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Chain Walking of Allylrhodium Species Towards Esters During
Rhodium-Catalyzed Nucleophilic Allylations of Imines
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Abstract: Allylrhodium species derived from d-trifluoroboryl
b,g-unsaturated esters undergo chain walking towards the ester
moiety. The resulting allylrhodium species react with imines to
give products containing two new stereocenters and a Z-alkene.
By using a chiral diene ligand, products can be obtained with
high enantioselectivities, where a pronounced matched/mis-
matched effect with the chirality of the allyltrifluoroborate is
evident.

The migration of metal centers along carbon chains occurs in
several important reactions.[1–7] Many of these migrations take
place by b-hydride elimination and hydrometalation sequen-
ces, in which the direction of travel is controlled by
thermodynamics, a ligand, or a nearby functional group.
With few exceptions,[4b–f] these migrations involve simple
alkylmetal species. The ability to chain walk a metal together
with a second functional group has significant synthetic
opportunities, but this mode of reactivity remains largely
underdeveloped. Herein, we describe, to our knowledge, the
first examples of allylrhodium chain walking, and its applica-
tion in the preparation of enantioenriched products.

During our studies of enantioselective Rh-catalyzed
nucleophilic allylations of imines,[8] the reaction of imine 1a
with racemic allyltrifluoroborate 2a[9] in the presence of
[{Rh(cod)Cl}2] (1.5 mol%) and iPrOH (5.0 equiv) was con-
ducted (Scheme 1). Surprisingly, allylation at the a- or g-
carbon atoms relative to the boron atom of 2a was not
observed. Instead, this reaction gave homoallylic sulfamates
3a (68% yield) and 4a (6% yield), each in > 95:5 d.r.
(Scheme 1).[10–12] This result suggests the reactive intermedi-
ates are allylrhodium species 5 and 6, formed from migration
of the allylrhodium species generated initially from trans-
metalation of 2a with rhodium.

The scope of this unexpected reaction was extended to
include aldimines bearing methyl, methoxy, bromo, or
dioxozole groups, which gave products with high diastereo-
selectivities in 65–72 % yield (Table 1, entries 1–5). Ketimines
containing linear alkyl groups at the imine carbon were also

effective (entries 6–9). However, an isopropyl-substituted
imine was recovered unchanged (entry 10). With one excep-
tion (entry 3), no products of allylation at the a- or g-carbons
relative to the boron atom of 2a were obtained. Furthermore,
except for the reactions producing 3a and 3d (entries 1 and

Scheme 1. Discovery of allylrhodium chain walking.

Table 1: Investigation of imine scope.[a]

Entry Product R Yield [%][b]

1
2
3
4

3a
3b
3c
3d

Me
H
OMe
Br

68[c]

72
65[d]

65[e]

5 3e 65

6
7
8
9
10

3 f
3g
3h
3 i
3 j

Me
Et
nBu
(CH2)3Ph
iPr

65
53
54
55
<5

[a] Reactions were conducted using 0.30 mmol of 1. The diastereomeric
ratios were confirmed by 1H NMR analysis of the unpurified reactions.
[b] Yield of isolated products. [c] The regioisomer 4a was isolated in 6%
yield (Scheme 1). [d] In the unpurified reaction, traces of a product
derived from allylation without chain walking were detected. [e] Isolated
as an 87:13 mixture of 3d with the regioisomeric product 4d. See
Ref. [13].
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4), the alternative regioisomers were difficult to detect by
1H NMR spectroscopy.

Next, the potassium allyltrifluoroborate was varied
(Table 2). As well as ethyl esters (Table 1) and benzyl esters
(Table 2, entries 1–5, 7, and 8), a 2-naphthyl ester was
accommodated (Table 2, entry 6). Regarding the substituent
a to the boron atom, alkyl (entries 1, 2, 7, and 8) and
chloroalkyl groups (entry 3) were tolerated. Product 3 l was
isolated along with a product of allylation without chain
walking, in a 95:5 ratio (entry 2).[13] Alkyl substituents
containing phenyl or benzyloxy groups resulted in lower
conversions and yields (entries 4 and 5).

The reaction of 1b with allyltrifluoroborate 2h, in which
boron is bonded to a primary rather than a secondary carbon,
gave not only 3s, but also a significant quantity of product 7 in
80:20 d.r., derived from allylation without chain walking
[Eq. (1)].[14] Products 3s and 7 could not be completely
separated by column chromatography, and their yields were
determined by 1H NMR analysis using an internal standard.

Interestingly, the reaction of Z-allyltrifluoroborate 8[9]

with aldimine 1b gave 3b in 70% yield (Scheme 2, top),
which is the same product obtained from the corresponding
E-isomer 2a (Table 1, entry 2). Furthermore, despite possess-
ing a substitution pattern different to all allyltrifluoroborates
employed until this point, allyltrifluoroborate 9 reacted in the
same manner to give 3t (Scheme 2, bottom).[10] These results
suggest that regardless of the geometrical or positional
isomerism of the allyltrifluoroborate within the b to d

carbons, the reactions proceed through common types of
allylrhodium intermediates. However, homoallylic boron
reagents were unreactive.[13, 15]

Because these reactions provide chiral products from
chiral substrates, we investigated whether enantioenriched
allyltrifluoroborates would give enantioenriched products.
However, the reactions of (R)-2a (94 % ee)[9] with aldimine
1b and ketimine 1 f gave (S,S)-3b and (S,S)-3 f, respectively,
with low-to-moderate enantiomeric excesses (Scheme 3).
Although chain walking of alkylmetal species can proceed
with high stereospecificity,[7c] poor absolute stereochemical
transfer is observed in the reactions described herein.

