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A Proposed Framework for Accelerated Innovation in Data-

Driven Environments: Evidence and Emerging Trends from 

China 

 

Purpose – In today’s rapidly changing business environment, the case for accelerated 

innovation processes has become increasingly compelling at both a theoretical and practical 

level. Thus, the purpose of this paper is to propose a conceptual framework for accelerated 

innovation in a data-driven market environment. 

Design/methodology/approach – Our research is based on a two-step approach. First, a set 

of propositions concerning the best approaches to accelerated innovation are put forward. 

Then it offers qualitative evidence from five case studies involving world-leading firms, and 

explains how innovation can be accelerated in different kinds of data-driven environments. 

Findings – The key sets of factors for accelerated innovation are: a) collateral structure; b) 

customer involvement; and c) ecosystem of innovation. The proposed framework enables 

firms to find ways to innovate - specifically, to make product innovation faster and less 

costly. 

Research Limitations/implications –The findings from this research focus on high-tech 

industries in China. Using several specific innovation projects to represent accelerated 

innovation could raise the problem of the reliability and validity of the research findings. 

Additional research will probably be required to adapt the proposed framework to 

accommodate the cultural nuances of other countries and business environments. 

Practical Implications – The study is intended as a framework for managers to apply their 

resources to conduct product innovation in a fast and effective way. It developed six 

propositions about how, specifically, data analytics and ICTs can contribute to accelerated 

innovation. 

Originality/value – The research shows that firms could harvest external knowledge and 

import ideas across organisational boundaries. An accelerated innovation framework is 

characterised by a multidimensional process involving intelligence efforts, relentless data 

collection and flexible working relationships with team members. 
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1.0 INTRODUCTION 

The current state of business in the world is one of rapid change and companies are opening 

up a new front in global competition (McKinsey, 2015; Liu and Jiang, 2016). It centres on 

what we call accelerated innovation – that is, reengineering innovation processes and R&D to 

make new product development (NPD) dramatically faster and less costly (Hagel and Brown, 

2011; Williamson and Yin, 2014). Any company that wishes to be proactive must master 

accelerated innovation (Stalk, 1988; Goktan and Miles, 2011). The market share advantages 

will go to “first mover” firms in terms of the pioneer’s opportunity to create the rules for 

subsequent competition in its favour (Day and Wensley, 1988; McKinsey, 2015).  In a highly 

competitive environment, to be first in the market demands short NPD times. Even to be a 

successful later entrant requires relatively fast NPD capabilities, to meet customer needs 

before they change (Ahmad et al., 2013). In addition, important cost benefits can be achieved 

by firms that learn to manage accelerated NPD (Barczak, 2012). Significant advantages 

accrue because resources are utilised more creatively and efficiently, costs are reduced, and 

work-in-process bottlenecks are minimised (Millson et al., 1992; Cooper, 2014; Adner and 

Kapoor, 2010). 

 

Traditionally, NPD is viewed as a firm-driven activity, with the firm being responsible for 

coming up with ideas for new products and deciding which should be commercialised and 

developed (Van Kleef, 2005; Cooper, 2014; Barczak, 2012). Advances in information and 

communication technologies are enabling new initiatives to be explored and are transforming 

NPD (Bharadwaj and Noble, 2015; Liu and Jiang, 2016). In particular, data from different 

sources can be captured and used to improve NPD. IBM (2013) reports that 90% of the data 

that exists in the world today was created in the last two years and it is expected the global 

total of data will reach 35 zettabytes (ZB) by 2020 (Wong, 2012). This is therefore the era of 

“big data” (Chan et al., 2015). Firms now can access a variety sources of data, such as click 

streams, videos, tweets and other unstructured sources to extract new ideas or understanding 

about their products, customers and markets (Tan et al., 2015; Bharadwaj and Noble, 2015). 

According to Sanders (2014), data analytics (i.e. capturing useful information from data, to 

inform decision making) has given rise to intelligent product innovation and can help to 

enhance NPD in many ways.  

 

However, embedding and sustaining accelerated innovation in a data-driven environment is 

not easily achieved. Few studies have explicitly explored approaches to accelerated 
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innovation. Findings from existing studies mainly suggest that most innovation approaches 

are based on changing technology in the firm’s environment (Millson et al., 1992; Liu and 

Jiang, 2016). In today’s “big data” era, tones of data constitutes an infrastructural resource 

that could be used in several ways to produce different products and services (Wong, 2012; 

McKinsey, 2011, Sanders, 2014). However, we are unaware of other papers that attempt to 

bring together data-driven initiatives on this increasingly important accelerated innovation 

approaches. The overwhelming majority of these earlier contributions in the area of 

accelerated innovation have sought to identify potential success factors by analysing 

relatively large samples and quantitative methodological approaches (Kessler and 

Chakrabarti, 1996; Callahan and Moretoon, 2001; Swink et al., 2006; Stanko et al., 2012; 

Eling et al., 2013); by stark contrast, there has been a relative paucity of investigations in this 

area that have used case research, and that have explicitly explored approaches for 

accelerated innovation in a data-driven environment. Therefore, a systematic study of the 

implications of data-supported accelerated innovation approaches on NPD could greatly 

extend knowledge in this respect (Bharadwaj and Noble, 2015).  

