members included, C = 0 and I = 0.

The black contours in Fig. 1 show the distributions of contami-
nation and incompleteness levels in galaxy samples selected by the
25 algorithms. The extent of the contours in the figure demonstrates
that a typical galaxy sample returned by virtually every method is
contaminated and incomplete to some degree. Perfect membership
defined within the 3D virial sphere is in practice attainable only for
a very small fraction of clusters which are most likely isolated. It is
also apparent that contamination and incompleteness vary substan-
tially between individual clusters. As we shall demonstrate below,
this has a strong impact both on the accuracy and precision of cluster
mass measurements.

Although Fig. 1 demonstrates quite substantial differences be-
tween all 25 methods, it is possible to draw some general conclu-
sions. First, it is clear that cluster membership assignment is more
precise when galaxy velocities are considered (e.g. the large ex-
tent of the contours of the photometric RM1 and RM2 methods
compared to the other ones). Secondly, despite quite significant
differences in how algorithms handle the selection of cluster mem-
bers, many methods return strikingly similar galaxy samples. For
example, methods NUM, AvL, ESC, and RW show fairly similar
contours of membership quality, despite their differences in galaxy
selection: 2.7σv for NUM, 2σv for AvL, and escape velocity for
ESC and RW. Despite the fact that the former two methods shrink
velocity envelopes by 30–50per cent with respect to escape velocity,
they do not return galaxy samples with noticeably smaller contam-
ination. In fact, all methods, regardless of the employed amplitude
of the maximum velocity profile, are similarly affected by a number
of clusters with highly contaminated galaxy samples (see the long
horizontal branches at high contamination and small incomplete-
ness). This demonstrates that attempting to reduce contamination
by narrowing down the initial velocity range does not guarantee an
improvement in cluster membership and should thus be treated with
caution.

3.2 Effects of imperfect membership on cluster mass
estimation

All methods of cluster mass estimation rely on the assumption of
self-similarity in cluster data. The different mass estimation algo-
rithms differ in the data feature that is utilized (richness, radius,
velocity dispersion, projected phase-space distribution, abundance
matching, etc.) and how it scales with cluster mass (empirical rela-
tions or fundamental principles such as the virial theorem or the
Jeans equation of local dynamical equilibrium). Some methods
employ more sophisticated models that effectively provide higher

order corrections to the underlying recovered versus true cluster
mass scaling relations. Marginalization over nuisance parameters
of these models (e.g. the shape of the mass density profile for meth-
ods based on richness, the velocity anisotropy in dynamical models)
is expected to provide more accurate mass determinations.

The apparent scatter in contamination and incompleteness of
galaxy samples selected by each method, highlighted in Fig. 1,
breaks the assumption of self-similarity in the input cluster data.
This should affect cluster mass estimation in two ways. First, this
will increase the scatter in the recovered versus true cluster mass
scaling relation, for example if recovered mass depends on richness.
Secondly, if either galaxy selection or the response of the mass
estimator depends on true cluster mass, then one should also expect
an alteration of the slope of the recovered versus true cluster mass
scaling relation.

To begin with, we neglect a possible mass dependence of mem-
bership assignments and mass estimators, and focus on the global
relationship between cluster mass accuracy and imperfect mem-
bership. The main effects of imperfect membership can then be
assessed by comparing the mean difference between recovered (es-
timated) and true log masses, log10(Mrec/Mtrue), as a function of
contamination and incompleteness. The results are shown in Fig. 1
as colour maps.

The colour gradient apparent in nearly all panels of Fig. 1 demon-
strates that virtually all methods tend to overestimate (underesti-
mate) cluster masses with higher contamination (incompleteness)
of selected galaxy samples. In most cases, the maps display distinct
lines of degeneracy along which an overestimation due to contam-
ination is compensated by an underestimation caused by incom-
pleteness. This feature is quite intuitive for richness-based methods
where the mass proxy is simply proportional to the number of cluster
members. For methods utilizing information on velocities, similar
trends appear to be naturally expected too if we realize that galaxy
selection operates effectively in the tails of the velocity distribution
of cluster members: any contamination or incompleteness of galaxy
samples in this velocity regime automatically leads to an overesti-
mate or underestimate of the velocity dispersion and consequently
the cluster mass.

Comparing the black contours and the colour maps in Fig. 1,
we can see that in most cases the maximum of the accuracy (yel-
low) does not coincide with the peak in the membership distribution.
This indicates that cluster mass estimates may be biased even though
galaxy samples are characterized by contamination and incomplete-
ness typical of a given method. The mass bias corresponding to the
peak of the distribution (the innermost isocontour in the figure)
varies between the methods with median and scatter of −0.05 and
0.16 dex.

Old et al. (2015) showed that most methods return a fraction
(with mean of 3 per cent) of mass estimates that deviate from the true
masses by as much as a factor of 10. Highlighting these catastrophic
cases as circles in Fig. 1, we identify them with incidents of extreme
contamination or incompleteness.

3.3 Impact on cluster mass estimation: the model

Fig. 1 demonstrates that the mean logarithmic differences between
the recovered and true masses depend on contamination and incom-
pleteness, i.e.

