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Summary 

UNet-based networks accurately segment CT images of spontaneous intracerebral hemorrhage, 

with Focal loss function addressing intraventricular hemorrhage class imbalance. 

Key Points 

• A comparison of numerous deep learning networks for semantic segmentation of spontaneous 

intracerebral hemorrhage showed that UNet-based networks achieved significantly better 

performance than other network architectures for intracerebral hemorrhage and intraventricular 

hemorrhage segmentations (p<.05). 

• Three-dimensional nnU-Net using the Focal loss function was able to address class imbalance in 

the dataset, providing significant performance improvement (p<.05) for segmentation of 

intraventricular hemorrhage present in approximately 30% of the training dataset (Dice score: 

1.00 (IQR 0.87-1.00). 

Abbreviations 

ICH – intracerebral hemorrhage 

PHE – perihematomal edema 

IVH – intraventricular hemorrhage 

DSC – Dice similarity coefficient 

DiceCE – Dice and Cross-Entropy  



Abstract 

This study evaluated deep learning algorithms for semantic segmentation and quantification of 

intracerebral hemorrhage (ICH), perihematomal edema (PHE), and intraventricular hemorrhage (IVH) on 

non-contrast CT (NCCT) scans of patients with spontaneous ICH. Models were assessed on 1,732 

annotated baseline NCCT scans obtained from the TICH-2 international multicenter trial 

(ISRCTN93732214), and different loss functions using three-dimensional nnU-Net were examined to 

address class imbalance (30% of participants with IVH in dataset). On the test cohort (n=174, 10% of 

dataset), the top-performing models achieved median Dice similarity coefficients of 0.92 (IQR, 0.89-

0.94), 0.66 (0.58-0.71) and 1.00 (0.87-1.00), respectively for ICH, PHE and IVH segmentation. UNet-

based networks showed comparable, satisfactory performances on ICH and PHE segmentations (p>.05), 

but all nnU-Net variants obtained higher accuracy than BLAST-CT and DeepLabv3+ for all labels 

(p<.05). The Focal model showed improved performance in IVH segmentation compared with Tversky, 

two-dimensional nnU-Net, UNet, BLAST-CT, and DeepLabv3+ (p<.05). Focal achieved concordance 

values of 0.98, 0.88, and 0.99 for ICH, PHE, and ICH volumes, respectively. The mean volumetric 

differences between ground truth and prediction were 0.32 mL (95% CI: −8.35 to 9.00), 1.14mL (-9.53 to 

11.8) and 0.06mL (-1.71 to 1.84). In conclusion, UNet-based networks provide accurate segmentation on 

CT images of spontaneous ICH, and Focal loss can address class imbalance. 

 

1 Introduction 

Spontaneous intracerebral hemorrhage (ICH) is bleeding within the brain parenchyma in the absence of 

trauma or surgery, which may extend into the ventricles and subarachnoid space (1). Volumes of 

intracerebral haemorrhage (ICH), perihematomal edema (PHE) (2) and intraventricular hemorrhage 

(IVH) (3) are well-established biomarkers, consistent independent predictors of functional outcome and 

mortality of spontaneous ICH. Manual delineation and quantification of these biomarkers is labor 



intensive and prone to human error. Thus, an efficient automated biomarker segmentation and 

quantification tool could provide quantitative outcome measures for clinical trials and accelerate studies 

in large cohorts of patients with spontaneous ICH.  

Previous studies (4–10) have trained deep neural networks to perform ICH segmentation on CT scans, but 

most of these works were exclusively based on either or both ICH and PHE segmentation, as accurate 

delineation of IVH is challenging even for an experienced radiologist (11). Additionally, previous 

research in this area consists of single center studies with limited samples (12). Our work assesses the 

semantic segmentation and quantification of ICH, PHE, and IVH from a large multicenter dataset (from 

the Tranexamic acid for hyperacute primary intracerebral hemorrhage [TICH-2] trial, (13)).  

