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We study binary systems in which a stellar mass compact object spirals into a massive black hole,
known as extreme mass ratio inspirals, in scenarios with a new fundamental scalar field. Earlier
work has shown that, in most interesting such scenarios and to leading order in the mass ratio,
the massive black holes can be adequately approximated by the Kerr metric and the imprint of the
scalar field on the waveform is fully controlled by the scalar charge of the stellar mass object. Here
we use this drastic simplification in the inspiral modelling and consider eccentric equatorial orbits.
We study how the scalar charge affects the orbital evolution for different eccentricities and different
values of the black hole spin. We then determine how changes in the orbital evolution get imprinted
on the waveform and assess LISA’s capability to detect or constrain the scalar charge.

I. INTRODUCTION

In 2015, the landmark detection of gravitational waves
(GWs) [1] paved the way to observations of strong-field
gravity. The first searches for new fundamental physics
in this regime by the interferometric detectors LIGO and
Virgo [2] have found neither deviations from the Gen-
eral Relativity (GR), nor hints of new fundamental fields;
still, these observations had relatively small signal-to-
noise ratios (SNRs). The next generation of ground-
based (like the Einstein Telescope [3], recently included
in the ESFRI Roadmap) and space-based (like the LISA
mission [4], planned by ESA in 2037) detectors are ex-
pected to observe signals with SNRs of the order of one
hundred, and hence they should be able to test GR in
the strong-field regime of gravity with unprecedented ac-
curacy.

New fundamental scalar fields are ubiquitous in cos-
mological models aimed to explain dark energy/matter
components, in models of quantum gravity, or in beyond-
standard-model theories [5–7]. Extensions of GR can also
be reformulated in such a way that modifications are en-
coded in additional fields that mediate the gravitational
interaction [5, 6, 8]. Scalar fields indeed provide the most
straightforward way to include additional degrees of free-
dom within the gravity sector, in the so-called scalar-
tensor theories.

Possible deviations from GR, or in the interactions be-
tween gravity and new fields that are part of some exten-
sion of the standard model, would be more likely to man-
ifest in astrophysical environments characterized by rel-
ativistic velocities and high-curvature regimes, as those
featured by the coalescence of compact binaries formed

by neutron stars (NS) and black holes (BH). These sys-
tems, which are the main sources of gravitational waves
for both ground and space interferometers, are therefore
natural laboratories to test gravity in a genuine strong-
field arena.

In this context extreme mass ratio inspirals (EMRIs),
in which a stellar-mass compact object (SCO or sec-
ondary, with mass mp) inspirals into a massive black
hole (MBH or primary, with mass M � mp), provide
a special exception. Although merger rates are still un-
certain [9, 10], EMRIs are expected to form due to the
capture of SCOs by MBHs with masses in the range
∼ (104−109)M�, which are believed to reside in the cen-
ters of most galaxies, and to be surrounded by nuclear
star clusters [11]. Depending on the component masses,
the final year before the plunge can lead to ∼ 104 − 105

orbital cycles, most of which are accumulated when the
secondary is in the region closer to the MBH. Such large
number of orbits allows us to build a detailed map of
the binary spacetime and to reconstruct with exquisite
precision the source parameters [9, 12–19].

EMRIs are expected to emit GWs at milli-Hertz fre-
quencies, where LISA will be most sensitive. The ac-
curacy of EMRI observations by LISA represents the
key opportunity to explore a plethora of astrophysical
phenomena [20–24], to study the environment in which
EMRIs evolve [25–30], and to perform new and very
sensitive tests of gravity or the nature of compact ob-
jects [7, 19, 31–46].

One might be tempted to think that the detection of
scalar fields by means of an EMRI may be hampered
by no-hair theorems which state that, in several cases of
scalar-tensor theories, stationary BHs are described by
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the Kerr metric as in GR, with a vanishing (or constant)
scalar field [47–51]. Moreover, in the known exceptions of
scalar-tensor theories for which no-hair theorems do not
hold and stationary BHs can have non-trivial scalar field
profiles, the scalar charge 1 is controlled by the coupling
between the scalar field and quadratic (or higher-order)
curvature invariants [52–66]. As a result, deviations from
GR scale as inverse powers of the mass and are there-
fore strongly suppressed for massive BHs, which are then
endowed with a negligible scalar charge.2 This naively
appears to be a serious obstacle for searches of massless
or very light scalar with LISA [4]. It might in fact be
a blessing in disguise, as pointed out in [46] (hereafter
paper I).

The subtlety lies in the fact that, so long as the SCO
of the EMRI, which has much smaller mass, carries some
appreciable scalar charge, scalar emission will still be
present and affect the orbital dynamics. Its effect will ac-
cumulate over the long time of observation and this can
lead to significant deviation in the waveform. Hence, be-
ing able to approximate the spacetime around the MBH
by a Kerr BH, on account of no-hair theorems or the
scaling of the scalar charge with the mass, it turns out
to provide an important simplification in waveform mod-
elling. This simplification is applicable to a vast class of
theories with a non-minimal coupling between the gravi-
tational and an additional real, massless scalar field and
has been employed in Paper I to develop a framework
for modeling the EMRI dynamics and associated emis-
sion in a universal way, which only depends on the scalar
charge of the SCO. The effect of the scalar charge is to
induce an extra loss of energy and angular momentum
which accelerates the coalescence leaving an imprint on
the GW signal detectable by LISA. An assessment of the
capability of LISA to measure the scalar charge of the
secondary, with an estimate of the expected errors, has
been performed in [19] (hereafter paper II).

Paper I takes into account only equatorial and circu-
lar orbits around a non-rotating MBH, while Paper II
included the MBH rotation for a single value of the spin,
a = 0.9M . Here we provide a substantial extension of
the framework to a more astrophysically motivated sce-
nario, by studying in detail how the spin of the primary
and the eccentricity affect the scalar (and the gravita-
tional) emission of the binary and its phase evolution.
The inclusion of eccentricity is particularly relevant for
the long orbits for EMRIs. The orbit can have a large
initial eccentricity, in which case the binary emits bursts
of GWs at each pericenter passage, before evolving into
a more circular inspiral. We remark that we do not make

1 Here the term “scalar charge” does not refer to a conserved,
Noether charge. It only denotes the coefficient of 1/r in the
far-field limit of the scalar field.

2 Notable exceptions may include spin-induced BH scalarization
[67–69] and superradiance [70]. In the later case, the scalar cloud
is not infinitely long-lived however and the end state is a Kerr
BH with lower spin.

any assumption on the nature of the secondary: it can
be either a BH or a NS. We neglect the spin of the sec-
ondary, since we are only interested in the leading-order
corrections to the energy and momentum fluxes and then
to the GW signal [17, 71].

Whenever the MBH is adequately described by the
Kerr metric, as per the assumptions of Papers I and
II and our analysis below, and since the mass ratio of
the binary q = mp/M is very small, the inspiral of the
SCO and the resulting GW emission can be studied using
the well-known perturbation theory around Kerr space-
time, pioneered by Teukolsky [72] (see also [73]). In this
paper we consider leading-order, “adiabatic”, perturba-
tions, which lead to O(q−1) terms within the gravita-
tional wave phase, neglecting higher-order corrections on
the mass ratio.

In Section II we review the theoretical framework,
showing that in a wide class of gravity theories the pri-
mary of an EMRI can be described by a Kerr BH, and
deriving the field equations for the metric and the scalar
field. We also discuss the description of eccentric, equa-
torial orbits in Kerr spacetime. In Section III we describe
our approach to solve the field equations to compute the
energy and angular momentum fluxes, the dephasing of
the gravitational waveform due to the scalar field emis-
sion, and the faithfulness between GW signals with and
without the scalar charge. In Section IV we present the
results of our numerical integration, discussing how the
fluxes and the dephasing depend on the orbital parame-
ters of the EMRI, and assessing the detectability of the
scalar field by LISA. Finally, in Sec. V we draw our con-
clusions.

II. THEORETICAL SET UP

In this section we review the theoretical background
behind our approach, and provide the relevant formalism
necessary to compute the GW flux emitted by EMRIs
with extra scalar charges. We use geometric units with
c = G = 1.

A. Action

We consider theories in which a scalar field ϕ is poten-
tially non-minimally coupled to the spacetime metric g.
We assume ϕ to be massless. We expect that our result
will be valid, qualitatively, for very light scalars as well,
while more massive scalar fields would be significantly
suppressed at large distances, decreasing deviations from
GR at the level of the waveforms. We will discuss this
in detail in a forthcoming paper [74]. The most general
action that can describe such theories is (see paper I):

S [g, ϕ, Ψ ] = S0 [g, ϕ] + αSc [g, ϕ] + Sm [g, ϕ, Ψ ] . (1)
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S0 includes the Einstein-Hilbert action and the canonical
kinetic term for the scalar field:

S0 =

∫
d4x

√
−g

16π

(
R− 1

2
∂µϕ∂

µϕ

)
, (2)

where R is the Ricci scalar. The non-minimal coupling
between g and ϕ is encoded in αSc, with α being a con-
stant of dimensions [α] = (mass)n. We assume Sc to be
analytic in ϕ. Finally, matter fields are described by Sm.

For EMRIs the typical scale of the secondary is much
smaller than the characteristic scale of the “exterior
spacetime”, i.e. of the solution of the field equations in
the absence of the small body. Therefore, we use the
skeletonized approach developed in [75–78], in which the
inspiraling body is treated as a point particle and Sm is
replaced by the particle action Sp given by the integral
of a scalar function m(ϕ) over the worldline followed by
the secondary, yµp (λ) (in a reference frame {yµ}):

Sp = −
∫
m (ϕ) ds = −

∫
m (ϕ)

√
gµν

dyµp
dλ

dyνp
dλ

dλ . (3)

The function m(ϕ) depends on the value of the scalar
field at the location of the particle, and accounts for the
coupling of the body to its scalar field environment. This
approximation holds at linear order in the mass
ratio.

The modelling of the exterior spacetime is greatly sim-
plified in theories that belong in the following two classes:

1. The theory satisfies a no-hair theorem [47–51]. This
case covers several classes of scalar-tensor theories
(including those in which α = 0 and the scalar field
couples to matter).

2. The theory evades the no-hair theorems but has a
dimensionful coupling constant α, with n ≥ 1; in
this case we also assume that the BH solutions are
continuously connected to the corresponding solu-
tion in GR as α → 0. All known examples of the-
ories that allow for scalar hair fall in this class so
far, e.g. scalar-Gauss–Bonnet gravity and Chern–
Simons gravity [53–55, 57, 59].