 

Moreover, a recent survey revealed that 59% of respondents who described their organisation 

as “data-driven” said that their company is more profitable than competitors (Economist, 

2015). However, the literature remains divided with regards to the specific ways in which 

companies should apply data analytics to support accelerated innovation in new product 

development processes (Wong, 2012). Emerging evidence indicates that accelerated 

innovation has already delivered a broad range of benefits in the marketplace, including 

greater opportunities to incorporate the latest technology, increased market share, the ability 

to generate higher returns, and more accurate forecasts of customer needs (Hagel and Brown, 

2011; Williamson and Yin, 2014; McKinsey, 2015; Calder et al., 2016). While providing 

high-level evidence of these benefits, however, these contributions have failed to 

systematically investigate the specific mechanics of how firms can apply data analytics to 

realize these benefits. These problems and considerations lead to the following research 

questions concerning in NPD: 

1. What are the best approaches to accelerated innovation? 

2. In a data-driven environment, how can data analytics be applied to support accelerated 

innovation? 
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A previous study by Zhan et al. (2017) have proposed the earliest extant knowledge on the 

implementation of accelerated innovation in a big data environment by suggesting a 

preliminary framework to facilitate product innovation process. However, its key attention 

was paid to identifying the key approaches for accelerated product innovation in a data-

driven environment and then to incorporating, in addition to the literature, some of the 

knowledge of academics and industrialists. As a result, it is not evident which approaches can 

be applied to facilitate different phases of product innovation. Also, it is impossible to 

determine how data analytics can be used to support product innovation. The main purpose of 

this research is to extend Zhan et al.’s (2017) big data framework by further recasting and 

augmenting the conceptual basis of the accelerated innovation and data analytic initiatives 

through conducting in-company cases. In particular, the relevance of this research came from 

the direct applicability of the approaches identified to real product innovation projects that 

different companies face. This paper is structured as follows. A set of propositions 

concerning the best approaches to innovation and data analytics in supporting accelerated 

innovation are proposed and examined. Then, we develop a framework for accelerated 

innovation in a data-driven environment that integrates data analytics and different types of 

information. The case study has been used to refine the framework and illustrate its 

applications. 

 

2.0 LITERATURE REVIEW AND PROPOSITIONS 

Building on the considerable amount of literature in this area, we propose that there are three 

sets of factors that might contribute to accelerated innovation in a data-driven environment. 

The three sets of factors were summarised from prior studies and were further improved by 

conducting a series of interviews with leading academics and data experts from a number of 

industries and disciplines, for further development and refinement of these sets of factors, 

please refer to the work of Zhan et al. (2017). The first set of factors relates to the different 

approaches in NPD (which we term the “collateral structure”). The second broad set of 

factors is associated with the involvement of customers. The third set of factors focuses on 

building an innovation ecosystem to support NPD. The following sections define each of the 

factor terms and formulate propositions. 

 

2.1 Collateral Structure 

The ability to innovate quickly has become an increasingly significant factor in recent years 

in determining competitiveness, especially in industries where product cycles are short and 
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technological change rates are high (Brown and Bessant, 2003; McKinsey, 2009; Rese and 

Baier, 2011). Collateral structure indicates a company structure for problem solving which 

coexists with the formal, operational design but structured as a flexible, open, loose, 

“organic-adaptive” system (Kilmann, 1982; Singh, 2005; Lyer and Davenport, 2008; Google, 

2011). According to the literature, collateral structure in product innovation for NPD has 

been underpinned by NPD team autonomy and cross-functional teams (Kilmann, 1982; 

Lichtenthaler, 2009; Goktan and Miles, 2011; Bauer and Leker, 2013). 

 

2.1.1 Autonomy 

Several prior investigations in this area suggest that greater autonomy for NPD teams—which 

is characterised by a high degree of independence, dedication, leadership, and collaboration 

(Patanakul et al., 2012)—can play a material role in stimulating strategic innovation 

(Govindarajan and Trimble, 2005), radical or discontinuous innovation (O’Connor, 2008), or 

disruptive technological change (Gassmann and Enkel, 2004; Hagel and Brown, 2011). By 

giving these teams a high degree of autonomy, projects tend to be implemented by different 

NPD teams in parallel, with each team pursuing different approaches and technologies but all 

sharing information with each other (Millson, 1992; Patanakul et al., 2012). Today, IT 

resources have been found to improve the connectivity within and between organisations 

(Patanakul et al., 2012), which could in turn make it even easier for highly autonomous teams 

to succeed. Whereas many NPD teams have historically struggled to take full advantage of 

autonomy because of difficulties in coordinating multidisciplinary teams and an 

unwillingness by engineers to release information (Menon et al., 2002), today’s teams can 

share information, knowledge, and analytical capabilities more readily (LaValle et al., 2011; 

Chen et al., 2012). In this way, team collaboration can be enhanced by applying unified data 

analytics and communication technologies to accelerate innovation, reduce uncertainty, and 

form more accurate interpretations (McKinsey, 2011; Wong, 2012; Patanakul et al., 2012). 

We therefore make the following proposition: 

 

P1: NPD team autonomy will lead to accelerated innovation in a data-driven environment 

 

2.1.2 Cross-functional teams 

The use of cross-functional teams has also been closely linked to the fostering of team 

autonomy and the acceleration of NPD processes (Clark and Fujimoto, 1991; Eisenhardt and 

Tabrizi, 1995). These kinds of teams make it possible for development to connect technical, 
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marketing, and manufacturing perspectives throughout the entire NPD process (Deshpande, 

2013). This more integrated approach makes it possible to move faster because they do not 

need to wait for or rely on external sources or other departments (O’Hern and Rindfleisch, 

2009). Moreover, with the advent of worldwide connectivity through the Internet and other 

telecommunications technologies, organisations are increasingly adopting cross-functional 

teams that operate more independently of time and cost than traditional organisations (Menon 

et al, 2002). These kinds of interconnected and data-driven environments markedly improve 

an NPD team’s ability to integrate different information sources across functional and 

organisational boundaries, thereby making them more productive (Peng et al., 2014) and 

delivering more value (Mishra and Shah, 2009). For example, advanced ICTs and data 

analytics can be used to facilitate collaboration and communication within cross-functional 

teams, which enables intra-and inter-firm knowledge sharing, which in turn improves 

problem-solving capabilities (Dewett and Jones, 2001). We accordingly put forward the 

following proposition: 

 

P2: The establishment of cross-functional teams will lead to accelerated innovation in a 

data-driven environment 

 

2.2 Customer Involvement 

The involvement of customers in NPD processes has also resulted in superior performance in 

terms of values and sales growth, profitability, and new product success (Brown et al., 2002; 

Blazevic and Lievens, 2008; Franke et al., 2009; Cooper, 2014). Regarding accelerated 

innovation, the larger issue of customer involvement manifests itself in two principal ways: 

the ability to understand customers clearly, and the ability to co-create with customers 

(Williamson and Yin, 2014; Abhair et al., 2017). 

