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With the widespread use of machine learning to support decision-making, it is increasingly important to
verify and understand the reasons why a particular output is produced. Although post-training feature
importance approaches assist this interpretation, there is an overall lack of consensus regarding how fea-
ture importance should be quantified, making explanations of model predictions unreliable. In addition,
many of these explanations depend on the specific machine learning approach employed and on the sub-
set of data used when calculating feature importance. A possible solution to improve the reliability of
explanations is to combine results from multiple feature importance quantifiers from different machine
learning approaches coupled with re-sampling. Current state-of-the-art ensemble feature importance
fusion uses crisp techniques to fuse results from different approaches. There is, however, significant loss
of information as these approaches are not context-aware and reduce several quantifiers to a single crisp
output. More importantly, their representation of ‘‘importance” as coefficients may be difficult to com-
prehend by end-users and decision makers. Here we show how the use of fuzzy data fusion methods
can overcome some of the important limitations of crisp fusion methods by making the importance of
features easily understandable.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The growing application of machine learning (ML) to a rapidly
increasing number of important applications has resulted in
sophisticated and effective solutions with little to no human inter-
vention. As the complexity of these ML models increases, however,
understanding why and how decisions are made is important yet
challenging. For safety–critical systems, understanding how ML
outputs are generated is especially important for model verifica-
tion, regulatory compliance [1], elucidation of ethical concerns,
trustworthiness [2], model diagnostics [3–7] and design of the next
generation of intelligent machines, amongst many other applica-
tions. One way to explain ML models outputs is by post-training
analysis, such as feature importance (FI) analysis. FI estimates
the contribution of each feature (independent parameter) to the
model output [8,4]. Using FI to understand how decisions are made
aids the establishment of true causality between important data
attributes and outcomes in model inference [6,9]. In interdisci-
plinary contexts, where ML researchers work with other domain
experts, robust identification of important variables and their
influence on ML model outputs facilitates expert validation of the
domain-specific processes being modelled [10]. The elucidation
of mechanistic processes linking the features to the outputs can
validate results and lead to confidence in the model [11–13],
acceptance, and reassurance of a fair intelligent tool being imple-
mented [14,15]; or reveal biases in data or model training and
establish new requirements for model refinement.

The wide availability of ML algorithms and diversity of FI tech-
niques complicates model selection, FI approaches used, reliability
of interpretation of results from a given ML method coupled to a FI
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approach, and data representativeness. Different ML models may
generate different FI values due to variations in their learning algo-
rithms. Similarly, different FI techniques may produce different
importances with the same ML algorithms or training data. For
example, models that can adequately map the input to output rela-
tionships using linear functions can generate clear FIs, while for
relationships that are significantly nonlinear, FI can be a local,
context-dependent property of the response surface. To add to
the complication, some FI methods are model-agnostic, while
others are model-specific.

To address these uncertainties in FI, Rengasamy et al. [4] pro-
posed an ensemble feature importance (EFI) method. Here, multi-
ple FI approaches are applied to a set of ML models and their
crisp importance values are combined to produce a final impor-
tance for each feature. This resulted in more robust and accurate
analysis (15% less FI error) of synthetic data sets compared to the
use of a single ML and FI. However, their study had sampling lim-
itations (train-test split) that prevented a comprehensive explo-
ration of the feature space and feature causality. Furthermore,
they ignored the fact that the ensemble FI values contain signifi-
cantly more information than that captured by crisp values. Most
importantly, representation of FI as crisp coefficients can be diffi-
cult to understand or interpret for decision making.

To overcome those limitations, we propose a novel Fuzzy infor-
mation fusion method known as FEFI (Fuzzy Ensemble Feature
Importance) that captures and models the variance of different
ML methods and FI techniques used to generate FI and data space
representation. It transforms and combines the crisp importance
values for each feature from different ML models using Fuzzy Sets
(FSs) [16] into ‘low’, ‘moderate’ and ‘high’ categories of importance.
FEFI outputs three sets of membership functions (MFs) [16]
determining:

1. for each ML approach, what is the range of low, moderate and
high importance in the feature set after training;

2. for each feature, its low, moderate and high importance relative
to the other features in the data for each ML approach;

3. for each feature, its low, moderate, high importance after train-
ing and after combining with importances from multiple ML
approaches.

The sets of MFs are obtained from the FI coefficients generated
by applying multiple (ML, FI) combinations to the dataset using
resampling (e.g., by cross-validation). This allows the variance
between the ML models, FI techniques and data to be modelled
as FSs, where ‘low’, ‘moderate’ and ‘high’ are the linguistic labels
representing the relative importance of a feature. The Wang-
Mendel [17] approach is employed to learn the rules that map
the set of FI values to the final description of importance. Lastly,
the Mamdani inference approach [18] is used to combine the FI
terms generated by the MFs, using rules generated by Wang-
Mendel, to produce a final description of feature importance that
is easy to interpret for decision-making.
2. Background

2.1. Problem statement

Interpretation of feature importance in linear models is rela-
tively straightforward. The regression coefficients for each feature
in a multiple linear regression model (or generalised linear model)
describe the magnitude and sign of their effect on the dependent
variable. The importance of each feature is a global and invariant
property across the model response surface (which consists of a
set of linear hyperplanes). However, for MLmodels that exhibit sig-
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nificant non-linearity, the response surface is curved. This compli-
cates the interpretation of feature importance because these are
now local rather than global properties.