This study compares the performance of existing deep learning approaches in the semantic segmentation 

and quantification of ICH, PHE and IVH. The best existing deep learning model was then refined by 

using different loss functions to address the class imbalance issue (unequal distribution of the lesion 

classes with little to no PHE or IVH pixels in a scan).  

 

2 Materials and Methods 

2.1 Study Patients 

This retrospective analysis included baseline non-contrast CT (NCCT) scans from participants recruited 

to the prospective TICH-2 international randomized, placebo-controlled clinical trial (ISRCTN93732214) 

(13,14). The trial examined the effectiveness and safety of tranexamic acid in patients with acute 

spontaneous ICH within 8 hours of the onset of stroke symptoms. Ethical approval was granted from the 

UK Health Research Authority and the relevant national or local institutional review boards (non-UK 

sites), and written informed consent from patients or one of their relatives was obtained before 

enrollment. The full trial protocol is reported elsewhere (15). Our analysis included 1,732 eligible 

participants from the previously reported cohort (16) who had valid baseline scans (i.e. no incomplete or 



missing slices). The previous work investigated radiomics-based features, whereas this study focuses on 

lesion segmentation using deep learning. 

2.2 Image Acquisition and Ground Truth Delineation 

The NCCT baseline scans were collected from 124 participating centers while complying with the local 

protocol. With a minimum requirement of axial image orientation, CT scans acquired from any scanner 

manufacturer, settings or slice thickness were included. 

The anonymized ground truth segmentations of ICH, PHE and IVH were delineated on each scan by one 

of 3 independent trained raters (Z.K.L., vascular neurologist, with 15 years of experience; K.K., stroke 

physician, with 22 years of experience; A.A., CT radiographer, with 14 years of experience) using an 

active contour semi-automated segmentation algorithm on ITK-SNAP (version 3.6.0) (17), followed by 

manual editing if required. Additional inter- and intra-observer details are described in supplementary 

section 1.  

The dataset was randomly split into a training cohort (n = 1558, 90%) (mean age, 69 ± [SD] 13 years; 872 

men) and testing cohort (n = 174, 10%) (mean age, 68 ± 14 years; 102 men). 

2.3 Deep Neural Network Selection for Comparison 

We searched the best and most relevant neural networks for brain hemorrhage segmentation from Google 

Scholar and PubMed and shortlisted three approaches:  

- nnU-Net (no-new-U-Net) (18): automated configuration method with state-of-the-art performance 

in many segmentation challenges including Medical Segmentation Decathlon, BraTS, and KiTS. 

- BLAST-CT (brain lesion analysis and segmentation tool for CT) (19) pipeline based on 

DeepMedic: top performances in ISLES and BraTS 

- DeepLabv3+ (20): ranks highly in the semantic segmentation of general objects and can 

outperform notable networks like FCN, SegNet and UNet in the segmentation of biomedical 

images 



Finally, UNet, a widely used network for general medical image segmentation, is selected as baseline. 

2.4 Network Implementation 

We trained each model for 1800 epochs using the model pipeline default parameters and tested them on 

the independent test cohort. Both vanilla UNet and DeepLabv3+ models were implemented using the 

MONAI (Medical Open Network for Artificial Intelligence) framework (https://github.com/Project-

MONAI/MONAI). We used the MONAI built-in three-dimensional (3D) BasicUNet and implemented the 

source code for the DeepLabv3+ model (https://github.com/janetkok/MONAI-DeepLabV3plus). The 

open-source frameworks, nnU-Net and BLAST-CT, can be found in (https://github.com/MIC-

DKFZ/nnU-Net) and (https://github.com/biomedia-mira/blast-ct) respectively. General information and 

implementation details of these frameworks are described in supplementary sections 2 and 3 (Table S1), 

respectively. 

