1 Ticagrelor-Aspirin versus Clopidogrel-Aspirin in *CYP2C19* Loss-of-Function

2 Carriers with Minor Stroke or TIA Stratified by Risk Profile

```
4 Abstract
```

5	Background and Objective: Genotype data of the Clopidogrel with Aspirin in Acute
6	Minor Stroke or Transient Ischemic Attack (CHANCE) trial showed that efficacy of
7	clopidogrel-aspirin depended on CYP2C19 genotype and risk profile. A stratification
8	of patients who carried CYP2C19 loss of function (LOF) alleles according to risk of
9	recurrent stroke may be important for selecting optimal antiplatelet therapy. We aimed
10	to compare the efficacy and safety of ticagrelor-aspirin versus clopidogrel-aspirin in
11	CYP2C19 LOF carriers with minor stroke or transient ischemic attack (TIA) stratified
12	by risk profile.
13	Methods: Data were obtained from Ticagrelor or Clopidogrel with Aspirin in High
14	Risk Patients with Acute Nondisabling Cerebrovascular Events II (CHANCE-2) trial.
15	Low and high risk profiles were defined by Essen Stroke Risk Score (ESRS) (<3 [low
16	risk] and \geq 3 [high risk], respectively).
17	Results: A total of 6,412 CYP2C19 LOF carriers were enrolled, ticagrelor-aspirin
18	was associated with a reduced risk of primary outcome (new stroke within 90-day
19	follow-up) in patients at low risk (hazard ratio [HR], 0.65; 95% confidence interval
20	[CI], 0.48-0.82), but not in those at high risk (HR, 0.97; 95% CI, 0.73-1.29),
21	compared with clopidogrel–aspirin (P =0.02 for interaction). Secondary outcomes
22	generally went in the same direction as the primary outcome. The primary safety

23	outcome of severe or moderate bleeding did not differ based on risk profile ($P=0.24$
24	for interaction), though the incidence of total bleeding was greater with
25	ticagrelor–aspirin than clopidogrel–aspirin among patients at low risk (P <0.01 for
26	interaction). Analysis in the per-protocol population yielded similar results.
27	Discussion: This post-hoc analysis of CHANCE-2 trial showed that <i>CYP2C19</i> LOF
28	carriers with minor stroke or TIA at low risk of recurrent stroke received a greater
29	benefit from ticagrelor-aspirin than clopidogrel-aspirin.
30	Classification of Evidence: This study provides Class II evidence that CYP2C19
31	LOF carriers with minor stroke or TIA at low risk, but not at high risk, of recurrent
32	stroke (by ESRS score) received a greater benefit from ticagrelor-aspirin than
33	clopidogrel-aspirin.
34	Keywords: CHANCE-2; Stroke; Ticagrelor; Clopidogrel; Essen Stroke Risk Score
35	Clinical trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier:

36 NCT04078737

37 Introduction

Among patients with an acute minor stroke or transient ischemic attack (TIA), the risk 38 of another stroke within 3 months after the initial event is approximately 5 to 10%.¹⁻³ 39 Clinical trials have shown that early initiation of dual antiplatelet therapy with 40 clopidogrel-aspirin compared to aspirin alone significantly reduced the incidence of 41 stroke events during the first 3 months follow-up.^{4, 5} However, clopidogrel is a 42 prodrug requiring conversion into its active metabolite by hepatic cytochrome p450 43 (CYP). Clopidogrel is less effective for the secondary prevention of stroke in carriers 44 45 of CYP2C19 loss-of-function (LOF) alleles, which are presented in 25% of white patients and in 60% of Asian patients.^{6,7} Genotype data from the Clopidogrel with 46 Aspirin in Acute Minor Stroke or Transient Ischemic Attack (CHANCE) trial showed 47 48 that efficacy of clopidogrel-aspirin was further influenced by risk profile assessed by the Essen Stroke Risk Score (ESRS).⁸ The ESRS is an easy-to-use 9-point scale 49 derived and validated from the datasets of large clinical trials, and it can help 50 51 physicians predict the risk of recurrent stroke and cardiovascular events in patients with acute ischemic stroke.^{9, 10} The results of CHANCE trial showed that CYP2C19 52 53 LOF carriers who were at high risk (ESRS≥3) received a greater benefit from clopidogrel-aspirin.⁸ These findings indicated that stratification of patients who 54 carried CYP2C19 LOF alleles according to risk of recurrent stroke may possibly be 55 important for selecting optimal antiplatelet therapy. 56 57