Estimating the importance of features in ML predictive analytics
is currently very unreliable. Different ML models, FI techniques,
and subsets of data generate different importance coefficients,
often with diverse magnitudes, for the same features [4]. These
uncertainties in identifying the contribution of features to ML out-
puts are due to:

1. For nonlinear response surfaces (the multidimensional surfaces
encoded by trained MLmodels), the FI depends on which part of
the response surface is interrogated. The variation in feature
gradients from one position to another is a result of the nonlin-
ear behaviour of real-world systems. This variation means that
for nonlinear models, the FI is not fixed, but is context depen-
dent. Sensible choices for the part of the response surfaces at
which to evaluate FI are typical local or global minima or max-
ima in the response variable, depending on what type of opti-
mum is relevant.

2. The variance due to the characteristics of the learning process of
ML models. For example, random forests [19] combine the out-
puts of decision trees at the end of the training process while
gradient boosting machines [20] combine them at the start of
the process. Although random forest and gradient boosting
machines are tree-based methods that use impurity-based
methods to calculate feature importance, the final feature
importances for two ML methods will differ due to their varia-
tions in training algorithms.

3. Differences in how FI is calculated and interpreted by FI tech-
niques. For instance, certain approaches, such as permutation
importance (PI) [21] investigate how each feature affects the
model response individually. Here, PI shuffles the instance val-
ues for a particular feature, while maintaining the original val-
ues for the remaining features. The feature with shuffled
instances is considered important if the model’s performance
decreases. Other approaches, however, investigate the impor-
tance of the feature both individually and in synergy with other
subsets of features. For example, SHapley Addictive exPlana-
tions (SHAP) [22] calculates the contribution of features for
every possible combination of the feature set investigated.

4. FI coefficients in general being calculated as the average (or
weighted average) of the importance of a feature within a data
sample. Information about the context (or data subspace) in
which a feature has higher or lower importance during training
is lost.

2.2. Related work

Earlier ensemble FI strategies for ML models focused on com-
bining the importance of features from multiple decision trees.
For example, Breiman [19] used the Gini impurity metric across
decision trees to calculate feature importance. Subsequently, De
Bock et al. [23] extended the idea of feature-importance fusion
from multiple weak learners to generalised additive models
(GAM). Here, each weak learner undergoes permutation impor-
tance (PI) to calculate FI and the learners results are averaged. Zhai
and Chen [24] improved ensemble FI by using multiple ML models
and gains in gini importance defining the final FI. Rengasamy et al.
[4], proposed a model agnostic ensemble FI framework to improve
FI quantification using multiple models and multiple FI calculation
methods. They studied several crisp fusion metrics such as mean,
median, majority vote, rank correlation, combination with majority
vote, and modified Thompson tau test. Majority voting produced
the best overall results for several synthetic datasets. They showed
that this ensemble of FI techniques, coupled with multiple ML
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approaches, produced more robust importance compared to single
FI methods. This framework has been used to identify features rel-
evant to the creep rate of additive manufactured materials [25].
2.3. Limitations of existing methods

These single or multiple FI techniques suffer from several limi-
tations. They have limited interpretability; the methods and out-
puts are difficult for domain experts to understand. For example,
what does a final FI coefficient of 0.76 mean (is it a good high value,
or a low value)? The value obtained also depends on the FI method
adopted and those that are not model agnostic also depend on the
specific ML model(s) employed. Use of crisp fusion can also result
in significant loss of information as data subspaces and gradients
are not adequately explored because of the way training/test sam-
pling is conducted. Additionally, crisp ensembles like majority vot-
ing discard extreme values of FI which, for safety critical systems,
should not be disregarded. Finally, there is a paucity of literature
that explores data sampling for FI. Using solely training or test sets
for FI leads to loss of importance information, as fewer combina-
tions of data instances are investigated. Here, we show how these
limitations can be alleviated using a fuzzy logic approach for rep-
resentation of importance. This accounts for multiple levels of
uncertainty, whilst simultaneously simplifying interpretation of
results. Fuzzy logic defines data/context-dependent intervals of
importance that make it easier to identify data regions where spec-
ified features have high or low importance for decision making.
This level of interpretation granularity will accelerate data-driven
intelligent research and decisions by identifying critical data
instances that enhance prognosis and health management, manu-
facturing, medicine and design of new materials.
3. Methods

3.1. Fuzzy ensemble feature importance

Our approach uses an ensemble of ML models coupled with
multiple FI techniques to generate a large dataset of FI values. This
dataset is analysed by a fuzzy logic (FL) system that specifies, for
each ML and for each feature, low, moderate, or high importance.
A flowchart of our framework is shown in Fig. 1 and the four stages
in the framework are described in detail in the following sections.
3.1.1. Data pre-processing
The data is pre-processed to manage missing values and out-

liers, identify relevant features, and to perform data normalisation.
Feature reduction, engineering, or selection can be used to remove
redundant, low variance, and less relevant features, reducing noise
in the data. The pre-processed data are subsequently transformed
to a format suitable for training the ML models.

