
Forum of Mathematics, Sigma (2022), Vol. 10:e109 1–19
doi:10.1017/fms.2022.93

RESEARCH ARTICLE

On the maximum dual volume of a canonical Fano polytope
Gabriele Balletti 1, Alexander M. Kasprzyk 2 and Benjamin Nill 3

1Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden; E-mail: balletti@math.su.se.
2School of Mathematical Sciences, University of Nottingham, NG7 2RD, Nottingham, United Kingdom;
E-mail: a.m.kasprzyk@nottingham.ac.uk.
3Fakultät für Mathematik, Institut für Algebra und Geometrie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2,
39106 Magdeburg, Germany; E-mail: benjamin.nill@ovgu.de.

Received: 23 February 2022; Revised: 27 July 2022; Accepted: 26 August 2022

2020 Mathematics Subject Classification: Primary – 52B20; Secondary – 14M25

Abstract
We give an upper bound on the volume vol(𝑃∗) of a polytope 𝑃∗ dual to a d-dimensional lattice polytope P with
exactly one interior lattice point in each dimension d. This bound, expressed in terms of the Sylvester sequence,
is sharp and achieved by the dual to a particular reflexive simplex. Our result implies a sharp upper bound
on the volume of a d-dimensional reflexive polytope. Translated into toric geometry, this gives a sharp upper
bound on the anti-canonical degree (−𝐾𝑋 )

𝑑 of a d-dimensional Fano toric variety X with at worst canonical
singularities.
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1. Introduction

1.1. Background and results

Let 𝑁 � Z𝑑 be a lattice of rank d. A convex polytope 𝑃 ⊂ 𝑁R, where 𝑁R ≔ 𝑁 ⊗Z R � R𝑑 , is called
a lattice polytope if the vertices vert(𝑃) of P are contained in N. Two lattice polytopes 𝑃,𝑄 ⊂ 𝑁R are
said to be unimodular equivalent if there exists an affine lattice automorphism 𝜑 ∈ GL𝑑 (Z) � Z

𝑑 of N
such that 𝜑R(𝑃) = 𝑄. Unless stated otherwise, we regard lattice polytopes as being defined only up to
unimodular equivalence.

Let 𝑃 ⊂ 𝑁R be a lattice polytope of dimension d (that is, P is of maximum dimension in 𝑁R)
containing exactly one lattice point in its (strict) interior: that is, |int(𝑃) ∩ 𝑁 | = 1. We can assume that
this interior point is the origin 0 ∈ 𝑁 . For reasons explained in Section 1.2 below, we call P a canonical
Fano polytope. As a consequence of results by Hensley [9, Theorem 3.6] and Lagarias–Ziegler [15,
Theorem 2], there are finitely many canonical Fano polytopes (up to unimodular equivalence) in each
dimension d.

Canonical Fano polytopes in dimensions 𝑑 ≤ 3 have been classified [10], and we find that
vol(𝑃) ≤ 12. For 𝑑 ≥ 4, it is conjectured that the volume of a d-dimensional canonical Fano polytope
is bounded by

vol(𝑃) ≤
1
𝑑!

2(𝑠𝑑 − 1)2, (1.1)

where 𝑠𝑖 denotes the ith term of the Sylvester sequence:

𝑠1 ≔ 2, 𝑠𝑖+1 ≔ 𝑠1 · · · 𝑠𝑖 + 1 for 𝑖 ∈ Z≥1.

Moreover, the case of equality in equation (1.1) is expected to be attained only by the canonical Fano
simplex

𝑅(𝑑) ≔ 𝑆 (𝑑) −

𝑑∑
𝑖=1

𝑒𝑖 , where 𝑆 (𝑑) ≔ conv{0, 2(𝑠𝑑 − 1)𝑒𝑑 , 𝑠𝑑−1𝑒𝑑−1, . . . , 𝑠1𝑒1}.

Here {𝑒1, . . . , 𝑒𝑑} is a basis of N. This conjecture is hinted at in [15, 19, 21], explicitly stated in [16,
Conjecture 1.7] and proved by Averkov–Krümpelmann–Nill [3] for the case when P is a canonical Fano
simplex. The conjecture remains open for a general canonical Fano polytope. The current best upper
bound on the volume of a canonical Fano polytope that is not a simplex is established in [3, Theorem 2.7]
(improving upon a result by Pikhurko [17]); however, this is presumed to be far from sharp:

vol(𝑃) ≤ (𝑠𝑑+1 − 1)𝑑 .

Instead of bounding vol(𝑃), it is also natural to consider the volume of the dual polytope 𝑃∗ (see
Section 1.4 for the definition of the dual polytope). The main result of this paper is:

Theorem 1.1. Let 𝑃 ⊂ 𝑁R be a d-dimensional canonical Fano polytope, where 𝑑 ≥ 4. Then

vol(𝑃∗) ≤
1
𝑑!

2(𝑠𝑑 − 1)2,

with equality if and only if 𝑃 = 𝑅∗
(𝑑)

.

In three dimensions, the expected bound vol(𝑃∗) ≤ 12 is proved in [10, Theorem 4.6]. In this case,
however, equality is obtained by the duals of two distinct simplices:

𝑃1,1,1,3 = conv{𝑒1, 𝑒2, 𝑒3,−𝑒1 − 𝑒2 − 3𝑒3} and 𝑃1,1,4,6 = 𝑅∗
(3) . (1.2)
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The analogue of Theorem 1.1 is proved in [3, Theorem 2.5(b)] for d-dimensional canonical Fano
simplices.

Probably one of the most studied classes of canonical Fano polytopes is the reflexive polytopes,
consisting of those 𝑃 ⊂ 𝑁R such that the dual 𝑃∗ is also a canonical Fano polytope (for a brief survey,
see [12]). Note that 𝑅(𝑑) is a reflexive simplex [16]. An immediate consequence of Theorem 1.1 is a
proof of the conjectured inequality in equation (1.1) in the case of reflexive polytopes:

Corollary 1.2. Let 𝑃 ⊂ 𝑁R be a d-dimensional reflexive polytope, where 𝑑 ≥ 4. Then

vol(𝑃) ≤
1
𝑑!

2(𝑠𝑑 − 1)2,

with equality if and only if 𝑃 = 𝑅(𝑑) .

The analogue of Corollary 1.2 in the case of reflexive simplices is proved in [16, Theorem A].

1.2. Toric geometry and Fano varieties

Canonical Fano polytopes arise naturally in algebraic geometry. To each d-dimensional canonical Fano
polytope 𝑃 ⊂ 𝑁R, we can associate a d-dimensional projective toric variety 𝑋𝑃 whose fan is given by
the cones in 𝑁R spanning the faces of P (here we require that the unique interior point of P is taken to
be the origin 0 of N). This variety is Fano – recall that a variety X is Fano if its anti-canonical divisor
−𝐾𝑋 is ample – and has at worst canonical singularities. In fact, this construction is reversible, and
there exists a one-to-one correspondence between (unimodular equivalence classes of) canonical Fano
polytopes and (isomorphism classes of) Fano toric varieties with at worst canonical singularities. For
details on canonical singularities and their importance in algebraic geometry, see [20]; for details on
toric geometry, see [8]; and for additional background material, see the survey [12].

The classification of Fano varieties is a long-standing open problem. An important advance would
be to bound the degree (−𝐾𝑋 )

𝑑 . In the case when X is nonsingular, the bound

(−𝐾𝑋 )
𝑑 ≤

(
3(2𝑑 − 1) (𝑑 + 1) (𝑑+1) (2𝑑−1)

)𝑑
(1.3)

was established by Kollár–Miyaoka–Mori [13], although this is almost certainly not sharp. Very little
is known when X has canonical singularities; however, Prokhorov [18] proved that if X is a three-
dimensional Fano with Gorenstein canonical singularities, then the degree is bounded by (−𝐾𝑋 )

3 ≤ 72.
In this case, the maximum degree is obtained by the two weighted projective spaces P(1, 1, 1, 3) and
P(1, 1, 4, 6), and these two toric varieties correspond to the two canonical Fano simplices in equation
(1.2). It is tempting to conjecture that in higher dimensions, the maximum degree is obtained by a Fano
toric variety. Recalling that (−𝐾𝑋𝑃 )

𝑑 = 𝑑! vol(𝑃∗), Theorem 1.1 provides a sharp bound on the degree
when X is toric:

Corollary 1.3. Let X be a d-dimensional Fano toric variety with at worst canonical singularities, where
𝑑 ≥ 4. Then

(−𝐾𝑋 )
𝑑 ≤ 2(𝑠𝑑 − 1)2, (1.4)

with equality if and only if X is isomorphic to the weighted projective space

P(1, 1, 2(𝑠𝑑 − 1)/𝑠𝑑−1, . . . , 2(𝑠𝑑 − 1)/𝑠1).

This extends [16, Theorem A] and [3, Theorem 2.11], where analogous results are stated when X is a
Gorenstein fake weighted projective space and when X is a fake weighted projective space with at worst
canonical singularities, respectively. Corollary 1.3 also generalises the three-dimensional bound of [10,
Theorem 4.6].
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Finally, Corollary 1.3 also has implications for current attempts to classify nonsingular Fano varieties
via mirror symmetry [7]. Here the hope is that a nonsingular Fano variety X with −𝐾𝑋 very ample has
a Q-Gorenstein deformation to a Gorenstein canonical Fano toric variety 𝑋𝑃 . Since this deformation
would leave the degree unchanged, the bound of Corollary 1.3 would apply to X. It is interesting to note
that in this case, the bound in equation (1.4) is significantly smaller than the bound in equation (1.3) of
Kollár–Miyaoka–Mori.