58 The Ticagrelor or Clopidogrel with Aspirin in High Risk Patients with Acute

59	Nondisabling Cerebrovascular Events II (CHANCE-2) ¹¹ trial was conducted among
60	patients with minor stroke or TIA who carried CYP2C19 LOF alleles and showed that
61	the risk of stroke within 90 days was modestly lower with ticagrelor-aspirin than with
62	clopidogrel-aspirin. However, whether the benefit of ticagrelor-aspirin compared
63	with clopidogrel-aspirin for patients who carried CYP2C19 LOF alleles differed by
64	risk profiles remains unascertained. Therefore, our study utilized data from the
65	CHANCE-2 trial to investigate whether the efficacy and safety of ticagrelor-aspirin
66	versus clopidogrel-aspirin therapy were stratified by risk profile assessed using the
67	ESRS in CYP2C19 LOF carriers with minor stroke or TIA.
68	
69	Methods
70	Study Population
70 71	Study Population This study was a post-hoc analysis of the CHANCE-2 trial. The detailed study design
70 71 72	Study Population This study was a post-hoc analysis of the CHANCE-2 trial. The detailed study design of the CHANCE-2 trial has been described elsewhere. ¹² Briefly, the CHANCE-2 trial
70 71 72 73	Study Population This study was a post-hoc analysis of the CHANCE-2 trial. The detailed study design of the CHANCE-2 trial has been described elsewhere. ¹² Briefly, the CHANCE-2 trial is a multicenter, randomized, double-blind, placebo-controlled trial conducted at 202
70 71 72 73 74	Study Population This study was a post-hoc analysis of the CHANCE-2 trial. The detailed study design of the CHANCE-2 trial has been described elsewhere. ¹² Briefly, the CHANCE-2 trial is a multicenter, randomized, double-blind, placebo-controlled trial conducted at 202 centers in China from September 23, 2019 to March 22, 2021. The study was
70 71 72 73 74 75	Study Population This study was a post-hoc analysis of the CHANCE-2 trial. The detailed study design of the CHANCE-2 trial has been described elsewhere. ¹² Briefly, the CHANCE-2 trial is a multicenter, randomized, double-blind, placebo-controlled trial conducted at 202 centers in China from September 23, 2019 to March 22, 2021. The study was designed to compare dual antiplatelet therapy with ticagrelor plus aspirin (placebo
70 71 72 73 74 75 76	Study Population This study was a post-hoc analysis of the CHANCE-2 trial. The detailed study design of the CHANCE-2 trial has been described elsewhere. ¹² Briefly, the CHANCE-2 trial is a multicenter, randomized, double-blind, placebo-controlled trial conducted at 202 centers in China from September 23, 2019 to March 22, 2021. The study was designed to compare dual antiplatelet therapy with ticagrelor plus aspirin (placebo clopidogrel plus a 180 mg loading dose of ticagrelor on day 1, followed by 90 mg
70 71 72 73 74 75 76 77	Study PopulationThis study was a post-hoc analysis of the CHANCE-2 trial. The detailed study designof the CHANCE-2 trial has been described elsewhere. ¹² Briefly, the CHANCE-2 trialis a multicenter, randomized, double-blind, placebo-controlled trial conducted at 202centers in China from September 23, 2019 to March 22, 2021. The study wasdesigned to compare dual antiplatelet therapy with ticagrelor plus aspirin (placeboclopidogrel plus a 180 mg loading dose of ticagrelor on day 1, followed by 90 mgtwice daily on days 2-90) with clopidogrel plus aspirin (placebo ticagrelor plus a 300)
70 71 72 73 74 75 76 77 78	Study Population This study was a post-hoc analysis of the CHANCE-2 trial. The detailed study design of the CHANCE-2 trial has been described elsewhere. ¹² Briefly, the CHANCE-2 trial is a multicenter, randomized, double-blind, placebo-controlled trial conducted at 202 centers in China from September 23, 2019 to March 22, 2021. The study was designed to compare dual antiplatelet therapy with ticagrelor plus aspirin (placebo clopidogrel plus a 180 mg loading dose of ticagrelor on day 1, followed by 90 mg twice daily on days 2-90) with clopidogrel plus aspirin (placebo ticagrelor plus a 300 mg loading dose of clopidogrel on day 1, followed by 75 mg daily on days 2-90)
70 71 72 73 74 75 76 77 78 79	Study Population This study was a post-hoc analysis of the CHANCE-2 trial. The detailed study design of the CHANCE-2 trial has been described elsewhere. ¹² Briefly, the CHANCE-2 trial is a multicenter, randomized, double-blind, placebo-controlled trial conducted at 202 centers in China from September 23, 2019 to March 22, 2021. The study was designed to compare dual antiplatelet therapy with ticagrelor plus aspirin (placebo clopidogrel plus a 180 mg loading dose of ticagrelor on day 1, followed by 90 mg twice daily on days 2-90) with clopidogrel plus aspirin (placebo ticagrelor plus a 300 mg loading dose of clopidogrel on day 1, followed by 75 mg daily on days 2-90) among 6,412 patients with minor stroke or TIA within 24 hours of symptom onset and