Next, chiral rhodium complexes were investigated for
their ability to provide enantioenriched products from
racemic allyltrifluoroborates (Scheme 4).[8b] Although several
chiral dienes[16] gave poor conversions[13] in the reaction of
aldimine 1b with 2a, diene L1[17] gave (S,S)-3b in 72% yield
and 98% ee. Several other products (S,S)-3k, (S,S)-3 m, and
(S,S)-3p were also prepared in the same manner. However,

Table 2: Investigation of allyltrifluoroborate scope.[a]

Entry Product R Yield [%][b]

1
2
3
4[d]

5[d]

3k
3 l
3m
3n
3o

Me
nPr
(CH2)4Cl
(CH2)2Ph
CH2OBn

69
70[c]

63
36 (59)[e]

(53)[e,f ]

6[d] 3p 62

7
8

3q
3r

Me
nPr

67
58

[a] Reactions were conducted using 0.30 mmol of 1. The diastereomeric
ratios were confirmed by 1H NMR analysis of the unpurified reactions.
[b] Yield of isolated products. [c] Isolated as a 95:5 mixture of 3 l and the
product of allylation without allylrhodium chain walking. See Ref. [13].
[d] Using 2.5 mol% of [{Rh(cod)Cl}2] . [e] Yields in parentheses were
determined by 1H NMR spectroscopy using 1,3,5-trimethoxybenzene as
an internal standard. [f ] Attempts to purify 3o by column chromatog-
raphy were unsuccessful. A pure sample was obtained by preparative
TLC.

Scheme 2. Effect of geometrical and positional isomerism of the
allyltrifluoroborate.
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the yields of some of these reactions were low, and the scope is
more limited than when using [{Rh(cod)Cl}2]. For example,
enantioselective additions to ketimines were unsuccessful.

Interestingly, a pronounced matched/mismatched effect
was observed with enantioenriched allyltrifluoroborates. The
reaction of 1b with (R)-2a (94 % ee) using chiral diene L1
gave (S,S)-3 b with results identical to the reaction using
racemic 2 a (Scheme 5, top; compare with Scheme 4). How-
ever, the corresponding reaction with (S)-2a (94% ee) gave
a complex mixture; although 3b was detected in small but
unquantifiable amounts by 1H NMR analysis, it could not be
isolated. Currently, it is unclear which steps of the proposed
mechanism (see below) are rendered inefficient by the
stereochemical mismatch of the ligand and the allyltrifluor-
oborate.

A proposed mechanism, using imine 1a and allyltrifluor-
oborate 2a as representative substrates, is shown in Scheme 6.
The reaction of 2a with iPrOH can reversibly generate
a mixed alkoxide/fluoride boron ate complex 11, which
transmetalates with rhodium complex 10[18, 19] to give inter-
converting allylrhodium species 12 and 13. b-Hydride elim-
ination of 13 then gives a rhodium hydride species bound to
ethyl sorbate (as in 14).[20, 21] Hydrorhodation of the alkene
distal to the ester then provides interconverting allylrhodium
species 5 and 6. A possible driving force for this chain walking
migration is the formation of a more stable, more conjugated

Scheme 3. Investigation of absolute stereochemical transfer with (R)-
2a.

Scheme 4. Enantioselective allylations. Reactions were conducted
using 0.30 mmol of 1b. The diastereomeric ratios were confirmed by
1H NMR analysis of the unpurified reactions. Yields are of isolated
products. Enantiomeric excesses were determined by HPLC analysis
on a chiral stationary phase. [a] Using 2.5 equivalents of allyltrifluor-
oborate 2g.

Scheme 5. Investigation of matched/mismatched effects.

Scheme 6. Proposed catalytic cycle.
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allylrhodium species 5. Nucleophilic allylation of 1a by 5
through a chairlike conformation 15, in which the ethyl group
is pseudoaxial to avoid unfavorable interactions with the
cyclooctadiene ligand,[8c,22] gives 16.[23] Finally, protonolysis of
16 with HX (X = Cl, F, or OiPr) releases the product 3a and
regenerates 10. The minor regioisomer 4a is the result of
allylation of 1a with allylrhodium species 6.

Support for this mechanism was provided by the reaction
of aldimine 1 b, allyltrifluoroborate 2c (1.5 equiv), and ethyl
sorbate (17, 1.5 equiv), using [{Rh(C2H4)2Cl}2] as a precatalyst
[Eq. (2)]. This reaction gave mostly unreacted 1b and 17,
along with unidentified products resulting from decomposi-
tion of 2c. However, by HPLC-MS, small quantities of the
expected product 3 l derived from allyltrifluoroborate 2c
(0.4% yield), the crossover product 3a derived from ethyl
sorbate (17, 3.4% yield), and a,b,g,d-unsaturated benzyl ester
18 (2.7% yield) were also detected.[13]

Presumably, the initial catalytic species in this reaction is
a complex of rhodium and ethyl sorbate (17), possibly the s-
cis-h4 complex 19, which reacts with 2c according to the
mechanism shown in Scheme 6 to give the rhodium hydride
20 (Scheme 7). Hydrorhodation of the a,b,g,d-unsaturated

benzyl ester would give allylrhodium species 21, which reacts
with 1b to give the expected product 3 l. Alternatively,
a structural reorganization of 20 could give 22, which can then
undergo hydrorhodation of ethyl sorbate to give allylrhodium
species 5 and the crossover product 3a.

In summary, we have reported the chain walking of
allylrhodium species derived from d-trifluoroboryl b,g-unsa-
turated esters during the rhodium-catalyzed nucleophilic
allylation of imines, which gives products with two new
stereocenters and a Z-alkene. Enantioselective catalysis is
possible using a chiral diene ligand, where a strong matched/
mismatched effect was observed. Further exploration of this
new mode of reactivity is underway in our laboratories.
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