 

2.2.1 Understanding customers’ needs  

Customers are one of the key sources for product innovation, and a good understanding of 

their needs is required to ensure NPD success (Blazevic and Lievens, 2008). Compared with 

traditional methods of acquiring information and generating customer insight for NPD, new 

communication and data techniques provide a variety valuables source of information and a 

new dimension to market research; they represent  new opportunities to understand customers 

(Shu-Chuan and Kim, 2011; Capgemini, 2012). It offers new ways to improve a firm’s 

understanding of its customer and to conduct market research that can be utilised in the NPD 
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process. It has been reported that successful companies use data analytics to capture 

information from web-based platforms for market understanding and accelerating NPD 

(Mckinsey, 2011). Therefore, we put forward the following proposition: 

 

P3: A deeper understanding of customers’ needs will lead to accelerated innovation in a 

data-driven environment 

 

2.2.2 Customer co-creation 

Beyond merely understanding customer needs, there is also growing evidence that having 

customers actively participate in the NPD process can deliver significant value (Shu-Chuan 

and Kim, 2011; Schaarschmidt and Killan, 2014). The observed benefits of co-creation with 

customers includes increased efficiency, innovativeness, cost minimisation and quality, and 

overall process effectiveness (Blazevic and Lievens, 2008; Hoyer et al., 2010). The IoTs and 

ICT-enabled connectivity are well positioned to positively impact organisations’ ability to co-

create with customers insofar as these new resources will facilitate the capturing and sharing 

of the customers’ ideas and perceptions (Chen et al., 2012; Abhari et al., 2017). Several 

companies like eBay (Davenport, 2009) and Microsoft (Kohavi et al., 2009) have built 

customer co-creation platforms that they have used to gain insights into the amount of time a 

user spends using a particular feature, the relative frequency of feature selections, and the 

path that users take while accessing different functions. This more direct connection with the 

NPD process has accelerated development cycle times and led to products with strong market 

appeal (Prahalad and Ramaswamy, 2004) and word-of-mouth advocacy for the new products 

being developed (Rohrbeck, 2010). We therefore propose: 

 

P4: Customer co-creation will lead to accelerated innovation in a data-driven 

environment 

 

2.3 Innovation Ecosystem 

Most breakthrough innovations do not succeed in isolation (Moore, 1993; Adner, 2006; 

Minguela-Rata et al., 2014); instead, they frequently need complementary innovations to 

deliver useful functionality to customers (Cooper, 2014; Gawer and Cusumano, 2014). The 

thinking behind what is termed the “innovation ecosystem” is that the capabilities of one 

actor can be expanded through collaboration with others (Adner, 2006). The benefits of these 

systems – discussed under such labels as “open innovation”, “platform leadership”, “value 
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networks”, and “keystone strategies” – are well publicized and real (Gassmann and Enkel, 

2004; Rese and Baier, 2011; Rohrbeck, 2010). Two defining features of innovation 

ecosystems are at the core of the propositions put forward in this paper: 1) partnership with 

stakeholders, and 2) the fast improve-and-relaunch process. 

 

2.3.1 Partnership with stakeholders 

Unlike early approaches to product innovation, which mainly relied on information from 

internal research, with very little use of external sources (e.g. market ideas, customer 

complaints) (Niosi, 1999), current approaches (e.g. open innovation) involve building 

networks of cooperative product market relationships (Adner and Kapoor, 2010; Christensen 

and Roynor, 2003; West et al., 2014). The reasons are to be found in shorter innovation 

cycles, the escalating costs of industrial research and development as well as in the dearth of 

resources (Chesbrough 2006; Minguela-Rata et al., 2014). Additionally, modern data 

analytics and ICTs can enable firms to improve their external relationships even more by 

helping them to better understand stakeholders such as suppliers and customers in a way that 

more traditional means did not (Wong, 2012; Tan et al., 2015). Therefore, NPD today is more 

likely to succeed if the firm looks outside the company, for example to customers, suppliers 

and competitors, in order to find new partners; the building of such comprehensive networks 

will create both more value and greater competitive advantage (Gassmann and Enkel, 2004; 

Hagel and Brown, 2011; McKinsey, 2013; 2015). We therefore propose: 

 

P5: Stronger partnerships with stakeholders will lead to accelerated innovation in a data-

driven environment 

 

2.3.2 Fast improve-and-relaunch process 

Rather than developing a fully-fledged product before launch, companies today routinely 

launch new products as quickly as possible and then harness feedback from their partners and 

customers to improve the product (Floricel and Dougherty, 2007; Williamson and Yin, 2014), 

which is then quickly relaunched, in an iterative cycle. The increasing availability of 

extensive data and a large improvement in connectivity between the innovating firm and 

these external stakeholders will enhance the fast improve-and-relaunch process as ICTs offer 

a low-cost means of communicating a new product launch to a wide audience, and feedback 

can easily be transmitted to and from a larger radius of prospective customers (Kohavi et al., 

2009; Wong, 2012). For example, by applying data analytics, feedback from partners as well 
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as customers can be collected quickly via different data sources, and analysed in near real-

time to shed valuable light on critical junctures of the NPD process (Chen et al., 2012; IBM, 

2013; Bosch-Sijtsema and Bosch, 2015). This leads us to propose that: 

 

P6: Faster improve-and-relaunch cycles in the NPD process will lead to accelerated 

innovation in a data-driven environment 

 

3.0 METHODOLOGY 

To study the approaches for accelerated innovation in a data-driven environment, this study 

follows a naturalistic approach and focuses more on “what” goes on in the research context, 

and less on “how” events are socially brought into being (Silverman, 2015). Our company 

cases are topical as they look for facts, descriptions, and examples that help answer a set of 

specific research questions (Rubin and Rubin, 2011). In Particular, comparative case study 

research (Yin, 2011) was selected as the most appropriate methodology for this investigation 

because of the expected context-specific nature of the phenomena and research questions 

being investigated. The method was applied in two stages: first, in-depth case studies were 

analysed; and second, the cases were compared. We applied qualitative methods 

(observations and interviews) to five case examples of accelerated innovation supported by 

data analytics in five world-leading companies in the manufacturing, telecommunication, 

electronics, and software sectors. The companies investigated were all high-tech companies 

and develop software-intensive or high-tech products. In total, we conducted 46 interviews 

(semi- and unstructured): 12 interviews for each case A and C; eight interviews each for 

cases B and D; and six interviews for case E.  