In case 1 it is clear that stationary BHs are described
by the Kerr metric. In case 2, the Kerr metric serves
as an excellent approximation at low orders in the mass
ratio. In case 2 the BH spacetime is continuously con-
nected to the Kerr solution as α→ 0, and since the only
dimensionful scale of the Kerr metric is the mass M of
the MBH, any correction to the latter must depend on
the dimensionless parameter ζ defined as:

ζ =
α

Mn
= qn

α

mn
p

= qnζp, (4)

where q ≡ mp/M is the binary mass ratio, which for
EMRIs is q � 1, and ζp = α/mn

p . Bounds on α ob-
tained from astrophysical observations imply ζp < 1 [79].

Therefore, the parameter which controls deviations from
the Kerr geometry is also small, ζ � 1, actually sup-
pressed by powers of the mass ratio. Note that there
can also be theories that are in neither Case 1 or Case
2 above, but for specific EMRIs the massive BH can be
well approximated by Kerr (e.g. it just happens to carry
a negligible scalar charge).

We can conclude that in an EMRI, for a wide class
of theories with a scalar field the spacetime of the pri-
mary is given by the Kerr metric to order O(qnζp) in the
mass ratio. The secondary moves in this background and
its motion and radiation emission can be studied using
standard perturbation theory on the Kerr spacetime.

We remark that a theory in which the primary object of
an EMRI is not described with good accuracy by the Kerr
metric would exhibit larger deviations from GR in the
gravitational waveform than those found in this article.
Hence, our results can be considered as a conservative
estimate.

B. Field equations

The field equations are obtained by varying action (1)
(with Sm now replaced by Sp) with respect to the
fields. Variation with respect to the metric gives the
modified Einstein equations [46]:

Gµν = Rµν −
1

2
gµνR = 8πT scal

µν + αT cµν + T pµν , (5)

where Rµν is the Ricci tensor, R is the Ricci scalar,

T scal
µν =

1

16π

[
∂µϕ∂νϕ−

1

2
gµν (∂ϕ)

2

]
(6)

is the stress-energy tensor of the scalar field and

T c
µν = − 16π√

−g
δSc

δgµν
(7)

is the stress-energy tensor associated to the coupling be-
tween the scalar and the gravitational fields. The stress
energy tensor of the secondary body obtained by varying
the skeletonized action Sp (3) is given by

T pαβ = 8π

∫
m(ϕ)

δ(4)(x− yp(λ))√
−g

dyαp
dλ

dyβp
dλ

dλ . (8)

We describe this system using perturbation theory
with respect to the mass ratio q � 1. We expand the
scalar field as ϕ = ϕ0 + ϕ1, where ϕ0 is the constant
background field, and ϕ1 is the perturbation induced by
the secondary.

We can now show that within our approach, both T scal
µν

and αT c
µν can be neglected at leading (adiabatic) order

in q, as they contribute only to higher (post-adiabatic)
orders in the small-ratio expansion. Indeed, since the
background scalar field ϕ0 is constant, the stress-energy
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tensor of the scalar field T scal
µν is quadratic in the per-

turbation ϕ1, i.e. O(q2) [or O(q) with respect to the
leading contribution to Eq. (5), which is given by the
stress-energy tensor of the secondary]. Moreover, since
[S0] = (mass)2, [Sc] = (mass)2−n and in an EMRI Sc
is evaluated on the background of the MBH, where the
only dimensionful scale is its mass M , we expect that:

Sc ∼M−nS0. (9)

Thus,

αT cµν = −16πα√
−g

δSc
δgµν

∼ −16παM−n√
−g

δS0

δgµν
, (10)

and, since αM−n = ζ � 1,

αT cµν ∼ ζGµν � Gµν . (11)

Therefore αT cµν is O(qnζp) with respect to the Einstein
tensor and can be neglected. The field equations for the
gravitational field are then:

Gαβ = 8π

∫
m(ϕ)

δ(4) (x− yp(λ))√
−g

dyαp
dλ

dyβp
dλ

dλ . (12)

Variation of the action (1) with respect to the scalar
field gives:

2ϕ+
16πα√
−g

δSc
δϕ

= 16π

∫
m′ (ϕ)

δ(4) (x− yp(λ))√
−g

dλ ,

(13)
where m′(ϕ) = dm(ϕ)/dϕ.

The scaling property (9) implies that the second term
on the left-hand side of Eq. (13) can be neglected:

16πα√
−g

δSc
δϕ
∼ 16παM−n√

−g
δS0

δϕ
∼ ζ 2ϕ� 2ϕ . (14)

Thus, the scalar field equation reduces to:

2ϕ = 16π

∫
m′ (ϕ)

δ(4) (x− yp(λ))√
−g

dλ . (15)

The functions m(ϕ) and m′(ϕ) are evaluated at the value
of the scalar field in the location of the particle, namely
ϕ0, and are determined uniquely by the properties of the
secondary.

Let us consider a reference frame {x̃µ} centered on the
latter. The solution to the scalar field equation in a buffer
region inside the world-tube of the inspiralling body, still
far enough to have a metric which can be written as a
flat spacetime perturbation, can be written as:

ϕ = ϕ0 +
mpd

r̃
+O

(
m2

p

r̃2

)
, (16)

where d is the dimensionless scalar charge of the body.
Matching the solution in the buffer region by replacing

Eq. (16) into Eq. (15), we obtain a relation between the
charge and the mass function:

m′(ϕ0)

mp
= −d

4
. (17)

Since in the weak-field limit the (tt)-component of the
particle’s stress energy tensor, given by

T p tt = 8πm(ϕ0)δ(3)
(
xi − yip(λ)

)
+O

(mp

r̃

)
, (18)

reduces to the matter density of the particle,

ρ = mpδ
(3)
(
xi − yip(λ)

)
, (19)

we obtain

m(ϕ0) = mp . (20)

Using Eqns. (17) and (20) for m(ϕ) we finally obtain
the following expressions for the field equations (to first
order in the mass ratio):

Gαβ = 8πmp

∫
δ(4) (x− yp(λ))√

−g
dyαp
dλ

dyβp
dλ

dλ , (21)

and

2ϕ = −4πdmp

∫
δ(4) (x− yp(λ))√

−g
dλ . (22)

Eqs. (21), (22) are the key ingredients of our approach,
and lead to fundamental results. The gravitational field
equations, Eqs. (21), coincide with those of the GR case.
The scalar field equation (22), instead, has a source
term whose magnitude is controlled by the dimension-
less scalar charge carried by the secondary. Therefore, all
changes in the EMRI evolution given by the extra scalar
field are uniquely and universally specified by the value of
d. For many gravity theories, the latter can be uniquely
mapped to the theoretical parameters which control devi-
ations from GR. In such cases, future measurements of d
with LISA observations, can be translated to constraints
on the fundamental parameters that characterize beyond
GR theories [19, 80].

These results have important consequences. From a
computational standpoint, the problem is reduced to the
resolution of the same equations as in GR, plus a single
extra equation describing the scalar field on a Kerr back-
ground. Moreover, the universality of Eq. (22) allows for
tests of GR without any assumptions regarding the origin
of the deviations (see Papers I and II).

III. ADIABATIC INSPIRAL

As discussed in Sec. II, we solve the modified Einstein
field equations (21)-(22) using a perturbative approach,
at leading order in the mass ratio q. Therefore, we de-
scribe the EMRI inspiral within the adiabatic approxi-
mation, in which the timescale of the energy and angular
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momentum dissipation is much larger than the dynam-
ical timescale, and thus the secondary object follows a
sequence of geodesics until the plunge. We describe the
equatorial eccentric motion of the body in Appendix A.
In the following, we discuss how to compute the energy
and angular momentum fluxes to determine the orbital

evolution for a prograde equatorial eccentric inspiral.

A. Scalar field perturbations

By decomposing the metric and scalar field functions
using the Newman-Penrose formalism we obtain a single
master equation for both tensor and scalar perturbations,
the Teukolsky equation [72]:

[(
r2 + a2

)2
∆

− a2 sin θ2

]
∂2

0ψ
(s)+

4aMr

∆
∂0∂φψ

(s)+

[
a2

∆
− 1

sin θ2

]
∂2
φψ

(s)−∆−s∂r
(
∆s+1∂rψ

(s)
)
− 1

sin θ
∂θ

(
sin θ∂θψ

(s)
)
−

− 2s

[
a (r −M)

∆
+ i

cos θ

sin θ2

]
∂φψ

(s) − 2s

[
2M(r2 − a2)

2∆
− r − ia cos θ

]
∂0ψ

(s) + (s2 cot θ2 − s)ψ(s) = 4πΣT (s) . (23)

The index s is the spin weight of the perturbation,
such that s = 0 for a scalar field, s = ±1 for vector per-
turbations, s = ±2 for gravitational perturbations (see
Appendix A for notations and conventions on the Kerr
metric):

ψ(−2) = (r − ia cos θ)
4
Ψ4 , ψ(0) = ϕ , (24)

where Ψ4 is one of the Weyl scalars, and the source term
T is a combination of the components of the stress-energy
tensor.

The Teukolsky equation (23) decouples into an angu-
lar and a radial component if we apply a Fourier trans-
form on ψ(s) and T (s) and expand them in spin-weighted

spheroidal harmonics S
(s)
`m(θ, ω):

ψ(s)(t, r, θ, φ) =

∫
dω
∑
`m

R̃
(s)
`m(r, ω)S

(s)
`m(θ, ω)eimφe−iωt ,

(25)

4πΣT (s) =

∫
dω
∑
`m

J̃
(s)
`m(r, ω)S

(s)
`m(θ, ω)eimφe−iωt .

(26)

The spheroidal harmonics S
(s)
`m are solutions of the equa-

tion:[
1

sin θ

d

dθ

(
sin θ

d

dθ

)
− γ2 sin2 θ − (m+ s cos θ)2

sin2 θ
−

− 2γs cos θ + s+ 2mγ + sλ`m

]
S

(s)
`m(θ, γ) = 0 , (27)

where γ = aω, and the parameter sλ`m is the angu-
lar eigenvalue, determined by solving Eq. (27). The
spheroidal harmonics satisfy the orthogonality relation∫

S
(s)
`m(θ, γ)eimφS

(s) ∗
`′m′ (θ, γ)e−im

′φdΩ = δ``′δmm′ . (28)

The radial components R̃
(s)
`m(r, ω) satisfy the following

equation

∆−s
d

dr

[
∆s+1 dR̃

(s)
`m

dr

]
+

[
K2 − 2is(r −M)K

∆

+ 4isωr − sλ`m

]
R̃

(s)
`m = J̃

(s)
`m , (29)

where K = (r2 + a2)ω − am. Since gravitational per-
turbations have been extensively studied in literature we
refer the reader to Appendix B for further details. Here-
after, we focus on the scalar sector, s = 0 and suppress
the index associated with the spin weight s to lighten the
notation.