2.5 Refinement of the Best Existing Model Through Loss Functions 

We assumed that the default loss function in the best existing model—DiceCE (Dice and cross-entropy) 

(Table 2) would not be sufficiently sensitive to handle the extremely imbalanced target segmentation, low 

contrast, and heterogenous appearances of PHE and IVH lesions. Inspired by previous work (21), we 

evaluated Tversky, Focal, FocalTversky and DiceTopK loss using 3D nnU-Net to address the current 

model’s limitations (code can be found on https://github.com/JunMa11/SegLoss.git (22)). These loss 

functions were selected based on their inherent capability to handle the class imbalance issue (see work 

by Ma et al (22) for full description of loss functions). 

2.6 Performance Measures 

Quantitative performance of the lesion volume was measured using automated-versus-human 

concordance and Bland–Altman plots. Accuracy overlay between ground truth and predicted lesion was 

quantified using the Dice similarity coefficient (DSC). 

 



2.7 Statistical Analysis 

Patient demographics were compared between the training and test samples using chi-square test or 

independent t test. The models’ performances were statistically compared using the Kruskal-Wallis tests 

and corresponding Dunn post-hoc tests with false discovery rate correction. All statistical analyses were 

performed using RStudio (v1.4.1103), and P < .05 was considered significant.   

 

3 Results 

3.1 Patient Characteristics 

Of the 1,732 included participants, we found no evidence of differences in characteristics between the 

training and test sets (Table 1). 

3.2 Lesion Segmentation Performance 

Note that all 3D nnU-Net loss function variants will be represented as the name of their loss functions. 

See supplementary section 4 for naming convention details. 

Tables 2 shows the DSC of various models in our experiment. Box-violin plots showing the DSC 

distribution of various models are presented in Figure S1. Figures S2 and S3 present a qualitative 

overview of the segmentation (best and worst-case segmentation with respect to DiceCE) for the top-

performing models: DiceCE, DiceTopK, Focal. 

UNet-based networks achieved similarly good performance in ICH and PHE segmentations based on the 

average and median schemes, showing no evidence of differences between them (p>.05; Table 2). 

Compared with the lowest performers—BLAST-CT and DeepLabv3+, all nnU-Net variants had higher 

DSC for all lesion segmentation (p<.05). The segmentation quality of ICH was satisfactory across all 

models (Figure S2), whereas PHE segmentation was not desirable as the boundaries of the PHE label 

appeared to be smoothed (Figure S2B), indicating a lack of precision. 



The nnU-Net variations, DiceCE, two-dimensional (2D)+3D, DiceTopK and Focal showed significant 

performance improvement in IVH segmentation compared with Tversky, 2D, UNet, BLAST-CT and 

DeepLabv3+ (p<.05). Given that the top-performing models for IVH segmentation, particularly Focal, 

DiceTopK and FocalTversky, are mainly designed with emphasis on hard samples to address high class 

imbalance, there was no evidence of statistical differences between the aforementioned models. Still, 

Focal had a notably higher average DSC and more consistent performance based on the small 

interquartile range in IVH segmentation (Table 2). Also, based on the qualitative performance shown in 

Figures S2A,B,C and S3C (note the lack of blue labels when using DiceCE and DiceTopK), Focal 

presented greater detection capability for small and low contrast IVH lesion compared with other top 

performing models such as DiceCE and DiceTopK. Furthermore, we observed that the DSC values of 

most low-performing networks in IVH segmentation have a bimodal distribution (Figure S1C). This 

suggests that their segmentation results are polarized, presumably caused by differences in lesion size and 

intensity. 

3.3 Volume Quantification and Agreement 

Figure 1 shows the concordance and Bland-Altman plot of agreements between the ground truth and 

predicted lesion volumes by Focal, the best overall network (based on the global mean of DSCs). Focal 

demonstrated high concordance and low mean difference in estimating all lesions, except PHE. 

Additional details are presented in supplementary section 7.  

 

4 Discussion 

We compared the segmentation performance of existing deep learning networks on a large dataset from 

the TICH-2 trial.  The analysis demonstrated that UNet-based networks have immense potential in 

segmenting targeted lesions. We investigated how the application of a selected range of loss functions 



could be a feasible technique to address the issue of class imbalance. We showed that Focal can address 

this problem and significantly improve IVH segmentation. 