83 Risk Stratification by ESRS

84	Based on the baseline information of the CHANCE-2 trial, the ESRS was calculated
85	for all patients at the time of admission: 2 points for age >75 years and 1 point each
86	for age 65-75 years, hypertension, diabetes mellitus, myocardial infarction, other
87	cardiovascular disease (except myocardial infarction and atrial fibrillation), peripheral
88	arterial disease, current or past smoking, and previous TIA or ischemic stroke. The
89	ESRS with a range from 0 to 9 was categorized as low risk (<3) and high risk (\geq 3). ⁸⁻¹⁰
90	In addition to the components of ESRS, the modified ESRS was generated by adding
91	1 point each for waist circumference \geq 90 cm, stroke subtype except small artery
92	occlusion, and men. The modified ESRS with a range from 0 to 12 was also
93	categorized as low risk (<6 in men and <5 in women) and high risk (\geq 6 in men and \geq 5
94	in women), which was used in the sensitivity analysis. ^{13, 14}
95	
96	Outcomes Assessment
97	The primary outcome was new ischemic or hemorrhagic stroke within 90 days.
98	Secondary outcomes included new stroke within 30 days, a vascular event (a
99	composite of stroke, TIA, myocardial infarction, or death from vascular causes)
100	within 90 days, and ischemic stroke within 90 days. The primary safety outcome was
101	severe or moderate bleeding as defined by the Global Utilization of Streptokinase and

102 Tissue Plasminogen Activator for Occluded Coronary Arteries (GUSTO) criteria

within 90 days.¹⁵ Secondary safety outcome was any bleeding through 90 days of
follow-up. All efficacy and safety outcomes were confirmed by an independent
clinical-event adjudication committee, whose members were unaware of the
trial-group assignments. The committee members classified ischemic stroke subtypes
on the basis of available medical records, including imaging data.

108

109 Statistical Analysis

Baseline characteristics were compared between groups categorized by ESRS levels. 110 111 Continuous variables were presented in medians (interquartile ranges) and compared between groups using the nonparametric Wilcoxon test. Categorical variables were 112 presented as percentages and tested by chi-squared test. Kaplan-Meier product limit 113 114 method was used to generate survival plots, and the significance of differences between groups was tested by the log-rank test. Differences in the outcomes during 115 the 90-day follow-up period were assessed using a Cox proportional hazard regression 116 117 model, and hazard ratios (HRs) with 95% confidence intervals (CIs) were reported. 118 When there were multiple events of the same type, the time to the first event was used in the model. Data from patients who had no event during 90-day follow-up were 119 censored at termination of the trial or nonvascular death. For each model, the 120 121 proportional hazards assumption was assessed by testing the interaction of treatment by time in the model. Whether the treatment effect differed in different risk profile 122 123 categories was examined by testing the interactions of treatment by ESRS categories in the Cox model. Sensitivity analyses were performed using modified ESRS to 124

125	redefine risk profile and in the per-protocol population. All statistical analyses were
126	performed with SAS statistical software, version 9.4 (SAS Institute Inc). All tests
127	were 2-sided, and $P < 0.05$ was considered statistically significant.
128	
129	Standard Protocol Approvals, Registrations, and Patient Consents
130	The standard protocol and informed consent were approved by the ethics committee at
131	Beijing Tiantan Hospital (IRB approval number: KY2019-035-02) and all
132	participating centers. Written informed consent was provided by all the patients or
133	their representatives before enrollment. The trial was registered at ClinicalTrials.gov
134	(Registration-URL: http://www.clinicaltrials.gov; unique identifier: NCT04078737).
135	
136	Data Availability
137	Data are available to researchers on request for purposes of reproducing the results or
138	replicating the procedure by directly contacting the corresponding author.
139	
140	Results
141	Pagalina Characteristics
	Dasenne Characteristics
142	Table 1 shows baseline characteristics of the study cohort stratified by ESRS levels
142 143	Table 1 shows baseline characteristics of the study cohort stratified by ESRS levels and treatment. There were 3,899 patients (60.8%) at low risk (ESRS <3) and 2,513
142 143 144	Table 1 shows baseline characteristics of the study cohort stratified by ESRS levels and treatment. There were 3,899 patients (60.8%) at low risk (ESRS <3) and 2,513 patients (39.2%) at high risk (ESRS \geq 3). The differences in all study variables
142 143 144 145	Table 1 shows baseline characteristics of the study cohort stratified by ESRS levels and treatment. There were 3,899 patients (60.8%) at low risk (ESRS <3) and 2,513 patients (39.2%) at high risk (ESRS \geq 3). The differences in all study variables between ticagrelor–aspirin group and clopidogrel–aspirin group were not significant