Eq. (29) can be solved using standard Green-function
techniques. For s = 0, it becomes

d

dr

(
∆

dR̃`m(r, ω)

dr

)
+ V (r)R̃`m(r, ω) = J̃`m , (30)

where V (r) = (K2/∆) − λ. Hereafter, unless specified
differently, we will drop the multipolar indices (`,m). To
solve Eq. (30) we define the auxiliary function

Y (ω, r) ≡
√
r2 + a2R̃(ω, r) . (31)

Substituting Y (ω, r) in Eq. (30) the radial equation be-
comes

d2

dr2
?

Y + V (ω)Y = JY , (32)

where the potential V (ω) and the source term JY are
given by

V (ω) =
K2 − λ∆
(r2 + a2)2

−G2 − dG

dr?
,

JY =J̃
∆

(a2 + r2)3/2
, (33)
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with G = r∆/(r2 +a2)2 and r? is the tortoise coordinate
defined by

dr?
dr

=
r2 + a2

∆
. (34)

The homogeneous solution for Eq. (32) is found by
specifying proper boundary conditions at the horizon and
at infinity where, according to the properties of the po-
tential V (ω) [72]{

d2

dr2?
Y + k2Y = JY for r → r+ ,

d2

dr2?
Y + ω2Y = JY for r →∞ ,

(35)

where k = ω−mΩ+ and Ω+ = a
2Mr+

. The homogeneous

solutions Y−/Y+ which satisfy the condition of purely
ingoing/outgoing wave at the horizon/infinity have the
following asymptotic behaviour:{

Y− = e−ikr? for r → r+ ,

Y− = Aine
−iωr? +Aoute

iωr? for r →∞ ,
(36)

{
Y+ = Bine

−ikr? +Boute
ikr? for r → r+ ,

Y+ = eiωr? for r →∞ .
(37)

The general solution for Y (ω, r) is then obtained by in-
tegrating the former over JY :

Y = Y+

∫ r?

−∞

Y−JY dr?
WY

+ Y−

∫ +∞

r?

Y+JY dr?
WY

, (38)

where WY = Y ′+Y−−Y+Y
′
−, is the Wronskian and primes

denote derivatives with respect to r?. From Eq. (31) we

also obtain the asymptotic behavior of R̃−,+:{
R̃− = e−ikr? for r → r+ ,

R̃− = Ain

r e
−iωr? + Aout

r eiωr? for r →∞ ,
(39)

{
R̃+ = Bine

−ikr? +Boute
ikr? for r → r+ ,

R̃+ = eiωr?

r for r →∞ .
(40)

A general solution for R̃ can be constructed as in (38).

B. Source terms

We shall now derive the final form of the general so-
lution. Let’s first define the integral of the homogeneous
solution over the source term:

δϕ−,+`mω =

∫ +∞

−∞

Y+,−JY dr?
WY

. (41)

Projecting the source term J on the spheroidal functions
we find the explicit expression of J̃

J̃`m = −2d

∫ +∞

−∞

mpδ[r − rp(t)]
ṫ

S∗ei[ωt−mφp(t)]dt ,

(42)

where S∗ has to be evaluated on the equatorial plane at
θ = π/2. Replacing the former into Eq. (33) and (41)
and integrating over the radial coordinate we obtain

δϕ−,+`mω =

∫ +∞

−∞
I−,+ [rp(t)] e

i[ωt−mφp(t)]dt, (43)

with

I−,+ [rp(t)] =

[
Y−,+
WY

−2dmp

(a2 + r2)1/2

S∗

ṫ

]
r=rp(t)

. (44)

Finally, we define the functions

α(t)−,+ = I−,+[r(t)]e−im[φ(t)−Ωφt] . (45)

They are periodic in r with period Tr, and thus they can
be expanded as a Fourier series as

α(t)−,+ =

+∞∑
n=−∞

α̂−,+n e−inΩrt . (46)

The frequencies Ωi with i = (φ, r) are defined in Ap-
pendix A, eq. A16. Replacing the expression of I[rp(t)]
in terms of the Fourier expansion of α(t) in Eq. (43) and
performing the time integral we finally obtain

δϕ−,+`mω =

+∞∑
n=−∞

δϕ̂−,+`mnδ(ω − ωmn) , (47)

where ωmn = mΩφ + nΩr. The coefficients δϕ̂−,+`mn =
2παn are given by the integral

δϕ̂−,+`mn =
2π

Tr

∫ Tr

0

α(t)einΩrtdt . (48)

Substituting the expression (45) for α(t) and changing
the integration variable from t to χ (see Appendix A)
yields:

δϕ̂−,+`mn =Ωr

∫ 2π

0

dχ
Vt(χ)I−,+(χ)

J(χ)
√
Vr(χ)

ei[ωmnt(χ)−mφ(χ)]

=Ωr

∫ π

0

dχ
Vt(χ)I−,+(χ)

J(χ)
√
Vr(χ)

[ei[ωmnt(χ)−mφ(χ)]

+ e−iωmnt(χ)+imφ(χ)] . (49)

The amplitudes δϕ−,+`mn computed through Eq. (49) are
needed to compute the energy and angular momentum
fluxes emitted by the binary.

C. Energy and angular momentum fluxes of the
scalar field

The energy flux associated to the scalar field can be
derived through the effective stress-energy tensor for ϕ,
as previously done e.g. in [81], which coincides with the
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Isaacson tensor in GR [33, 82]. The stress-energy tensor
for the scalar field is given in Eq. (6) and the energy flux
reads:

Ė±scal =
dE±scal

dt
= ∓∆

∫
T scal
tr dΩ , (50)

where T scal
tr = (16π)−1ϕ,tϕ

∗
,r and the upper (lower) sign

indicates the emission at infinity (horizon). The time
derivative of ϕ =

∑
`,m ϕ`m is simply given by (ϕ`m),t =

−iωmnϕ`m (see Eq. (25)), while to compute the deriva-
tives with respect to the radial coordinate we note that{

Y`m = δϕ+
`mωe

iωr for r →∞ ,

Y`m = δϕ−`mωe
−ikr? for r → r+ ,

(51)

therefore{
(ϕ∗`m),r = −iωmnϕ∗`m for r →∞ ,

(ϕ∗`m),r = ikmn
r2+a2

∆ ϕ∗`m for r → r+ .
(52)

Using these relations and the orthogonality condition of
the spheroidal functions (28) we obtain the energy fluxes
for the scalar field in the frequency domain:

Ė
(+)
scal =

1

16π

∑
`,m,n

ω2
mn|δϕ̂+

`mn|
2 , (53)

Ė
(−)
scal =

1

16π

∑
`,m,n

ωmnkmn|δϕ̂−`mn|
2 , (54)

with kmn ≡ ωmn −mΩ+.
From the energy flux we obtain the the angular mo-

mentum flux:

L̇
(+)
scal =

1

16π

∑
`,m,n

mωmn|δϕ̂+
`mn|

2 , (55)

L̇
(−)
scal =

1

16π

∑
`,m,n

mkmn|δϕ̂−`mn|
2 . (56)

The total energy and angular momentum fluxes are given
by the sum of the gravitational and scalar terms at hori-
zon and at infinity:

ĊGW =
∑
i=+,−

[Ċ(i)
grav + Ċ

(i)
scal] = Ċgrav + Ċscal , (57)

where C ∈ [E,L], Ċgrav ≡ Ċ
(+)
grav + Ċ

(−)
grav and Ċscal ≡

Ċ
(+)
scal + Ċ

(−)
scal.

Finally, because of the linear dependence of the source
term from the scalar charge, it is worth to remark that
the total scalar flux for a given scalar charge simply scales
with d as

Ċscal = d2 ˙̄Cscal ,

where ˙̄Cscal only depends on (p, e, a).

D. Adiabatic Orbital Evolution

The loss of energy and angular momentum due to the
gravitational and the scalar GW emission drives the bi-
nary orbital evolution, which in the adiabatic approxi-
mation follows a sequence of geodesics until the plunge.
The change of the orbital integrals C = (E,L) is given
by the balance law

Ċ = −ĊGW . (58)

The evolution of (E,L) allows us to study the change of
the eccentricity and of the semi-latus rectum (e, p) [83]:

Ė = E,pṗ+ E,eė , L̇ = L,pṗ+ L,eė , (59)

such that

ṗ = (L,eĖ − E,eL̇)/H , ė = (E,pL̇− L,pĖ)/H , (60)

with H = E,pL,e − E,eL,p. As shown in Eq. (57) the
scalar flux adds linearly to the gravitational component
and increases the rate of change of the orbital parameters
(p, e). Therefore, for a given set of initial condition, bi-
naries with d 6= 0 complete less cycles before plunge than
binaries with vanishing scalar charge. To quantify the im-
pact of the scalar charge on possible GW detections by
LISA, we evolve EMRIs with and without scalar charge,
following their orbits for a given observational time Tobs.
At any time t, we compute the orbital frequencies for
both systems, and the quadrupolar dephasing

∆Ψi = 2

∫ Tobs

0

∆Ωidt i = φ, r , (61)

where

∆Ωi = Ωdi −Ωd=0
i . (62)

Since the quadrupolar component dominates the de-
phasing, and ∆Ψr � ∆Ψφ, the dephasing of the gravi-
tational wave is ∆Φ ∼ ∆Ψφ. Following [84] we choose
∆Ψφ ∼ 0.1 rad as the threshold for a dephasing observ-
able by LISA for a system detected with SNR of∼ 30 [10].

The dephasing provides a preliminary estimate of the
scalar charge distinguishability. A more quantitive and
accurate assessment can be made by computing the faith-
fulness F between two GW signals emitted by EMRIs
with and without the charge:

F [h1, h2] = max
{tc,φc}

〈h1|h2〉√
〈h1|h1〉〈h2|h2〉

, (63)

where we have introduced the noise-weighted inner prod-
uct between two templates in the frequency domain

〈h1|h2〉 = 4<
∫ fmax

fmin

h̃1(f)h̃?2(f)

Sn(f)
df , (64)

maximised over time and phase offsets (tc, φc) between
the two signals. We consider the power spectral den-
sity Sn(f) of the LISA detector including the confusion
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noise produced by unresolved galactic white dwarf bina-
ries [85]. The Fourier transform h̃(f) of the GW sig-
nals is computed starting from the waveform model for
eccentric inspirals in the time domain described in [12]
(see also Appendix E for more details). We also fix the
minimum integration frequency to fmin = 10−4Hz, while
fmax = fNy, with fNy being the Nyquist frequency.