The pre-processed data is partitioned into k equally sized sub-
sets for model training using k-fold cross validation [26] or any
other type of bootstrapping. In each training step, 1 subset is held
out and the remaining k-1 subsets are used to train the model. The
training process is repeated k times, holding out a different subset
each time. The k models that result allows the variance in feature
gradients and feature contributions to be calculated.
3.1.2. Machine learning predictions
An ensemble of models is generated using n different ML algo-

rithms, each algorithm being trained k times on the partitioned
subsets of data. It is important to note that the framework can
be extended to include any type of ML method and model-
agnostic feature importance technique. This produces k * n trained
165
models. We optimise hyperparameters to ensure that the most
accurate models are obtained for the specified problem.

3.1.3. Feature importance
Each trained model employs a subset of j FI techniques and a

validation data subset to produce a large set of FI coefficients for
each feature and importance method (see Fig. 2). The dataset of
FI coefficients encompasses the variance in the learning character-
istics and performance of ML approaches, the variance in calculat-
ing importance by the various FI techniques, and the variance of
feature contributions in the data.

3.1.4. Fuzzy interpretation
Here, we generate MFs and inference rules from the data

obtained from stage 3. These elucidate whether a feature is of
low, moderate, or high importance for each ML method used and
how important a feature is after fusing importances from the dif-
ferent approaches.

(a) Generating membership functions: The data set of FI coeffi-
cients is normalised to the same scale to ensure unbiased and con-
sistent representation of importance. ML MFs are generated using
the FI coefficients from each ML method (i.e. each ‘Model’ column
in Fig. 2 will produce a MF), representing the range of importance
in the feature set. Feature MFs are generated by combining the ML
MFs for each feature (each ‘Feature’ row and each ‘Model’ column
will produce MFs) using the minimum (min) and maximum (max)
operators. The min operator combines the lower bounds of the MFs
and the max operator combines the upper bounds. The feature MFs
represent how important a feature is relative to other features for
each ML method. The output MF (final importance MF) is gener-
ated by mapping the FI terms obtained from the MLMFs of the pre-
dicted FI values to the ML MFs of the actual (ground truth) FI
coefficients for the entire feature set. The output MF presents the
final importance of features after combining their importance from
the different ML approaches. The MFs (ML, feature, and output
MFs) consist of the linguistic fuzzy sets (FSs) ‘low’, ‘moderate’ or
‘high’ importance obtained from boxplot distributions of the FI
coefficients, as proposed by Mase et al. [5]. The five class summary
(minimum (min), first quartile (Q1), median (Q2), third quartile
(Q3) and maximum (max)) from the boxplot distribution are used
to construct the MFs. We use Z and S-MFs for ‘low’ and ‘high’ FSs
as they are most suitable for representing the extreme boundaries
with maximum degrees or likelihood of membership. For instance,
we expect a feature’s importance coefficient of 0 to be in the ‘low’
FS with a degree of 1 (maximum likelihood) and an importance
coefficient of 1 to be in the ‘high’ FS with a degree of 1. The Z-
MF is generated using the minimum and median values of the dis-
tribution and the S-MF employs the median and maximum values.
For ‘moderate’ FS, we use Triangular MFs as the most efficient way
to represent intermediate FSs for our problem. We use first quar-
tile, median and third quartile values to construct triangular-MFs.

Fig. 3 shows an example of MFs generated from a boxplot distri-
bution. Fig. 3(a) represents the distribution of importance coeffi-
cients for the Gradient Boost approach after training several
models on different data samples and applying suitable FI tech-
niques on the trained models as described in Stages 2 and 3
(Fig. 1). Using the five-summary values of the boxplot (min = 0,
Q1=0, Q2=0.18, Q3=0.7 and max = 1), we obtain the MFs in Fig. 3
(b). ‘low’ MF = Z(0, 0.18), ‘moderate’ MF = triangular (0, 0.18,
0.7) and ‘high’ MF = S(0.18, 1). The MFs provide a clear represen-
tation of the range and variation of importance coefficients in the
low, moderate and high categories. For example, the low category
in Fig. 3(b) consists of importance coefficients from 0 to 0.18, a
lower variation of values compared to moderate and high cate-
gories as shown by its narrow support (range).(b) Fuzzy rule gen-
eration: After developing the MFs, we employ the Wang-Mendel



Fig. 1. The fuzzy feature importance framework.

Fig. 2. Data from Stage 3.

Fig. 3. Membership functions generated from boxplot distribution: a) boxplot distribution of importance values, and b) extracted MFs using our boxplot data-driven
approach.
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[17] approach to learn rules that map the FI coefficients from the
different ML approaches (inputs) to the final description of impor-
tance (output). The Wang-Mendel is most applicable for ground
truth data as it uses a supervised learning approach to capture
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the appropriate mappings between the inputs and output. How-
ever, it is important to present other available unsupervised and
supervised rule generation methods, such as fuzzy C-means
Wang-Mendel [27], mountain clustering [28], fuzzy decision trees



Table 1
An illustration of conflicting rules with different rule weights (i.e. Rules 2 and 5).