〈log10(Mrec/Mtrue)〉 = μ(C, I ). (3)

The function μ(C, I) encapsulates our base model describing the
primary effect of imperfect membership on cluster mass estimation.
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Figure 1. Mass bias and frequency as a function of contamination and incompleteness of galaxy samples selected by 25 different methods for nearly 1000
mock galaxy clusters. The black contours show the distribution of contamination and incompleteness (isodensity contours containing 10, 30, 50, 70, and
90 per cent of clusters). The colour maps show the mean mass bias, μ = 〈log10(Mrec/Mtrue)〉, computed using a moving average method with a square-shaped
0.1 × 0.1 window function (yellow indicates |μ| < 0.05). The filled and empty black circles show catastrophic cases with the estimated cluster masses,
respectively, larger or smaller than the corresponding true cluster masses by a factor of 10. Pixels containing less than five galaxy clusters within the window
were left blank. The coloured lines show the best-fitting mass bias model (equation 5) with purple, green, and cyan, respectively, corresponding to μ = 0.2, 0,
and –0.2 (all three present unless the range of μ does not include any of the three fixed values).
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In the following, we make use of the output of each method to
determine its empirical approximations.

Assuming a Gaussian distribution of variable
x = log10(Mrec/Mtrue), the μ(C, I) of a given algorithm can
be found by maximizing the following likelihood function:

L ∝
∏

i

[(1 − wc)G(xi ; μ(C, I ), σ ) + wcG(xi ; μ(C, I ), σc)], (4)

where G(x;; μ, σ ) is a Gaussian function of x with mean μ and
variance σ 2 and where the product is over the 967 clusters analysed
by the algorithm. The second term in the likelihood accounts for
outliers whose relative fraction in the cluster sample is described by
nuisance parameter wc. We assume a flat distribution of outliers by
fixing σ c to a large value.

We optimize the parametric form of μ(C, I) by considering a
series of truncated Taylor expansions about the mean contamina-
tion 〈C〉 and mean incompleteness 〈I〉. Employing the Bayesian
information criterion (BIC) for model selection, we found that the
following parametrization

μ = μ0 + μC1(C − 〈C〉) + μC2(C − 〈C〉)2

+μI1(I − 〈I 〉) + μI2(I − 〈I 〉)2 (5)

is sufficient to provide a satisfactory description of all data sets. The
majority of the methods, including all higher ranking methods (see
Old et al. 2015), do not support more complex models with cross
or higher order terms (15 methods favour model 5 over a purely
linear model with �BIC < −6, while only two methods favour the
inclusion of the second-order cross term).

We determine best-fitting parameters and the corresponding con-
fidence ranges using a Markov chain Monte Carlo (MCMC) tech-
nique based on the Hastings–Metropolis algorithm. We assume that
the effective variance in the first Gaussian term of the likelihood
(equation 4) consists of the intrinsic scatter and the contribution
from shot (Poisson) noise, e.g.

σ 2 = σ 2
0 +

(
100

Ntrue

)
σ 2

1 , (6)

where Ntrue is the number of true cluster members, and where the
irreducible scatter, σ 0, and the richness dependence of the scatter,
σ 1, are both treated as additional free parameters in the MCMC
analysis. As we shall see in Section 4.4, σ 0 and σ 1 are both strongly
affected by imperfect membership.

For each method, it is possible to find a combination of con-
tamination and incompleteness for which the mass overestimation
due to contamination is fully compensated by its counterpart due to
incompleteness. The cyan, green, and purple curved lines in Fig. 1
show the best-fitting models found for each method. The models
are presented in the form of lines of constant μ with μ = 0, ±0.2.
Goodness of fit is addressed in more detail in Appendix B, where
we show residuals for each method (see Fig. B1).

The linear terms of the model provide an accurate approximation
in a narrow range of contamination and incompleteness about their
mean values. Reducing the comparison between the methods to
the level of linear coefficients μC1 and μI1, as shown in Fig. 2.
The figure shows that most mass estimators respond to changes in
contamination in nearly the same way. Neglecting seven outliers
lying outside of the ±3σ range (AS1, AS2, PFR, PFS, PCO, PFO,
and PCR), we find that the coefficients for the remaining methods
can be described by a remarkably narrow distribution with mean of
0.50 and scatter 0.12. This distribution of μC1 is consistent with the
expectation of a simple, idealized richness-based mass estimator,
where the recovered mass varies as the number of estimated cluster

Figure 2. Increase of cluster mass biases of the 25 algorithms on the con-
tamination and incompleteness of the galaxies selected by them in their
mass analysis. The horizontal (vertical) axis shows the linear slope of
the relationship between bias 〈log10(Mrec/Mtrue)〉 and contamination (in-
completeness) about its mean value, i.e. μC1 = δ〈log10(Mrec/Mtrue)〉/δC
and μI1 = δ〈log10(Mrec/Mtrue)〉/δI. These slopes are determined by fit-
ting the model given by equation (5). The green vertical and horizon-
tal lines indicate the coefficients expected for an idealized richness-
based estimator employing the number of cluster members as a proxy
for cluster mass. Method PCR lies out of the bounds of the plot with
μC1 ≈ μI1 ≈ 3.

members, i.e. Mrec ∼ Nsel, mem and Mtrue ∼ Nmem, leading to μ =
log10(1 + C) 
 C/(ln 10) 
 0.43 C (see the vertical green line in
Fig. 2). This simple model appears to universally describe the effect
of contamination on the mass estimation in three distinct groups of
methods based on richness, velocity dispersion, and distribution in
projected phase space. The seven outliers are among the methods
with the lowest merit of the mass recovery accuracy (see Old et al.
2015).