Eq. (64) also allows to compute the SNR ρ of a signal
h, ρ = 〈h|h〉. Assuming ρ = 30, two signals result to be
distinguishable by LISA if F . 0.988 [86]. [SB: 0.994:
plot to be changed]

E. Implementation

To compute both the gravitational and the scalar
fluxes we have exploited some of the numerical rou-
tines implemented in the Black Hole Perturbation Toolkit
(BHPT) [87], and in particular the Teukolsky package
to calculate the homogeneous solutions of the Teukol-
sky equation. Since BHPT currently assumes circular
orbits only, the integration over the source terms needed
to obtain the eccentricity-dependent perturbations and
the corresponding fluxes at the horizon and infinity has
been performed using a Mathematica code built inde-
pendently. We have checked that for e = 0 our code
reproduces the fluxes obtained by the BHPT with great
accuracy. Comparisons with previous results for eccen-
tric EMRIs in GR are discussed in Appendix C. Orbital
frequencies have also been computed using the BHPT, in
particular the KerrGeodesics package [88].

We have computed
(
Ė(±), L̇(±)

)
for different values

of (e, p) and assuming a = 0.2M and a = 0.9M for the
primary spin. Note that that MBHs falling in the LISA
band are expected to be rapidly spinning, with a ∼ 0.9M
or possibly even larger [9]. We have sampled the ec-
centricity between 0.1 ≤ e ≤ 0.5 in steps of ∆e = 0.1.
These choices lead to an eccentricity at the plunge in
agreement with standard expectation, a flat distribution
in e ∈ [0, 0.2] [9]. To make the grid in p denser close
to the separatrix, where orbital parameters vary more
rapidly, for the semi-latus we have taken 41 points uni-
formly spaced in the new variable u = (p − 0.9ps)

−1/2,
within [u(pmin), u(pmax)], where pmax = pmin+10M and
pmin = ps + 0.03M , with ps being the value of p at the
separatrix as a function of e. Then, from the inverse re-
lation p(u), we have obtained a non-uniform grid for the
semi-latus rectum. In this way, if one considers the grid
in (e, p− ps), the initial and the final values of p− ps are
the same for each values of the eccentricity, i.e. 0.03M
and 10.03M , respectively. This is optimal for a two di-
mensional interpolation with Mathematica, which can be
performed only on a structured grid.

For each point in the (e, p) plane we have computed the

total flux by summing over the three indexes (`,m, n) 3:

Ċ =
∑
`mn

Ċ`mn =

`max∑
`min

m=+`∑
m=−`

(
Ċ`m0 + 2

nmax∑
n=1

Ċ`mn

)
,

(65)
where C ∈ [E,L] and the ` = 0, 1 components are due to
the scalar flux only, while both scalar and gravitational
fluxes contribute to the ` ≥ 2 components.

In our code we have chosen `max = (8, 10) respectively
for s = (0,−2). These values are such that, for a primary
spin of a = 0.9M and eccentricity e = 0.5, the relative
difference in the flux between `max and `max − 1 is less
than 2% for the innermost p of the grid, while for the
outermost is less than 0.01%. For e = 0.1 the relative
difference is less than 1% for the innermost p and less
than 0.001% for the outermost.

The value for nmax is chosen such that the fractional
change in the sum (65) is smaller than 10−4 for three
consecutive values of n. This choice is motivated by the
behavior of the energy flux spectrum as a function of
(e, n). Indeed, we observe that for low eccentricities the
flux has a peak at small values of n, rapidly decreasing
afterwards. On the other hand, for larger values of e
the spectrum shows relative maxima before reaching the
absolute peak, located at higher n compared to the low-
eccentricity case. This behaviour is shown in Fig. 8 of

Appendix C, where we plot Ė
(+)
`mn as a function of n for

different values of the eccentricity and for the ` = m = 2
and ` = m = 5 modes.

After computing the fluxes for each point of the grid,
we have performed an interpolation using a built-in
Mathematica function over the grid in the two param-
eters (e, p − ps). In order to estimate the errors intro-
duced by the interpolation, we computed also the fluxes
in points outside the grid, and estimated the relative
difference between the interpolated and the computed
fluxes. The relative difference between them turns out
to be . 0.2% for points fluxes closer to the separatrix
and it grows for larger values of p, up to ∼ 6 − 7% for
the furthermost points. Numerical values for the fluxes
obtained for different points outside our grid are listed in
Tables V and VI of Appendix D.

Finally, regarding the waveform templates, we have
employed the quadrupolar formula discussed in [12] sum-
ming over the harmonics with ` = 2 and different values
of n:

h(t) =

n̄∑
n=1

hn(t) . (66)

Each term is a sum over m = −2, . . . , 2. We consider con-
tributions up to n̄ = 10. We have checked that the rel-
ative difference between the faithfulness computed with

3 We remind that the index n is associated to the radial motion,
with period Tr, see Appendix A.
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this setup, and including a further component, i.e. with
n̄ = 11 is � 0.1%.

IV. RESULTS

We shall now discuss how the scalar charge affects the
EMRIs orbital evolution. We first focus on the case of
circular orbits with a spinning primary.

A. Circular orbits
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FIG. 1. (Top) Scalar energy flux, normalized with the mass-
ratio, as a function of the orbital radius, for different values
of the scalar charge. The spin of the primary is a/M = 0.9.
(Bottom) Relative difference between the scalar and gravi-
tational energy flux as a function of the orbital radius for
different values of the scalar charge, and a/M = 0.9.

Results for circular orbits are summarized in Figs. 1-2.
The top panel of Fig. 1 shows the total scalar energy flux
as a function of the orbital radius, for different values
of d and for primary’s angular momentum a/M = 0.9.
Both the scalar and gravitational fluxes scale as q2. The
behavior of Ėscal is qualitatively similar to that shown in
paper I, where the central BH is non-spinning.

The bottom panel of Fig. 1 shows the ratio between
the scalar and gravitational components of the GW flux,
for the same binary configurations of the top picture.
The ratio decreases as the orbital radius shrinks, with
the gravitational contribution growing in time faster than
the scalar contribution, at small separation.

Figure 1 also shows that for d > 0.01 the scalar flux
Ėscal ranges between 0.1% and 1% of the gravitational
flux Ėgrav. Therefore, we expect the scalar charge to
induce a significant contribution on the EMRI evolution
when integrated over the all inspiral phase (see paper I).

Figure 2 shows the ratio Ėscal/Ėgrav, rescaled by d2, as
a function of the primary BH spin, and the absolute value
of Ėscal. It is interesting to note that while for a fixed
radius r/M , larger a/M lead to slightly smaller values

of the scalar flux (this is also true for the gravitational
component), the overall emission increases due to the
larger range of frequencies spanned by the binary.
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FIG. 2. Same as Fig. 1 for different values of the primary spin
a/M .

Figure 3 provides the GW dephasing ∆Ψφ defined in
Eq. (41). In the top two panels the dephasing is shown for
different values of the scalar charge and of the observation
time before the plunge,4 (d, Tobs) = (0.01, 6 months) and
(d, Tobs) = (0.005, 12 months), as a function of the binary
component masses. All binaries with M . 3 × 106M�
lead to a dephasing larger than the detectability thresh-
old of 0.1 radians, with the values of the dephasing ∆Ψφ
being almost insensitive to the mass of the secondary.
In both cases, with further six months of observation
time (i.e., Tobs = 6 months for d = 0.01 and Tobs = 12
months for d = 0.005) all the binary configurations up to
M ' 107M� and mp ' 100M� are above the threshold.

In the third panel from the top we study how the de-
phasing changes as a function of the scalar charge and
of the mass of the primary, for mp = 10M�, Tobs = 12
months and a/M = 0.9. The plot shows that the ac-
cumulated phase difference can be significant, especially
for binaries with a massive BH of M . 106M� for which
∆Ψφ can be larger than 103 radians.

Finally, the last (bottom) panel of Figure 3 shows how
∆Ψφ changes by varying the spin of the primary and the
scalar charge of the secondary. The masses of the binary
are (M,mp) = (106, 10)M� and the time of observation
is Tobs = 12 months. For a fixed scalar charge, the de-
phasing increases with the increasing of the primary spin.
For a/M = 0.1(0.9), ∆Ψφ is larger then the threshold of

4 We define the plunge as rplunge = rISCO + δr, where we adopt
the conservative choice of δr = 0.1M (see paper II). The initial
radius r0 for the evolution of each binary is chosen such that the
system reaches rplunge from r0 after Tobs.
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0.1 radians for d & 0.0033(0.0023), respectively. This
result is consistent with those of Ref. [89], where the in-
crease of the dephasing with the spin of the primary was
discussed.

Overall this analysis confirms the calculations of Pa-
pers I and II, and is extremely encouraging in terms of
the future constraints on the charge that can be inferred
by LISA.

B. Eccentric orbits

We now move to eccentric orbits. In Fig. 5 we show
the ratio between the scalar and gravitational energy (top
panels) and angular momentum (bottom panels) fluxes,
as a function of the semi-latus rectum p/M , during the
inspiral of EMRIs on eccentric orbits with a scalar charge
d = 1. The inset in each panel provides the absolute
value of Ėscal and L̇scal. We focus here on two prototype
binaries with primary spin a/M = 0.2 (left panels) and
a/M = 0.9 (right panels), and eccentricities e ∈ [0.1, 0.5].

As was the case for circular orbits discussed above,
for a given value of the eccentricity the ratio between
the scalar and the gravitational components decreases for
smaller p, due to the faster growth of Ėgrav and L̇grav.
This behavior is also confirmed by the analyses of the
harmonic components shown in Fig. 4 for e 6= 0. More-
over, for fixed p, while the absolute value of Ėscal grows
with the eccentricity, the relative difference with respect
to the gravitational flux becomes smaller. Note that the
value of the separatrix increases for higher eccentricity.
However, the periastron of the last stable orbit decreases
for higher eccentricity, so that a more eccentric orbit can
lead the particle closer to the MBH horizon.

As shown in Fig. 4, for large orbital separation, the
dipole ` = m = 1 scalar mode approaches the quadrupo-
lar ` = m = 2 (scalar) component, with the latter in-
creasing steeply for smaller separations. The monopole
coomponent ` = m = 0 is excited only for eccentric orbits
and shows a similar steep increase, although it remains
subdominant and starts decreasing before the plunge.