147	the low risk group, and ESRS in the high risk group. Baseline characteristics stratified
148	by modified ESRS and treatment are presented in eTable 1 in the Supplement. All the
149	characteristics were well balanced except history of myocardial infarction in the low
150	risk group and history of TIA or ischemic stroke in the high risk group.
151	
152	Efficacy Outcomes
153	Within 90 days follow-up, recurrent stroke occurred in 198 patients (7.9%) in patients
154	at high risk and 236 patients (6.0%) in patients at low risk (P =0.004). The
155	relationships between treatment assignment and outcome differed by baseline risk
156	estimated by ESRS (P=0.02 for interaction). Ticagrelor-aspirin compared with
157	clopidogrel-aspirin was associated with a reduced incidence of new stroke in patients
158	at low risk (HR, 0.63; 95% CI, 0.48-0.82; P<0.001) but not in those at high risk (HR,
159	0.97; 95% CI, 0.73-1.29; <i>P</i> =0.08) (Table 2). Cumulative risk of new stroke among
160	patients at low or high risk by treatment assignment is shown in Figure 1; those at low
161	risk and treated with ticagrelor-aspirin experienced the lowest risk of new stroke
162	(P<0.001, log-rank test). Similar results were observed for the secondary outcomes of
163	new stroke within 30 days, combined vascular event and ischemic stroke within 90
164	days (Table 2). The results were replicated in the sensitivity analysis using modified
165	ESRS to redefine different risk groups, the incidence of new stroke was higher in
166	patients at high risk (100 patients, 8.95%) than that in patients at low risk (334
167	patients, 6.31%) (P=0.001) (eTable 2 and eFigure 1 in the Supplement). Results of the
168	per-protocol analysis were consistent with the intention-to-treat analysis (eTable 3-4

in the Supplement).

170

171 Safety Outcomes

Patients at low (ESRS<3) or high risk (ESRS \geq 3) in the ticagrelor-aspirin group and 172 173 the clopidogrel-aspirin group had a similar incidence of severe or moderate bleeding (0.1% and 0.3% in low risk group vs 0.6% and 0.5% in high risk group; P=0.24 for 174 interaction) (Table 2). As the secondary safety outcome, the incidence of any bleeding 175 was higher in the ticagrelor-aspirin than in the clopidogrel-aspirin among patient at 176 177 low risk (5.8% vs 1.9%) but not among patients at high risk (4.6% vs 3.4%) (P=0.01 for interaction between ESRS categories and treatment). The results were similar for 178 the modified ESRS and in the per-protocol analysis (eTable 2-4 in the Supplement). 179 180 Classification of Evidence: This study provides Class II evidence that CYP2C19 181 LOF carries with minor stroke or transient ischemic attack at low risk, but not at high 182

risk, of recurrent stroke (by ESRS score) received a greater benefit from

184 ticagrelor–aspirin than clopidogrel-aspirin.

185

186 **Discussion**

187 In this post-hoc analysis of the CHANCE-2 trial, we found that among patients with

- 188 minor stroke or TIA who were *CYP2C19* LOF carriers, ticagrelor–aspirin versus
- 189 clopidogrel-aspirin was associated with a significantly decreased risk of new stroke in
- 190 patients at low risk of recurrent stroke. Overall, among patients at low risk, the

incidence of total bleeding events was greater with ticagrelor–aspirin, mainly owing
to mild bleeding, but there was not an increased incidence of moderate or severe
bleeding. Our findings indicated that risk stratification by ESRS may provide
additional information on identifying patients who may receive greater benefit from
ticagrelor–aspirin therapy.

196

The prognosis of minor stroke or TIA is quite variable and is influenced by the 197 prevalence and levels of prognostic factors. Large population and clinical studies have 198 199 identified risk factors that are associated with poor clinical outcomes in patients with stroke or TIA, including older age, smoking, hypertension, diabetes mellitus, 200 cardiovascular disease, and peripheral artery disease.^{9, 10, 16-18} Additionally, these risk 201 202 factors may influence the selection of antiplatelet therapy. For instance, the POPular AGE trial showed in patients aged 70 years or older presenting with non-ST elevation 203 acute coronary syndrome, clopidogrel was a favorable alternative to ticagrelor.¹⁹ A 204 205 meta-analysis of randomized trials reported in smokers, patients with clopidogrel received a better clinical benefit in reducing cardiovascular outcomes than those with 206 ticagrelor.²⁰ The Study of Platelet Inhibition and Patient Outcomes (PLATO) trial 207 showed that in patients with acute coronary syndrome with or without ST-segment 208 elevation, ticagrelor as compared with clopidogrel significantly reduced the incidence 209 of cardiovascular death.²¹ Data from the Clopidogrel versus Aspirin in Patients at Risk 210 of Ischemic Events (CAPRIE) study reported that the absolute benefit of clopidogrel 211 over aspirin for subsequent combined vascular events was amplified in patients with a 212