1.3. Overview of the proof

Our strategy to prove Theorem 1.1 is as follows. In Section 2, we reduce the problem to canonical Fano
polytopes satisfying some minimality condition. We observe that such polytopes admit a decomposition
into canonical Fano simplices (following [10] and compare with the decomposition used in [14]), for
which the statement is already known [3]. In Section 3, we use this decomposition, together with the
monotonicity of the normalised volume, to prove Theorem 1.1 in the majority of cases (Corollary 3.1).
Finally, the remaining cases are proved in Section 6 using a mixture of integration techniques (developed
in Sections 4–5) and explicit classifications.

1.4. Notation and terminology

Let 𝑃 ⊂ 𝑁R be a lattice polytope of maximum dimension in a rank d lattice 𝑁 � Z𝑑 , and let
𝑀 ≔ HomZ (𝑁,Z) � Z𝑑 be the lattice dual to N. The dual (or polar) polyhedron of P is

𝑃∗ ≔ {𝑦 ∈ 𝑀R : 〈𝑦, 𝑥〉 ≥ −1 for every 𝑥 ∈ 𝑃}.

If 0 ∈ 𝑃, then 𝑃∗ is a convex polytope, although typically 𝑃∗ has rational vertices and so is not a lattice
polytope.

Let P and Q be two maximum-dimensional polytopes in (𝑁𝑃)R � R𝑝 and (𝑁𝑄)R � R𝑞 , respectively.
Suppose that P and Q contain the origin 0𝑃 ∈ 𝑁𝑃 and 0𝑄 ∈ 𝑁𝑄 of their respective ambient spaces. The
free sum (or direct sum) is the maximum-dimensional polytope

𝑃 ⊕ 𝑄 ≔ conv((𝑃 × {0𝑄}) ∪ ({0𝑃} ×𝑄)) ⊂ R𝑝+𝑞 .

The product is the polytope

𝑃 ×𝑄 ≔ {(𝑥𝑝 , 𝑥𝑞) : 𝑥𝑝 ∈ 𝑃, 𝑥𝑞 ∈ 𝑄} ⊂ R𝑝+𝑞 .

Free sums and products of polytopes are related via duality by

(𝑃 ⊕ 𝑄)∗ = 𝑃∗ ×𝑄∗.

On the affine hull aff (𝑃), there exists a volume form called the relative lattice volume that is
normalised by setting the volume of a fundamental parallelepiped of affZ(𝑃) equal to 1. We denote
the relative lattice volume of P by vol𝑁 (𝑃). The volume Vol𝑁 (𝑃) ≔ dim(𝑃)! vol𝑁 (𝑃) is often called
the normalised lattice volume of P. If 𝑁 ′ ⊆ 𝑁 is a sublattice of N, then for 𝑆 ⊆ lin(𝑁 ′), we have
vol𝑁 ′ (𝑆) ≤ vol𝑁 (𝑆). If in addition we have that 𝑁 ′ → 𝑁 splits over Z, then vol𝑁 ′ (𝑆) = vol𝑁 (𝑆).

2. Decomposition of minimal polytopes

The case of canonical Fano simplices is already considered in [3]. Our focus is on the case when P is not
a simplex. Notice that if 𝑃 � 𝑄, then 𝑄∗ � 𝑃∗, and hence vol(𝑄∗) < vol(𝑃∗). It is therefore sufficient
to prove Theorem 1.1 for ‘small’ polytopes P: that is, for the minimal canonical Fano polytopes:
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0

𝑃

𝑆1

𝑆2

𝑣

Figure 1. An example of a three-dimensional minimal canonical Fano polytope P, which decomposes
into two canonical Fano simplices 𝑆1 and 𝑆2 sharing a common vertex v. In the notation of Corollary 2.3,
𝑑 = 3, 𝑡 = 2, 𝑑1 = 𝑑2 = 2 and 𝑟2 = 1.

Definition 2.1 [10, Definition 2.2]. A d-dimensional canonical Fano polytope 𝑃 ⊂ 𝑁R is minimal if
for each vertex of P, the polytope obtained by removing this vertex is not a d-dimensional canonical
Fano polytope: that is, if conv(𝑃 ∩ 𝑁 \ {𝑣}) is not a d-dimensional canonical Fano polytope for each
𝑣 ∈ vert(𝑃).

Each canonical Fano polytope Q can be reduced to a minimal polytope 𝑃 ⊂ 𝑄 via successive removal
of vertices. Of course, P need not be uniquely determined. Minimal canonical Fano polytopes admit a
decomposition in terms of lower-dimensional minimal canonical Fano simplices:

Proposition 2.2 [10, Proposition 3.2]. Let P be a minimal canonical Fano d-polytope that is not a
simplex. Then there exists a minimal canonical Fano k-simplex S contained in P with vert(𝑆) ⊂ vert(𝑃)
for some 1 ≤ 𝑘 < 𝑑. For any such S, there exists a minimal canonical Fano (𝑑 − 𝑘 + 𝑠)-polytope 𝑃′ with
vert(𝑃′) ⊂ vert(𝑃) such that 𝑃 = conv(𝑆 ∪ 𝑃′), 𝑠 = |vert(𝑆) ∩ vert(𝑃′) | and 0 ≤ 𝑠 < 𝑘 .

For brevity, we write ‘d-polytope’ rather than ‘polytope of dimension d’ and ‘k-simplex’ rather than
‘simplex of dimension k’.

Corollary 2.3. Let P be a minimal canonical Fano d-polytope that is not a simplex. Then for some
2 ≤ 𝑡 ≤ 𝑑, there exist minimal canonical Fano simplices 𝑆1, . . . , 𝑆𝑡 such that 𝑃 = conv(𝑆1 ∪ · · · ∪ 𝑆𝑡 ),
where dim(𝑆𝑖) = 𝑑𝑖 ≥ 1 and vert(𝑆𝑖) ⊂ vert(𝑃), for each 1 ≤ 𝑖 ≤ 𝑡. Set 𝑟1 ≔ 0, and for each 2 ≤ 𝑖 ≤ 𝑡,
set 𝑟𝑖 ≔

��vert(𝑆𝑖) ∩ vert(𝑃 (𝑖−1) )
��, where 𝑃 (𝑖−1) ≔ conv(𝑆1 ∪ · · · ∪ 𝑆𝑖−1). Then

𝑑1 + · · · + 𝑑𝑡 = 𝑑 + 𝑟, where 𝑟 ≔ 𝑟1 + · · · + 𝑟𝑡 ; (2.1)

𝑟𝑖 < 𝑑𝑖 ≤ 𝑑 − 𝑡 + 1, for each 1 ≤ 𝑖 ≤ 𝑡; (2.2)

|vert(𝑃) | = 𝑑 + 𝑡. (2.3)

An example of this decomposition is illustrated in Figure 1.

Proof. We apply Proposition 2.2 iteratively, at each step choosing S to be of smallest possible dimension.
Thus P can be written as 𝑃 = conv(𝑆1 ∪ · · · ∪ 𝑆𝑡 ) for some 𝑡 ≥ 1, where the 𝑆𝑖 are minimal canonical
Fano simplices of dimension 𝑑𝑖 ≥ 1 with vert(𝑆𝑖) ⊆ vert(𝑃) having 𝑟𝑖 common vertices with 𝑃 (𝑖−1) ,
such that 𝑑𝑡 ≤ 𝑑𝑡−1 ≤ · · · ≤ 𝑑1. The case 𝑃 (0) is taken to be the empty set, giving 𝑟1 = 0. At each step,
the dimension of 𝑃 (𝑖) can be obtained from Proposition 2.2: dim(𝑃 (𝑖) ) = dim(𝑃 (𝑖−1) ) + dim(𝑆𝑖) − 𝑟𝑖 .
Hence 𝑑 =

∑𝑡
𝑖=1 (𝑑𝑖 − 𝑟𝑖), so equation (2.1) holds. Once again using Proposition 2.2, since dim(𝑆𝑖) > 𝑟𝑖 ,

dim(𝑃 (𝑖) ) ≥ dim(𝑃 (𝑖−1) )+1. It follows that 𝑡 ≤ 𝑑, so 𝑑1 ≤ 𝑑−𝑡+1. Hence our choice of simplices implies
equation (2.2). Finally, the number of vertices of 𝑃 (𝑖) is

��vert(𝑃 (𝑖−1) )
�� + |vert(𝑆𝑖) | − 𝑟𝑖 . This implies that

|vert(𝑃) | =
∑𝑡

𝑖=1(𝑑𝑖 + 1) − 𝑟 , and from equation (2.1), we deduce that equation (2.3) holds. �

Notice that equality (2.3), combined with the bound 𝑡 ≤ 𝑑, implies that a minimal canonical Fano
polytope P satisfies |vert(𝑃) | ≤ 2𝑑 (this is known as Steinitz’s inequality).
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3. Bounding the volume of 𝑃∗ via monotonicity of the normalised volume

As noted above, it is sufficient to prove Theorem 1.1 for minimal canonical Fano polytopes that are not
simplices. Let 𝑃 ⊂ 𝑁R be such a polytope of dimension 𝑑 ≥ 4. Fix a decomposition of P, and use the
notation 𝑡, 𝑆𝑖 , 𝑑𝑖 , 𝑟𝑖 , 𝑟 as defined in Corollary 2.3. In this section, we prove Theorem 1.1 for the majority
of decompositions. The decompositions not addressed in this section and whose proof is the focus of
Sections 4–5 below are listed in Corollary 3.1.