The analogous simple, idealized, model for incompleteness,
would lead to μ = log10(1 − I ) 
 −I/(ln 10) 
 −0.43 I . How-
ever, the nearly universal response of the mass estimators to changes
in contamination does not have its analogy for incompleteness, as
coefficient μI1 ranges from −2.3 to 0 (neglecting three outliers
with μI1 > 0). Most methods are characterized by coefficients
μI1 < −0.43 (see the green horizontal line in Fig. 2). The low-
est μI1, coefficients indicating the strongest dependence of the mass
estimators on incompleteness, are found for methods based on ve-
locity dispersion and on the distribution in projected phase space.
This sensitivity of kinematical methods to incompleteness is not
surprising: these methods select galaxies in velocity space; there-
fore, the missing cluster members are most likely to lie in the tails
of the velocity distribution, in contrast to interlopers whose veloc-
ity distribution resemble quite closely the velocity distribution of
true cluster members (Mamon et al. 2010). This in turn leads to
a stronger effect on the velocity dispersion and the corresponding
cluster mass estimate due to incompleteness compared to that due
to contamination.
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Figure 3. Cumulative distribution functions of contamination (top panel)
and incompleteness (bottom panel) in the high-mass (cyan) and low-mass
(purple) clusters (splitting the true cluster masses by the median value of
log10(Mtrue/M�) = 14.05). The probability combines results from all 25
methods and thus represents a global trend. Selected galaxy samples tend to
be more incomplete for the most massive clusters and more contaminated
for the least massive clusters.

4 MASS-DEPENDENT EFFECTS O F
IMP ERFEC T M EMBERSHIP ON MASS
ESTIMATION

Imperfect membership may give rise to a mass-dependent effect on
cluster mass estimation in two different ways. First, the algorithms
selecting cluster members may be scale dependent and return galaxy
samples with contamination and incompleteness that depend on
cluster mass. Second, there is no guarantee that the same level of
contamination or incompleteness affects cluster mass measurements
in the same way regardless of the actual cluster mass. This kind of
mass dependence may occur due to the presence of an exponential
cut-off in the mass function that breaks the self-similarity between
how small galaxy groups perturb mass measurements of massive
galaxy clusters and vice versa. In the following subsections, we seek
to identify the extent to which these two aspects of mass-dependent
imperfect membership underlie the performance of all methods.

4.1 Mass-dependent galaxy selection

To compare the effects of cluster mass on the relation between
mass bias and membership quality, we compare contamination
and incompleteness levels in two subsamples of, respectively,
low and high true cluster mass, splitting at the median mass of
log10(Mtrue/M�) = 14.05. Fig. 3 shows the cumulative probability
of contamination and incompleteness in the two groups of clus-
ters. The calculation combines the data from all methods and thus
the results demonstrate a global trend common to all 25 techniques
(25 × 500 data points used for calculating each cumulative distribu-
tion). The distribution of contamination (incompleteness) in the two
samples of galaxy clusters appears to be significantly different. The
maximum difference between the cumulative probability distribu-
tions is 0.09 for contamination and 0.16 for incompleteness, while
the upper limit required for rejection of the null hypothesis at level
p = 0.001 of the Kolmogorov–Smirnov test is 0.025. Galaxy sam-

Figure 4. Differences in low versus high-mass (lo M, hi M) cluster con-
tamination (C) and incompleteness (I), where the cluster masses are split by
the median true mass of log10(Mtrue/M�) = 14.05. Most methods return
more contaminated samples for less massive clusters (21 methods) and more
incomplete samples for more massive ones (17 methods).

ples selected from high-mass clusters tend to be less contaminated,
but more incomplete.

The global trend shown in Fig. 3 reflects in large part the be-
haviour of each method analysed separately. This is demonstrated
in Fig. 4 that shows the differences between the two groups of
clusters in terms of the mean contamination and incompleteness
calculated for each method (with errors estimated from bootstrap-
ping). Except for four methods (MPO, MP1, CLN, and SG3), the
mean contamination for the least massive clusters is clearly larger
than that for the most massive ones at confidence levels ranging
from 1σ up to 5σ . In agreement with Fig. 3, one also notices that
galaxy samples selected from more massive clusters appear to be
more incomplete, although the number of exceptions increases here
to eight out of 25 methods. Among all five groups of the methods,
those based on projected phase-space analysis appear to minimize
the dependence of galaxy selection on cluster mass.

The mass dependence of cluster membership can also be demon-
strated by using the galaxy sample selection function that is defined
as the ratio of completeness to purity, where completeness = 1 − in-
completeness and purity = 1 − contamination (by analogy to
the cluster selection function; see e.g. Soares-Santos et al. 2011).
Fig. C1 in the appendix shows the selection functions for all 25
methods compared to mean biases of cluster mass estimates. The
strongest sensitivity of the mass function to cluster mass is unsur-
prisingly revealed by the methods with reversed dependences of
contamination and incompleteness on cluster mass (bottom right-
hand corner in Fig. 4), such as MVM, PCO, PCR, PCS, AS1, and
AS2. As expected from the trends shown in Fig. 4, these methods
are characterized by the selection functions that decrease with in-
creasing cluster mass. Fig. C1 also points to another aspect of inter-
connections between membership and cluster mass measurements.
The contours of constant bias appear not to coincide precisely with
the contours of constant selection function (see e.g. NUM, PCO,
and MVM as extreme examples). This implies that some methods
may return cluster mass estimates with mass-dependent bias even
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though selection of cluster members remains strictly independent
of cluster mass. We quantify this effect in a more rigorous way in
the following section.