history of diabetes or ischemic events.²² Based on these factors, ESRS was derived
from the patients with ischemic stroke in the large-scale CAPRIE⁹ trial and was
validated in the Reduction of Atherothrombosis for Continued Health (REACH)
registry population, and could predict the risk of recurrent stroke and cardiovascular
events in patients with acute ischemic stroke.¹⁰ Consistent with previous studies, our
study also found that a higher ESRS score was associated with a higher risk of
recurrent stroke within 90-day follow-up.

220

221 Previous studies suggested that in addition to modification of these stroke risk factors, a stratification of patients according to risk of recurrent stroke assessed by ESRS may 222 provide support to optimize treatment regiments. Subgroup analysis of CAPRIE trial 223 224 showed that clopidogrel compared to aspirin was particularly beneficial to patients at high risk, defining as >4% per year for recurrent stroke as assessed by the ESRS.⁹ A 225 prospective cohort study conducted among Chinese patients with TIA or ischemic 226 227 stroke admitted to 132 hospitals throughout China, and suggested that clopidogrel may be preferable to aspirin in patients with an ESRS >3, and aspirin may be 228 preferred over clopidogrel for patients with an ESRS ≤ 3 for the secondary prevention 229 of non-cardioembolic ischemic stroke.²³ Except for risk profile, CYP2C19 genotype 230 was also used to individualize antiplatelet therapy. A meta-analysis showed that 231 *CYP2C19* genetic testing could guide patients undergoing percutaneous coronary 232 intervention to select optimal antiplatelet therapy, thus may reduce the risk of major 233 adverse cardiovascular events.²⁴ Furthermore, post-hoc analysis of the CHANCE trial 234

235	showed that the benefit of clopidogrel in Chinese minor stroke or TIA patients
236	depended on both CYP2C19 genotype and risk profile. Overall, CYP2C19 LOF
237	carriers do not benefit from dual antiplatelet therapy with clopidogrel-aspirin, but
238	there is significant benefit for LOF carriers who are at high risk (ESRS \geq 3). ²⁵ Such
239	findings suggested that ticagrelor not reducing the risk of recurrent stroke over
240	clopidogrel in high risk CYP2C19 LOF carriers. Similarly with these studies, our
241	analysis found that the efficacy of clopidogrel-aspirin was associated with a similar
242	incidence of recurrent stroke with ticagrelor-aspirin among CYP2C19 LOF carriers at
243	high risk, but in patients at low risk, ticagrelor-aspirin was associated with a lower
244	risk of stroke.

245

246 The mechanisms underlying our findings are complex and multifactorial. First, it is appropriate to speculate that patients at high stroke risk assessed by ESRS were more 247 likely to have thrombotic tendencies, systematic inflammation, and other basic 248 diseases related to stroke²⁶, antithrombotic treatment alone may not be sufficient for 249 adequate protection against ischemic events²⁷, thus there were not apparent 250 differences in the efficacy between ticagrelor-aspirin and clopidogrel-aspirin among 251 patients at high risk. Second, as previously reported⁸, stroke patients with *CYP2C19* 252 LOF alleles at high risk also received a significant benefit from clopidogrel-aspirin 253 treatment, which could explain why ticagrelor-aspirin did not exhibit a stronger effect 254 in reducing recurrent stroke over clopidogrel among these patients to some extent. 255 Additionally, the proportion of patients in the high risk group on antiplatelet therapy 256

257	prior to the index event was higher, and there was no washout period for the prior
258	anti-platelet treatment, which may lead to a higher antiplatelet load in these patients
259	and the unapparent benefit of ticagrelor-aspirin therapy. These findings suggest that
260	the risk profile, according to ESRS levels, should be taken into consideration in the
261	implementation of antiplatelet therapy in clinical practice, ticagrelor-aspirin is
262	associated with a lower risk of recurrent stroke in low risk CYP2C19 LOF carriers
263	when compared to clopidogrel-aspirin.
264	
265	Our study has several limitations. First, our cohort was made up of Chinese
266	population, a population has a higher incidence of intracranial-artery stenosis than
267	non-Asian population, and ticagrelor and clopidogrel may have different effects in
268	other population, which might limit generalizability. Second, this study was a
269	post-hoc analysis, thus the results should be interpreted with caution and needed to be
270	further confirmed by other studies. Third, the washout period of the prior antiplatelet
271	treatments was not available in our study, which may have influenced the benefits of
272	ticagrelor in patients at low risk.