Corollary 3.1. To prove Theorem 1.1, it is enough to verify that the inequality

vol(𝑃∗) ≤
1
𝑑!

2(𝑠𝑑 − 1)2

holds for all minimal canonical Fano polytopes 𝑃 ⊂ 𝑁R of dimension 𝑑 ≥ 4 whose decomposition into
minimal canonical Fano simplices falls into one of the following five cases:

1. 𝑡 = 2 and 𝑑1 = 𝑑2 = 𝑑 − 1; or
2. 𝑡 = 2, 𝑑 = 4, 𝑑1 = 3 and 𝑑2 = 2; or
3. 𝑡 = 2, 𝑑 = 5, 𝑑1 = 4 and 𝑑2 = 3; or
4. 𝑡 = 3, 𝑑 = 4 and 𝑑1 = 𝑑2 = 𝑑3 = 2; or
5. 𝑡 = 3, 𝑑 = 5 and 𝑑1 = 𝑑2 = 𝑑3 = 3.

To prove Corollary 3.1, we use the monotonicity of the normalised volume. Let 𝑁𝑖 ≔ linR(𝑆𝑖) ∩ 𝑁 be
the sublattice of lattice points in the linear hull of 𝑆𝑖 (recall that 0 ∈ int(𝑆𝑖), so this really is a sublattice)
for each 1 ≤ 𝑖 ≤ 𝑡. Define the map

𝜑 : 𝑁1 ⊕ · · · ⊕ 𝑁𝑡 → 𝑁, (𝑥1, . . . , 𝑥𝑡 ) ↦→
𝑡∑

𝑖=1
𝑥𝑖 .

Notice that 𝜑 may not be surjective; however, since its image has the same rank as N, the extension 𝜑R
of 𝜑 to a map of vector spaces is surjective. Moreover, 𝜑R gives the following representation of P:

𝑃 = 𝜑R (𝑆1 ⊕ · · · ⊕ 𝑆𝑡 ).

Let 𝑀, 𝑀1, . . . , 𝑀𝑡 denote the lattices dual to 𝑁, 𝑁1, . . . , 𝑁𝑡 , respectively. The map 𝜑∗
R

dual to 𝜑R is an
injection, and in particular

𝑃∗ � 𝜑∗
R (𝑃

∗) ⊂ (𝑆1 ⊕ · · · ⊕ 𝑆𝑡 )
∗ = 𝑆∗1 × · · · × 𝑆∗𝑡 ,

where M is naturally embedded via 𝜑∗ into 𝑀1 ⊕ · · · ⊕𝑀𝑡 . This situation will be studied in more detail in
Section 4. Using the monotonicity of the normalised volume, finding an upper bound for the normalised
volume of 𝑆∗1 × · · · × 𝑆∗𝑡 yields an upper bound for the normalised volume of 𝑃∗. Specifically, we know
that

Vol𝑀 (𝑃∗) ≤ Vol𝑀1⊕···⊕𝑀𝑡 (𝑆
∗
1 × · · · × 𝑆∗𝑡 )

= (𝑑1 + · · · + 𝑑𝑡 )! vol𝑀1⊕···⊕𝑀𝑡 (𝑆
∗
1 × · · · × 𝑆∗𝑡 )

= (𝑑1 + · · · + 𝑑𝑡 )!
𝑡∏

𝑖=1
vol𝑀𝑖 (𝑆

∗
𝑖 )

=
(𝑑1 + · · · + 𝑑𝑡 )!

𝑑1! · · · 𝑑𝑡 !

𝑡∏
𝑖=1

Vol𝑀𝑖 (𝑆
∗
𝑖 ).

(3.1)
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The normalised volume of 𝑆∗𝑖 is bounded from above (see [10] and [3, Theorem 2.5(b)]):

Vol𝑀𝑖 (𝑆
∗
𝑖 ) ≤ 𝐵𝑑𝑖 , with 𝐵𝑖 ≔

{
9 if 𝑖 = 2,
2(𝑠𝑑𝑖 − 1)2 if 𝑖 ≠ 2.

Hence the inequality in equation (3.1) becomes

Vol𝑀 (𝑃∗) ≤
(𝑑1 + · · · + 𝑑𝑡 )!

𝑑1! · · · 𝑑𝑡 !

𝑡∏
𝑖=1

𝐵𝑑𝑖 .

At this point, Theorem 1.1 would follow from

(𝑑1 + · · · + 𝑑𝑡 )!
𝑑1! · · · 𝑑𝑡 !

𝑡∏
𝑖=1

𝐵𝑑𝑖 < 𝐵𝑑 . (3.2)

Unfortunately,the inequality in equation (3.2) does not always hold: for example, it fails when 𝑡 = 2 and
𝑑1 = 𝑑2 = 𝑑 − 1, for any 𝑑 ≥ 3. Nevertheless, this technique is sufficient to prove Theorem 1.1 for a
large number of cases:

Lemma 3.2. The inequality in equation (3.2) – and therefore Theorem 1.1 – holds whenever:

1. 𝑡 ≥ 3, with the exception of the following six cases:
(a) 𝑡 = 3, 𝑑 = 4 and 𝑑1 = 𝑑2 = 𝑑3 = 2; or
(b) 𝑡 = 3, 𝑑 = 5 and 𝑑1 = 𝑑2 = 𝑑3 = 3; or
(c) 𝑡 = 3, 𝑑 = 4, 𝑑1 = 𝑑2 = 2 and 𝑑3 = 1; or
(d) 𝑡 = 3, 𝑑 = 5, 𝑑1 = 𝑑2 = 3 and 𝑑3 = 2; or
(e) 𝑡 = 3, 𝑑 = 6 and 𝑑1 = 𝑑2 = 𝑑3 = 4; or
(f) 𝑡 = 4, 𝑑 = 5 and 𝑑1 = 𝑑2 = 𝑑3 = 𝑑4 = 2;

2. 𝑡 = 2, with the exceptions of the following three cases:
(a) 𝑑1 = 𝑑2 = 𝑑 − 1; or
(b) 𝑑 = 4, 𝑑1 = 3 and 𝑑2 = 2; or
(c) 𝑑 = 5, 𝑑1 = 4 and 𝑑2 = 3.

Proof. We prove equation (1) and equation (2) separately but by the same general technique: first we
show that the statement is true for large values of d; then we check the finite number of remaining values.

(1) Since the quantity

(𝑑1 + · · · + 𝑑𝑡 )!
𝑑1! · · · 𝑑𝑡 !

𝑡∏
𝑖=1

𝐵𝑑𝑖

increases as the 𝑑𝑖 increase, by equation (2.2), it is enough to prove the inequality in equation (3.2)
when 𝑑𝑖 = 𝑑 − 𝑡 + 1 for all i. That is, it is sufficient to show that

(𝑡 (𝑑 − 𝑡 + 1))!
(𝑑 − 𝑡 + 1)!𝑡

(𝐵𝑑−𝑡+1)
𝑡 < 𝐵𝑑 . (3.3)

From 𝑛! ≤ 2 · 22 · · · 2𝑛−1 = 2𝑛(𝑛−1)/2 (which is strict when 𝑛 ≥ 3), we obtain

(𝑡 (𝑑 − 𝑡 + 1))!
(𝑑 − 𝑡 + 1)!𝑡

≤ (𝑡 (𝑑 − 𝑡 + 1))! < 2
1
2 𝑡 (𝑑−𝑡+1) (𝑡 (𝑑−𝑡+1)−1) .
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Therefore, if the inequality

2
1
2 𝑡 (𝑑−𝑡+1) (𝑡 (𝑑−𝑡+1)−1)2𝑡 (𝐵𝑑−𝑡+1)

𝑡 ≤ 𝐵𝑑 (3.4)

holds, so too does the inequality in equation (3.3).
To prove equation (3.4), we make use of the well-known description due to Aho–Sloane [1, Example
2.5] of the Sylvester sequence in terms of the constant 𝑐 ≈ 1.2640847353 . . . :

𝑠𝑛 =

⌊
𝑐2𝑛 +

1
2

⌋
.

Notice that 𝐵𝑑 = 2(𝑠𝑑 − 1)2 > (𝑠𝑑 + 1)2 whenever 𝑑 ≥ 3. Since 𝑠𝑑 + 1 > 𝑐2𝑑 , the right-hand side
of equation (3.4) is bounded from below:

𝐵𝑑 = 2(𝑠𝑑 − 1)2 > (𝑠𝑑 + 1)2 > 𝑐2𝑑+1
.

Moreover, 𝐵𝑑−𝑡+1/2 < 𝑐2𝑑−𝑡+2 . Since 𝑐3 > 2, the left-hand side of equation (3.4) is bounded from
above:

2
1
2 𝑡 (𝑑−𝑡+1) (𝑡 (𝑑−𝑡+1)−1)2𝑡

(
𝐵𝑑−𝑡+1

2

) 𝑡
< 𝑐

3
2 𝑡 (𝑑−𝑡+1) (𝑡 (𝑑−𝑡+1)−1)𝑐3𝑡𝑐2𝑑−𝑡+2𝑡 .