4.2 Mass-dependent effects on mass estimation

We quantify whether the impact of imperfect membership on the
mass bias depends on the cluster mass by analysing the output data
of all methods using the following generalization of our base model
(5):

μ = μ0 + (α0 − 1) log10(Mtrue/M0)

+ (Mtrue/M0)αC [μC1 (C−〈C〉) + μC2 (C−〈C〉)2]

+ (Mtrue/M0)αI [μI1 (I −〈I 〉) + μI2 (I −〈I 〉)2]. (7)

The three new mass-dependent terms account for a potential depen-
dence of three different components of the base model on cluster
mass. The first new term (proportional to α0 − 1) describes an al-
teration of the slope of the scaling relation between the recovered
and true cluster mass. When ignoring all terms dependent on con-
tamination and incompleteness, the Mrec ∝ M

α0
true scaling relation

absorbs all effects of imperfect membership. As measured by Old
et al. (2015), the slope α0 in this case varies quite substantially
between the methods with mean and scatter of 0.97 and 0.19. In
our approach, α0 is determined simultaneously with all parameters
of the model accounting for imperfect membership. Comparing its
values to those from Old et al. (2015) will demonstrate if and how
contamination and incompleteness modifies the Mrec−Mtrue scaling
relation. The second and third new terms describe a mass-dependent
response of mass estimators to contamination and incompleteness.
We choose a power-law ansatz in order to avoid a sign change for
the expressions in square brackets and minimize degeneracies with
parameters of the base model. The signs of the slopes distinguish
between whether the effect of contamination or incompleteness
is stronger in more massive clusters (positive signs) or less mas-
sive ones (negative signs). The pivot mass M0 in all three new
terms is set at the median mass of the whole cluster sample, i.e.
log10Mtrue = 14.05. We find best-fitting parameters following the
same approach as outlined in Section 3.2. Table D1 in the appendix
shows the results for each method and compares to those obtained
for a simplistic model neglecting any dependence on contamination
or incompleteness, i.e. μC1 = μI1 = μC2 = μI2 = 0. The model cor-
rected for imperfect membership fits the mass biases much better.
Even with the six extra parameters, it results in a much smaller BIC,
with �BIC � −10 for all methods, indicating very strong evidence
for this more complex model.

Fig. 5 shows the constraints on the mass-dependent effects of
contamination and incompleteness, αC and αI, respectively, on mass
bias, as determined for each method using equations (4), (6), and
(7). We find that there is a clear excess of methods with αC < 0, i.e.
methods for which cluster mass overestimation due to contamina-
tion appears to be stronger for less massive clusters. On the other
hand, the distribution of αI does not reveal any significant asymme-
try and thus any generic trend in mass dependence of bias due to
incompleteness.

4.3 Effects of imperfect membership on the slope of mass
scaling relations

The slope of the Mrec−Mtrue scaling relation remains independent
of contamination and incompleteness if both the selection of clus-
ter members and the response of the underlying mass estimator to
imperfect membership are independent of cluster mass. Our study

Figure 5. Effects of true cluster mass on the variation of mass bias with
contamination and incompleteness. The mass dependence is assumed to be a
power-law function of true cluster mass with slopes αC and αI corresponding
to the effect of contamination and incompleteness, respectively (equation
7). There is a clear of excess methods for which cluster mass overestimation
due to contamination tend to be stronger for low-mass (lo M) clusters.
Method PCR lies out of the bounds of the plot with αC = −0.7 ± 0.1 and
αI = −1.5 ± 0.3.

demonstrates that this condition is not satisfied in general. There-
fore, one may expect that the effective slope of the mass scaling
relations can be modified to some extent by how different meth-
ods select cluster members. We quantify this effect by comparing
the slopes measured in two modes: ignoring any dependence of
log10(Mrec/Mtrue) on membership (μC1 = μC2 = μI1 = μI2 = 0 and
free α0, σ 0, σ 1) and including a complete (generalized) model de-
scribing effects of imperfect membership, as given by equation (7).
The effective slopes measured in the first mode (the same as mea-
sured and discussed in Old et al. 2015) depend both on intrinsic
properties of the mass estimators and imperfect membership (con-
tamination and incompleteness) of selected galaxy samples, while
the slopes measured in the second mode reflect primarily perfor-
mance of the mass estimators. Therefore, comparing the slopes from
the two modes is expected to extract a genuine effect of imperfect
membership on the slopes of the mass scaling relations.

Fig. 6 shows the constraints on slope α0 measured in the two
modes described above. The results clearly demonstrate that imper-
fect membership gives rise to a flattening of the Mrec−Mtrue scaling
relations for most methods. We find that the relationship between
the two slopes is well approximated by a linear model with slope
1.01 ± 0.11, intercept 0.084 ± 0.019, and scatter 0.081 ± 0.017
(see the dashed green line). This simple model implies that a typi-
cal reduction of the slope α0 due to imperfect membership is equal
to 0.084 and is independent of the slope found by neglecting the
effects of imperfect membership.

4.4 Effects of imperfect membership on the scatter of mass
scaling relations

We follow the same approach as described in the previous subsec-
tion to study the effects of imperfect membership on the scatter in
the Mrec−Mtrue scaling relations. We measure both free parameters
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Figure 6. Effects of imperfect membership on the slope of the mass scal-
ing relation Mrec ∼ M

α0
true. The slope is measured for each method in two

cases: neglecting any prior information on membership (horizontal axis) and
including our full model accounting for effects of contamination and incom-
pleteness on cluster mass estimates (equation 7, vertical axis). The dashed
line shows a best-fitting linear model that signifies that imperfect member-
ship tends to flatten the Mrec−Mtrue relation (greater bias for low-mass – ‘lo
M’ – clusters) reducing its slope on average by 0.084.

of the effective scatter given by equation (6) in two modes: ignoring
any dependence on membership (μC1 = μC2 = μI1 = μI2 = 0 and
free α0, σ 0, σ 1) and including a complete (generalized) model de-
scribing effects of imperfect membership, as described by equation
(7). Comparing values of both σ 0 and σ 1 determined in these two
modes quantifies the contribution of imperfect membership to the
total scatter in the mass scaling relations.