 

Our qualitative analysis followed the general strategy of “replying in theoretical 

propositions” (Yin, 2011). In particular, we followed Done et al. (2011) and conducted a 

comparative case study. According to Bryman (2012), the comparative design incorporates 

the logic of comparison, which implies that we can understand the utilisation, benefits and 

challenges of each approach for accelerated innovation in a data-driven environment better 

when comparing the cases. This approach is akin to Popper’s (1968) approach—using a 

proposition under consideration to predict outcomes for specific cases and subsequently 

investigate these cases to see whether the theory holds true for them (Hillebrand et al., 2001). 

This pattern-matching technique (Campbell, 1966; Yin, 2011) allows for outcome evaluation 
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on multiple dimensions, where as little as one actual observation for a given dimension is 

available (Bitektine, 2008).  

 

Interviews were conducted with both managers (e.g. R&D managers, heads of innovation, 

senior managers and project managers) as well as with a selection of R&D team members. In 

addition to the interviews, we observed these R&D teams, participated in internal 

presentations and workshops, and collected internal secondary material. According to 

McDonald (2005), observations can provide unique insights into day-to-day working 

practices because they shift the emphasis to the direct study of contextualised actions. One of 

the authors had full access as an observer to most of the teams during a period of product 

development or while the teams applied data analytics. Therefore, we were able to observe 

the teams in their natural setting (Schultze, 2000) to understand how they work.  

 

Researchers normally select cases using replication rather than sampling logic when building 

theory from case studies (Eisenhardt, 1989; Yin, 2011; Voss et al., 2002). But case selection 

ought to be used to provide the best opportunities to learn and extend theory. In the study, all 

five companies selected for case study were focusing on accelerated innovation and using a 

variety of data sources in support. Accelerated innovation was being applied to concepts, 

features, prototypes, or full products. In summary, the selection criterion applied in the 

present study was the application of analytics in accelerated innovation, in support of product 

or service innovation. An overview of the case companies and the data collection in each case 

is presented in Table 1.  For instance, Cases A and D are both consumer electronic companies 

and develop electronic equipment intended for everyday use.  
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Table 1. Overview of the case companies and data collection 

Case Industry Size 

(2015) 

Revenue 

(2015) 

Profitable 

(2015) 

Interviews Data Collection  

A 

 

Electronics 13,000 £7.6b Yes 12 Interviews, 

workshops, 

presentation, 

observations, 

secondary material 

B 

 

Telecommunications 310,000 £32b Yes 8 Interviews, 

presentation, 

observations 

C 

 

Software 35,000 £6.3b Yes 12 Interviews, 

observations, 

workshops, 

presentation, 

secondary material 

D 

 

Electronics  8,000 £7.3b Yes 8 Interviews, 

workshops, 

presentation, 

secondary 

material, 

observations 

E 

 

Software 27,000 £9.1b Yes 6 Interviews, 

workshops, 

presentation, 

secondary 

material, 

observations 

Size indicates approximate number of employees 

 

All the qualitative data were collected and systematically processed through the stages 

proposed by Lincoln and Guba (1985) and Locke (2001): data reduction, focused coding, and 

data display. In the first stage, we identified areas pertaining to the dominant themes: 

collateral structure, customer involvement, innovation ecosystem, and data analytics applied 

for supporting NPD. In the second stage, we focused on coding extracted passages relating to 

the main themes as well as the sub-themes (as set out in Section 2.0). In the final stage, data 

display, we made tables and lists of passages and monitored the internal cohesion of the 

codes. The coding was an iterative process among the three authors which went through 

several rounds of coding, and after each coding round the data were compared and discussed 

among the authors. During this whole process, we found few discrepancies between the 

codes. The themes found in the codes were also related to the observational data. An example 

of a set of codes applied to the data is presented in Table 2. Table 3 demonstrates the 

different innovation projects across the five case examples, with different activities and data 



12 

 

analytics applied. In a final step, the conclusions drawn from the study were presented to 

some of the firms from the case studies, for validation.  

 

Table 2: Examples of coding 

Examples (Quotes) Themes and sub-themes coded 

Case A: 

“By applying real-time communication (OA software 

used), different function departments are grouped 

together to work actively. It cuts across boundaries of 

different departments and every team member becomes 

involved in marketing, engineering, design, production 

or R&D.” 

Collateral Structure 

 Cross-functional teams 

 

Data-driven practice 

 Data analytics applied for 

supporting NPD 

“Managers are engaged in conversations with each 

other: it would be so good if we could build partnership 

with…”  

Ecosystem of innovation 

 Partnership with 

stakeholders  

Case C: 

“Customer feedback can save us a lot of time and has 

eliminated a vast amount of unnecessary double 

communication within various teams.” 

 

Customer Involvement 

 Understand customers’ 

needs 
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Table 3: Innovation projects in the five case studies 

Case Scope Activities Types of Data 

Involved 

Data Analytics 

A. Development of a 

new wearable 

meditation headset 

New product 

development 

Autonomy; cross-functional teams; simultaneous 

processing; understanding customers’ needs; 

interaction with customers; sharing information and 

gathering feedback 

Structured and 

semi-structured 

SAP BusinessObjects (BO); 

language processing (NLP); 

Office Automation System 

(OA) 

B. Development of a 

new service package 

New product 

development 

Cross-functional teams; simultaneous processing; 

understanding customers’ needs; interaction with 

customers; customer co-creation; sharing information 

and gathering feedback 

Structured, 

semi- and 

unstructured 

 

SAP BusinessObjects (BO); 

IBM Anlytics; HP Vertica 

C. Development of a 

tablet device with 

improved functions 

New feature 

development 

Simultaneous processing; customer understanding; 

interaction with customers; customer co-creation; 

sharing information and gathering feedback; product 

launch and improve; fast learning and improvement 

 

Semi- and 

unstructured 

 

SAP BusinessObjects; 

Google Analytics (A/B 

testing and crowdsourcing); 