We shall show that 𝑐
3
2 𝑡 (𝑑−𝑡+1) (𝑡 (𝑑−𝑡+1)−1)𝑐3𝑡𝑐2𝑑−𝑡+2𝑡 ≤ 𝑐2𝑑+1 , from which we conclude that the

inequality in equation (3.4) holds. Taking log𝑐 , we have to verify that the inequality

3
2
𝑡 (𝑑 − 𝑡 + 1) (𝑡 (𝑑 − 𝑡 + 1) − 1) + 3𝑡 + 2𝑑−𝑡+2𝑡 ≤ 2𝑑+1

is satisfied. Rewrite this inequality as

3𝑡 (𝑑 − 𝑡 + 1) (𝑡 (𝑑 − 𝑡 + 1) − 1) + 6𝑡 ≤ 2𝑑+2
(
1 −

𝑡

2𝑡−1

)
.

Since 𝑡 ≥ 3, by setting 𝑡 = 3 in the right-most factor, it is enough to prove that

3𝑡 (𝑑 − 𝑡 + 1) (𝑡 (𝑑 − 𝑡 + 1) − 1) + 6𝑡 ≤ 2𝑑 .

Since 𝑡 (𝑑 − 𝑡 + 1) is maximised when 𝑡 = (𝑑 + 1)/2, and since 6𝑡 ≤ 6𝑑, the above inequality is valid
when

3(𝑑 + 1)
2

(
𝑑 −

𝑑 + 1
2

+ 1
) (

𝑑 + 1
2

(
𝑑 −

𝑑 + 1
2

+ 1
)
− 1

)
+ 6𝑑 ≤ 2𝑑 .

This holds when 𝑑 ≥ 13. Recalling that d bounds the quantities 𝑡, 𝑑1, . . . , 𝑑𝑡 , we are left with finitely
many cases to verify. The inequality in equation (3.2) holds in all but six cases, as listed in the
statement.

(2) By the same monotonicity argument used at the beginning of the previous case, we choose 𝑑1 and
𝑑2 as large as possible: that is, we fix 𝑑1 = 𝑑 − 1 and 𝑑2 = 𝑑 − 2 (we noted above that the inequality
in equation (3.2) is not satisfied when 𝑑1 = 𝑑2 = 𝑑 − 1). The inequality in equation (3.2) becomes

(2𝑑 − 3)!
(𝑑 − 2)!(𝑑 − 1)!

𝐵𝑑−2𝐵𝑑−1 < 𝐵𝑑 .
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Proceeding as above, we reduce the problem to proving the inequality

3(2𝑑2 − 7𝑑 + 8) + 2𝑑−1 + 2𝑑 ≤ 2𝑑+1.

This holds when 𝑑 ≥ 10. Removing the assumptions 𝑑1 = 𝑑 − 1 and 𝑑2 = 𝑑 − 2 on 𝑑1 and 𝑑2, the
finitely many cases for 4 ≤ 𝑑 ≤ 9 can be directly verified against the inequality in equation (3.2).
We find the exceptional cases listed in the statement of the lemma. �

Proof of Corollary 3.1. By Lemma 3.2, we need to show that proving Theorem 1.1 for all decomposi-
tions listed in the statement of Corollary 3.1 also proves it in these four cases:

1. 𝑡 = 3, 𝑑 = 4, 𝑑1 = 𝑑2 = 2 and 𝑑3 = 1; or
2. 𝑡 = 3, 𝑑 = 5, 𝑑1 = 𝑑2 = 3 and 𝑑3 = 2; or
3. 𝑡 = 3, 𝑑 = 6 and 𝑑1 = 𝑑2 = 𝑑3 = 4; or
4. 𝑡 = 4, 𝑑 = 5 and 𝑑1 = 𝑑2 = 𝑑3 = 𝑑4 = 2.

In each case, we have that either 𝑡 = 3 or 𝑡 = 4. By Corollary 2.3, we can express P as 𝑃 = 𝑃′ ∪ 𝑆𝑡 ,
where 𝑃′ = 𝑆1 ∪ · · · ∪ 𝑆𝑡−1 is a minimal polytope of dimension 𝑑 ′ decomposed into 𝑡 ′ = 𝑡 − 1 minimal
simplices. Note that in all four cases, 𝑑 ′ = 𝑑 − 1. We now proceed exactly as in the first part of this
section. Let 𝑁 ′ ≔ linR(𝑃′) ∩𝑁 be the sublattice of N of lattice points in the linear hull of 𝑃′. We define
the map 𝜑′ : 𝑁 ′ ⊕ 𝑁𝑡 → 𝑁 by (𝑥1, 𝑥2) ↦→ 𝑥1 + 𝑥2, whose extension 𝜑R to a map of vector spaces is
surjective and gives the following representation of P:

𝑃 = 𝜑R(𝑃
′ ⊕ 𝑆𝑡 ).

Let 𝑀 ′ denote the lattice dual to 𝑁 ′. The map (𝜑′)∗
R

dual to (𝜑′)R is an injection, and in particular

𝑃∗ � (𝜑′)∗R(𝑃
∗) ⊂ (𝑃′ ⊕ 𝑆𝑡 )

∗ = (𝑃′)∗ × 𝑆∗𝑡 .

As in equation (3.1), by the monotonicity of the normalised volume,

Vol𝑀 (𝑃∗) ≤
(𝑑 ′ + 𝑑𝑡 )!
𝑑 ′!𝑑𝑡 !

Vol𝑀 ′ ( (𝑃′)∗) Vol𝑀𝑡 (𝑆
∗
𝑡 ). (3.5)

By our assumption and Lemma 3.2, Theorem 1.1 holds for 𝑡 ′ = 2 and for 𝑡 ′ = 3, 𝑑 ′ = 4, 𝑑1 = 𝑑2 = 𝑑3 = 2.
Hence, in all four cases, Theorem 1.1 holds for 𝑃′: that is, Vol𝑀 ′ ( (𝑃′)∗) < 𝐵𝑑−1. Since Vol𝑀𝑡 (𝑆

∗
𝑡 ) ≤ 𝐵𝑑𝑡

and 𝑑 ′ = 𝑑 − 1,

Vol𝑀 (𝑃∗) <
(𝑑 − 1 + 𝑑𝑡 )!
(𝑑 − 1)!𝑑𝑡 !

𝐵𝑑−1𝐵𝑑𝑡 .

Hence it is enough to prove that

(𝑑 − 1 + 𝑑𝑡 )!
(𝑑 − 1)!𝑑𝑡 !

𝐵𝑑−1𝐵𝑑𝑡 < 𝐵𝑑 .

This inequality can be directly checked in all four cases. �

4. Slicing minimal polytopes

We now develop the foundations for a finer technique that we use in Section 6 to help prove the remaining
cases of Theorem 1.1. In particular, we shall explain how minimal polytopes can be described as a
particular union of slices that are products of slices of simplices (see Figure 2). Using this construction,
in Section 5, we give a better estimate of the dual volume via integration.
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0 0

𝐹∗
1

𝐻1,0
0

𝐹∗
2

𝐻2,0

Figure 2. The dual 𝑃∗ of the polytope P from Figure 1, together with the dual triangles (𝑆′1)
∗ ⊂ (𝑀 ′

1)R
and (𝑆′2)

∗ ⊂ (𝑀 ′
2)R. In the left-most picture, the grey slice is 𝐻1,0 ×𝐻2,0. We refer to Section 4.2 for the

precise definitions.

4.1. Embedding the dual polytope

As above, we are in the setup of Corollary 2.3: 𝑃 ⊂ 𝑁R is a d-dimensional minimal canonical Fano
polytope decomposed into minimal canonical Fano simplices 𝑆1, . . . , 𝑆𝑡 for some 𝑡 ≥ 2. We define

V ≔
⋃

1≤𝑖1<𝑖2≤𝑡
vert(𝑆𝑖1) ∩ vert(𝑆𝑖2)

to be the set of those vertices of P that occur multiple times amongst the vertices of the 𝑆𝑖 , and we define
V𝑖 ≔ V ∩ vert(𝑆𝑖). For example, in Figure 1, we have V = V1 = V2 = {𝑣}.

It will be convenient to coarsen the lattice N. We note that coarsening the ambient lattice N to a
lattice 𝑁 ′ is an assumption we can make. Indeed, if 𝑃∗

𝑀 and 𝑃∗
𝑀 ′ denote the duals of P with respect to

the lattices 𝑀 = 𝑁∗ and 𝑀 ′ = (𝑁 ′)∗, respectively, then the volume of 𝑃∗
𝑀 ′ is equal to the volume of

𝑃∗
𝑀 multiplied by the index of 𝑀 ′ as a subgroup of M (which is a positive integer).

Let 𝑁 ′
𝑖 denote some sublattice of 𝑁𝑖 = linR (𝑆𝑖) ∩ 𝑁 of rank 𝑑𝑖 with V𝑖 ⊂ 𝑁 ′

𝑖 (a specific choice of
𝑁 ′
𝑖 will be given in Section 4.2). Notice that 𝑆𝑖 may no longer be a lattice simplex with respect to 𝑁 ′

𝑖 .
Therefore, to avoid any confusion, we denote by 𝑆′𝑖 ⊆ (𝑁 ′

𝑖 )R = (𝑁𝑖)R the rational simplex with vertices
vert(𝑆𝑖) with respect to the lattice 𝑁 ′

𝑖 . Now, by possibly coarsening the lattice N, we may suppose that
N is the image of the lattice 𝑁 ′

1 ⊕ · · · ⊕ 𝑁 ′
𝑡 via the map

𝜑 : 𝑁 ′
1 ⊕ · · · ⊕ 𝑁 ′

𝑡 → 𝑁

(𝑥1, . . . , 𝑥𝑡 ) ↦→
𝑡∑

𝑖=1
𝑥𝑖 .