As demonstrated in Fig. 7, imperfect membership increases
both the intrinsic and Poisson-like scatter substantially. Apply-
ing corrections due to imperfect membership can potentially bring
down the Poisson-like scatter to theoretically expected levels.
This is illustrated in the bottom panel, which shows theoretical
lower limits of the Poisson-like scatter for two basic mass es-
timators based on richness or velocity dispersion (magenta and
orange symbols, respectively), i.e. Mtrue ∝ Nmem and Mtrue ∝ σ 3

v .
The former is the prediction for richness-based methods, assum-
ing α0 = 1 as is roughly the case for most methods, as seen
in Fig. 6, leading to σ1 = 1/(10 ln 10) 
 0.043. The latter is the
prediction for methods utilizing kinematics (velocity dispersion
or distribution in projected phase space), and given that the un-
certainty on the standard deviation for a Gaussian distribution is
ε(σ ) = σ/

√
2N , the scatter on μ ∝ log10 σ 3

v is 3/(
√

2N ln 10),
leading to σ1 = 0.3/(

√
2N ln 10) 
 0.092. This assumes that any

velocity bias of galaxies tracing the gravitational potential is in-
dependent of mass (as found by Munari et al. 2013, but disputed
by Old, Gray & Pearce 2013). All richness-based methods except
PCN have their Poisson scatter term, σ 1, as low as the theoretical
limit of 0.1/(ln 10). Nearly all the velocity dispersion and projected
phase-space methods (except AS1 and AS2; orange and black sym-
bols, respectively) have their Poisson scatter term fairly close to the
theoretical limit of 0.3/(

√
2N ln 10).

Figure 7. Effects of imperfect membership on the Poisson-like scatter (top
panel) and the irreducible scatter (bottom panel), as defined by equation (6),
in the Mrec−Mtrue scaling relations. The two scatter parameters are measured
in two modes: neglecting any prior information on membership (horizontal
axis) and including a full model accounting for effects of contamination and
incompleteness on the cluster mass estimates (vertical axis). The dashed
lines in the bottom panel indicate two characteristic levels of the Poisson-
like scatter for richness-based and velocity dispersion-based methods. The
results demonstrate that imperfect membership increases substantially both
the intrinsic and Poisson-like scatter.

Imperfect membership also appears to be a primary source of
the intrinsic (irreducible) scatter, σ 0. For 12 methods, the intrinsic
scatter becomes negligible (σ 0 < 0.03) when mass estimates are
corrected for imperfect membership. But several methods (AS1,
AS2, PCR, PCS, PFR, and PFS) have an important intrinsic scat-
ter (σ 0 > 0.1) after correction for imperfect membership. Except
for PCS, these methods appear to be substantially dominated by
intrinsic errors of the mass estimators and are amongst those with
the lowest ranks of the mass recovery accuracy and the rms differ-
ence between the recovered and true log cluster mass larger than
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0.45 dex, compared to the rms of ∼0.20 dex for the best methods
(see table 2 in Old et al. 2015).

5 SU M M A RY A N D C O N C L U S I O N S

We used mock observations of galaxy clusters in the optical band
(photometric and spectroscopic data) to study the impact of im-
perfect membership in selected galaxy samples, as quantified by
contamination and incompleteness, on cluster mass estimates based
on 25 different methods employing various techniques of galaxy
selection and dynamical mass estimation. The mock catalogue was
generated using an HOD approach with some improvements to em-
ulate more realistically observations of galaxy clusters in terms of
the colour distribution of galaxies, the phase-space distribution of
satellites, miscentring of brightest cluster galaxies, and several other
properties (see Old et al. 2015). Although each of the 25 methods
considered in this study has its own peculiarities, the methods can
be grouped into four broad categories with respect to what part of
the available data is utilized to select cluster members and esti-
mate cluster masses: methods based on richness, galaxy positions,
velocity dispersion, and projected phase-space distributions.

We demonstrated that contamination and incompleteness give
rise to, respectively, overestimation and underestimation of the mea-
sured cluster masses. This general rule holds for nearly all methods
and for all four categories of mass estimators. For each method, it
is possible to find a combination of contamination and incomplete-
ness for which the mass overestimation due to contamination is fully
compensated by its counterpart due to incompleteness (green lines
in Fig. 1). The mass estimation accuracy given by 〈log10(Mrec/Mtrue)〉
evaluated for the mean contamination and incompleteness does not
vanish and thus sets an irreducible bias for each mass estimator.
Using a linear model for describing the impact of imperfect mem-
bership about the mean contamination and incompleteness, we find
that all methods exhibit (Fig. 2) the same dependence on contam-
ination with log10(Mrec/Mtrue) ∼ (0.50 ± 0.12)C, consistent with
Mrec ∼ (1 + C) expected for a simple, idealized richness-based
method with Mrec ∼ Nmem. On the other hand, the analogous depen-
dence on incompleteness is not universal, with log10(Mrec/Mtrue) in
the range of −2.0 I to −0.5 I , with the highest sensitivity to incom-
pleteness for methods based on kinematics (velocity dispersion and
projected phase-space analysis).

Imperfect membership modifies the Mrec−Mtrue scaling relation
in two respects. The primary effect, demonstrated also in other stud-
ies (see e.g. Saro et al. 2013), is an increase of scatter (Fig. 7). We
found that this affects both the intrinsic scatter and the Poisson-
like scatter scaling with 1/N1/2

mem, where Nmem is the number of
true cluster members. Secondly, due to a mass-dependent selec-
tion of cluster members (Fig. 3) and a mass-dependent response
of the cluster mass estimators to imperfect membership (Fig. 5),
the Mrec−Mtrue relation becomes flatter than that based on the as-
sumption of fully self-similar samples of galaxies selected as cluster
members (Fig. 6). This flattening arises from both a higher contam-
ination of galaxy samples (Fig. 3) and a higher sensitivity of cluster
mass estimators to contamination (Fig. 4) for less massive systems.