Based on the median DSC of ICH, 3D nnU-Net variant performance was similar to that found in the 

single center study by Zhao et al (12) and multicenter study by Sharrock et al. (23). Our reported average 

DSC for the best ICH segmentation was lower than the previously published Ψ-Net (0.95) (24), but it 

should be noted that this prior work had lower CT variability and a smaller dataset. 

With regards to PHE segmentation, studies by Ironside et al (12) and Zhao et al (12) reported higher 

performances than our results. Nevertheless, our performances remain adequate considering the 

variability of our multicenter dataset and smaller PHE volume (larger lesion volumes are positively 

correlated with higher DSC (12,19)).  

The best model for IVH segmentation (Focal) outperformed that in the single center study by Zhao et al 

(12). Of note, our initial assumption that PHE segmentation performance would be superior to that of 

IVH did not hold, albeit PHE was much larger in volume and was found in 99% of the training dataset. A 

possible explanation is that PHE demands resolution of indistinct low-contrast edges, whereas IVH 

typically shows as areas of high attenuation and often has sharp edges where the IVH contacts the 

ventricle wall.  

This study had limitations. First, a scan not containing a lesion class that it was mislabelled by the model 

had a DSC of 0. In the same setting, but with no error made, the DSC was counted as 1 to include 

participant scans with no target lesion that were correctly predicted. Thus, the metric tends to favor non-

existent lesions and can result in misrepresentation of model performance. To address this issue, we 

included two other metrics, volume intersection and false positives, in Table S2 for better performance 

comparison. Additionally, we are aware that we only performed a single split, and the performance 

evaluation could have been strengthened with k-fold cross validation. Also, we acknowledge that our 

ground truth segmentations contained segmentation errors in a few cases, as supported by the high but 

imperfect rates of inter- and intra-rater agreement. Inspection of the ‘worst-case’ segmentation in Figure 



S3 shows that, in retrospect, network-based segmentations were more accurate than the manually edited 

semi-automated segmentations. That being said, the study would be enhanced if a radiologist was among 

the reviewers.  

In summary, we compared numerous deep learning approaches for the segmentation and quantification of   

ICH, PHE and IVH in spontaneous ICH from a large scale, international multicenter dataset. We showed 

that UNet-based networks remain robust in medical imaging segmentation, demonstrating similarly high 

performances for both ICH and PHE lesions. We also investigated a selected range of loss functions on 

the 3D nnU-Net, but none of the networks had the best result in every lesion; however, Focal can address 

class imbalance and showed greater detection capability with significant performance improvement in 

IVH segmentation, a prominent yet rarely investigated lesion due to its complexity and scarcity. We 

believe that future development of a fully accurate and automated deep learning-based segmentation 

model can potentially eliminate human error in manual segmentation and provide early prediction of 

hematoma expansion and clinical outcome when combined with quantitative radiomic analysis (16). 
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Figure Legend 

Figure 1:  (A) Bland-Altman and (B) concordance plot of agreements between ground truth and predicted lesion volumes in the 

test cohort by the Focal model. CCC = concordance correlation coefficient, ICH = intracerebral hemorrhage, PHE = 

perihematomal edema, IVH = intraventricular hemorrhage  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Tables 

Table 1:Characteristics for Training and Test Cohorts  

Characteristic Training (n=1558)  Test (n=174) p value 

Age, years* 69±14 (20-101) 68±13 (35-92) .25 

Sex†   .56 

Men 872 (56) 102 (59)  

Women 686 (44) 72 (41)  

Onset to CT, h ‡ 1.9 (1.4-2.9) 1.8 (1.3-2.9) .58 

ICH   .91 

Count† 1558 (100) 174 (100)  

Volume, mL ‡ 11.99 (5.32-27.84) 12.64 (5.19-27.58)  

Volume, mL* 20.95±23.47 (0.50-

158.64) 

19.43±21.40 (0.50-

128.55) 