Rule
No

Rule Description Weight

1 IF ML1 is ‘low’ and ML2 is ‘low’ and MLn is ‘low’ THEN
Output is ‘low’

5

2 IF ML1 is ‘high’ and ML2 is ‘high’ and MLn is ‘high’ THEN
Output is ‘high’

5

3 IFML1 is ‘moderate’ andML2 is ‘moderate’ and isMLn ‘low’
THEN Output is ‘low’

4

4 IF ML1 is ‘moderate’ and ML2 is ‘moderate’ and MLn is
‘high’ THEN Output is ‘high’

4

5 IF ML1 is ‘high’ and ML2 is ‘high’ and MLn is ‘high’ THEN
Output is ‘moderate’

2
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[29] and genetic algorithms [30]. Using the data structure in Fig. 2,
each feature i has a ground truth importance coefficient, and each
feature sample k has a set of FI coefficients obtained by applying
multiple (ML, FI) pairs. For example, feature 1 - sample 1 in
Fig. 2 will produce the following input–output pairs:

ðFI1;1ML1
; FI1;1ML2

; FI1;1MLn ; y1Þ;

ðFI1;2ML2
; FI1;2MLn ; y1Þ;

..

. ..
.

ðFI1;jMLn ; y1Þ;

ð1Þ

where (FI1;1ML1
) denotes the corresponding importance coefficient of

Feature 1 obtained from ML model 1 and FI method 1 and y1

denotes the ground truth importance coefficient for Feature 1. Each
input–output pair is assigned to the corresponding ML and output
MFs to produce the rules and the number of occurrences of each
rule (weight). The rules show mappings of FI terms obtained from
the different ML models to the final FI description, while the rule
weights are utilised to implement a rule reduction procedure for
conflicting rules. For example, Table 1 shows sample rules to
demonstrate how conflicting rules could be resolved using rule
weights. We observe that rule 2 and rule 5 are in conflict, with
weights 5 and 2 respectively. We eliminate rule 5 as it has a smaller
weight. Other rule reduction procedures, such as evidence combina-
tional models [31] may be applied in this stage. The rules could be
further improved by domain experts due to their simple linguistic
representation. For a more elaborate description of the Wang-
Mendel rule generation method, please refer [17,31].

(c) Fuzzy inference system: The rules utilised during inference
fuse the importance of a feature from multiple ML approaches to
obtain a final importance (low, moderate, high). To achieve this,
we employ the Mamdani inference technique [18], a rule-based
fuzzy inference method. The technique converts FI coefficients into
FSs (fuzzification) using the MFs generated in Stage 4 (a), computes
rule strengths, and uses these to estimate feature importance as
low, moderate, or high. The rule strengths are computed using
‘AND’ (minimum of membership degrees), ‘OR’ (maximum of
membership degrees) and ‘NOT’ (1 minus membership degree)
[32]. We use the following sample rule to illustrate the calculation
of rule strengths and final FI importance:

Rule 1: IF ML1 is ’low’ AND ML2 is ’low’ AND MLnis ’low’ THEN
Output is ’low’

Assume ML1;ML2;MLn have the MFs found in Fig. 4 and the FI
coefficients produced for feature 1 by ML1 is 0.1, ML2 is 0.2, and
MLn is 0.1 using FI Method 1. The fuzzification process produces
the following degrees of membership for the FSs in Rule 1 (as
shown in Fig. 5):

ML1ðlowÞ for 0:1 ¼ 0:1
ML2ðlowÞ for 0:2 ¼ 0:7
MLnðlowÞ for 0:1 ¼ 0:7

Using the rule operators in Rule 1 (AND), we obtain the rule
strength = ML1(low) AND ML2(low) AND MLn = min[0.1, 0.7, 0.7]
= 0.1.

The final step in the Mamdani inference method is to aggre-
gate rule strengths of the entire rule set produced by the rule
generation method. This is achieved by finding the maximum rule
strength [18] for rules with similar output FSs (e.g. the ‘THEN’
part of rules). The aggregated rule strengths represent the likeli-
hood of the final FI belonging a specific category. For example,
if the data from Stage 3 of the framework produce six rules with
the following rule strengths and output FS for the FI coefficients
of feature 1:
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Rule1 : Strength ¼ 0:1; Output ¼ low

Rule2 : Strength ¼ 0; Output ¼ low

Rule3 : Strength ¼ 0:2; Output ¼ moderate
Rule4 : Strength ¼ 0:1; Output ¼ moderate

Rule5 : Strength ¼ 0:5; Output ¼ high

Rule6 : Strength ¼ 0:8; Output ¼ high

The final FI of feature 1 using the above rules is:

� max(0.1,0.0)=10% likelihood of low importance
� max(0.2,0.1)=20% likelihood of moderate importance
� max(0.5,0.6)=60% likelihood of high importance