Fig. 8 schematically illustrates how imperfect membership af-
fects the Mrec−Mtrue scaling relation. The quantitative description
of effects of imperfect membership on the mass scaling relations
is based on a specific choice of the prior distribution of cluster
masses with a complete sampling of the underlying mass function
at log10Mtrue � 14 and a smooth cut-off at low masses (see the
histogram in Fig. 8). We expect that exact values of parameters
describing the Mrec−Mtrue relation and their response to imperfect

Figure 8. Illustration of the effects of imperfect membership on the mass
scaling relation. The shaded region represents the scaling relation unaffected
by imperfect membership, with the width rendering scatter dominated by
shot noise at low masses and intrinsic scatter at high masses. The thick solid
and dashed lines show the alteration of the relation due to typical contamina-
tion and incompleteness of selected galaxy samples. Imperfect membership
flattens the relation and increases both types of scatter. The arrows show the
relative impact of two main effects: the response of the mass estimator to im-
perfect membership and the typical levels of contamination/incompleteness
in selected galaxy samples. The apparent asymmetry of the two effects at
different mass scales is responsible for flattening of the Mrec−Mtrue relation.
The black histogram shows the distribution of true cluster masses in the
catalogue, with the median mass indicated by the thin black vertical line.

membership may change when providing cluster samples that are
more complete at lower masses. Including more systems at low
masses, however, can only enhance the effects illustrated in Fig. 8,
in particular the flattening of the mass scaling relation and the in-
crease of the Poisson-like scatter.

Our results show that improvement in assigning cluster member-
ship can substantially reduce the scatter in the mass scaling relations
for virtually all methods. As demonstrated in Fig. 7, accounting for
imperfect membership turns the intrinsic scatter into a subdominant
contribution for most techniques. The exact values of the intrinsic
scatter may be underestimated due to some simplifying assumptions
adopted in the HOD approach to generating galaxy catalogues. We
expect that an additional contribution to the intrinsic scatter may
arise from effects that are not accounted for in the HOD catalogue,
e.g. intrinsic shapes of galaxy clusters, the orbital anisotropy, or
realistic substructure. The impact of these effects on the effective
scatter can be quantified using mock observations based on more
realistic models describing connections between galaxy properties
and the underlying dark matter haloes. For example, Old et al.
(2018) utilized mock observations (a part of the GCMRP; Old et al.
2015) generated with the Semi-Analytic Galaxy Evolution (SAGE)
galaxy formation model (Croton et al. 2006) and measured an aver-
age difference of 0.054 dex between log masses of galaxy clusters
with or without substructures. Assuming a Gaussian distribution of
their effect on mass estimates, dynamical substructures are then a
source of a 0.03 dex intrinsic scatter in the mass scaling relations
based on galaxies.

The mass scaling relations studied in our work are of particular
importance for inferring cosmological constraints from the clus-
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Figure 9. The impact of neglecting the flattening of the Mrec−Mtrue rela-
tion due to mass-dependent imperfect membership on the observationally
measured mass function (MF). It is assumed that the Mrec ∝ M

α0
true relation

is determined in a very narrow mass range about M0, leading to a bias δα0

when extrapolating the relation to lower and higher masses. The dashed line
shows the mass function for modifications of cosmological parameters that
approximately compensate the effects of mass-dependent imperfect mem-
bership. The mass functions are calculated relative to a fiducial model given
by the Planck cosmology (MFPlanck).

ter abundance measured in upcoming cosmological surveys such
as Euclid or LSST. From this point of view, our results shed light
on some aspects of observational strategies for cluster cosmology.
First of all, imperfect membership appears to be the main and for
some methods the only source of intrinsic scatter in the mass scal-
ing relation. Therefore, it is clear that further development of most
methods for cluster mass estimation shall prioritize improvement
of algorithms assigning cluster membership. Secondly, our study
shows that the effective slope of the mass scaling relation does not
only reflect the intrinsic performance of the mass estimator, but is
also affected by mass-dependent effects of imperfect membership.
Bearing this in mind, it becomes clear that a self-consistent com-
parison between observational and simulation-based mass scaling
relations requires that both mock and real cluster data are nearly the
same in terms of the mass range and they are analysed using the
same algorithms for assigning membership and estimating cluster
masses.

Uncorrected flattening of the Mrec−Mtrue relation due to mass-
dependent effects of imperfect membership may distort the mass
function reproduced from observations and consequently bias the
measurement of cosmological parameters. Fig. 9 shows the magni-
tude of this effect in a simplified scenario where we assume that the
Mrec−Mtrue relation is determined in a very narrow mass range about
M0 and its extrapolation to low/high masses results in adopting too
high a slope for the actual Mrec−Mtrue relation valid in the wider
mass range. Using only a half of the mean increase of α0 shown
in Fig. 6, we find that the observationally reconstructed mass func-
tion is suppressed at low masses and amplified at high masses by
∼0.05 dex (12 per cent) compared to the fiducial model given by a
fitting function from Tinker et al. (2008) and the Planck cosmology
(Planck Collaboration XIII 2016). As shown by the dashed line, this
in turn can degrade the accuracy of cosmological inference with �m

biased down by ∼10 per cent and σ 8 biased up by ∼7 per cent. Inter-
estingly, a comparable bias due to unaccounted projection effects
for richness-based methods to measure cosmological parameters
from the cluster mass function was demonstrated by Costanzi et al.
(2018). We think that our estimated biases shall be regarded as up-
per limits, since realistic calibrations of the Mrec−Mtrue relation can
be performed in a mass range comparable to that used for mea-
suring the mass function, alleviating the effects of mass-dependent
imperfect membership. However, the magnitude of the obtained
biases in cosmological parameters demonstrates the importance of
accounting for imperfect membership on all mass scales in a robust
way, especially when cluster cosmology from future surveys such
as Euclid is expected to reach a sub-per cent precision (Sartoris
et al. 2016). Another complication may arise from a possible red-
shift dependence of imperfect membership. This is not considered
in our work, but it is definitely worth studying using high-redshift
mock observations of galaxy clusters.