(4.1)

Hence we can assume that this map is surjective. Notice that the polytope P may no longer be a lattice
polytope with respect to this ambient lattice. We extend the map 𝜑 to the map of real vector spaces
𝜑R : (𝑁 ′

1)R ⊕ · · · ⊕ (𝑁 ′
𝑡 )R → 𝑁R. As in the previous section, we can describe P as

𝑃 = 𝜑R (𝑆
′
1 ⊕ · · · ⊕ 𝑆′𝑡 ).

By definition, 𝜑 is a surjective map, so we have the exact sequence

0 → ker 𝜑 ↩→ 𝑁 ′
1 ⊕ · · · ⊕ 𝑁 ′

𝑡 � 𝑁 → 0,

which splits over Z. From equation (2.1), we have that 𝑁 ′
1 ⊕ · · · ⊕ 𝑁 ′

𝑡 splits into parts of rank d and r.
As a consequence, the dual sequence

0 → 𝑀 ↩→ 𝑀 ′
1 ⊕ · · · ⊕ 𝑀 ′

𝑡 � (ker 𝜑)∗ → 0

is exact and splits too. Here we used the notation 𝑀 ′
1, . . . , 𝑀

′
𝑡 for the dual lattices of 𝑁 ′

1, . . . , 𝑁
′
𝑡 ,

respectively. Let (ker 𝜑)⊥ denote the elements of 𝑀 ′
1 ⊕ · · · ⊕ 𝑀 ′

𝑡 vanishing on ker 𝜑. By the exactness
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of the dual sequence, 𝜑∗(𝑀) = (ker 𝜑)⊥: that is, the lattices M and (ker 𝜑)⊥ are isomorphic via 𝜑∗. In
particular, (ker 𝜑)⊥ = (𝑀 ′

1 ⊕ · · · ⊕ 𝑀 ′
𝑡 ) ∩ (ker 𝜑)⊥

R
is a direct summand of 𝑀 ′

1 ⊕ · · · ⊕ 𝑀 ′
𝑡 of rank d.

By tensoring by R to extend the maps to the ambient real vector spaces, it follows that the following
polytopes are isomorphic as rational polytopes with respect to their respective lattices:

𝑃∗ � 𝜑∗
R (𝑃

∗)

= (𝑆′1 ⊕ · · · ⊕ 𝑆′𝑡 )
∗ ∩ (ker 𝜑)⊥R

= ((𝑆′1)
∗ × · · · × (𝑆′𝑡 )

∗) ∩ (ker 𝜑)⊥R .
(4.2)

We now describe a set of generators of (ker 𝜑)R. For this, let us identify 𝑁 ′
𝑖 with the corresponding

direct summand in 𝑁 ′
1 ⊕ · · · ⊕ 𝑁 ′

𝑡 . In this way, we can identify 𝑣 ∈ vert(𝑆′𝑖) with 𝑒𝑖,𝑣 ∈ 𝑁 ′
1 ⊕ · · · ⊕ 𝑁 ′

𝑡 :
that is, (𝑒𝑖,𝑣 )𝑖 = 𝑣 ∈ 𝑁 ′

𝑖 and (𝑒𝑖,𝑣 ) 𝑗 = 0𝑁 ′
𝑗

for 𝑗 ≠ 𝑖. Recall that dimR(ker 𝜑)R = 𝑟 . Let 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑡

and 𝑣 ∈ V𝑖1 ∩ V𝑖2 . We denote by 𝑤𝑣,𝑖1 ,𝑖2 the element 𝑒𝑖2 ,𝑣 − 𝑒𝑖1 ,𝑣 ∈ 𝑁 ′
1 ⊕ · · · ⊕ 𝑁 ′

𝑡 .

Lemma 4.1. With notation as above, ker 𝜑R is generated by the set

Ω ≔ {𝑤𝑣,𝑖1 ,𝑖2 ∈ 𝑁 ′
1 ⊕ · · · ⊕ 𝑁 ′

𝑡 : 1 ≤ 𝑖1 < 𝑖2 ≤ 𝑡, 𝑣 ∈ V𝑖1 ∩ V𝑖2 }.

Proof. We prove that the subset

Ω′ ≔
{
𝑤𝑣,𝑖1 ,𝑖2 ∈ Ω : 𝑖1 = max{𝑖 : 𝑣 ∈ V𝑖 , 𝑖 < 𝑖2}

}
of Ω is a basis of ker 𝜑R. Since for 2 ≤ 𝑖 ≤ 𝑡, we have

��{𝑤𝑣,𝑖1 ,𝑖 ∈ Ω′ : 𝑖2 = 𝑖}
�� = 𝑟𝑖 , this implies that

|Ω′ | =
∑𝑡

𝑖=2 𝑟𝑖 = 𝑟 . Hence it is enough to prove that the elements of Ω′ are linearly independent.
Denote the elements of Ω′ by 𝒙1, . . . , 𝒙𝑟 , where 𝒙 𝑗 = ((𝒙 𝑗 )1, . . . , (𝒙 𝑗 )𝑡 ) ∈ 𝑁 ′

1 ⊕ · · · ⊕ 𝑁 ′
𝑡 . Assume

there exists a nontrivial relation 𝜇1𝒙1 + . . . + 𝜇𝑟𝒙𝑟 = 0 with 𝝁 ≔ (𝜇1, . . . , 𝜇𝑟 ) ∈ R
𝑟 \ {0}. Let us define

supp(𝝁) ≔ { 𝑗 ∈ {1, . . . , 𝑟} : 𝜇 𝑗 ≠ 0}.

Let 𝑖 ∈ {1, . . . , 𝑡} be the largest integer such that there exists an integer 𝑗 ∈ supp(𝝁), an index
1 ≤ 𝑖1 < 𝑖 and a vertex 𝑣 ∈ V𝑖1 ∩ V𝑖 , with 𝑤𝑣,𝑖1 ,𝑖 = 𝒙 𝑗 . By definition of i and Ω′, all elements in
{(𝒙 𝑗 )𝑖 : 𝑗 ∈ supp(𝝁), (𝒙 𝑗 )𝑖 ≠ 0𝑁 ′

𝑖
} ≠ ∅ are pairwise distinct vertices in V𝑖 ∩ vert(𝑃 (𝑖−1) ). Hence∑

𝑗∈supp(𝝁)
𝜇 𝑗 (𝒙 𝑗 )𝑖 = 0𝑁 ′

𝑖

implies a nontrivial relation of a non-empty subset of the vertices in V𝑖 ∩ vert(𝑃 (𝑖−1) ). However, as 𝑆𝑖
contains the origin in its interior, any proper subset of the set of vertices of 𝑆𝑖 is linearly independent,
so V𝑖 ∩ vert(𝑃 (𝑖−1) ) = vert(𝑆𝑖). Hence 𝑟𝑖 = 𝑑𝑖 + 1, a contradiction to equation (2.2). �

We now apply Lemma 4.1 to equation (4.2):

𝑃∗ � 𝜑∗
R(𝑃

∗)

= ((𝑆′1)
∗ × · · · × (𝑆′𝑡 )

∗) ∩ (ker 𝜑)⊥R
= {(𝑦1, . . . , 𝑦𝑡 ) ∈ (𝑆′1)

∗ × · · · × (𝑆′𝑡 )
∗ : 〈(𝑦1, . . . , 𝑦𝑡 ), 𝜔〉 = 0 for each 𝜔 ∈ (ker 𝜑)R}

= {(𝑦1, . . . , 𝑦𝑡 ) ∈ (𝑆′1)
∗ × · · · × (𝑆′𝑡 )

∗ : 〈𝑦𝑖1 , 𝑒𝑖1 ,𝑣〉 = 〈𝑦𝑖2 , 𝑒𝑖2 ,𝑣〉 for each 𝑤𝑣,𝑖1 ,𝑖2 ∈ Ω}

= {(𝑦1, . . . , 𝑦𝑡 ) ∈ (𝑆′1)
∗ × · · · × (𝑆′𝑡 )

∗ : 〈𝑦𝑖1 , 𝑒𝑖1 ,𝑣〉 = 〈𝑦𝑖2 , 𝑒𝑖2 ,𝑣〉 for each 𝑣 ∈ V𝑖1 ∩ V𝑖2 }.

(4.3)

4.2. The integration map

From here onward, we will assume that the decomposition of P into the simplices 𝑆𝑖 is irredundant:
that is, V𝑖 � vert(𝑆𝑖) for 𝑖 = 1, . . . , 𝑡. Under this assumption, we describe a specific choice for 𝑁 ′

𝑖 . For
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this, we choose a vertex 𝑣𝑖 ∈ vert(𝑆𝑖) \ V𝑖 and set

V̂𝑖 ≔ vert(𝑆𝑖) \ {𝑣𝑖}.