In order to quantify the impact of the eccentricity on
the EMRI evolution we analyse, for various orbital set
ups, the quadrupolar dephasing induced by d. The latter
is computed by comparing two different inspirals, with
and without the scalar charge, starting with the same
initial condition, i.e. with the same initial periastron and
apastron, and assuming initial phases Ψφ = Ψr = 0. The
phases are defined by

Ψi =

∫ Tobs

0

Ωidt (i = φ, r) . (67)

The values of ∆Ψφ,r are shown in Fig. 6 for the total
orbital evolution up to the plunge5. The dashed curves

5 Here we mean the position (efin, pfin) such that pfin =
pmin(efin), with pmin = ps + 0.11M .

FIG. 3. Quadrupolar gravitational wave dephasing ∆Ψφ, i.e
difference in the GW phase evolution of EMRIs with and
without scalar charge. First and second panels show ∆Ψφ
as a function of the binary component masses and refer to
EMRIs with (d, Tobs) = (0.01, 6 months) and (d, Tobs) =
(0.005, 12 months), respectively, for a/M = 0.9. Third and
fourth panels show the dephasing as a function of (M,d) and
of (d, a/M), respectively, for Tobs = 12 months of observation
and mp = 10M�. The dashed white line in each plot identi-
fies the detectability threshold of 0.1 radian for a GW event
with SNR of 30 observed by LISA.
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FIG. 4. Harmonic components of the gravitational and scalar
energy flux, normalized with the mass-ratio, with d = 0.1 as
a function of the semi-latus rectum, for eccentric (left panel)
and circular (right panel) orbits. The MBH’s spin is a/M =
0.9. We only show the dominant modes, i.e. the ` = (0, 1, 2)
coefficients and, for the eccentric orbit, we sum over the index
n. In the gravitational sector only ` ≥ 2 modes are present,
while in the scalar sector the dipole contribution is excited.
The monopole contribution of the scalar sector is only excited
in the eccentric case.

refer to binary configurations with fixed apastron ra =
11M , and different choices of the periastron rp. The
scalar charge has been fixed to d = 0.01. The initial
and final values of the periastron and eccentricity of each
inspiral with d = 0.01 are provided in Table I. We observe
that, by increasing the initial periastron, i.e. by reducing
the initial eccentricity, the time it takes for the secondary
to reach the plunge grows, leading to larger values of the
accumulated dephasing. However, for a given time of
observation, ∆Ψφ is larger for inspirals with higher ein.

In order to assess the detectability by LISA, we plot the
∆Ψφ = 0.1 rad threshold, corresponding to the minimum
phase potentially resolvable by the detector for a binary
observed with a SNR of 30 (note that ∆Ψr � ∆Ψφ and
thus gives a negligible contribution to the dephasing). Af-
ter 4-6 months of observation all the considered inspirals
lead to a dephasing larger then the threshold. Values of
the scalar charge> 0.01 will also lead to larger dephasing.
We provide some reference values of the latter after 12
months of evolution for different choices of d in Table II.
The steep variation in ∆Ψr at the end of the evolution
appears to be due the orbital eccentricity, whose time
derivative changes signs close to the plunge. That eccen-
tricity grows as one approaches the plunge has already
been pointed out in the literature, see e.g. [83]. While
e(t) increases, the change of Ψr (defined in Eq. (67)) for
d 6= 0 becomes smaller then the one for d = 0, ∆Ψr ac-
quires a negative sign and ends up counterbalancing the
dephasing accumulated until the turning-point.

Finally, we compute the faithfulness between the plus
polarization of two GW templates with d = 0 and d 6= 0,
assuming 12 months of observation. The faithfulness is
shown in Fig. 7, as a function of the scalar charge d, com-

rinp /M ein rfinp /M efin

3.667 0.49997 2.18606 0.18945

4 0.47 2.19251 0.18185

5.5 0.33 2.19721 0.17846

7 0.22 2.19756 0.17812

7.5 0.19 2.19759 0.17809

7.9 0.16 2.19761 0.17807

11 0 2.789 0

TABLE I. Values of the initial and final periastron and eccen-
tricity for the inspirals of Fig. 6

ein d ∆Ψφ ∆Ψr

0.22 0.01 0.88 0.5

0.05 21 12

0.1 88 48

0.33 0.01 4 1.5

0.05 105 38

0.1 423 151

TABLE II. Values of the accumulated dephasings after 12
months of evolution for three different values of the scalar
charge d = (0.01, 0.05, 0.1), for a primary spin a/M = 0.9.
The initial apastron is fixed to ra = 11M , as for the plots in
Fig. 6.

paring a circular and an eccentric inspiral around a MBH
of spin a/M = 0.9. The initial position for each inspi-
ral is found by requiring that the secondary reaches the
plunge after one year of evolution, fixing the final eccen-
tricity to efin = 0.18 such that the plunge is located at
(pfin/M, efin) ' (2.59, 0.18). In particular, for d = 0 the
initial position is given by (pin/M, ein) ' (7.071, 0.492).
For the sake of comparison we also compute the faithful-
ness in the case of circular orbits, for which the plunge is
fixed at the ISCO.

The horizontal dashed line in the figure represents the
threshold value, beyond which signals with SNR of 30 can
be distinguished. While for d & 0.01 the faithfulness for
both the circular and the eccentric inspiral is well below
the threshold, we see that for the latter the distinguisha-
bility increases, leading to a smaller overlap between the
the templates.

While a more sophisticated analysis is required to de-
termine the actual constraints on d that can be inferred
by EMRI on eccentric orbits (see paper II), our dephasing
and faithfulness results provide a strong indication that
LISA should be able to constrain or detect even small
values of the scalar charge. Moreover, Fig. 7 suggests
that the inclusion of the eccentricity in the analysis im-
proves the distinguishability of the scalar charge, at least
for d & 0.01.



12

e=0.5
e=0.4
e=0.3
e=0.2
e=0.1

-1.5

-1.25

-1.0

-0.75

L
og

1
0
[E
 sc

al
/E
 gr

av
]

5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

p/M
q
-
2
E sc

al
(×

1
0
4
)

a/M=0.2

2 3 4 5 6 7
0

2

4

6

8

p/M

q
-
2
E
sc

al
(×

1
0
4
) a/M=0.9

e=0.5
e=0.4
e=0.3
e=0.2
e=0.1

5 6 7 8 9 10 11

-1.5

-1.25

-1.0

-0.75

p/M

L
og

1
0
[L
 sc

al
/L
 gr

av
]

5 6 7 8 9 10
0.0

2.0

4.0

6.0

8.0

10.0

12.0

p/M

q
-
2
L
sc

al
(×

1
0
4
)

a/M=0.2

2 3 4 5 6 7 8

p/M

2 3 4 5 6 7
0

10

20

30

40

p/M

q
-
2
L sc

al
(×

1
0
4
) a/M=0.9

FIG. 5. Ratio between the scalar and gravitational energy (top panels) and angular momentum (bottom panels) fluxes as
a function of the semi-latus rectum p, for different values of the eccentricity and a fixed spin of a = 0.2M (left panels) and
a = 0.9M (right panels). The inset within each plot shows the absolute value of the scalar component, normalized with the
mass ratio. We assume d = 1 for all the configurations.

V. CONCLUSIONS

EMRIs are golden sources for the future GW space-
based detector LISA. Due to their rich phenomenology,
they are ideal for investigating a large variety of astro-
physical phenomena and for testing fundamental physics.
Probing the behavior of gravity in a strong-field dynam-
ical regime is a major science goal for LISA, which will
benefit from the observation of the hundreds of thousands
of GW cycles that the EMRI secondary will follow before
plunging into the massive central body.

Tracking the long orbital inspiral of EMRIs is a com-
plex task which requires accurate templates to be com-
pared against actual data [90–93]. Until recently, EMRI
GW templates have only been developed in GR. Such
templates only allow for null tests of GR: performing un-
biased tests of gravity requires the development of tem-

plates which include the effects of possible deviations
from GR or the Standard Model [94]. On the other
hand, beyond-GR templates would in general be theory-
dependent, and may be extremely challenging to compute
within the required accuracy.

In paper I we have shown that these problems can be
overcome for a large class of theories with an additional
massless scalar field. Indeed, at leading order in the mass
ratio, the MBH spacetime in these theories is described
by the Kerr metric, and the changes in the EMRI dynam-
ics due to the presence of the scalar field only depend on
the scalar charge of the inspiralling body, which uniquely
captures all the information on the underlying theory of
gravity. In paper II we have included in our analysis the
spin of the primary body and we have assessed, using a
Fisher-matrix approach, the capability of LISA to mea-
sure the scalar charge. Here we have generalized some
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dephasing as a function of the observation time, assuming spin
a = 0.9M . The curves refer to inspirals with initial apastron
ra = 11M and different values of the initial periastron, which
correspond to initial eccentricities within e ' [0, 0.5]. We fix
the scalar charge to d = 0.01. The horizontal line in the top
panel identifies the threshold for phase resolution by LISA for
a binary observed with signal to SNR of 30 [10]. Although
this is not visible in the semi-logarithmic scale, the first two
curves in the bottom panel reach negative values.
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FIG. 7. Faithfulness between the plus polarization of two GW
waveforms computed with d = 0 and d 6= 0, as a function
of the scalar charge, for a circular (dark triangles) and an
eccentric (light dots) inspiral. The MBH’s spin is a/M = 0.9,
while the time of observation is fixed to 12 months. The
dashed line corresponds to the threshold below which the two
templates are distinguished by LISA for a binary observed
with SNR of 30 [86].

of the results of these papers, by studying in detail the
effect of rotation on the signal, and by including the ec-
centricity of the (prograde) orbits in the model.

The spin of the primary has a strong influence on the
GW emission of the binary. Indeed, increasing the MBH
rotation rate, the radius at which the secondary plunges
shrinks, allowing it to inspiral closer to massive BH and
then enhancing the overall energy loss. We have shown
that for a fixed orbital distance the ratio between the
scalar and gravitational fluxes also increases with the
spin: for a/M = 0.9 the value of Ėscal/d

2 can be as

large as ∼ 10% of Ėgrav far from the plunge (r/M ∼ 8),
decreasing to ∼ 2% for closer distances. The difference in
the phase evolution between EMRIs modelled with and
without scalar charge suggests that LISA can be poten-
tially able to identify values of d as small as d ∼ 0.0033,
for a/M = 0.1 and d ∼ 0.0023, for a/M = 0.9, for one
year of observations before the plunge. Large values of
the charge may lead to significant dephasing of more than
103 radians for the same observing time.