Although our study is solely based on the HOD mock galaxy
catalogue of the GCMRP, we confirm that all main effects unveiled
by the HOD data are also readily visible in the twin galaxy cata-
logue produced by the SAM model (Old et al. 2014). In particular,
we find that the Mrec ∝ M

α0
true relation is affected by a comparable

flattening due to a net effect of mass-dependent galaxy selection and
sensitivity of the mass estimators to imperfect membership, with a
mean reduction of 0.075 ± 0.032 in α0. Consistency between results
obtained from the two mock galaxy catalogues and the fact of using
a wide variety of cluster mass reconstruction methods corroborate
the generality of the conclusions reached in this study.
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APPEN D IX A : PRO PERTIES OF THE MAS S R ECONSTRUCTI ON METHODS

Table A1. Detailed description of the member galaxy selection process for all methods.

Methods Member galaxy selection methodology
Initial galaxy selection Membership refinement Treatment of interlopers

PCN Within 5 Mpc, 1000 km s−1 Clipping of ±3σ , using galaxies within
1 Mpc

Use galaxies at 3–5 Mpc to find
interloper population to remove

PFN Friends of friends (FoF) No No
NUM Within 3 Mpc, 4000 km s−1 (1) Estimate R200c from the relationship

between R200c and richness deduced
from CLE; (2) select galaxies within
R200c and with |v| < 2.7 σNFW

los (R)

Same as CLE

RM1 Red sequence Red sequence Probabilistic
RM2 Red sequence Red sequence Probabilistic
ESC Within preliminary R200c estimate

and 3500 km s−1
Gapper technique Removed by Gapper technique

MPO Input from CLN (1) Calculate R200c, Rρ , Rred, Rblue by
MAMPOSSt method; (2) select

members within radius according to
colour

No

MP1 Input from CLN Same as MPO, except colour blind No
RW Within 3 Mpc, 4000 km s−1 Within R200c and |2�(R)|1/2, where

R200c obtained iteratively
No

TAR FoF No No
PCO Input from PCN Input from PCN Include interloper contamination in

density fitting
PFO Input from PFN Input from PFN No
PCR Input from PCN Input from PCN Same as PCN
PFR Input from PFN Input from PFN No
MVM FoF (ellipsoidal search range, centre

of most luminous galaxy)
Increasing mass limits, then FoF, loops

until closure condition
No

AS1 Within 1 Mpc, 4000 km s−1,
constrained by colour–magnitude

relation

Clipping of ±3σ Removed by clipping of ±3σ

AS2 Within 1 Mpc, 4000 km s−1,
constrained by colour–magnitude

relation

Clipping of ±3σ Removed by clipping of ±3σ

AvL Within 2.5 σv and 0.8 R200 Obtain R200c and σv by σ -clipping Implicit with σ -clipping
CLE Within 3 Mpc, 4000 km s−1 (1) Estimate R200c from the aperture

velocity dispersion; (2) select galaxies
within R200c and with

|v| < 2.7 σNFW
los (R); (3) iterate steps (1)

and (2) until convergence

Obvious interlopers are removed by
velocity gap technique, then further
treated by iterative local 2.7 σ (R)

clipping

CLN Input from NUM Same as CLE Same as CLE
SG1 Within 4000 km s−1 (1) Measure σ gal, estimate M200c and

R200c; (2) select galaxies within R200c;
(3) iterate steps (1) and (2) until

convergence

Shifting Gapper with minimum bin
size of 250 kpc and 15 galaxies;

velocity limit 1000 km s−1 from main
body

SG2 Within 4000 km s−1 (1) Measure σ gal, estimate M200c and
R200c; (2) select galaxies within R200c;

(3) iterate steps (1) and (2) until
convergence

Shifting Gapper with minimum bin
size of 150 kpc and 10 galaxies;

velocity limit 500 km s−1 from main
body

SG3 Within 2.5 h−1 Mpc and
4000 km s−1. Velocity distribution

symmeterized

Measure σ gal, correct for velocity errors,
then estimate M200c and R200c and apply

the surface pressure term correction
(The & White 1986)

Shifting Gapper with minimum bin
size of 420 h−1 kpc and 15 galaxies

PCS Input from PCN Input from PCN Same as PCN
PFS Input from PFN Input from PFN No

Note. The colour of the acronym for each method colour corresponds to the main galaxy population property used to perform mass estimation richness
(magenta), radii (blue), velocity dispersion (red), projected phase space (black), or abundance matching (green). The second column details how each method
selects an initial member galaxy sample, while the third column outlines the member galaxy sample refining process. Finally, the fourth column describes how
methods treat interloping galaxies that are not associated with the clusters.
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APP ENDIX B: GOODNESS OF FIT
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Figure B1. Residual maps demonstrating robustness of the best-fitting models, as given by equation (5), in recovering the dependence of the mass estimate
accuracy of different methods on contamination and incompleteness of selected galaxy samples (see Fig. 1).
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APPEN D IX C : G ALAXY SAMPLE SELECTI ON FUNCTI ON
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Figure C1. Mass dependence of the galaxy sample selection function for all 25 methods of cluster mass estimation. The selection function is defined as the
ratio of completeness to purity, where completeness = 1 − incompleteness and purity = 1 − contamination. The black contours show the distribution of the
selection function evaluated at every individual measurement and the true cluster mass. The colour maps show the mean mass bias. Both the maps and contours
were computed using the same technique as in Fig. 1.
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APP ENDIX D : TABLE OF RESULTS