Hootsuite 

D. Development of a 

new smartphone 

New product 

development 

Autonomy; cross-functional teams; simultaneous 

processing; understanding customers’ needs; 

interaction with customers; customer co-creation; 

sharing information and gathering feedback; network 

development; product launch and improve; fast 

learning and improvement 

 

Structured and 

unstructured 

 

Microsoft SQL Server; 

Hubspot, Visible 

Technologies 

E. Development of a 

calendar application 

with improved 

functions 

New feature 

development 

Autonomy; cross-functional teams; simultaneous 

processing; sharing information and gathering 

feedback; network development; product launch and 

improve; fast learning and improvement 

Structured, 

semi- and 

unstructured 

 

PLM; Microstrategy; 

Google Analytics (A/B 

testing and crowdsourcing) 
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4.0 RESULTS 

Here we assess the five cases with regard to each of the nine propositions put forward in 

Section 2. The results are summarised in Table 4. We discuss the types of innovation 

approaches with the different data analytics applied. The results can be summarised by the 

three dominant sets of factors: (1) collateral structure; (2) customer involvement; (3) 

innovation ecosystem. All three sets of factors represent an accelerated innovation strategy, 

but not all were equally important for every company. E.g., for different companies, they 

have different objectives, R&D focus, organisational structures, corporate cultures and so on. 

Therefore, they might focus on different strategies for accelerated innovation in their projects. 

 

Table 4: Summary of results  

 Case 

A B C D E 

Collateral Structure      

NPD team autonomy (P1) +   + + 

Cross-functional team (P2) + +  + + 

Customer Involvement      

Understands customers clearly (P3) + + + +  

Co-creates with customers (P4)  + + +  

Innovation Ecosystem      

Builds partnership with suppliers and customers (P5)    + + 

Fast improve-and-relaunch process (P6)   + + + 

+ indicates factor clearly present/strong 

 

4.1 Collateral Structure 

Collateral structure has been acclaimed as a core structural approach to catalysing effective 

and accelerated NPD (Chen et al., 2012; Google, 2011; Liao and Barnes, 2015). Among the 

cases, this approach begins with a defined outcome for the product, and then the development 

teams are drawn from different functions and work autonomously to accelerate the innovation 

process.  

 

In case A, the company traditionally worked sequentially, with teams of five or six 

professionals spending up to two years going through all of the steps to completion. Today, 

the company uses a more industrial process in NPD. The company builds teams to work on 

different projects in parallel. For a specific project, the company used a team of 33 workers 

from different departments (including 8 designers, 16 individuals with expertise in areas such 
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as R&D, manufacturing and sales, 6 computer engineers and 3 product testers). Instead of 

having work details controlled by senior management, the company gives the authority to 

teams to manage their own processes. During an interview, one of the team members pointed 

out that the “old, sequential method of design engineering, throwing the product design over 

the wall into manufacturing’s domain is no longer acceptable”. The industrial process with a 

cross-functional team and team autonomy produced a magic triangle linking time, costs and 

quality in the product development process. 

 

In case D, the NPD teams were given autonomy to facilitate their innovation and 

development process. The company creates independent development teams and appoints one 

project leader to supervise the output of its product development. The company gives teams 

the freedom to set their own level of responsibility and schedule to achieve it. In particular, 

the approach begins by dividing the innovation process (which includes the business case, 

development, testing and validation) into a large number of small steps. One of our findings 

was that implementation of this processing made employees felt more valued and trusted. The 

R&D manager pointed out that “What I see is a more agile, dynamic and flexible approach 

that is lean, rapid response and costs less.” The NPD teams agreed that “It not only improves 

the output but may also encourage creativity during the approaches.” In addition, they 

mentioned that data analytics and information technologies play a big role, in that they enable 

teams to share the latest information and communicate effectively, speed up problem solving 

and reduce development costs. 

 

In case E, the company brings together top design, engineering, and business thinking in one 

holistic approach. It builds cross-functional teams that work independently and closely with 

strategy, technology, engineering, marketing, purchasing, and production. Particularly, the 

company allows each team to decide how they will reach the target and gives them the right 

to tailor their approach to their preferences and abilities. The company also invites the teams 

to attend weekly meetings, to improve communication and collaboration. Managers can 

enhance team’s ability to monitor and track a project as it progresses using PLM and 

Microstrategy. It allows managers to enter estimating, budgeting, scheduling and other 

aspects of the process. Thus, NPD teams can communicate synchronously or asynchronously; 

they may be located together or remotely; and the data analytics, can provide the support and 

challenge required to keep team members engaged and motivated and empowers them to 
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reach their potential. According to the interviews, the NPD teams highly valued the cross-

functional work and autonomy. 

 

4.2 Customer Involvement 

Today, customers are increasingly regarded not as just passive adopters of innovations, but 

they may rather develop their own innovations and support producers for accelerating their 

innovation (Von Hippel, 2005). This approach to NPD pays more attention to connect with 

wide range of customers through establishing information platforms at the earliest stage 

possible of product development to gain a deeper understanding of their needs and of the 

market.  

 

In case A, the company used to have little direct feedback from customers. Only recently did 

the company start to monitor consumer comments on social media about its products. It 

connects to customers through a wide range of sources at low cost (e.g. official Web forum, 

mobile apps, popular websites). According to the marketing manager, “customer connection 

provides more than merely an idea for product innovation. It supplies the firm with 

information on market needs or existing problems, product-related specifications, or even a 

complete product design”. Connecting with customers via social media helps the company 

better understand its customers by analysing the data collected; it gathers feedback quickly to 

inform further product information. To fully involve customers, the company has cultivated 

many active web-based platforms where customers can interact with the company and each 

other. The latest product information can be updated to the forums on a daily basis, partly to 

attract more customers and to gain feedback for further developments. 