3.2. Data generation

We validate our approach using synthetic data described by
Rengasamy et al. [4], as it allows us to verify the efficacy of feature
importance produced by FEFI against the ground truth. Nine data-
sets are used for regression, with 2000 instances and different
number of features, feature informative levels, feature noise levels,
or feature interaction levels. Feature informative levels affects the
percentage of features contributing to the output data. For exam-
ple, for ten features with 50% feature informative levels indicates
that five features affects the data output while the remaining five
features is independent of the output. Subsequently, the noise
levels in features are adjusted using the Gaussian noise standard
deviation. Larger values push feature values further from the aver-
age, decreasing Signal=Noise ratios. Feature interaction strengths
are an additional characteristic not investigated by Rengasamy
et al. Feature interaction levels of data determines the strength of
interaction between features. It can be varied by changing the
effective rank of the matrix, i.e., the maximum number of linearly
independent features in a matrix. If a matrix has three columns
(features) and the first two columns are linearly independent, the
matrix has a rank of at least 2. The feature matrix ranks are gener-
ated by the make_regression function in Python scikit-learn
library [33]. Fig. 6 shows the correlation matrix for the three data-
sets with fully independent features compared to those with highly
correlated features. The correlation between features is calculated
using Pearson correlation.

Additionally, different feature interaction intensities are added
to each dataset, as illustrated in Fig. 7. Feature interaction occurs
when a feature affects one or more features, making it difficult to
discern its actual FI. The interaction effect between pairs of fea-
tures is calculated using Friedman’s H statistics [34]. Table 3 shows
summary of different datasets tested in this paper. The dataset’s
properties are altered one at a time.

We use partial dependence plots (PDPs) to analyse and illus-
trate the relationship between the features and output. It shows
that for high feature interaction strengths the output response sur-



Fig. 4. Sample membership functions for FI coefficients produced by ML approaches.

Fig. 5. Fuzzification of FI coefficients using Rule 1 and ML membership functions in Fig. .4.

Fig. 6. Pearson correlation matrix for datasets with different interaction strength between ten synthetic features investigated, labelled from A to J.

Fig. 7. Interaction strength between pairs of features for each of the three datasets.
The x-axis denotes the feature pairs with the top 10 highest interaction from each of
the datasets.

Table 3
Datasets with different feature interaction intensities,
number of features, features informative level, and noise’s
standard deviation tested in the FEFI framework.

Dataset properties Values of properties

Number of features 10, 30, 50
Feature interaction Low, Medium, High
Features informative level 20%, 50%, 90%
Noise’s standard deviation 0.5, 2.0, 5.0
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face may not be linear. The PDPs show the marginal influence of
one or two combined features on the output using Monte Carlo
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method across the dataset [20]. The PDP in Fig. 8 illustrates the
non-linear relationship between two features and the output in a
high interactive region of the dataset.

3.3. Machine learning methods selection and configurations

Five ML methods were implemented: random forest (RF), gradi-
ent boost (GB), extra trees (ET), support vector regression (SVR),
multiLayer perceptron (MLP). Three FI methods: PI, SHAP, and Gini
Importance are used. Diverse ML and FI techniques are chosen to
show the benefit of FEFI in modelling the uncertainties in FI due



Fig. 8. The partial dependence plot of two features on the output. The left and the center plot shows the respective partial dependence of the respective feature to output. The
right plot shows the combined response on the output for the two features.

Table 4
Hyperparameters for each of the machine learning approaches employed to test the
Fuzzy Ensemble Feature Importance (FEFI) framework.

ML Approaches Hyperparameters Values

Gradient Boosting Regressor Loss Least squares
Learning rate 0.1
Number of boosting stages 50
Splitting criterion Friedman MSE
Minimum samples to split 2
Maximum depth 3

Random Forest Regressor Number of Trees 50
Max depth None
Splitting Criterion MSE
Minimum samples to split 2
Bootstrap True

Extra Trees Regressor Number of Trees 50
Max depth None
Splitting Criterion MSE
Minimum samples to split 2
Bootstrap False

Support Vector Regressor Kernel Linear
Tolerance 0.001
Regularisation 1.0
Epsilon 0.1

MultiLayer Perceptron Hidden Layer Size 50
Activation function ReLU
Optimiser Adam
L2 Regulariser 0.0001
Learning Rate 0.001

Table 2
Datasets with different feature interaction, number of features, features informative
level, and noise’s standard deviation (std) tested on the proposed Fuzzy Ensemble
Feature Importance methods.
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to differences in learning and FI identification characteristics. The
hyperparameters for each ML method are shown in Table 4.

3.4. Evaluation metrics

The FEFI approach is evaluated and compared to mean and
majority vote EFI using 4 different data properties: features inter-
action, number of features, features informative level, and noise
level of features. The mean absolute error (MAE) and root mean
squared error (RMSE) metrics compared these properties to the
ground truth feature importance. Three of the four data properties,
except feature interaction were tested by Rengasamy et al. [4].
Each data property was further split into 3 different subsets: train-
ing; test; and whole (train + test) set for feature importance quan-
tification and comparisons between mean EFI, majority vote EFI,
and FEFI.