Table D1. Best-fitting parameters of a model describing dependence of cluster mass estimates on true cluster mass, contamination, and incompleteness, as given
by equation (7). ‘Simplistic’ columns show results for a restricted model with no dependence on contamination and incompleteness (μC1 =μI1 =μC2 =μI2 = 0),
mean contamination (〈C〉), and mean incompleteness (〈I〉). Parameter α0 is the slope of the Mrec−Mtrue scaling relation, parameters μij are the coefficients of
the linear (j = 1) and quadratic (j = 2) terms in contamination (i = C) or incompleteness (i = I), while parameters σ 0 and σ 1 are, respectively, the intrinsic
scatter and the Poisson-like scatter for Ntrue = 100 cluster members (see equation 6). The model accounting for imperfect membership is strongly favoured for
every method with �BIC � −10.

Simplistic Corrected for imperfectness
Method 〈C〉 〈I〉 μ0 σ 0 σ 1 α0 μ0 μC1 μC2 μI1 μI2 σ 0 σ 1 α0

PCN 0.13 0.06 0.10 0.08 0.09 1.27 0.08 0.63 0.80 − 0.65 − 1.00 0.03 0.08 1.54
PFN 0.22 0.06 − 0.01 0.09 0.08 0.91 −0.02 0.61 0.51 − 0.79 − 0.79 0.03 0.04 0.99
NUM 0.11 0.06 − 0.06 0.09 0.06 0.81 −0.07 0.38 0.10 − 1.22 1.29 0.04 0.04 0.92
RM1 0.20 0.33 0.13 0.12 0.06 0.95 0.14 0.58 0.36 − 0.75 − 0.79 0.02 0.05 0.98
RM2 0.19 0.34 0.12 0.10 0.08 0.97 0.13 0.57 0.50 − 0.79 − 0.86 0.02 0.05 0.98
ESC 0.13 0.09 − 0.03 0.04 0.17 1.00 −0.09 0.66 1.18 − 2.17 2.50 0.08 0.09 1.11
MPO 0.08 0.15 − 0.03 0.11 0.16 1.12 −0.04 0.37 0.03 − 1.50 0.01 0.09 0.12 1.11
MP1 0.08 0.20 − 0.16 0.06 0.13 1.01 −0.17 0.41 − 0.34 − 1.11 0.22 0.05 0.11 1.04
RW 0.11 0.11 − 0.11 0.15 0.13 1.04 −0.16 0.48 1.30 − 1.92 2.20 0.09 0.07 1.09
TAR 0.14 0.14 − 0.11 0.10 0.11 1.01 −0.11 0.58 0.23 − 0.87 − 1.30 0.08 0.08 1.11
PCO 0.14 0.06 0.12 0.04 0.17 1.37 0.08 0.26 1.41 − 1.35 − 1.34 0.03 0.16 1.65
PFO 0.22 0.06 0.19 0.02 0.15 1.26 0.17 0.08 0.12 − 1.84 0.77 0.02 0.13 1.32
PCR 0.13 0.06 − 0.74 0.16 0.37 1.27 −0.59 3.48 − 3.18 2.54 − 4.77 0.26 0.28 1.16
PFR 0.22 0.06 − 0.31 0.28 0.13 0.59 −0.26 1.77 − 0.59 0.19 − 1.51 0.15 0.08 0.73
MVM 0.13 0.11 0.06 0.08 0.06 0.63 0.07 0.40 − 0.65 − 0.19 − 0.87 0.06 0.06 0.75
AS1 0.11 0.31 0.09 0.23 0.18 0.97 0.09 1.24 − 0.18 − 0.10 0.32 0.20 0.17 1.11
AS2 0.11 0.31 0.18 0.24 0.18 0.86 0.16 1.17 − 0.18 − 0.01 0.52 0.20 0.17 0.98
AvL 0.11 0.10 0.16 0.15 0.13 1.01 0.13 0.46 0.18 − 2.31 1.93 0.03 0.08 1.05
CLE 0.13 0.11 − 0.11 0.06 0.17 0.97 −0.18 0.58 0.70 − 2.11 1.82 0.02 0.10 0.98
CLN 0.08 0.15 − 0.24 0.08 0.14 1.06 −0.24 0.29 − 0.49 − 1.55 − 0.59 0.02 0.09 1.02
SG1 0.18 0.08 0.07 0.03 0.20 0.92 −0.01 0.97 1.19 − 1.66 0.50 0.02 0.12 1.01
SG2 0.10 0.20 − 0.15 0.07 0.14 0.94 −0.20 0.58 − 0.13 − 1.18 1.16 0.02 0.11 1.03
SG3 0.25 0.07 − 0.05 0.05 0.12 1.04 −0.08 0.39 0.33 − 1.36 1.00 0.02 0.10 1.06
PCS 0.13 0.06 − 0.17 0.16 0.12 1.03 −0.21 0.32 0.73 − 1.47 1.19 0.16 0.11 1.34
PFS 0.22 0.06 − 0.15 0.16 0.12 1.08 −0.19 − 0.04 0.96 − 1.16 − 0.42 0.12 0.12 1.07
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