We have V𝑖 ⊂ V̂𝑖 . We define 𝑁 ′
𝑖 to be the lattice spanned by V̂𝑖: that is,

𝑁 ′
𝑖 ≔ 〈𝑣 ∈ V̂𝑖〉Z.

By construction, the 𝑑𝑖 vertices in V̂𝑖 form a lattice basis

{𝑒𝑖,𝑣 }𝑣 ∈V̂𝑖

of 𝑁 ′
𝑖 (as a sublattice of 𝑁 ′

1 ⊕ · · · ⊕ 𝑁 ′
𝑡 ). Note that the vertex 𝑣𝑖 need not be a lattice point in 𝑁 ′

𝑖 . We
again assume that N is given as the image of 𝜑 – see equation (4.1) – and we will refer to 𝑆𝑖 as 𝑆′𝑖 when
referring to it with respect to the lattice 𝑁 ′

𝑖 . This choice of lattice will allow us to prove Lemma 4.2, which
simplifies the considerations in Section 5. In particular, it will yield a convenient explicit description of
(𝑆′𝑖)

∗ (see Lemma 5.1).
Set 𝑞 ≔ |V | and 𝑞𝑖 ≔ |V𝑖 | for 𝑖 = 1, . . . , 𝑡. We define Ψ to be the map

Ψ : (ker 𝜑)⊥ →
⊕
𝑣 ∈V
Z � Z𝑞

(𝑦1, . . . , 𝑦𝑡 ) ↦→ (〈𝑦𝑖𝑣 , 𝑒𝑖𝑣 ,𝑣〉)𝑣 ∈V ,

where for each v, 𝑖𝑣 is any index such that 𝑣 ∈ V𝑖𝑣 . Since 〈𝑦𝑖1 , 𝑒𝑖1 ,𝑣〉 = 〈𝑦𝑖2 , 𝑒𝑖2 ,𝑣〉 whenever 𝑣 ∈ V𝑖1 ∩V𝑖2 ,
Ψ is a well-defined map. In an analogous fashion to the definition of Ψ, for each 𝑖 ∈ {1, . . . , 𝑡}, we
define the map

Ψ𝑖 : 𝑀 ′
𝑖 →

⊕
𝑣 ∈V𝑖

Z � Z𝑞𝑖

𝑦 ↦→ (〈𝑦, 𝑒𝑖,𝑣〉)𝑣 ∈V𝑖 .

Lemma 4.2. The maps Ψ,Ψ1, . . . ,Ψ𝑡 are surjective.
Proof. Let {𝜖𝑖,𝑣 }𝑣 ∈V𝑖 be the standard basis of

⊕
𝑣 ∈V𝑖
Z and {𝑒∗𝑖,𝑣 }𝑣 ∈V̂𝑖

the lattice basis of 𝑀 ′
𝑖 dual to

the lattice basis {𝑒𝑖,𝑣 }𝑣 ∈V̂𝑖
of 𝑁 ′

𝑖 . The maps Ψ𝑖 are surjective, since each element 𝑒∗𝑖,𝑣 is mapped into
𝜖𝑖,𝑣 , for 𝑣 ∈ V𝑖 .

We now prove that Ψ is surjective. Since the codomains of the maps Ψ𝑖 span the codomain of
Ψ, it is enough to check that for each 𝑖 ∈ {1, . . . , 𝑡} and for each 𝑣 ∈ V𝑖 , there exists an element
(𝑦1, . . . , 𝑦𝑡 ) ∈ (ker 𝜑)⊥ ⊂ 𝑀 ′

1 ⊕ · · · ⊕ 𝑀 ′
𝑡 such that 𝑦𝑖 = 𝑒∗𝑖,𝑣 . This is true since it suffices to choose

(𝑦1, . . . , 𝑦𝑡 ) as ∑
𝑖 such that 𝑣 ∈𝑉𝑖

𝑒∗𝑖,𝑣 ∈ (𝑀 ′
1 ⊕ · · · ⊕ 𝑀 ′

𝑡 ) ∩ (ker 𝜑R)⊥ = (ker 𝜑)⊥. �

As a consequence of Lemma 4.2, the extensions of Ψ,Ψ1, . . . ,Ψ𝑡 to the real vector space maps

ΨR, (Ψ1)R, . . . , (Ψ𝑡 )R

are linear surjective maps. We define natural projections

𝑝𝑖 :
⊕
𝑣 ∈V
R→

⊕
𝑣 ∈V𝑖

R

as the identity over
⊕

𝑣 ∈V𝑖
R and the zero map over

⊕
𝑣 ∈V\V𝑖

R.
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Let D be the set of parameters

D ≔ ΨR(𝜑
∗
R(𝑃

∗)) ⊂
⊕
𝑣 ∈V
R.

Given a point 𝝀 = (𝜆𝑣 )𝑣 ∈V ∈ D, define the fibre

𝐻𝑖,𝝀 ≔ (Ψ𝑖)
−1
R (𝑝𝑖 (𝝀)) ∩ (𝑆′𝑖)

∗ = {𝑦 ∈ (𝑆′𝑖)
∗ : 〈𝑦, 𝑣〉 = 𝜆𝑣 for all 𝑣 ∈ V𝑖} ⊂ (𝑀 ′

𝑖 )R.

Denote by 𝐹∗
𝑖 the (𝑑𝑖 − 𝑞𝑖)-dimensional face of (𝑆′𝑖)

∗ given by

𝐹∗
𝑖 ≔ 𝐻𝑖, (−1,...,−1) . (4.4)

From equation (4.3), we obtain the desired decomposition of 𝑃∗:

𝑃∗ �
⊔

(𝜆𝑣 )𝑣∈V ∈D
{(𝑦1, . . . , 𝑦𝑡 ) ∈ (𝑆′1)

∗ × · · · × (𝑆′𝑡 )
∗ : 〈𝑦𝑖 , 𝑒𝑖,𝑣〉 = 𝜆𝑣 for all 𝑣 ∈ V𝑖 , 𝑖 = 1, . . . , 𝑡}

=
⊔
𝝀∈D

𝐻1,𝝀 × · · · × 𝐻𝑡 ,𝝀 .
(4.5)

In other words, 𝑃∗ is sliced into a disjoint union of sections (see Figure 2).

5. Bounding the volume of 𝑃∗ via integration

In this section, we apply equation (4.5) to obtain a finer bound on the volume of 𝑃∗ in the case when P
decomposes into just two simplices. From here onward, we assume we are in the setup of Corollary 2.3
with 𝑡 = 2: that is, P decomposes in two minimal canonical simplices 𝑆1 and 𝑆2 of dimensions 𝑑1 and 𝑑2,
respectively. As P is not a simplex, clearly this decomposition is irredundant, so the results of Section 4.2
apply. We will continue to use the notation introduced in Section 4, in particular the choice of 𝑁 ′

𝑖 , 𝑁, 𝑆
′
𝑖

in Section 4.2. Note that 𝑞 = 𝑟2 = 𝑟 = |V | = |V1 | = |V2 | is the number of common vertices of 𝑆1 and 𝑆2.
The equality in equation (4.5) and Lemma 4.2 allow us to calculate the volume vol𝑀 (𝑃∗) by

integrating the sections over the possible values of 𝝀. In particular,

vol𝑀 (𝑃∗) =
∫
𝝀∈D

vol𝑀 ′
1
(𝐻1,𝝀) vol𝑀 ′

2
(𝐻2,𝝀) 𝑑𝝀. (5.1)

Before attempting to bound such a value, we present an alternative description of D. For 𝑖 = 1, 2, we
define D𝑖 as

D𝑖 ≔ (Ψ𝑖)R((𝑆
′
𝑖)
∗),

and we note that (since the maps 𝑝𝑖 defined in the previous section correspond to the identity maps here)

D = D1 ∩D2. (5.2)

Recall that a lattice basis {𝑒𝑖,𝑣 } for 𝑁 ′
𝑖 is given by the elements of V̂𝑖 = vert(𝑆𝑖) \ {𝑣𝑖}. Denote by

(𝛽𝑖,𝑣 )𝑣 ∈vert(𝑆𝑖 ) the barycentric coordinates of the origin in the simplex 𝑆𝑖: that is,
∑

𝑣 ∈vert(𝑆𝑖 ) 𝛽𝑖,𝑣𝑣 = 0,
where

∑
𝑣 ∈vert(𝑆𝑖 ) 𝛽𝑖,𝑣 = 1. Note that 𝛽𝑖,𝑣 > 0 for any 𝑣 ∈ vert(𝑆𝑖). Hence we can express 𝑣𝑖 as

𝑣𝑖 = −
∑
𝑣 ∈V̂𝑖

𝛽𝑖,𝑣
𝛽𝑖,𝑣𝑖

𝑒𝑖,𝑣 .
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Let us denote by {𝜖𝑖,𝑣 }𝑣 ∈V𝑖 the standard basis of
⊕

𝑣 ∈V𝑖
Z. Lemma 5.1 below gives an explicit

description for (𝑆′𝑖)
∗ and D𝑖 in terms of our chosen lattice bases. We omit the straightforward proof.