4. Results and discussion

4.1. Results

Here we compare the results of FEFI to the best crisp fusion
strategies from Rengasamy et al. [4]; the mean and majority vote
across the different datasets shown in the Experimental design sec-
tion (Table 2). Majority vote crisp strategy first ranks features
based on their importance coefficients produced by each ML model
and FI technique. Later, it averages the coefficients in the most
common ranks for each feature. For example, if a feature has the
set of ranks (1,2,1,3) amongst 10 features for coefficients produced
by 4 ML models, the final importance of the feature will be the
average of the coefficients with the rank equals to 1 as it is the
most common rank in the set of ranks. The mean crisp strategy
simply averages the importance coefficients for each feature pro-
duced by the ML models and FI techniques.

Table 5 shows the errors in calculating the final FI using the dif-
ferent fusion strategies as the number of features in the data
increases (datasets 1, 2 and 3 in Table 2). Increasing the number
of data features with a 90% feature informative level made it more
difficult for crisp strategies to quantify feature importance. This is
illustrated by the significant increase in FI errors from 10 to 30 fea-
tures [p-value < 0.001 for all data subsets] and from 10 to 50 fea-
169



Table 5
MAE and RMSE comparison between three different frameworks for feature importance fusion/ensemble: (1) Mean, (2) Majority Vote, (3) FEFI on three datasets with different
number of features using three data subsets (best performance in bold).

Number of features Mean (crisp) Majority Vote (crisp) FEFI
Data subset MAE RMSE MAE RMSE MAE RMSE

Dataset 1: 10 Whole 0.146 0.168 0.124 0.143 0.148 0.181
Train 0.146 0.168 0.124 0.143 0.126 0.156
Test 0.154 0.181 0.128 0.153 0.135 0.169

Dataset 2: 30 Whole 0.379 0.435 0.397 0.454 0.107 0.133
Train 0.379 0.434 0.397 0.454 0.109 0.135
Test 0.377 0.433 0.398 0.455 0.117 0.148

Dataset 3: 50 Whole 0.297 0.365 0.293 0.360 0.128 0.155
Train 0.298 0.365 0.294 0.361 0.131 0.155
Test 0.286 0.354 0.284 0.351 0.128 0.155
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tures [p-value < 0.001 for all data subsets]. This is due to the inef-
ficiency of crisp methods in capturing the increased variation of FI
coefficients produced by additional features. In contrast, FEFI
exhibited no significant differences in FI errors for different num-
ber of features [p-value > 0.1 for all data subsets] and significantly
lower FI errors with 30 and 50 data features compared to the crisp
mean and majority vote [p-value < 0.001 for all data subsets]. This
indicates that FEFI efficiently captures the increased FI uncertainty
caused by extra number of features compared to the crisp
strategies.

Table 6 shows errors in calculating final FI as the interactions
between features in the data increase (datasets 1, 4 and 5 in
Table 2). As with the number of features, there is a significant
increase in errors for mean and majority vote fusion strategies
when the interactions between data features increase from low
to moderate [p-value<0.05 for all data subsets] and from low to
high interaction [p-value<0.02 for all data subsets]. However,
Table 6
MAE and RMSE comparison between three different frameworks for feature importance
interaction level using three data subsets (best performance in bold).

Interaction level Mean (crisp)
Data subset MAE RMSE

Dataset 1: Low Whole 0.146 0.168
Train 0.146 0.168
Test 0.154 0.181

Dataset 4: Medium Whole 0.203 0.248
Train 0.203 0.249
Test 0.202 0.251

Dataset 5: High Whole 0.222 0.288
Train 0.222 0.288
Test 0.223 0.291

Table 7
MAE and RMSE comparison between three different frameworks for feature importance
informative level using three different subsets of data (best performance in bold).

Informative level Mean (crisp)
Data subset MAE RMSE

Dataset 6: 20% Whole 0.008 0.011
Train 0.008 0.011
Test 0.010 0.012

Dataset 7: 50% Whole 0.078 0.101
Train 0.079 0.102
Test 0.093 0.134

Dataset 1: 90% Whole 0.146 0.168
Train 0.146 0.168
Test 0.154 0.181
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there is no significant increase in errors from medium to high fea-
ture interaction [p>0.05 for all data subsets]. For FEFI, we again
observe no significant difference in FI errors for different levels of
feature interaction [p>0.1 for all data subsets] and significantly
lowers FI errors for medium and high feature interaction levels
compared to mean and majority vote [p<0.001 for all data sub-
sets]. Again, this indicates that the fuzzy approach efficiently cap-
tures the increased variation of FI coefficients caused by higher
feature interactions compared to the crisp strategies.