We have also studied the EMRI evolution on eccen-
tric inspirals, computing the scalar emission for various
orbital configurations, and the induced GW dephasing.
Comparing different inspirals with the same initial apas-
tron our results show that for a given time of observation
the phase difference increases for larger values of the ini-
tial eccentricity.

Furthermore, we have investigated the distinguishabil-
ity of GW signals emitted by eccentric EMRIs carrying a
non-vanishing scalar charge, by computing the faithful-
ness between waveforms with different values of d. We
confirm the small values of the faithfulness previously
found in paper II, finding that the eccentricity further re-
duces the overlap with respect to the equatorial circular
case. Our analysis suggests that one year of observation
by LISA would be enough to distinguish signals with a
scalar charge as small as d ' 0.01. Hence, the joint effect
of the eccentricity and of the MBH spin, both expected
for EMRIs in real astrophysical environments, enhance
the dephasing with respect to the uncharged case, and
leads to promising results in terms of LISA observations.
As already discussed in paper II, the dephasing only pro-
vides a preliminary assessment of the detectability of the
scalar charge. The faithfulness analysis is rather more
robust, but a more complete and accurate analysis which
take into account the correlation between all binary pa-
rameters is needed. Studies based on MCMC simulations
and on state of the art EMRI waveform generation [18]
are underway.

We remark that our encouraging results are, quali-
tatively, not limited to the class of theories considered
in this paper. Indeed, if the MBH is not described by
the Kerr metric, the deviations are expected to be even
larger, and our results can be considered as a conservative
estimate.

The template developed here already provides a sig-
nificant improvement of those derived in papers I and
II, but a more refined analysis is still needed in order to
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assess LISA’s full potential to detect fundamental fields
and new physics beyond GR. Besides taking into account
statistical correlations as discussed above, our analysis
should be extended to retrograde or inclined orbits, ex-
ploiting previous self-force calculations for scalar charges
on generic trajectories [95–97], to the case of an (ultra-
light) massive scalar field (see [74]), and to theories with
multiple fields and couplings constants. A more chal-
lenging task is given by the extension of our formalism
beyond the adiabatic order, where the coupling between
the gravitational and the scalar field will introduce new
computational problems, potentially leading to signifi-
cant changes to the EMRI orbital evolution.

Acknowledgments. A.M. and T.P.S. thank Niels War-
burton for useful discussions, and for kindly sharing pre-
vious results on numerical computations of the scalar
flux. This work makes use of the Black Hole Pertur-
bation Toolkit. The authors would like to acknowl-
edge networking support by the COST Action CA16104.
A.M. acknowledge support from the Amaldi Research
Center funded by the MIUR program ”Dipartimento di
Eccellenza” (CUP: B81I18001170001). N.F. acknowl-
edges financial support provided under the European
Union’s H2020 ERC Consolidator Grant “GRavity from
Astrophysical to Microscopic Scales” grant agreement
no. GRAMS-815673. We also acknowledge financial fup-
port from the EU Horizon 2020 Research and Inno-
vation Programme under the Marie Sklodowska-Curie
Grant Agreement no. 101007855. T.P.S. acknowledges
partial support from the STFC Consolidated Grant
no. ST/T000732/1 and no. ST/V005596/1.

Appendix A: Geodesic motion

We model the EMRI dynamics as the motion of a test
body moving along geodesics of a Kerr BH with intrinsic
angular momentum J = aM . In the Boyer-Lindquist
coordinates xµ = (t, r, θ, φ), the Kerr metric reads

ds2 = −
(

1− 2Mr

Σ

)
dt2− 4aMr sin2θ

Σ
dtdφ+

Σ

∆
dr2+

+Σdθ2 +

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2θ dφ2, (A1)

where ∆(r) ≡ r2 − 2Mr + a2 and Σ(r, θ) ≡ r2 +
a2 cos2 θ [98]. The outer event horizon of the BH is lo-

cated at r+ = M +
√
M2 − a2.

In this paper we consider equatorial eccentric orbits,

such that the geodesic equations are given by:

r2 dr

dτ
= ±(Vr)

1/2 = ±
√
T 2 −∆ [r2 + (L− aE)2] ,

(A2)

r2 dφ

dτ
= −(aE − L) +

aT

∆
, (A3)

r2 dt

dτ
= −a(aE − L) +

(
r2 + a2

)
T

∆
, (A4)

θ(τ) = π/2 , (A5)

where τ is the proper time of the secondary and T ≡
E
(
r2 + a2

)
− aL [99]. The space-time admits two con-

stants of motion, E and L, which correspond to the en-
ergy and the angular momentum of the particle at infin-
ity. Once initial condition are specified, (E,L) uniquely
determine a bound equatorial orbit in the Kerr space-
time. Orbits are defined by 0 ≤ E < 1 and confined
between the periastron rp and the apastron ra, being
rp ≤ r ≤ ra, which represent the turning points of the
orbital motion, and such that Vr(ra) = V (rp) = 0. Equa-
torial orbits can be parametrised either by the energy and
angular momentum, or by two parameters p and e, i.e.,
by the semi-latus rectum and by the eccentricity of the
orbit, with 0 ≤ e < 1. These parameters are defined in
terms of the turning points as

rp =
p

1 + e
, ra =

p

1− e
. (A6)

The relation between (p, e) and (E,L), as well as an ex-
plicit expression for the latter are shown later in this Ap-
pendix. The radial coordinate can also be parametrised
in terms of a new parameter χ:

r(χ) =
p

1 + e cosχ
, (A7)

where χ varies monotonically from χ = 0 at the perias-
tron, to χ = π at the apastron. We define the radial pe-
riod Tr as the coordinate time taken from the secondary
to pass through two consecutive periastron passages, such
that Tr = t(χ = 2π) = 2t(χ = π). Given Tr the period of
the radial motion, we also introduce ∆φ as the variation
of φ in an interval Tr. The functions t(r) and φ(r) can
be obtained by integrating the geodesics equations:

t(r) =

∫ r

r1

dt

dτ

(
dr

dτ

)−1

dr , (A8)

φ(r) =

∫ r

r1

dφ

dτ

(
dr

dτ

)−1

dr . (A9)

However, these integrals result to be divergent at the
turning points of the orbit. To avoid this divergence, we
can perform the integrals over the parameter χ:

φ(χ) =

∫ χ

0

dχ′
Ṽφ(χ′, p, e)

J(χ′, p, e)Ṽr(χ′, p, e)
, (A10)

t(χ) =

∫ χ

0

dχ′
Ṽt(χ

′, p, e)

J(χ′, p, e)Ṽr(χ′, p, e)
, (A11)
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where the functions V̂t,r,φ, amd J are defined as

Ṽr = x2 + a2 + 2axE − 2Mx2

p
(3 + e cosχ) , (A12)

Ṽφ = x+ aE − 2Mx

p
(1 + e cosχ) , (A13)

Ṽt = a2E − 2aMx

p
(1 + e cosχ) +

Ep2

(1 + e cosχ)2
,

(A14)

J = 1− 2M

p
(1 + e cosχ) +

a2

p2
(1 + e cosχ)2 , (A15)

with x ≡ L− aE.
From the radial period Tr and the variation of φ in

such period, we define the orbital frequencies Ωr and Ωφ
as

Ωr =
2π

Tr
, Ωφ =

∆φ

Tr
. (A16)

As we will show, the phase of the emitted gravitational
wave signal will be related to (Ωr, Ωφ) through the fre-
quency ωmn:

ωmn = mΩφ + nΩr , (A17)

with (m,n) ∈ Z. In this work we considered only pro-
grade orbits6. The frequencies have been computed by
making use of the BHPT [88].

A typical inspiral will proceed as a sequence of eccen-
tric geodesics, progressively closer to the primary, until
the radial coordinate reaches the Last Stable Bound Or-
bit (LSBO) beyond which the secondary will plunge [100].
All bound equatorial orbits have p2 > x2(1 + e)(3 − e),
where x = x(a, p, e). Given a certain value of the spin a
and of the eccentricity e, the curve p2

s = x2(1 + e)(3− e)
defines the separatrix in the e − p plane. If e = 0, the
separatrix reduces to the ISCO in the Kerr spacetime

rISCO/M = 3 +Z2 ±
√

(3− Z1) (3 + Z1 + 2Z2) , (A20)

where the terms Z1 and Z2 are given by the expressions

Z1 = 1 + 3
√

1− (a/M)2
(

3
√

1 + (a/M) + 3
√

1− (a/M)
)

and Z2 =
√

3(a/M)2 + Z2
1 [101]. For a/M = 0 we obtain

the Schwarzschild limit rISCO = 6M . For a given value
of the spin a, the energy fluxes emitted by the binary
are computed until the secondary reaches rISCO or the

6 In the case of circular orbits (e = 0), the GW phase depends on

ωm = mωp , (A18)

with ωp being the angular velocity of the particle

ωp =
dφ

dt
= ±

M1/2

r3/2 ± aM1/2
, (A19)

where the + (−) sign holds for the prograde (retorgade) orbits.

separatrix, depending on whether we assume circular or
eccentric orbits.

The expressions for the energy E and angular momen-
tum L as a function of (p, e) are given by:

E =

[
1−

(
M

p

)
(1− e2)

(
1− x2

p2
(1− e2)

)]1/2

,

(A21)

L = x+ aE , (A22)

where

x =

[
−N − sign(a)

√
N2 − 4FC

2F

]1/2

, (A23)

and the functions F,N,C are given by:

F (p, e) =
1

p3

[
p3 − 2M(3 + e2)p2 +M2(3 + e2)2p

− 4Ma2(1− e2)2
]
, (A24)

N(p, e) =
2

p

{ [
M2(3 + e2)− a2

]
p−Mp2

−Ma2(1 + 3e2)
}
, (A25)

C(p) =(a2 −Mp)2 . (A26)

Appendix B: Gravitational perturbations

As discussed in Sec. II the field equations for the grav-
itational field are the same of those for a Kerr BH in
GR. Therefore, in computing the gravitational pertur-
bations we follow the approach pioneered by Teukol-
sky [72], and the work described in [83]. For s = −2
Eqns. (23), (25) and (26) lead to a differential equation
for Rlmω ≡ Rlm(ω, r):

∆2 d

dr

(
1

∆

dRlmω
dr

)
− V (r)Rlmω(r) = Jlmω(r) , (B1)

where the potential is given by

V (r) = −K
2 + 4i(r −M)K

∆
+ 8iωr + λ , (B2)

with K = (r2 + a2)ω −ma and λ is the angular eigen-
value of Eq. (27). The source term Jlmω is described
in Sec. B 2. As done for the scalar case we define
Y = ∆−1

√
r2 + a2R and we find that the homogeneous

solution Y−, which satisfies the condition of purely in-
going wave at the horizon, and Y+, which satisfies the
condition of purely outgoing wave at infinity, have the
following asymptotic behaviour:{

Y− = Bholelmωe
−ikr? for r → r+ ,

Y− =
Binlmω
r2 e−iωr? +Boutlmωr

2eiωr? for r →∞ ,
(B3)
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{
Y+ = Din

lmωe
−ikr? +Dout

lmωe
ikr? for r → r+ ,

Y+ = D∞lmωr
2eiωr? for r →∞ ,

(B4)

where k = ω − mω+ and ω+ = a/(2Mr+). From the
relation (31) between R and Y we obtain the boundary
condition for the homogeneous solutions:

{
R−lmω = Bholelmω∆

2e−ikr
∗

for r → r+ ,

R−lmω =
Binlmω
r e−iωr

∗
+Boutlmωr

3eiωr
∗

for r →∞ ,

(B5)

{
R+
lmω = Din

lmω∆
2e−ikr

∗
+Dout

lmωe
ikr∗ for r → r+ ,

R+
lmω = D∞lmωr

3eiωr
∗

for r →∞ .