 

In case B, the NPD teams keep in close connection with their core customer units as early as 

possible. A frequent dialogue between the customer and the R&D teams took place through 

the customer unit, first on the new feature requirements of new products, and in later stages 

on concept testing and prototypes before the new product was provided to particular 

customers. The engineers of the NPD team mentioned during the interviews that “by pushing 

core customers into the process early, and continuing to work with them in parallel, it is 

possible to avoid the pitfalls that are based on a one-shot market research project at the 

conceptual stage.” Moreover, the development teams were able to bring in their own 

knowledge of product development, and sometimes suggested alternative solutions that were 

more suitable and customer-friendly than the solution suggested by the customers. 
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In case C, the company focused on collecting and analysing information from customer, 

market and competitors to gain competitive advantages and a deeper understanding of both 

their customers and their competitors. The data analytics enabled the company to quantify its 

customer and marketing spend. The IT manager stated that ““gained a deeper understanding 

of customers’ needs at the very beginning stages of the NPD” The company is now 

developing a sophisticated customer predictive data analysis tool to keep a close watch on 

customers’ activities; it should then be able to work out the needs of its customers even 

before they have decided to buy the product. 

 

In case D, to acquire a better understanding of their customers and to integrate with 

customers, the company invites 50 customer representatives to reflection and discussion 

sessions (these are half-day events). During the events, customers’ particular problems and 

issues which were found or stated earlier are become a starting point for discussions and 

reviews with the customers. The customer representatives are self-selected. In the research 

interviews, managers pointed out that this immediate interaction with and feedback from 

customers provided the NPD teams with opportunities to gain a better understanding of 

customers’ needs, and caused them to focus on the right aspects of the solution immediately. 

The NPD teams highly valued the customer feedback and engagement. R&D team members 

also mentioned that “customers were able to experiment with and examine features early on, 

and [we] discussed the positive responses from customers to the developed solutions as 

validation and motivation for [our] work.” 

 

4.3 Innovation Ecosystem 

Scholars and practitioners increasingly identify the usefulness of the innovation ecosystem 

concept for explaining cooperative innovative activities (Cooper, 2014; Leavy, 2012). This 

approach involves collateral structure and customer involvement. It enables NPD teams to 

move to market-wining products quickly and cheaply through a series of iterations: new 

product ideas, fast launch, feedback gathering, fast improvement and re-launch.  

 

In case D, the company epitomizes a capabilities-driven innovation strategy and focuses its 

portfolio and its capabilities on providing products and services to create maximum 

competitive advantage. In interview, one of the R&D managers mentioned that “if a certain 

competency has nothing to do with how you are positioning yourself in your market and 
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creating value for your customers, then don’t oversupply it. Put your energy elsewhere, 

where you are going to differentiate”. Moreover, for competitive advantage, the company 

identified the key components and all the intermediates within its networks involved in 

product development before a new product reaches the eventual customers. The NPD 

manager stated that “the company is already spending millions of dollars in cooperating with 

desirable partners among the entire supply chain to support its product development 

ecosystem.” As a result, it costs the company less time and money than would ordinarily be 

required, concentrating on new product research and development rather than other time-

wasting processes. Therefore, the company can launch new products to meet its customers’ 

requirements in a much more efficient and effective way. Besides, the companies in case C 

and E aim to formulate their own innovation ecosystem by looking for partners and practices 

that could enhance their capabilities for speed in development, speed to market and speed in 

improvement. For instance, Case A Company invested half a million US in 2016 to online 

video content partners to provide a platform for better customer and supplier interactions. 

Thus, product innovation is made from interrelated networks and these empower 

organisations to rapidly integrate useful information from customers and partners. 

 

To speed up the NPD process, in both case C and case E the companies applied a ‘voice of 

customer’ programme which provided valuable inputs from customers for product ideas, 

market understanding, core competencies of components, as well as the benefits sought in a 

new product. The companies also developed a customer feedback centre (in case E) and a 

product improvement centre (in case C) to encourage feedback from partners and customers 

and to rapidly communicate this to the R&D teams. The centres serve as a marketing tool and 

their main task is deriving useful information from data collected and to provide feedback as 

input to the relevant project teams. These inputs allow teams to quickly develop a new 

version of a product, with improved functions and features. The marketing manager in case E 

stated during an interview that “many customers are too sophisticated to satisfy because they 

always demand products with the latest technology, cutting-edge functionality, at an 

unprecedented low price, and immediate services. At the same time, they don’t have much 

brand loyalty and keep comparing the product with others.” This fast-improve-and-relaunch 

process requires the appropriate collateral structure and customer involvement that can help 

the R&D team to move quickly to a market wining product through a series of iterations: new 

product ideas, fast launch, gathering feedback, fast improvement and relaunch. 
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5.0 DISCUSSION 

The paper set out to investigate two research questions. First, what are the best approaches 

for accelerated innovation in a data-driven environment? And second, how can data analytics 

be applied to support accelerated innovation? The propositions based on case evidence are 

summarised in Table 5. A confirmatory contribution of this research to existing literature is 

identifying the approaches and specifying a framework to attain accelerated innovation in 

world leading companies. The fact that many companies today have not identified these 

approaches systematically indicates that this is not “common knowledge” and that 

practitioners and academics could benefit from applying this framework to similar 

accelerated innovation.  

 

Table 5: Summary of support for propositions 

Proposition Support Additional comments 

Collateral Structure  

NPD team autonomy (P1) Yes More top management support can be acquired 

from non-state-owned companies  

Cross-functional team 

(P2) 

Yes Team and project management skills positively 

contribute to building cross-functional teams 

Customer Involvement  

Understands customers 

clearly (P3) 

Yes Data analytic skills are a necessary but not 

sufficient condition for success 

Co-creates with 

customers (P4) 

Yes Positive personality traits can make customer 

involvement more effective 

Innovation Ecosystem  

Partnership with 

stakeholders (P5) 

Yes Financial inadequacy may limit the ability to 

develop partnerships with stakeholders 

Fast improve-and-

relaunch process (P6) 

Yes Appropriate processes for both innovation and 

customer involvement are needed 

Yes = clear support for proposition 

 

5.1 A Framework for Accelerated Innovation  

Stalk (1988) pointed out in his works almost thirty years ago that “time-based competition” 

or the ability to innovate and produce ahead of competition is a key competitive strategy. 