274 **Conclusions**

This post-hoc analysis of CHANCE-2 trial found that among *CYP2C19* LOF carriers with minor stroke or TIA, ticagrelor–aspirin was superior to clopidogrel-aspirin in reducing the risk of subsequent stroke in those at low risk (ESRS<3). The risk of severe or moderate bleeding did not differ between the two treatment groups across

- 279 different risk groups, but the risk of any bleeding was higher with ticagrelor–aspirin in
- 280 patients at low risk.
- 281
- 282

284	References
285	1. Amarenco P, Lavallée PC, Labreuche J, et al. One-Year Risk of Stroke after
286	Transient Ischemic Attack or Minor Stroke. The New England journal of medicine
287	2016;374:1533-1542.
288	2. Shahjouei S, Sadighi A, Chaudhary D, et al. A 5-Decade Analysis of Incidence
289	Trends of Ischemic Stroke After Transient Ischemic Attack: A Systematic Review and
290	Meta-analysis. JAMA neurology 2021;78:77-87.
291	3. Pan Y, Elm JJ, Li H, et al. Outcomes Associated With Clopidogrel-Aspirin Use in
292	Minor Stroke or Transient Ischemic Attack: A Pooled Analysis of Clopidogrel in
293	High-Risk Patients With Acute Non-Disabling Cerebrovascular Events (CHANCE)
294	and Platelet-Oriented Inhibition in New TIA and Minor Ischemic Stroke (POINT)
295	Trials. JAMA neurology 2019;76:1466-1473.
296	4. Wang Y, Wang Y, Zhao X, et al. Clopidogrel with aspirin in acute minor stroke or
297	transient ischemic attack. The New England journal of medicine 2013;369:11-19.
298	5. Johnston SC, Easton JD, Farrant M, et al. Clopidogrel and Aspirin in Acute
299	Ischemic Stroke and High-Risk TIA. The New England journal of medicine
300	2018;379:215-225.
301	6. Wang Y, Zhao X, Lin J, et al. Association Between CYP2C19 Loss-of-Function
302	Allele Status and Efficacy of Clopidogrel for Risk Reduction Among Patients With
303	Minor Stroke or Transient Ischemic Attack. Jama 2016;316:70-78.
304	7. Pan Y, Chen W, Xu Y, et al. Genetic Polymorphisms and Clopidogrel Efficacy for

305 Acute Ischemic Stroke or Transient Ischemic Attack: A Systematic Review and

- 306 Meta-Analysis. Circulation 2017;135:21-33.
- 8. Xu J, Wang A, Wangqin R, et al. Efficacy of clopidogrel for stroke depends on
- 308 CYP2C19 genotype and risk profile. Annals of neurology 2019;86:419-426.
- 309 9. Diener HC, Ringleb PA, Savi P. Clopidogrel for the secondary prevention of
- stroke. Expert opinion on pharmacotherapy 2005;6:755-764.
- 10. Weimar C, Diener HC, Alberts MJ, et al. The Essen stroke risk score predicts
- 312 recurrent cardiovascular events: a validation within the REduction of
- Atherothrombosis for Continued Health (REACH) registry. Stroke 2009;40:350-354.
- 11. Wang Y, Meng X, Wang A, et al. Ticagrelor versus Clopidogrel in CYP2C19
- 315 Loss-of-Function Carriers with Stroke or TIA. New England Journal of Medicine
- 316 2021.
- 12. Wang Y, Johnston C, Bath PM, et al. Clopidogrel with aspirin in High-risk
- patients with Acute Non-disabling Cerebrovascular Events II (CHANCE-2): rationale
- and design of a multicentre randomised trial. Stroke and vascular neurology
- 320 2021;6:280-285.
- 13. Sumi S, Origasa H, Houkin K, et al. A modified Essen stroke risk score for
- 322 predicting recurrent cardiovascular events: development and validation. International
- journal of stroke : official journal of the International Stroke Society 2013;8:251-257.
- 14. Chaudhary D, Abedi V, Li J, Schirmer CM, Griessenauer CJ, Zand R. Clinical
- 325 Risk Score for Predicting Recurrence Following a Cerebral Ischemic Event. Frontiers
- in neurology 2019;10:1106.
- 15. investigators TG. An international randomized trial comparing four thrombolytic

328	strategies for acute myocardial infarction. The New England journal of medicine
329	1993;329:673-682.