Table 7 presents the FI errors obtained from the different fusion
strategies as the informative level of features increases i.e. datasets
1, 6 and 7 in Table 2. We observe a significant rise in FI errors for
mean and majority vote ensembles as feature informative levels
increase from 20% to 50% [p<0.001 for all data subsets], 20% to
90% [p<0.0001 for all data subsets] and 50% to 90%[p<0.005 for
all data subsets]. This means the variation between the calculated
FI coefficients increases as the informative level of features
fusion/ensemble: (1) Mean, (2) Majority Vote, (3) FEFI on three different features

Majority Vote (crisp) FEFI
MAE RMSE MAE RMSE

0.124 0.143 0.148 0.181
0.124 0.143 0.126 0.156
0.128 0.153 0.135 0.169

0.220 0.275 0.141 0.189
0.221 0.276 0.135 0.179
0.216 0.273 0.148 0.188

0.249 0.314 0.125 0.164
0.250 0.315 0.139 0.177
0.226 0.288 0.144 0.180

fusion/ensemble: (1) Mean, (2) Majority Vote, (3) FEFI on three different features

Majority Vote (crisp) FEFI
MAE RMSE MAE RMSE

0.007 0.009 0.078 0.177
0.007 0.009 0.084 0.178
0.008 0.010 0.078 0.178

0.061 0.086 0.111 0.164
0.062 0.088 0.099 0.144
0.078 0.121 0.111 0.164

0.124 0.143 0.148 0.181
0.124 0.143 0.126 0.156
0.128 0.153 0.135 0.169
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increases. However, this increase in the variation of FI coefficients
caused by an increase in feature informative levels is not signifi-
cant compared to the increase caused by feature numbers, noise
and feature interaction levels. This can be observed in the inferior
performance of FEFI for all three informative levels compared to
the crisp fusion methods. Therefore, crisp fusion strategies that
produce clear-cut decision boundaries become superior to fuzzy
approaches when the importance of features is distinct. Nonethe-
less, the results for FEFI show no significant increase in FI errors
as feature informative levels increase from 20% to 50% [p>0.1 for
all data subsets], 20% to 90% [p>0.01 for all data subsets] and
50% to 90%[p>0.05 for all data subsets]. This implies FEFI shows
better performance in capturing increased FI variation produced
by an increase in feature informative level.

Table 8 illustrates the errors obtained from calculating the final
FI as the level of noise in data increases from 0.5 noise standard
deviation to 2.0 and 5.0 (datasets 1, 8 and 9 in Table 2). We observe
no significant difference in FI errors for mean, majority vote and
FEFI fusion strategies as the noise standard deviation increases
Table 8
MAE and RMSE comparison between three different frameworks for feature importance fu
levels using three different subsets of data (best performance in bold).

Noise’s Standard Deviation Mean (crisp)
Data subset MAE R

Dataset 1: 0.5 Whole 0.146 0
Train 0.146 0
Test 0.154 0

Dataset 8: 2.0 Whole 0.150 0
Train 0.150 0
Test 0.165 0

Dataset 9: 5.0 Whole 0.151 0
Train 0.150 0
Test 0.164 0

Fig. 9. Membership functions of ML approaches generated from Dataset 1 sh
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from 0.5 to 2.0 [p-value>0.5 for all data subsets], 0.5 to 5.0
[p>0.5 for all data subsets] and 2.0 to 0.5 [p-value>0.9 for all data
subsets]. This means the variation or uncertainty of FI coefficients
is not affected by changes of the level of noise in the data. How-
ever, FEFI produces a significantly lower FI error compared to the
crisp mean and majority vote when the noise standard deviation
is 5.0 [p<0.05 for whole and test subsets]. This is because of its
capability to effectively capture noise in data using its MFs.

In summary, the results show that our fuzzy FI fusion approach
outperforms mean and majority vote feature importance fusion
methods in capturing increased variation of FI coefficients caused
by increased data dimensionality, complexity and noise. This is
because FEFI explores the data space more thoroughly as it uses
multiple samples of data to make decisions about the importance
of features. It also uses distributions of the data to provide better
definitions of FI and soft boundaries to capture the intermediate
uncertainties of FI classification.

Finally, it is important to mention that majority vote generates
apparently lower errors compared to FEFI for 10 features, low fea-
sion/ensemble: (1) Mean, (2) Majority Vote, (3) FEFI on three different features noise

Majority Vote (crisp) FEFI
MSE MAE RMSE MAE RMSE

.168 0.124 0.143 0.148 0.181

.168 0.124 0.143 0.126 0.156

.181 0.128 0.153 0.135 0.169

.170 0.150 0.169 0.125 0.152

.171 0.152 0.169 0.133 0.180

.195 0.163 0.200 0.131 0.161

.173 0.155 0.180 0.117 0.137

.172 0.151 0.171 0.131 0.168

.195 0.165 0.197 0.117 0.137

owing different interpretations of importance for the same FI coefficient.
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ture interaction level, 0.5 noise standard deviation, 20%, 50% and
90% informative levels. However, the difference in errors is not sta-
tistically significant [p>0.05 for all data subsets] except for 20%
and 50% feature informative levels where p<0.001.
4.2. Discussion

We now discuss the interpretability, advantages and limitations
of FEFI in determining importance of features. FEFI provides clear
and accurate interpretation of feature contribution to different
ML model outcomes using the ML MFs. For example, Fig. 9 shows
different interpretations for the same FI coefficient (0.2) by the
MFs generated from dataset 1 (refer dataset description in Table 2)
for GB, RF, SVR, and MLP. We observe that a FI coefficient of 0.2 has
a 70% likelihood of low importance for SVR and a 75% likelihood of
low importance for MLP, similar to what we would expect for a
coefficient close to 0. However, for GB and RF, a coefficient of 0.2
has a high likelihood of moderate importance and no likelihood
of low importance i.e. 90% likelihood of moderate importance for
GB and 85% for RF. Therefore, without the generation of these
MFs, the interpretation of the coefficients produced by the differ-
ent ML approaches will be misleading. In addition, Fig. 9 supports
our use of an ensemble of diverse ML approaches to complement
outputs. We observe different MF representations for the different
ML approaches but similar MFs for approaches with similar learn-
ing characteristics. For example, the low importance FS for GB is
very narrow compared SVR and MLP but very similar to that of
RF due to similar tree-based learning process.
Fig. 10. An example of the final importance of a feature after fusing the importance
coefficients obtained from the different ML approaches.