Being the first to market with new products and technologies enable the firm to stay ahead of 

competition, and to enjoy a price premium on its products. World-class organizations such as 

Apple Inc., Microsoft, Intel, Advanced Micro Devices, and Samsung Electronics, have all 

been relying on accelerated innovation as their core competency to develop new products and 

technologies to compete in this fiercely competitive global market. Accordingly, accelerated 
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innovation is associated with maximisation of the product success rates, higher profitability 

and competitive advantage (Greve, 2011; Williamson and Yin, 2014). All five companies in 

the present case study were applying new approaches in product development to gain 

accelerated NPD, better understanding of customers’ needs, higher revenue growth, and 

faster launch of new products to market. Some of the methods reported here have been 

discussed in the literature, such as autonomy (Patanakul et al., 2012) and cross-functional 

teams (Chen et al., 2010). However, the case study companies jointly implement other types 

of methods as well as data analytics to generate an integrated approach for acceleration of 

NPD. The literature on R&D research shows existing approaches to achieve fast NPD 

(Markman et al., 2005; Greve, 2011), or to develop interaction and collaboration with 

customers (Brown, 2002; O’Hern and Rindfleisch, 2009; Schaarschmidt and Kilian, 2014). 

However, determining suitable approaches to accelerated innovation throughout the whole 

innovation phase has been more difficult, as many approaches have focused on the early 

innovation stages in terms of collaboration (Shu-Chuan and Kim, 2011), and more virtual 

customer co-creation (Blazevic and Lievens, 2008). Moreover, in a data-driven environment, 

firms can make use of different technology-based or online data analytics to enhance their 

innovation approaches. Examples are (see Table 3): methods of crowdsourcing and A/B 

testing in cases C and E, which could be viewed as testing or experimentation methods that 

are now applied to acquire customer feedback to support NPD; OA, to enhance real-time 

communication between R&D teams in case A; the use of an SQL Server, used to build data 

platforms in case D. 

 

Figure 1 shows our proposed innovation framework, which is based on the literature as well 

as our findings from the cases. The framework consists of the following approaches: (1) 

Collateral Structure – refers to the different processes that go into NPD, (2) Customer 

Involvement – associates with the cultivation and maintaining of high-quality information 

and feedback links with wide range of customers, and (3) Innovation Ecosystem – focuses on 

building an innovative ecosystem to support product innovation in a fast-improve-and-

relaunch process. Different companies might pay more attention to different approaches.  
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5.1.1 Collateral structure 

The evidence from the five cases illustrates how R&D teams change their processes to 

accelerate NPD in a data-driven environment. In order to speed up product development, 

cases A, D and E focus on establishing cross-functional teams that can work both 

autonomously and simultaneously. Based on our cases we found that the innovation process 

can be industrialised by assigning cross-functional teams to the many small steps and project 

activities. Thus, the total outlays for a given project can be reduced, as these people are less 

highly trained than traditional R&D staff and are generally therefore paid less (Markman et 

al., 2005; Schaarchmidt and Kilian, 2014). For example, cases A and E overcame the usual 

problems of process innovation by: breaking down product designs into separate modules 

linked by standardised interfaces; establishing short lines of communication where each team 

member can represent his or her respective functional department; and introducing open 

design processes where information is shared with the entire team as early as possible.  

 

Advanced data analytics and ICTs can be used to facilitate the process of boundary-crossing 

to overcome the challenges presented by remote and culturally diverse team members 

(Shachaf, 2008). Our study shows that it also can be used to support the creation and 

maintenance of team identity by the use of data analytics that decrease distorted 

communication (by capturing decisions in a shared database) while increasing team 

cohesiveness, inclusion, and common ground. With the cases, we found that the collateral 

structure developed supports the more collaborative approach in the early, conceptual phases 

of product innovation, and the data and information collection approach through experiments 

and testing in the later phases. 
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5.1.2 Customer involvement 

The cases indicate that customer involvement is applicable throughout the whole of the 

innovation cycle. In many previous studies, customer involvement was primarily 

implemented in the early, conceptual phases of product development (Van Kleef et al., 2005; 

Shu-Chuan and Kim, 2011), although in some instances it was also applied in the deployment 

phases (Schaarschmidt and Kilian, 2014), but few studies have examined data analytics for 

customer involvement in the product development phases, after a product has been launched. 

Notably, the customer has been viewed as an active co-creator in, for example, agile software 

development (Blazevic and Lievens, 2008; O’Hern and Rindfleisch, 2009), or the customer 

supports innovation through data optimisation experiments after product deployment 

(Davenport, 2013). However, few studies have looked at customers providing input 

throughout the whole of the innovation phase. We found in our case studies that customer 

involvement can take place at different phases of the innovation process for acceleration of 

NPD. For example, the companies (cases B and D) connect with their wide range of 

customers at the earliest stage possible of product development to gain a deeper 

understanding of their needs and of the market, and they collect feedback after launches of 

the product to trigger further continuous innovation.  

 

5.1.3 Innovation ecosystem 

The cases show that successful companies aim to build an innovation ecosystem, that is, an 

innovation and market-testing environment (Gawer and Cusumano, 2014), to develop and 

launch new products at fast speed to market and low new product costs (Leavy, 2012). The 

environment is like an ecosystem indicates that the company network is used to acquire new 

requirements and components of product development processes externally or from 

intermediaries (Ernst, 2002), in order to create such an environment that is able to launch a 

product quickly with less cost (Adner and Kapoor, 2010). Many scholars today use the 

concept of the innovation ecosystem to explain cooperative innovative activities (Gassmann 

and Enkel, 2004; Gawer and Cusumano, 2014). However, the innovation ecosystem, as a 

very broad concept, can be used only once there is a relatively mature implementation of the 

product or feature available. In the cases, we found that cases C, D and E aimed to build 

partnerships with stakeholders and leading customers that can support the launch of their new 

products as quickly as possible to gain market recognition as well as feedback from 

customers to trigger further continuous innovation. In particular, a fast improve-and-relaunch 

process requires the appropriate collateral structure and customer involvement can help the 
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product team to move quickly to a market-winning product through a series of iterations: new 

product ideas, fast launch, gathering feedback, fast improvement and relaunch. 