330	16. Weimar C, Goertler M, Röther J, et al. Predictive value of the Essen Stroke Risk
331	Score and Ankle Brachial Index in acute ischaemic stroke patients from 85 German
332	stroke units. Journal of neurology, neurosurgery, and psychiatry 2008;79:1339-1343.
333	17. Ishkanian AA, McCullough-Hicks ME, Appelboom G, et al. Improving patient
334	selection for endovascular treatment of acute cerebral ischemia: a review of the
335	literature and an external validation of the Houston IAT and THRIVE predictive
336	scoring systems. Neurosurgical focus 2011;30:E7.
337	18. Alvarez-Sabín J, Molina CA, Montaner J, et al. Effects of admission
338	hyperglycemia on stroke outcome in reperfused tissue plasminogen activatortreated
339	patients. Stroke 2003;34:1235-1241.

- 19. Gimbel M, Qaderdan K, Willemsen L, et al. Clopidogrel versus ticagrelor or
- prasugrel in patients aged 70 years or older with non-ST-elevation acute coronary
- 342 syndrome (POPular AGE): the randomised, open-label, non-inferiority trial. Lancet
- 343 (London, England) 2020;395:1374-1381.
- 20. Gagne JJ, Bykov K, Choudhry NK, Toomey TJ, Connolly JG, Avorn J. Effect of
- 345 smoking on comparative efficacy of antiplatelet agents: systematic review,
- meta-analysis, and indirect comparison. BMJ (Clinical research ed) 2013;347:f5307.
- 21. Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients
- 348 with acute coronary syndromes. The New England journal of medicine
- 349 2009;361:1045-1057.

350	22. Ringleb PA, Bhatt DL, Hirsch AT, Topol EJ, Hacke W. Benefit of clopidogrel
351	over aspirin is amplified in patients with a history of ischemic events. Stroke
352	2004;35:528-532.
353	23. Xu H, Ping Y, Lin H, He P, Li W, Dai H. Antiplatelet Strategies and Outcomes in
354	Patients with Noncardioembolic Ischemic Stroke from a Real-World Study with a
355	Five-Year Follow-Up. Translational stroke research 2017;8:228-233.
356	24. Galli M, Benenati S, Capodanno D, et al. Guided versus standard antiplatelet
357	therapy in patients undergoing percutaneous coronary intervention: a systematic
358	review and meta-analysis. Lancet (London, England) 2021;397:1470-1483.
359	25. Huang ZX, Chen LH, Xiong R, et al. Essen Stroke Risk Score Predicts Carotid
360	Atherosclerosis in Chinese Community Populations. Risk management and healthcare
361	policy 2020;13:2115-2123.
362	26. Grant PJ. Diabetes mellitus as a prothrombotic condition. Journal of internal
363	medicine 2007;262:157-172.
364	27. Alexopoulos D, Xanthopoulou I, Mavronasiou E, et al. Randomized assessment
365	of ticagrelor versus prasugrel antiplatelet effects in patients with diabetes. Diabetes
366	care 2013;36:2211-2216.
367	
368	

369	
370	Figure and legends
371	
372	Figure 1. Cumulative Probability of Stroke According to treatment and risk

- 373 profile
- 374 C denotes clopidogrel; ESRS denotes Essen Stroke Risk Score; T denotes ticagrelor.

Characteristics	Low Risk, ESRS <3	3	High Risk, ESRS ≥3			
	Ticagrelor -Aspirin (N=1940)	Clopidogrel -Aspirin (N=1959)	P value	Ticagrelor -Aspirin (N=1265)	Clopidogrel -Aspirin (N=1248)	<i>P</i> value
Median age (IQR) -yr	60.5(54.4-66.5)	60.8(54.4-66.2)	0.74	70.9(65.8-77.2)	70.1(65.6-76.6)	0.05
Female sex - no. (%)	678 (34.9)	663 (33.8)	0.47	412(32.6)	417(33.4)	0.65
Median BMI (IQR), kg/m ²	24.5(22.7-26.7)	24.2(22.6-26.4)	0.05	24.5(22.6-26.6)	24.4(22.5-26.5)	0.42
Median ESRS (IQR)	2(1-2)	1(1-2)	0.61	3(3-4)	3(3-4)	0.03
ESRS components, no. (%)						
Age						
<65 yr	1347(69.4)	1370(69.9)	0.90	255(20.2)	280(22.4)	0.04
65-75 yr	517(26.6)	510(26.0)		571(45.8)	548(43.3)	
>75 yr	76(3.9)	79(4.0)		462(36.5)	397(31.8)	