Fig. 11. The same feature having different FI coefficients in different samples of Datase
coefficient of 0.5.

172
FEFI also provides more reliable interpretations of the final FI
for domain experts. Using the output MFs as crisp FI coefficients
produced by fusion strategies may be misleading without context.
For example, Fig. 10 shows the final importance coefficient (0.9)
after fusing the importance obtained from the different ML
approaches. Without context (the output MF), it might be assumed
that 0.9 has a high likelihood of high importance as 0.9 is very close
to 1 (maximum likelihood), whereas, we find that 0.9 has a 40%
likelihood of high importance when the entire feature space is con-
sidered (indicated by the height of the shaded region in Fig. 10).
This context provided by FEFI is important in safety–critical and
medical diagnosis in providing the extent or critical level of a fea-
ture’s contribution to the decision.

Furthermore, FEFI shows great potential as a diagnostic tool in
identifying data subsets with extreme cases of feature importance
(this might be the case of activity cliffs in quantitative structure
activity relationship modelling) or with significant variation of fea-
ture importance (e.g., for significantly nonlinear response surfaces
[35]). This is achieved by producing feature MFs at different data
samples or time steps to investigate the importance of a feature
in the samples. For example, Fig. 11 shows the importance of a fea-
ture generated by different data samples of dataset 1 when PI is
used to calculate the feature’s importance for best performing GB
model. We observe that the feature’s importance coefficient is dif-
ferent in the samples; 0.8 in sample 20 with a 90% likelihood of
high importance and 0.5 in sample 60 with a 30% likelihood of high
importance. Real-world systems can have more extreme cases as
they produce dynamic and multifaceted data where the impor-
tance of a feature may vary in different samples due to interactions
with other features or supplementary data from other data
sources. For example, in healthcare, when multiple sources of data
(patient surveys, clinical trials etc) associated with a heteroge-
neous patient population are merged, features may have different
importance depending on patient stratification.

In real-world systems where the ground truth FI is unavailable,
complete automation is limited using FEFI. This is because devel-
opment of the user-friendly IF/THEN rules requires: interaction
with ML experts based on their experience using ML approaches
and their expectations of the ML performance on the data; a com-
prehensive literature review to find out the rules describing the
generation of FI by the different ML approaches; or the use of
heuristic rule generation methods such as genetic algorithms
[36]. In addition, the number of rules increases exponentially with
an increase in the number of ML approaches, making it difficult for
experts to provide rules and reduces the interpretability of the
rules.
t 1. (a) Sample 20 produces a FI coefficient of 0.8, and (b) Sample 60 produces a FI
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5. Conclusions and future work

This paper introduces a FEFI framework to interpret ensem-
ble of ML methods and FI methods. This is primarily motivated
by the uncertainty and unreliable of post-processing FI methods
along with the ethical implication of untrustworthy output
interpretations. To overcome these issues we proposed a frame-
work that combines ensemble feature importance methods with
fuzzy logic to utilise the distributions of the FI output to pro-
vide better definitions of FI and soft boundaries to capture
the intermediate uncertainties of FI classification. Furthermore,
Fuzzy Systems have the added advantage of explaining the FI
in linguistic term making it easier for non-experts to under-
stand the implication of FI outputs. The combination of robust
uncertainty estimations and simple linguistic representation of
the FI outputs allows users to make informed decisions — this
is especially important for safety critical applications. We
applied the methodology to 9 different synthetic datasets all
with varying level of number of features, feature interaction
strengths, informative level, and noise level. The usage of syn-
thetic datasets allow us to empirically measure the accuracy
of FEFI framework. The results shows that by considering the
uncertainty produced in the multi-ML and multi-FI methods
settings, FEFI was able to produce more accurate FI outputs
compared to crisp mean and majority vote-based ensemble FI
frameworks.

For future work, we intend to evaluate our methodology
using other ML methods such as neural networks with more
complex learning processes and compare our Fuzzy rule-based
approach with Fuzzy integral-based approach, which is also a
promising fuzzy fusion strategy. Additionally, there are multiple
ways of capturing uncertainty in data besides fuzzy logic, such
as Bayesian statistics. A comparison of the framework using
fuzzy logic and Bayesian statistics would provide a greater
insight into which uncertainty estimation method is more suit-
able for providing a more robust and accurate FI interpretation
for the end users.

Lastly, we plan to perform further investigations and evalua-
tions of our approach on real-world datasets. This is important in
revealing insights about the performance of our approach on
real-world scenarios.
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