(B6)
Finally, the general solution for Rlmω is given by

Rlmω(r) = Z−lmω(r)R+
lmω(r)+Z+

lmω(r)R−lmω(r) where, fol-
lowing [99],

Z−lmω(r) =
1

2iωBinlmωD
∞
lmω

∫ r

r+

dr′
R−lmω(r′)Ilmω(r′)

∆(r′)2
,

(B7)

Z+
lmω(r) =

1

2iωBinlmωD
∞
lmω

∫ ∞
r

dr′
R+
lmω(r′)Ilmω(r′)

∆(r′)2
.

(B8)

Defining Z−lmω ≡ Z−lmω(r → ∞), Z+
lmω ≡ Z+

lmω(r → r+),
the asymptotic radial solutions read:

Rlmω(r →∞) = Z−lmωD
∞
lmωr

3eiωr
∗
, (B9)

Rlmω(r → r+) = Z+
lmωB

hole
lmω∆

2e−ikr
∗
. (B10)

It is convenient to absorb the factors D∞lmω and Bholelmω
into Z−lmω and Z+

lmω, such that:

Z−lmω(r) =
1

2iωBinlmω

∫ r

r+

dr′
R−lmω(r′)Ilmω(r′)

∆(r′)2
, (B11)

Z+
lmω(r) =

Bholelmω

2iωBinlmωD
∞
lmω

∫ ∞
r

dr′
R+
lmω(r′)Ilmω(r′)

∆(r′)2
,

(B12)

and

Rlmω(r →∞) = Z−lmωr
3eiωr

∗
, (B13)

Rlmω(r → r+) = Z+
lmω∆

2e−ikr
∗
. (B14)

The coefficients Z−,+lmω are needed to calculate the energy
flux at horizon and at infinity. However, since in Eq.
(B5) the outgoing solution grows with a coefficient r4

relative to the ingoing coefficient, the ingoing solution
is completely swamped, and obtaining Binlm is extremely
challenging. The reason for this difficulty is that the po-
tential V (r) in Eq. (B2) of the Teukolsky equation is long

ranged. The solution for this problem relies in transform-
ing the Teukolsky equation into the Sasaki-Nakamura
equation [102], which features a short-ranged potential.
Other possible methods to solve the Teukolsky
equation are the Mano-Suzuki-Takasugi method
[103], which is the one used in the BHPT, and
an approach that makes use of a hyperboloidal
foliation [17, 104].

1. Energy Flux

The energy flux for gravitational waves can be com-
puted in terms of the Isaacson stress-energy tensor [105],
and is given by:

(
d2E

dAdt

)rad

r→∞
=

1

16π

〈(
∂h+

∂t

)2

+

(
∂h×
∂t

)2〉
, (B15)

where the brackets
〈
...
〉

denote an average over a region
of spacetime large compered with the wavelenght of the
radiation. The expression for h+ and h× are obtained
considering that, for r →∞, the value of Ψ4 is given by:

Ψ4(r →∞) =
1

2

(
ḧ+ − iḧ×

)
. (B16)

To obtain the gravitational energy flux we integrate
(B15) with respect to time variable. The expression for
Ψ4 is obtained combining Eq. (24)- (25), with Rlmω given
by (B13) in the limit r →∞. Combining all these equa-
tions we obtain the energy flux at infinity as:(

dE

dt

)rad
r→∞

=
∑
lmn

|Z−lmn|2

4πω2
mn

, (B17)

(
dL

dt

)rad
r→∞

=
∑
lmn

m|Z−lmn|2

4πω3
mn

(B18)

Where ωmn is given in (A17) and the explicit form of
ZHlmn is given in the next section. The energy flux at the
horizon can be calculated by measuring the rate at which
the event horizon’s area increases as radiation falls into
it, following the prescription of [106] as described in [72].
The result, given by [99] reads:(

dE

dt

)rad
r→r+

=
∑
lmn

αlmn
|Z+
lmn|2

4πω2
mn

, (B19)

(
dL

dt

)rad
r→r+

=
∑
lmn

αlmn
m|Z+

lmn|2

4πω3
mn

(B20)

where the coefficients αlmn are given by

αlmn =
256(2Mr+)5kmn(k2

mn + 4ε2)(k2
mn + 16ε2)ω3

mn

|Clmn|2
,

(B21)
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with kmn = ωmn −mω+,

ε =

√
M2 − a2

4Mr+
, (B22)

and

|Clmn|2 =[(λ+ 2)2 + 4aωmn − 4a2ω2
mn](λ2

+ 36maωmn − 36a2ω2
mn)

+ (2λ+ 3)(96a2ω2
mn − 48maωmn)

+ 144ω2
mn(M2 − a2) . (B23)

2. The source term

In this section we show here the explicit expression for
the source terms needed compute the amplitudes Z−,+`mω

for eccentric orbital configurations. We refer the reader
to [83] for more details on thir derivation. The ampli-

tudes Z−,+`mω (B11)-(B12) can be obtained computing

Z−,+`mω =
mp

2iωBin

∫ ∞
−∞

dteiωt−imφ(t)I−,+`mω[r(t), θ(t)] ,

(B24)
where

I−,+`mω =
[
Rin,uplmω {Ann0 +Am̄n0 +Am̄m̄0}−

−
dRin,uplmω

dr
{Am̄n1 +Am̄m̄1}+

+
d2Rin,uplmω

dr2
Am̄m̄2

]
r=r(t),θ=θ(t)

. (B25)

The expression for the coefficients A are given by

Am̄n0(u) =
2√
π

Cm̄n
u(1− 2Mu+ a2u2)2

[
2a2u3 + {ia(aω −m)− 4M}u2 + 2u+ iω

]
×

×
[
∂S

∂θ
(π/2) + (aω −m)Slm(π/2)

]
, (B26)

Am̄m̄0(u) =
1√
2π

Cm̄m̄S(π/2)

u2(1− 2Mu+ a2u2)2

{
− 2ia3(aω −m)u5 + a(aω −m){6iM + a(aω −m)}u4

− 4ia(aω −m)u3 + 2ω{iM + a(aω −m)}u2 − 2iωu+ ω2

}
, (B27)

Am̄n1(u) =
2√
π

Cm̄n
u(1− 2Mu+ a2u2)

[
∂S

∂θ
(π/2) + (aω −m)S(π/2)

]
, (B28)

Am̄m̄1(u) =−
√

2

π

Cm̄m̄S(π/2)

u2(1− 2Mu+ a2u2)

[
a2u3 + {ia(aω −m)− 2M}u2 + u+ iω

]
, (B29)

Am̄m̄2(u) =− 1√
2π

Cm̄m̄S(π/2)

u2
, (B30)

Ann0(u) =−
√

2

π

Cnn
(1− 2Mu+ a2u2)2

{
− 2ia

(
∂S

∂θ
(π/2) + (aω −m)S(π/2)

)
u

+
∂2S

∂θ2
(π/2) + 2(aω −m)

∂S

∂θ
(π/2) + {(aω −m)2 − 2}S(π/2)

}
, (B31)

(B32)

where u(χ, p, e) = (1 + e cosχ)/p and

Cnn(χ, p, e) =
J(χ, p, e)

4p4Vt(χ, p, e)

[
p2E − ax(1 + e cosχ)2 + ep sinχ

√
Vr(χ, p, e)

]2
,

Cm̄n(χ, p, e) =
ixJ(χ, p, e)

2
√

2p3Vt(χ, p, e)
(1 + e cosχ)

[
p2E − ax(1 + e cosχ)2 + ep sinχ

√
Vr(χ, p, e)

]
,

Cm̄m̄(χ, p, e) = − x2J(χ, p, e)

2p2Vt(χ, p, e)
(1 + e cosχ)2 .

Finally, we note that recasting Eq. (B24) in term of the variable χ, the integral can be written as
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Z+,−
lmk =

mpΩr
2iωmnBin

∫ π

0

dχ
Vt(χ)

J(χ)
√
Vr(χ)

[
I+,−
lmω(+)(r(χ))eiωmnt(χ)−imφ(χ) + I+,−

lmω(−)(r(χ))e−iωmnt(χ)+imφ(χ)
]
, (B33)

where the subscripts (±) imply the substitution sinχ→ ± sinχ in the functions I+,−
`mω.

Appendix C: Comparison with previous results

We have tested the numerical output of our code by
comparing the energy and angular momentum fluxes for
the scalar and gravitational sector against know results
published in literature [81, 107, 108]. In Table III we
provide a comparison showing the relative difference δ
between the calculations of Ėscal,grav and of L̇scal,grav for
different EMRI orbital set up. Moreover, in Table IV
we also show the comparison of our results for the scalar
emission on eccentric orbits with a/M = 0, p = 8M and
e = 0.1, with an independent computation (courtesy of

N. Warburton computed using the code of [108]). For all
configurations considered, our results provide a remark-
able agreement with previous computations.