 

PHE   .93 

Count† 1542 (99) 172 (99)  

Volume, mL ‡ 7.15 (3.53-13.63) 6.73 (3.41-14.37)  

Volume, mL* 11.62±14.43  

(1.19×10-4-152.10) 

10.94±11.58  

(0.51-61.10) 

 

IVH   .82 

Count† 472 (30) 48 (28)  

Volume, mL ‡ 5.63 (1.88-13.38) 5.84 (1.90-15.09)  

Volume, mL* 9.47±10.92  

(7.73×10-3-77.49) 

9.45±9.28 

(0.27-33.57) 

 

Note.— ICH = intracerebral haemorrhage, PHE = perihematomal edema, IVH = intraventricular hemorrhage 

* Data presented as mean ± SD (range) 

† Data presented as number of participants (percentage) 

‡ Data presented as median (IQR) 

 

 

 

 

 

 



 

Table 2: Dice Score Performances of Existing Models and 3D nnU-Net Loss Function Variants  

 Average Dice score  Median Dice score (IQR) 

 ICH PHE IVH Mean   ICH PHE IVH Mean 

BLAST-CT 0.850† 

 

0.567 

 

0.407 0.608  0.891 

(0.846-

0.922) 

0.602 

(0.494-

0.659) 

0.007 

(0.000-

0.891) 

0.500 

DeepLabv3+ 0.857 0.522† 0.366† 0.582†  0.888 

(0.844-

0.912)† 

0.553 

(0.438-

0.628)† 

0.000 

(0.000-

0.814)† 

0.480† 

UNet 0.891 0.602 0.701 0.731  0.913 

(0.875-

0.933) 

0.625 

(0.541-

0.689) 

1.000 

(0.411-

1.000) 

0.846 

Default nnU-Net variants      

2D 0.894 0.610 0.614 0.706  0.911 

(0.881-

0.934) 

0.633 

(0.539-

0.710) 

0.851 

(0.000- 

0.000) 

0.798 

3D/DiceCE 0.904 0.627* 0.811 0.781  0.916 

(0.887-

0.935) 

0.657 

(0.578-

0.710)* 

1.000 

(0.826-
1.000) 

0.858* 

2D + 3D 0.892 

 

0.618 0.794 0.768  0.914 

(0.884-

0.935) 

0.647 

(0.567-

0.715) 

1.000 

(0.798-

1.000) 

0.854 

3D nnU-Net loss function variants 

Tversky 0.894 0.608 0.659 0.720  0.913 

(0.885-

0.932) 

0.633 

(0.536-

0.704) 

0.853 

(0.000- 

1.000) 

0.799 

DiceTopK 0.905* 0.626 0.846 0.792  0.916 

(0.888-

0.936)* 

0.651 

(0.578-

0.708) 

1.000 

(0.849- 

1.000) 

0.856 

FocalTversky 0.900 0.608 0.783 0.764  0.912 

(0.883-

0.931) 

0.632 

(0.543-

0.711) 

1.000 

(0.777-

1.000) 

0.848 

Focal 0.904 0.612 0.885* 0.800*  0.915 

(0.888-

0.935) 

0.639 

(0.550-

0.705) 

1.000 

(0.867-

1.000)* 

0.851 

Note.— 2D = two-dimensional, 3D = three-dimensional, BLAST-CT = brain lesion analysis and segmentation tool for CT, DiceCE = 

Dice and Cross-Entropy loss, ICH = intracerebral hemorrhage, IVH = intraventricular hemorrhage, nnU-Net = no-new-U-Net, PHE 

= perihematomal edema 

 + indicates an ensemble between models 

* Best performance 

† Worst performance 



Supplementary Material 

1 Inter- and intra-observer agreement for ground truth segmentations 

Inter- and intra-observer agreement for intracerebral hemorrhage (ICH), intraventricular hemorrhage 