 

5.1.4 Implications of data analytics for accelerated innovation 

The different data analytics and information technologies applied offer both of unstructured, 

semi-structured, and structured input to the R&D teams. Among the cases, structured and rich 

data were gathered during earlier innovation phases, in order to gain more insight into 

customer contexts and needs by conducting dialogues, collaboration and online surveys. For 

example, cases B and C utilise customer dialogue to shape their NPD process through 

customer data capture, and crowdsourcing from various online forums. Case D builds a 

targeted ongoing customer advisory group to interact with customers. This structured 

feedback was often based on customer stories or dialogues, and customers were able to 

consciously and actively help the development of new products and functionalities. Semi- 

and unstructured large-scale data sets were captured in the later phases of innovation, when a 

feature or product had been launched on the market, and customers were able to use the 

particular feature or product. For instance, case A applies natural language processing (NLP) 

to unstructured content (captured from apps and social networks) to identify customer 

satisfaction and preferences. The large-scale set of data from different sources provided a 

different kind of feedback to the innovation process, but could provide more reliable, real 

behavioural data based on the click behaviour of customers using a system, for example. Case 

E predicts customer behaviour by applying Google Analytics to analyse customers’ post-click 

data. In such circumstances, the customer was not actively involved in giving feedback, but 

feedback was automatically generated through online behaviour. More and more 

organisations are collecting this kind of data, to the extent that discussions are arising in 

social media about ethics and customer privacy (Bosch-Sijtsema and Bosch, 2015). This is an 

element that needs to be taken into account when focusing on capturing customer data for 

innovation. Structured, semi-structured and unstructured data are common in customer input 

studies in all phases of product development (McKinsey, 2013; 2015; Capgemini, 2012). 

However, through the use of data analytics in the cases studied, the data in earlier phases are 

more connected to feedback, while in later phases larger amounts of data are captured 

through actual usage and customer behaviour.  
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5.2 Implications for Practice and Research 

The major contribution of the paper is that it usefully extends the accelerated innovation 

literature by developing and refining a conceptual framework with how innovation can be 

accelerated in a data-driven environment. The developed framework is based on information 

elicited from the literature and the unique product innovation approaches adopted by five 

successful Chinese firms. It enable firms to find ways to innovate – to make NPD faster and 

less costly. Compared with existing product innovation approaches, the framework 

developed places particular emphasis on efficiency and cost saving. It investigates the 

approaches to accelerated innovation in a big data environment that may shorten the time to 

market, improve customers’ product adoption and reduce new product costs. Although the 

term big data is not new, the application of big data in facilitating accelerated product 

innovation is a relatively new area. The evidence provided in the research reveals the promise 

of this combinatorial approach, which the author believes is worth further developmental 

efforts from product innovation and big data scholars. 

 

In terms of practical contributions, the study is intended as guidelines for R&D innovation 

managers to apply their resources to conduct product innovation in a fast and effective way. 

The findings of this research could guide company managers and strategy people on how to 

achieve accelerated product innovation in a big data environment, and how to apply big data 

to facilitate accelerated product innovation, using the prior experience of the case studies. In 

the cases, we identified a number of implications of implementing a data-driven fast improve-

and-relaunch process, including a decrease in new product costs, an increase in speed to 

market, better understanding of customers’ needs (and connection with customers), and a 

change in leadership and team organisation.  

 

This study also extends the accelerated product innovation boundaries pointed out by 

Williamson and Yin (2014), and makes a contribution to several subsets of the literature. On 

a general level, it can be viewed as a response to different calls in big data literature seeking 

to understand how big data can be used to facilitate product innovation (Davenport, 2014; 

McAfee and Brynjolfsson, 2012). Moreover, this research further improved Zhan et al.’s 

(2017) big data framework by further recasting and augmenting the conceptual basis of the 

accelerated innovation and data analytic initiatives through conducting in-company cases. 

Firms are leveraging data analytics to embed customer sentiment in product development. 

This enables firms to move away from product-focused innovation and to turn their attention 
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to innovation around the customer experience. The proposed paradigm-shifting framework 

enables firms to find ways to innovate – to make NPD faster and less costly. However, the 

implementation of the NPD acceleration approaches may put considerable strain on an 

organisation. We posit that any stress presented by the introduction of these approaches will 

be more than compensated for by the time and cost reductions achieved in the modification of 

the NPD process.  

 

5.3 Limitations and Future Research 

Since all the companies investigated are very large corporations operating globally or 

nationally, we have only examined our propositions by studying specific innovation projects 

within the five case companies. According to Tidd et al. (1997) conducting innovation 

research at project level allows you to reflect on your own experience as a researcher during 

the whole innovation process and become as a part of the project. In particular, all the 

projects selected were focusing on accelerated product innovation and using a variety of data 

sources in support. Moreover, the cases collectively provide coverage of different high tech 

companies. Therefore, we believe that the results can be generalized to different other 

projects or other high-tech companies. Besides, the suggested sets of factors are examined, 

but their results are measured only in the given cases. Future empirical studies can be 

conducted at the organisational level to compare the implications of the framework and 

enhance the findings of this research. Also, the cases were conducted on Chinese companies; 

it is not known to what extent the approaches for accelerated innovation can be generalised 

beyond the Chinese context. Thus, further research in other country contexts are required to 

enhance confidence in the generalisability of these findings. Although the findings of this 

research focus on high-tech industries (high-tech manufacturing, telecommunications, 

electronics and software), we believe they can be generalised to any industry that applies data 

analytics and employs R&D in its product development and enables their businesses to be 

connected to the Internet. Additionally, we pay attention to the approaches needed to achieve 

accelerated innovation in this research and we found that the fast improve-and-relaunch 

process can be generalised and applied to other properties of the service or product. So far, 

the development of a high-level framework for such a complicated phenomenon as 

accelerated innovation may highlight some obvious connections while failing to capture 

others. The developed framework is mainly focused on investigating approaches to 

accelerated innovation, where different data analytics were applied to support each of them. 

Therefore, the framework may not work where there is no data or data analytics to support it. 
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However, action research can be conducted to further explore to what extent the proposed 

framework can facilitate product innovation under different circumstances. We are hopeful, 

though, that this broad framework will provide a means to help integrate the wealth of 

research on innovation in order to advance both research and practice. 
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