Lemma 5.1. With notation as above, for 𝑖 = 1, 2,

(𝑆′𝑖)
∗ = conv

����
{
−
∑
𝑣 ∈V

𝑒∗𝑖,𝑣

}
∪

⎧⎪⎪⎨⎪⎪⎩
(

1
𝛽𝑖,𝑤

− 1
)
𝑒∗𝑖,𝑤 −

∑
𝑣 ∈V\{𝑤 }

𝑒∗𝑖,𝑣

⎫⎪⎪⎬⎪⎪⎭𝑤 ∈V̂𝑖

!""#,
D𝑖 = conv���

{
−
∑
𝑣 ∈V

𝜖∗𝑖,𝑣

}
∪

⎧⎪⎪⎨⎪⎪⎩
(

1
𝛽𝑖,𝑤

− 1
)
𝜖∗𝑖,𝑤 −

∑
𝑣 ∈V\{𝑤 }

𝜖∗𝑖,𝑣

⎫⎪⎪⎬⎪⎪⎭𝑤 ∈V

!"#.
By using the inequality 𝑓1 𝑓2 ≤

𝑓 2
1 + 𝑓 2

2
2 , we can bound equation (5.1) via

vol𝑀 (𝑃∗) ≤

∫
𝝀∈D

vol𝑀 ′
1
(𝐻1,𝝀)

2 + vol𝑀 ′
2
(𝐻2,𝝀)

2

2
𝑑𝝀

=
1
2

∫
𝝀∈D

vol𝑀 ′
1
(𝐻1,𝝀)

2 𝑑𝝀 +
1
2

∫
𝝀∈D

vol𝑀 ′
2
(𝐻2,𝝀)

2 𝑑𝝀

≤
1
2

∫
𝝀∈D1

vol𝑀 ′
1
(𝐻1,𝝀)

2 𝑑𝝀 +
1
2

∫
𝝀∈D2

vol𝑀 ′
2
(𝐻2,𝝀)

2 𝑑𝝀,

(5.3)

where the final inequality follows from equation (5.2). It is convenient to perform a change of variables
for 𝑖 = 1, 2 via the maps

𝜶 = (𝛼𝑣 )𝑣 ∈V
𝑓𝑖
↦−→ (

1
𝛽𝑖,𝑣

𝛼𝑣 − 1)𝑣 ∈V .

By Lemma 5.1, the integration domain D𝑖 becomes the unimodular q-dimensional simplex Δ (𝑞) : that
is, the convex hull of the origin and the standard basis of Z𝑞 . Hence equation (5.3) can be rewritten as

vol𝑀 (𝑃∗) ≤
1
2

∏
𝑣 ∈V

1
𝛽1,𝑣

∫
𝜶∈Δ (𝑞)

vol𝑀 ′
1
(𝐻1, 𝑓1 (𝜶) )

2 𝑑𝜶 +
1
2

∏
𝑣 ∈V

1
𝛽2,𝑣

∫
𝜶∈Δ (𝑞)

vol𝑀 ′
2
(𝐻2, 𝑓2 (𝜶) )

2 𝑑𝜶. (5.4)

Lemma 5.2 [2, Lemma 3.5 III]. With notation as above, for 𝑖 = 1, 2,

vol𝑀 ′
𝑖
(𝐻𝑖, 𝑓𝑖 (𝜶) ) = vol𝑀 ′

𝑖
(𝐹∗

𝑖 )

(
1 −

∑
𝑣 ∈V𝑖

𝛼𝑣

)𝑑𝑖−𝑞
,

where 𝐹𝑖 is the (𝑑𝑖 − 𝑞)-dimensional face of (𝑆′𝑖)
∗ defined in equation (4.4).

The inequality in equation (5.4) can now be rewritten as

vol𝑀 (𝑃∗) ≤
1
2

∏
𝑣 ∈V

1
𝛽1,𝑣

vol𝑀 ′
1
(𝐹∗

1 )
𝑡

∫
𝜶∈Δ (𝑞)

(
1 −

∑
𝑣 ∈V

𝛼𝑣

)2(𝑑1−𝑞)

𝑑𝜶

+
1
2

∏
𝑣 ∈V

1
𝛽2,𝑣

vol𝑀 ′
2
(𝐹∗

2 )
𝑡

∫
𝜶∈Δ (𝑞)

(
1 −

∑
𝑣 ∈V

𝛼𝑣

)2(𝑑2−𝑞)

𝑑𝜶.

(5.5)

The following lemma derives from a special case of a well-known representation of the beta function
(see, for example, [6, Representation 4.3-2]).
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Lemma 5.3. ∫
𝜶∈Δ (𝑎)

(1 − 𝛼1 − . . . − 𝛼𝑎)
𝑏 𝑑𝜶 =

𝑏!
(𝑎 + 𝑏)!

.

Applying Lemma 5.3 to equation (5.5) yields

vol𝑀 (𝑃∗) ≤
1
2

∏
𝑣 ∈V

1
𝛽1,𝑣

vol𝑀 ′
1
(𝐹∗

1 )
2 (2(𝑑1 − 𝑞))!
(𝑞 + 2(𝑑1 − 𝑞))!

+
1
2

∏
𝑣 ∈V

1
𝛽2,𝑣

vol𝑀 ′
2
(𝐹∗

2 )
2 (2(𝑑2 − 𝑞))!
(𝑞 + (2(𝑑2 − 𝑞))!

.

(5.6)

The volume of 𝐹∗
𝑖 is computed in Lemma 5.4 below. Its proof is omitted since it is a straightforward

consequence of the description of (𝑆′𝑖)
∗ given in Lemma 5.1.

Lemma 5.4. With notation as above, for 𝑖 = 1, 2,

vol𝑀 ′
𝑖
(𝐹∗

𝑖 ) =
1

(𝑑𝑖 − 𝑞)!

∏
𝑣 ∈V̂𝑖\V

1
𝛽𝑖,𝑣

.

Finally, applying Lemma 5.4 to equation (5.6) gives the following bound for vol𝑀 (𝑃∗):

vol𝑀 (𝑃∗) ≤
1
2

(2(𝑑1 − 𝑞))!
(𝑞 + 2(𝑑1 − 𝑞))!((𝑑1 − 𝑞)!)2

∏
𝑣 ∈V

1
𝛽1,𝑣

∏
𝑣 ∈V̂1\V

1
𝛽2

1,𝑣

+
1
2

(2(𝑑2 − 𝑞))!
(𝑞 + 2(𝑑2 − 𝑞))!((𝑑2 − 𝑞)!)2

∏
𝑣 ∈V

1
𝛽2,𝑣

∏
𝑣 ∈V̂2\V

1
𝛽2

2,𝑣
.

(5.7)

6. Final cases

In this final section, we address the remaining cases of Corollary 3.1. That is, we prove that the
decompositions

1. 𝑡 = 2, 𝑑1 = 𝑑2 = 𝑑 − 1, for 𝑑 ≥ 4
2. 𝑡 = 2, 𝑑1 = 𝑑 − 1, 𝑑2 = 𝑑 − 2, 𝑑 ∈ {4, 5}
3. 𝑡 = 3, 𝑑1 = 𝑑2 = 𝑑3 = 𝑑 − 2, 𝑑 ∈ {4, 5}

satisfy Theorem 1.1.

6.1. The case 𝑡 = 2, 𝑑1 = 𝑑2 = 𝑑 − 1

By equation (2.1), we have 𝑞 = 𝑑 − 2. Hence the inequality in equation (5.7) can be rewritten as

vol𝑀 (𝑃∗) ≤
1
𝑑!
���
∏
𝑣 ∈V

1
𝛽1,𝑣

∏
𝑣 ∈V̂1\V

1
𝛽2

1,𝑣
+
∏
𝑣 ∈V

1
𝛽2,𝑣

∏
𝑣 ∈V̂2\V

1
𝛽2

2,𝑣

!"#. (6.1)

We focus on the product ∏
𝑣 ∈V

1
𝛽𝑖,𝑣

∏
𝑣 ∈V̂𝑖\V

1
𝛽2
𝑖,𝑣

for each 𝑖 = 1, 2. Note that in Section 4.2, we chose to exclude one of the vertices (called 𝑣𝑖) of vert(𝑆𝑖)\V
from appearing in V̂𝑖 . As there are two such vertices (say, vert(𝑆𝑖) \ V = {𝑣𝑖 , 𝑢𝑖}), we can exclude the
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one whose corresponding barycentric coordinate is smaller: that is, 𝛽𝑖,𝑣𝑖 ≤ 𝛽𝑖,𝑢𝑖 . This yields∏
𝑣 ∈V

1
𝛽𝑖,𝑣

∏
𝑣 ∈V̂𝑖\V

1
𝛽2
𝑖,𝑣

=

(∏
𝑣 ∈V

1
𝛽𝑖,𝑣

)
1

𝛽2
𝑖,𝑢𝑖

≤

(∏
𝑣 ∈V

1
𝛽𝑖,𝑣

)
1

𝛽𝑖,𝑢𝑖

1
𝛽𝑖,𝑣𝑖

=
1

𝛽𝑖,0 · · · 𝛽𝑖,𝑑−1
, (6.2)

where {𝛽𝑖,𝑣 : 𝑣 ∈ vert(𝑆𝑖)} = {𝛽𝑖, 𝑗 : 𝑗 = 0, . . . , 𝑑 − 1}. Notice that the equality in equation (6.2) is
attained if and only if 𝛽𝑖,𝑢𝑖 = 𝛽𝑖,𝑣𝑖 .

For each 𝑖 = 1, 2, let us order the barycentric coordinates such that 𝛽𝑖,0 ≥ 𝛽𝑖,1 ≥ · · · ≥ 𝛽𝑖,𝑑−1.