(IVH) and perihematomal edema (PHE) measurement was assessed in a subset of 20 scans measured 

independently by two of the raters on two occasions separated by at least one week using type A 

intraclass correlation coefficients using an absolute agreement definition. High intraclass correlation 

coefficients were achieved for ICH volumes for both inter-observer (ICC=0.98, 95% confidence intervals 

(CI) 0.92, 0.99) and intra-observer agreement (ICC=0.99, 95%CI 0.99, 1.00 for both raters), for IVH 

volumes for both inter-observer (ICC=0.98, 95%CI 0.93, 0.99) and intra-observer agreement (ICCs 0.99, 

95%CI 0.98, 1.00, and 0.98, 95%CI 0.94-0.99), and for PHE volumes for both inter-observer (ICC=0.99, 

95%CI 0.96, 1.00) and intra-observer agreement (ICCs 0.99, 95%CI 0.99-1.00, and 0.83, 95%CI 0.58, 

0.93).  

2 General information of the selected models for comparison 

2.1 nnU-Net 

The nnU-Net (18) is a self-adapting framework on the basis of vanilla UNet. It uses a set of heuristic rules 

to infer the data-dependent hyperparameters based on the dataset properties. The two-dimensional (2D) 

UNet and three-dimensional (3D) full resolution UNet configurations and the ensemble of these 

configurations were evaluated in this study. 

2.2 BLAST-CT 

The BLAST-CT (19) pipeline is constructed based on the DeepMedic model. To account for the CT 

modality from the CENTER-TBI (Collaborative European NeuroTrauma Effectiveness Research in 

Traumatic Brain Injury) dataset, Miguel et al. used intensity windowing to replace skull-stripping as the 

latter is susceptible to failure. Instead of using a dual pathway architecture, Miguel et al. employed a 3 

parallel pathways network that handles image patches at full, three-times and five-times downsampled 



resolution. Furthermore, the network utilises residual connections and pre-activation blocks to keep pace 

with the current advanced approaches. 

 

 

2.3 DeepLabV3+ 

Chen et al. introduced DeepLabV3 which integrates the benefits of both dilated convolutions and feature 

pyramid pooling. Using the Xception model as a backbone, DeepLabV3+ (20) extends the network by 

adding a decoder module to fine-tune the segmentation results, specifically along the object boundaries.  

2.4 UNET 

UNet comprises of a encoder and decoder part that are linked up through skip connections. The encoder 

encodes the high-resolution features by gradually reducing the spatial information and then the decoder is 

used to enable precise localisation using upsampling convolutions and the help of skip connections.  

3 Implementation details of selected model pipelines used for comparison 

All experiments were implemented using Python and PyTorch on a Linux workstation with NVIDIA 

GeForce RTX 2080 Ti. 

 

 

 

 

 

 

 



Table S1 Implementation Details of Selected Model Pipelines Used for Comparison: UNet, DeepLabv3+, BLAST-CT and nnU-Net 

Model 

Framework 
MONAI MONAI BLAST-CT nnU-Net 

Network 3D 

BasicUNet 

3D DeepLabv3+ 

(Modified 

Aligned Xception 

as backbone) 

DeepMedic 2D UNet, 3D UNet 

Training type Patch-wise training at full 

resolution data 

3 path architecture 

patches at full, three-

times and five-times 

downsampled 

resolution 

Patch-wise training at full 

resolution data 

Loss function Dice and cross-entropy Cross-entropy Dice and cross-entropy 

Optimizer Adam 

 

RMSprop SGD with Nesterov 

momentum 

Data 

augmentation 

- Elastic Deformation 

Coarse Perlin Noise, 

Histogram 

Deformation, Patch 

Rotation, Patch Flip 

Rotations, scaling, 

Gaussian noise, Gaussian 

blur, brightness, contrast, 

simulation of low 

resolution, gamma 

correction and mirroring 

Inference  Sliding window overlapping 

patches, Gaussian patch centre 

weighting. 

Sliding window with 

overlapping patches. 

Sliding window with 

overlapping patches, 

Gaussian patch centre 

weighting. 