Finally, in Fig. 8 we show the behaviour of the en-
ergy flux with the index n by plotting the components
˙̄E

(+)
`mn(scal) as a function of n for different values of the ec-

centricity and for the ` = m = 2 and ` = m = 5 modes.
Note that as ` = m increases, the peak also appears at
larger values of n. The flux components at the horizon
shows a similar behavior.

reference sector a p e Ė δ% L̇ δ%

[108] scal - (tot) 0.9 10 0.2 2.686e-5 ' 3e-5% 8.359e-4 ' 3e-5%

[108] scal - (tot) 0.9 10 0.5 2.468e-5 ' 7e-1% 6.296e-4 ' 3e-4%

[108] scal - (tot) 0 10 0.2 3.213e-5 ' 4e-5% 9.626e-4 ' 3e-5%

[108] scal - (tot) 0 10 0.5 3.329e-5 ' 1e-3% 7.845e-4 ' 6e-4%

[108] scal - (tot) 0.2 6.15 0.4 3.427e-4 ' 3e-2% 3.926e-3 ' 2e-2%

[83] grav - (+) 0.9 12.152 0.3731 2.737e-5 ' 14%

[83] grav - (+) 0.5 6 0.1 7.106e-4 ' 2e-3% 1.055e-2 ' 2e-3%

[83] grav - (+) 0.5 6 0.2 7.785e-4 ' 3e-4% 1.085e-2 ' 6e-5%

[83] grav - (+) 0.5 6 0.5 1.195e-3 ' 8e-2% 1.229e-2 ' 7e-2%

[83] grav - (−) 0.5 6 0.1 -1.274e-6 ' 1e-1% -1.882e-5 ' 2e-3%

[83] grav - (−) 0.5 6 0.2 -1.430e-6 ' 5e-1% -1.973e-5 ' 2e-3%

[83] grav - (−) 0.5 6 0.5 -1.126e-6 ' 8% -1.657e-5 ' 3e-2%

TABLE III. Comparison between the total (tot), horizon (−) and infinity (+) scalar and gravitational fluxes from previous
works. For each quantity and configuration specified by the primary spin, by the eccentricity and by the semi-latus rectum of
the secondary we show the numerical result obtained with our code and the relative percentage difference with the literature
value (when available). Note that fluxes from Ref. [108] have a global factor 4 of difference compared to our values, due to a
different normalization of the scalar field.

Appendix D: Error estimates for the interpolation
method

We have tested the the method used to interpolate en-
ergy and angular momentum fluxes, by comparing values
of (Ėgrav,scal, L̇grav,scal) outside the numerical grid with
those predicted by the interpolation. The relative differ-
ences between these two quantities are shown in Table V
and VI, for some orbital configurations.

Appendix E: Waveforms

In this appendix we provide technical details on the
analytical templates we used to model GW signals. We

follow [12], assuming that the waveform for the eccentric
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` m n Ė(−) δ% Ė(+) δ%

0 0 1 1.138e-8 ' 1e-5% 2.060e-8 ' 2e-4%

0 0 5 1.527e-16 ' 4e-7% 1.926e-17 ' 2e-6%

1 1 1 1.857e-8 ' 3e-10% 3.256e-7 ' 1e-11%

1 -1 1 1.073e-10 ' 4e-10% 1.981e-9 ' 4e-12%

1 1 5 1.007e-14 ' 2e-9% 5.299e-15 ' 3e-8%

1 -1 5 4.461e-22 ' 1e-6% 1.993e-18 ' 5e-7%

2 2 2 1.285e-10 ' 1e-10% 2.440e-8 ' 1e-12%

2 -2 2 3.955e-14 ' 9e-10% 2.391e-10 ' 4e-12%

2 2 10 1.755e-23 ' 5e-5% 1.842e-23 ' 4e-4%

2 -2 10 4.697e-35 ' 4e-1% 6.366e-30 ' 2e-1%

8 8 10 5.882e-26 ' 5e-10% 6.868e-18 ' 8e-8%

TABLE IV. Values of the scalar field energy flux at the horizon and at infinity that we obtained for different mode combinations,
for a primary BH with spin a/M = 0, and a secondary on eccentric orbits with p = 8M and e = 0.1. For each quantity we
show the relative errors with respect to the values obtained by an independent code (Courtesy of Niels Warburton, and derived
with the code developed in [108]).

e p/M Ėintgrav Ėgrav Rel. Diff. ˙̄Eintscal
˙̄Escal Rel. Diff.

0.1 4 3.625× 10−3 3.631× 10−3 0.2% 1.785× 10−4 1.785× 10−4 0.008%

10 5.433× 10−5 5.132× 10−5 6% 6.865× 10−6 6.722× 10−6 2%

0.4 4 4.838× 10−3 4.848× 10−3 0.2% 1.964× 10−4 1.964× 10−4 0.002%

10 6.576× 10−5 6.164× 10−5 7% 6.705× 10−6 6.528× 10−6 3%

TABLE V. Relative percentage difference between interpolated fluxes and values computed outside the grid of interpolation.
The spin of the primary is fixed to a/M = 0.9. The superscript “int” identifies the interpolated values.

e p/M L̇intgrav L̇grav Rel. Diff. ˙̄Lintscal
˙̄Lscal Rel. Diff.

0.1 4 3.164× 10−2 3.169× 10−2 0.2% 6.266× 10−3 6.267× 10−3 0.001%

10 1.659× 10−3 1.635× 10−3 1% 8.679× 10−4 8.647× 10−4 0.4%

0.4 4 3.377× 10−2 3.383× 10−2 0.2% 5.752× 10−3 5.752× 10−3 0.0006%

10 1.576× 10−3 1.547× 10−3 2% 7.227× 10−4 7.189× 10−4 0.6%

TABLE VI. Same as Table V but for the angular momentum fluxes.

inspiral is given by the leading quadrupolar component,
built on the seminal work by Peter and Matthews [109],
and augmented by taking into account the effects of peri-
center and Lense-Thirring precession, included with post-
Newtonian corrections. In this work we adapted such
templates to a fully-relativistic inspiral of equatorial ec-
centric geodesics described in Appendix A, which pro-
vides the semilatum rectum, the orbital frequencies and
the eccentricity as a function of time through the inspi-
ral. With these quantities in hand, the strain amplitude
for LISA can be written as a sum of harmonics:

hα(t) =
∑
n

hα,n(t) , α = (I, II), (E1)

where the index α runs on the two independent LISA
detectors7. The n-th harmonic can be written as

hα,n(t) =

√
3

2

[
F+
α (t)A+

n (t) + F×α (t)A×n (t)
]
, (E2)

where F+,×
α are the detector pattern functions given, for

the first interferometer, by

F+
I =

1 + cos2 θ

2
cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ ,

F×I =
1 + cos2 θ

2
cos 2φ sin 2ψ + cos θ sin 2φ cos 2ψ ,

7 The triangular configuration of LISA can be considered as a com-
bination of two L-shaped interferometers with a 60 degree angle
between the arms, and rotated of π/4 relative each other [110]
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FIG. 8. Harmonic components of the scalar energy flux at
infinity as a function of n, for orbital configurations with
p/M = 7, e = 0.2 (left column) and e = 0.7 (right col-
umn). Top and bottom panels show the ` = m = 2 and
` = m = 5 components of the flux, respectively. The MBH
spin is a/M = 0.9.

.

while for the second one F+,×
II = F+,×

II (θ, φ − π/4, ψ).
The plus and cross polarization then read:

h+
α (t) =

∑
n

√
3

2
F+
α (t)A+

n (t) , (E3)

h×α (t) =
∑
n

√
3

2
F×α (t)A×n (t) . (E4)

The angles (θ, φ, ψ) are all defined in the detector ref-
erence frame, and vary in time due to the LISA motion.
The first two describe the location of the binary in the
sky, while ψ is the polarization angle. These angles can
be expressed in terms of (θS , ΦS) and (θL, ΦL), which
identify respectively the source location and the angular
momentum L̂ of the secondary, both in an ecliptic-based
system. The expressions for (θS , ΦS) are given by:

cos θ(t) =
1

2
cos θS −

√
3

2
sin θS cos[φt − φS ] ,

φ(t) = α0 + φt + tan−1

[√
3 cos θS + sin θS cos[φt − φS ]

2 sin θS sin[φt − φS ]

]
,

(E5)

where φt = φ̄0 +2π(t/T ), T = 1 year and (φ̄0, ᾱ0) specify
the orbital and rotational phase of the detector when
t = 0, and are set to zero. The polarization angle can be
expressed as

ψ(t) = tan−1 L̂ · ẑ − (L̂ · N̂)(ẑ · N̂)

N̂ · (L̂× ẑ)
, (E6)

with ẑ · N̂ = cos θS and

L̂ · N̂ = cos θL cos θS

+ sin θL sin θS cos[φL − φS ] , (E7)

L̂ · ẑ =
1

2
cos θL −

√
3

2
sin θL cos[φt − φL] , (E8)

N̂ · (L̂× ẑ) =
1

2
sin θL sin θS sin[φL − φS]

−
√

3

2
cosφt [cos θL sin θS sinφS

− cos θS sin θL sinφL]

−
√

3

2
sinφt [cos θS sin θL cosφL

− cos θL sin θS cosφS] . (E9)

The angles (θL, φL) are not constant due to the preces-

sion of L̂ around the MBH’s spin direction Ŝ. We can
introduce then two new angles, λ between L̂ and Ŝ, and
α(t) measuring the precession of L̂ around Ŝ. In this
work both are set to zero, while for sake of simplicity we
choose (θS , φS , θL, φL) = (π/2, π/2, π/4, π/4). A differ-
ent choice would only marginally change the results and
the conclusions drawn in Sec. IV. The amplitudes A+,×

n

in Eqn. (E2) are defined as

A+
n =− [1 + (L̂ · N̂)2][an cos(2γ)− bn sin(2γ)]+

+ [1− (L̂ · N̂)2]cn , (E10)

A×n =2(L̂ · N̂)[bn cos(2γ) + an sin(2γ)] . (E11)

The angle γ(t) measures the direction of pericenter with

respect to x̂ = [−N̂ + L̂(L̂ · N̂)]/[1− (L̂ · N̂)2]1/2.
In our case, in which we consider only equatorial orbits,

we relate γ to Ψr by cos (γ) = cos (γ0) cos (Ψr), where
γ0 measures the direction of the initial position of the
pericenter with respect to x̂, and Ψr is the angle in the
orbital plane defined in (67). We chose γ0 = π/4. The
coefficients (an, bn, cn) are then given by

an =− nA
[
Jn−2(ne)− 2eJn−1(ne) + (2/n)Jn(ne)

+ 2eJn+1(ne)− Jn+2(ne)
]

cos[nΦ(t)] , (E12)

bn =− nA(1− e2)1/2[Jn−2(ne)− 2Jn(ne)

+ Jn+2(ne)] sin[nΦ(t)] , (E13)

cn =2AJn(ne) cos[nΦ(t)] , (E14)

where Jn is the Bessel function of the first kind, A =
(2πνM)2/3µ/D, with 2πν = dΦ/dt and D being the
source luminosity distance. In this work we fix Φ = Ψφ,
such that 2πν = Ωφ.
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