Lemma 6.1 [3, Lemma 4.2(d)]. With notation as above,

1
𝛽𝑖,0 · · · 𝛽𝑖,𝑑−1

≤ (𝑠𝑑 − 1)2,

with equality if and only if (
𝛽𝑖,0, . . . , 𝛽𝑖,𝑑−1

)
=

(
1
𝑠1
, . . . ,

1
𝑠𝑑−1

,
1

𝑠𝑑 − 1

)
. (6.3)

Applying Lemma 6.1 and equations (6.2)–(6.1), we obtain

vol𝑀 (𝑃∗) <
2(𝑠𝑑 − 1)2

𝑑!
.

This inequality is strict, since the condition that 𝛽𝑖,𝑢𝑖 = 𝛽𝑖,𝑣𝑖 from equation (6.2) and the condition in
equation (6.3) from Lemma 6.1 cannot hold simultaneously.

6.2. The cases 𝑡 = 2, 𝑑1 = 𝑑 − 1, 𝑑2 = 𝑑 − 2, 𝑑 ∈ {4, 5}

The barycentric coordinates of the canonical Fano simplices up to and including dimension four are
classified in [11]. Hence we can verify that in this situation, the right-hand side of equation (5.7) is
always strictly less than 2(𝑠𝑑 − 1)2/𝑑!.

6.3. The cases 𝑡 = 3, 𝑑1 = 𝑑2 = 𝑑3 = 𝑑 − 2, 𝑑 ∈ {4, 5}

Corollary 2.3 implies that 𝑟2 = 𝑟3 = 𝑑 − 3. To prove the inequality in these final cases, we explicitly
construct every minimal polytope P of dimension four or five that admits a decomposition into three
minimal simplices of dimensions two or three, respectively, such that the vertices of P generate the
ambient lattice N. Under this setting, we note that P is uniquely determined by

1. the barycentric coordinates of the simplices 𝑆1, 𝑆2, 𝑆3 in the decomposition; and
2. the choice of 𝑑 − 3 vertices in common with 𝑆2 and 𝑆1, together with the choice of 𝑑 − 3 vertices in

common with 𝑆3 and 𝑆1 ∪ 𝑆2.

This follows from the following general construction. The (reduced) weights of a canonical Fano
simplex S of dimension n are the positive integers (𝑘𝛽0, . . . , 𝑘 𝛽𝑛) given by the barycentric coordinates
(𝛽0, . . . , 𝛽𝑛) of the origin (with respect to the vertices of S), where k is the smallest positive integer
such that the 𝑘𝛽𝑖 are all integral. In particular, the weights of a canonical Fano simplex are coprime.
Moreover, since the vertices of a canonical Fano simplex are primitive lattice points, the weights are
well-formed: that is, any n of them are coprime. Let us use the fact that any minimal polytope P has a
decomposition into t minimal simplices. We proceed invariantly since we do not know the embedding
of these simplices into the lattice N. Let 𝜆 (𝑛) = (𝜆0, . . . , 𝜆𝑛) denote the (reduced, well-formed) weights
of a minimal canonical Fano simplex of dimension n. Fix weights 𝜆 (𝑑1) , . . . , 𝜆 (𝑑𝑡 ) . For each pair
(𝑖, 𝑗) with 1 ≤ 𝑖 < 𝑗 ≤ 𝑡, we pick a (possibly empty) subset 𝑉𝑖 𝑗 ⊂ {0, . . . , 𝑑𝑖} × {0, . . . , 𝑑 𝑗 } such
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Table 1. The weights of the minimal canonical Fano simplices in dimension three..

(1, 1, 1, 1) (1, 1, 1, 2) (1, 1, 1, 3) (1, 1, 2, 2) (1, 1, 2, 3)
(1, 1, 2, 4) (1, 1, 3, 4) (1, 1, 3, 5) (1, 1, 4, 6) (1, 2, 3, 5)
(1, 3, 4, 5) (2, 3, 5, 7) (3, 4, 5, 7)

that 𝑉𝑖 𝑗 : 𝜋1 (𝑉𝑖 𝑗 ) → 𝜋2 (𝑉𝑖 𝑗 ) is a bijection (here 𝜋𝑘 denotes the projection on the kth factor). Let
𝜄 𝑗 : Z𝑑 𝑗+1 →

⊕𝑡
𝑖=1 Z

𝑑𝑖+1, 1 ≤ 𝑗 ≤ 𝑡, be the natural inclusion on the jth factor. Define

𝑊 ≔
〈
𝜄𝑖 (𝜆

(𝑑𝑖) ) | 1 ≤ 𝑖 ≤ 𝑑
〉
,

𝑉 ≔
〈
𝜄𝑖 (𝑒𝜋1 (𝑣) ) − 𝜄 𝑗 (𝑒𝜋2 (𝑣) ) | 𝑣 ∈ 𝑉𝑖 𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑡

〉
.

Applying − ⊗ R ensures torsion-freeness of the quotient
(⊕𝑡

𝑖=1 Z
𝑑𝑖+1

)
/(𝑊 + 𝑉), and therefore we get

the exact sequence

0 → (𝑊 +𝑉) ⊗ R→

(
𝑡⊕

𝑖=1
Z𝑑𝑖+1

)
⊗ R

𝜑R
−−→ 𝑁 ⊗ R→ 0,

where N is the lattice obtained as the quotient
(⊕𝑡

𝑖=1 Z
𝑑𝑖+1

)
/𝐾 , where K is the direct summand defined

by
(⊕𝑡

𝑖=1 Z
𝑑𝑖+1

)
∩ ((𝑊 +𝑉) ⊗ R). We now define

𝑄 ≔ 𝜑R

(
𝑡⊕

𝑖=1
conv{𝑒0, . . . , 𝑒𝑑𝑖 }

)
⊂ 𝑁 ⊗ R,

which by construction is a polytope whose vertices generate its ambient lattice N. In general, Q may
not be a minimal polytope; however, if P is a minimal lattice polytope of dimension d whose vertices
generate its ambient lattice, then there exists a choice of integers 𝑡, 𝑑1, . . . , 𝑑𝑡 , weights 𝜆 (𝑑1) , . . . , 𝜆 (𝑑𝑡 )

of minimal Fano simplices 𝑆1, . . . , 𝑆𝑡 of dimensions 𝑑1, . . . , 𝑑𝑡 and subsets 𝑉𝑖 𝑗 (for 1 ≤ 𝑖 < 𝑗 ≤ 𝑡) such
that the polytope Q constructed above is equal to P. The fact that we can recover P from the construction
of Q is a consequence of Lemma 4.1, while the existence of the parameters 𝑡, 𝑑1, . . . , 𝑑𝑡 and the weights
follows from Corollary 2.3.

We now specialise this construction to the case 𝑡 = 3, 𝑑1 = 𝑑2 = 𝑑3 = 𝑑 − 2 for 𝑑 ∈ {4, 5}. The
weights of the minimal canonical Fano simplices of dimensions two and three have been classified [10,
Figure 1 and Proposition 4.3]. There are two possible weights in dimension two: (1, 1, 1) and (1, 1, 2). In
dimension three, there are 13 possible weights,1 recorded in Table 1. Since the choices for the common
vertices (encoded in the sets 𝑉𝑖 𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 3) are finite, all the minimal canonical Fano polytopes P
admitting such a decomposition and whose vertices generate the ambient lattice N can be classified.

We use the computer algebra system Magma [5] to derive the classification. Source code and output
can be downloaded from Zenodo [4]. In the first case (𝑑1 = 𝑑2 = 𝑑3 = 2), there are exactly four such
four-dimensional polytopes, and in each case, the inequality of Theorem 1.1 holds. To solve the second
case (𝑑1 = 𝑑2 = 𝑑3 = 3), we first build all possible four-dimensional minimal polytopes 𝑃′ whose
vertices generate the ambient lattice and admit a decomposition into two three-dimensional minimal
canonical Fano simplices 𝑆1 and 𝑆2. We then verify that any five-dimensional polytope P decomposing
as 𝑆1, 𝑆2 and 𝑆3 satisfies the inequality in equation (3.5) for each choice of three-dimensional minimal

1[10, Proposition 4.3] incorrectly lists (2, 2, 3, 5) as the weight of a minimal canonical Fano simplex; however, any such
simplex will contain a canonical Fano subsimplex with weights (1, 1, 1, 3) .
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canonical Fano simplex 𝑆3; that is, we verify that

Vol(𝑃∗) ≤
7!

4! 3!
Vol(𝑃′∗) · 2(𝑠3 − 1)2 < 2(𝑠5 − 1)2

holds in each case. There are 147 minimal four-dimensional polytopes with a decomposition into two
three-dimensional minimal canonical Fano simplices and whose vertices generate the lattice N, and in
each case, the inequality holds. This completes the proof of Theorem 1.1.

6.4. Bounding the volume of P

Unfortunately, the methods used here to prove a sharp upper bound on the volume of 𝑃∗ do not
immediately help provide an upper bound on the volume of P. Since there is no known decomposition
result for maximal canonical Fano polytopes, we would again have to pass to the dual side and consider
minimal ‘canonical’ subpolytopes of 𝑃∗. One could still decompose these into ‘canonical’ simplices.
However, they would no longer be lattice simplices, and there are no known applicable bounds on the
corresponding barycentric coordinates of the origin in the rational case.
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