Intensity 

normalisation 

Intensity normalization based on 

mean and standard deviation 

calculated on each channel 

separately. 

Bounded the 

intensities between -

15 and 100 

Hounsfield units 

(HU) before scaling 

the range between -1 

and 1. 

Clipping images to 0.5 

and 99.5 percentiles, 

followed by subtraction 

of the global mean and 

division by the global 

standard deviation. 

Resampling 

strategy 

Resample images to an isotropic resolution of 1×1×1 

mm.  

 

Median spacing is 

computed independently 

for each axis. Then, 

resampling with third-

order spline(data) and 

linear interpolation 

(annotation). 

Postprocessing - 3D conditional 

random field 

Opt for non-largest 

component suppression if 

achieve performance gain 

by first treating all 

foreground class as one 

component and then 

reiterate for individual 

classes. 

Ensemble N/A Ensemble of 2D and 3D 

UNet 



Note.— MONAI = Medical Open Network for Artificial Intelligence, 2D = two-dimensional, 3D = three-dimensional, BLAST-CT = 

brain lesion analysis and segmentation tool for CT,  nnU-Net = no-new-U-Net 

4 Naming convention for 3D nnU-Net loss function variants 

3D nnU-Net loss function variants will be represented as the name of their loss functions: 

DiceCE: 3D nnU-Net using Dice and Cross-Entropy as loss function 

Tversky: 3D nnU-Net using Tversky as loss function 

DiceTopK: 3D nnU-Net using DiceTopK as loss function 

FocalTversky: 3D nnU-Net using FocalTversky as loss function 

Focal: 3D nnU-Net using Focal as loss function 

 

 

 

 

 

 

 

 

 

 

 

 



5 Quantitative performance 

Figure S1: Box-violin plots of Dice Similarity Coefficient of various models for ICH, PHE and IVH, sorted by mean score. DSC = Dice 

Similarity Coefficient; ICH = intracerebral hemorrhage; PHE = perihematomal oedema; IVH = intraventricular hemorrhage; 

DiceCE = Dice and Cross-Entropy loss;  

6 Qualitative performances of best networks 

Figure S2: Best segmentation results of networks (DiceCE, DiceTopK, Focal) with respect to DiceCE. ICH is shown in red, PHE in 

green and IVH in blue. Dice scores of each model are shown on top of each image. DiceCE = Dice and Cross-Entropy; ICH = 

intracerebral hemorrhage; PHE = perihematomal edema; IVH = intraventricular hemorrhage.  

Figure S3: Worst segmentation results of networks (DiceCE, DiceTopK, Focal) with respect to DiceCE. ICH is shown in red, PHE in 

green and IVH in blue. Dice scores of each model are shown on top of each image. DiceCE = Dice and Cross-Entropy; ICH = 

intracerebral hemorrhage; PHE = perihematomal edema; IVH = intraventricular hemorrhage. 

 

 

 

 

 

 

 

 

 

 

 

 



7 Volume quantification and agreement 

We assessed the concordance correlation coefficient and Bland–Altman plot of agreements between the 

ground truth and predicted lesion volumes. For reference, McBride (25) suggested that concordance 

correlation coefficient less than 0.90 is poor, 0.90-0.95 is moderate, 0.95-0.99 is substantial and greater 

than 0.99 is excellent.  

Based on Figure 1, Focal exemplified superior performance in estimating both ICH and IVH volumes 

with ‘substantial’ concordance of 0.98 and 0.99 respectively and mean differences of 0.32 mL (95% CI 

−8.35 to 9.00) and 0.06mL (95% CI -1.71 to 1.84). Conversely, Focal showed poorer performance in 

estimating the PHE volume: its mean difference was 1.14mL (95% CI -9.53 to 11.8) and concordance 

was ‘poor’ (0.88). 