Table 1. Baseline Characteristics According to Risk Profile

Hypertension	910(46.9)	932(47.6)	0.68	1066(84.3)	1047(83.9)	0.80
Diabetes	272(14.0)	244(12.5)	0.15	536(42.4)	511(40.9)	0.47
Myocardial infarction	9(0.5)	4(0.2)	0.16	45(3.6)	38(3.0)	0.47
Other heart diseases	36(1.9)	44(2.2)	0.39	188(14.9)	194(15.5)	0.63
Peripheral vascular disease	2(0.1)	2(0.1)	0.99	4(0.3)	5(0.4)	0.72
Smoker	616(31.8)	643(32.8)	0.47	612(48.4)	587(45.4)	0.08
History of TIA or ischemic stroke	169(8.7)	151(7.7)	0.25	531(42.0)	567(58.5)	0.33
CYP2C19 LOF carriers - no. (%)						
Intermediate metabolizers	1515(78.1)	1531(78.2)	0.96	971(76.8)	984(78.8)	0.21
Poor metabolizers	425(21.9)	428(21.8)		294(23.2)	264(21.2)	
Median time from symptom onset to randomization (IQR) — hr.	13.7(9.2-20.3)	14.9(9.2-21.0)	0.02	13.4(8.6-20.5)	13.2(8.3-20.0)	0.55
Qualifying event - no. (%)						
Ischemic stroke	1567(80.8)	1596(81.5)	0.58	1010(79.8)	985(78.9)	0.57

TIA	373(19.2)	363(18.5)		255(20.2)	263(21.1)	
Median NIHSS score in patients with qualifying ischemic stroke (IQR) *	2(1-3)	2(1-3)	0.85	2(1-3)	2(1-3)	0.33
Median ABCD ² score in patients with qualifying TIA (IQR) †	4(4-5)	4(4-5)	0.28	5(4-6)	5(4-6)	0.05
Previous antiplatelet therapy - no.	112(5.8)	85(4.3)	0.04	273(21.6)	278(22.3)	0.67
(%)‡						
Previous lipid-lowering therapy - no.	73(3.8)	56(2.9)	0.11	185(14.6)	185(14.8)	0.89
(%)‡						

BMI denotes body mass index; ESRS denotes Essen Stroke Risk Score. IQR denotes interquartile range. IS denotes ischemic stroke. TIA

denotes transient ischemic attack. LOF denotes loss-of-function.

* National Institutes of Health Stroke Scale (NIHSS) scores range from 0 to 42, with higher scores indicating more severe stroke.

[†] ABCD² score assesses the risk of stroke on the basis of age, blood pressure, clinical features, duration of TIA, and presence or absence of

diabetes, with scores ranging from 0 to 7 and higher scores indicating greater risk.

‡ Medication within 1 month before symptom onset.

	Low risk, ESRS <3				High Risk, ESRS ≥3				
Outcome	Ticagrelor -Aspirin, event rate (%)*	Clopidogrel -Aspirin, event rate (%)*	HR (95%CI)	P value	Ticagrelor -Aspirin, event rate (%)*	Clopidogrel -Aspirin, event rate (%)*	HR (95%CI)	P value	Pint
Primary outcome									
Stroke	92 (4.7)	144 (7.4)	0.63(0.48-0.82)	< 0.001	99 (7.8)	99 (7.9)	0.97(0.73-1.29)	0.08	0.02
Secondary outcomes									
Stroke within 30 days	78 (4.0)	126 (6.4)	0.62(0.46-0.82)	< 0.001	78 (6.2)	79 (6.3)	0.97(0.70-1.34)	0.86	0.02
Composite vascular events†	111 (5.7)	167 (8.5)	0.66(0.52-0.84)	< 0.001	118 (9.3)	126 (10.1)	0.92(0.71-1.19)	0.53	0.04
Ischemic stroke	92 (4.7)	142 (7.2)	0.64(0.49-0.83)	< 0.001	97 (7.7)	96 (7.7)	0.98(0.73-1.30)	0.87	0.02
Primary safety outcome									
Severe or moderate bleeding‡	2 (0.1)	5 (0.3)	0.39(0.08-2.02)	0.26	7 (0.6)	6 (0.5)	1.27(0.42-3.81)	0.67	0.24
Secondary safety outcome									

1 Table 2. Efficacy and Safety Outcomes of Patients With Different Antiplatelet Therapies Stratified by Risk Profile

2 CI denotes confidence interval. ESRS denotes Essen Stroke Risk Score. HR denotes hazard ratio. mRS denotes modified Rankin Scale. TIA

- 3 denotes transient ischemic attack.
- 4 * Event rates for ordinal stroke or TIA are raw estimates, whereas event rates for other outcomes are Kaplan-Meier estimates of the percentage
- 5 of patients with events at 90 days.
- 6 *†* Composite vascular events include ischemic stroke, hemorrhagic stroke, TIA, myocardial infarction, vascular death.
- 7 ‡ Severe or moderate bleeding and mild bleeding were defined according to GUSTO (Global Utilization of Streptokinase and Tissue
- 8 Plasminogen Activator for Occluded Coronary Arteries) criteria.