8 Intersection between ground truth and predicted volumes, False positives in the predicted volume 

Based on Table 2 , the baseline UNet model remains as a robust architecture for brain segmentation as all 

nnU-Net variants showed no significant performance improvement (p>0.05) in ICH and PHE 

segmentations. However, UNet tends to have more false positives (Table S2) for IVH segmentation 

compared to DiceCE (Dice and cross-entropy) and 2D+3D, hence it has significantly poorer performance 

than the latter for IVH (p<0.05, Table 2). As a side note, Focal was able to outperform DiceCE (the best 

default nnU-Net variant for IVH segmentation) although it tends to have slightly more false positives 

because Focal can correctly predict the IVH volumes for most of the time compared to DiceCE. 

DeepLabv3+ and BLAST-CT are the worst performers. They had significantly lower DSC for all 

segmentations due to their low mean intersection volume as depicted in Table S2. Also, we noticed that 

all networks were likely to have more false positive results when predicting PHE (Tables S2) as opposed 

to ICH and IVH because the PHE is typically low in contrast and has obscured boundaries.  

 

 



Table S2: Mean of the Intersection between Ground Truth and Predicted Volume and Mean of the False Positives in the 

Predicted Volume. 

 Intersection between Ground Truth 

and Predicted Volume (mL) 

 False Positives in Predicted 

Volume (mL) 

 ICH PHE IVH Mean   ICH PHE IVH Mean 

BLAST-CT 17.313 6.569 1.900† 8.594  3.412† 4.317 0.641 2.790 

DeepLabv3+ 17.090† 5.077† 1.995 8.054†  2.464 2.570 0.785† 1.940 

UNet 17.234 7.166 2.059 8.820  1.645 4.533† 0.554 2.244 

Default nnU-Net variants      

2D 17.125 7.374 2.158 8.885  1.406 4.275 0.599 2.093 

3D/DiceCE 17.357 7.519 1.994 8.956  1.513 4.252 0.418 2.061 

(2D + 3D)  17.228 7.392 1.985 8.869  1.400* 4.079 0.402* 1.960 

3D nnU-Net loss function variants 

Tversky 17.523 8.547* 2.308* 9.459*  1.936 6.973 0.965 3.291† 

DiceTopK 17.452 7.152 1.999 8.868  1.560 3.545 0.408 1.838 

FocalTversky 17.603* 8.539 2.107 9.417  1.981 6.952 0.669 3.201 

Focal 17.485 6.662 2.116 8.754  1.622 3.023* 0.428 1.691* 

Note.— A good model is a model with a balanced high intersection and low false positive volume. 2D = two-dimensional, 3D = 

three-dimensional, BLAST-CT = brain lesion analysis and segmentation tool for CT, DiceCE = Dice and Cross-Entropy loss, ICH = 

intracerebral hemorrhage, IVH = intraventricular hemorrhage, nnU-Net = no-new-U-Net, PHE = perihematomal edema 

 + indicates an ensemble between models 

* Best performance 

† Worst performance 

 

 

 

 

 

 

 



Figure S1: Box-violin plots of Dice Similarity Coefficient of various models for ICH, PHE and IVH, sorted by mean score. DSC = Dice 

Similarity Coefficient; ICH = intracerebral hemorrhage; PHE = perihematomal oedema; IVH = intraventricular hemorrhage; 

DiceCE = Dice and Cross-Entropy loss;  

Figure S2: Best segmentation results of networks (DiceCE, DiceTopK, Focal) with respect to DiceCE. ICH is shown in red, PHE in 

green and IVH in blue. Dice scores of each model are shown on top of each image. DiceCE = Dice and Cross-Entropy; ICH = 

intracerebral hemorrhage; PHE = perihematomal edema; IVH = intraventricular hemorrhage.  

Figure S3: Worst segmentation results of networks (DiceCE, DiceTopK, Focal) with respect to DiceCE. ICH is shown in red, PHE in 

green and IVH in blue. Dice scores of each model are shown on top of each image. DiceCE = Dice and Cross-Entropy; ICH = 

intracerebral hemorrhage; PHE = perihematomal edema; IVH = intraventricular hemorrhage. 

 

 

 

 

 

 

 


