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1. Introduction

Dark energy is a cosmological phenomenon per se. In this chapter we will describe

attempts to detect effects of the physics of modified gravity, motivated by dark

energy and the cosmological constant problem, in the laboratory. Classical effects of

modified gravity can be tested by fifth force searches where new classical interactions

could influence the motion of test masses. The quantum nature of the modifications
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can also be probed using the Casimir effect, atom and neutron interferometry, and

the neutron energy levels in vacuum. Theoretically we have restricted the models

to scalar-tensor theories with a coupling between a scalar field and matter. The

coupling to photons and its quantum-mechanical origin is also recalled.

Laboratory tests of gravity have a long history and, as discussed in Section ??,

the need to make cosmological theories of dark energy and modified gravity compat-

ible with laboratory and solar system tests was a key motivation for the introduction

of screening mechanisms. In broad terms the goal of screening mechanisms is to al-

low the additional scalar field to give rise to modifications of the standard cosmology

on the largest scales in the universe, whilst being un-observable on the shorter dis-

tances and at the higher densities present on Earth. However this is not the end of

the story, as we will see in this section; carefully designed experiments can allow

the effects of the scalar field to be unscreened. The additional level of precision and

control that we have in the laboratory then means that these measurements tend

to be extremely constraining for theories of dark energy, and cosmological modified

gravity theories.

In the last ten years, the variety of experimental techniques which have been

introduced to test dark energy is quite astonishing. From the classic Casimir

and fifth force experiments to levitating microspheres and atomic interferome-

try, the effects of the scalar fields are all in the non-linear regime of the the-

ories. This is different from most of the tests on cosmological scales where the

linear regime is the easiest to probe. Hence the laboratory experiments are a

useful complement to future large cosmological surveys. On the other hand, and

as the non-linear regime is what will be the subject of this review chapter, the

analysis has to be mostly dealt with in a case by case basis. No model inde-

pendent parameterised description is yet available for laboratory tests, and the

non-linear regime they probe can only be connected to the parameterised de-

scriptions of the linear perturbation theory relevant on the largest cosmological

scales on a case by case basis. As there are already similar reviews in the litera-

tureJoyce et al.(2015)Joyce, Jain, Khoury, and Trodden,Bull et al.(2016),Burrage and Sakstein(2016),Burrage and Sakstein(2017)

we have decided to concentrate some of the technical aspects to less developed

models such as the environmentally dependent dilaton which can be treated almost

completely analytically and provides a nice template for more complex models.

The types of laboratory tests that will be presented here really only probe the

screening properties of dark energy theories, i.e. the fact that very light scalar fields

involved in the late time acceleration of the expansion rate of the Universe would

induce far too large deviations from General Relativity in the solar system and

therefore must be shielded from matter locally. Types of screening can be classified

in two different ways: Firstly by the highest order of the derivative terms which

appear in the non-linear terms. From zero to two derivatives these are: chameleon,

K-mouflage and Vainshtein. Secondly by the class of term in the scalar Lagrangian in

which the non-linear terms are present. For the chameleon, symmetron (or dilaton)

and kinetic-chameleon models (Vainshtein and Galileon) the non-linearities appear
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in the scalar potential, matter coupling and kinetic terms respectively. Unfortu-

nately, so far, it does not appear to be possible to probe screening which relies on

derivative self interactions with laboratory experiments. This is because the nature

of the screening means that variations in the field occur only over longer distance

scales than can be probed terrestrially. Only chameleon and symmetron or dilaton

models are sufficiently local to respond to variations of matter densities on labo-

ratory scales. They will be the main focus of this review although the techniques

presented here can be applied to other models too.

2. Experimental Constraints

Laboratory experiments are most effective at constraining theories which screen

through a chameleon-like mechanism. Chameleon theories have the advantage that

the scalar field responds rapidly to changes in density, meaning that even if the

effects of the scalar are screened in the solar system they can be unscreened by a

laboratory vacuum chamber. In this section we will first describe how a chameleon

scalar behaves in a laboratory vacuum, and then go on to detail the laboratory

experiments which currently are the most constraining for chameleon models. We

will discuss in the following section the case of the dilaton which corresponds to the

Damour-Polyakov screening, and we will see that laboratory experiments are less

effective.

2.1. Chameleons in Laboratory Vacuums

The chameleon scalar field changes its mass as a function of the local density. We

consider here an idealized vacuum chamber, which is spherical with internal radius

L, internal density ρvac and walls of density ρwall and thickness T . If T ¡ 1{mpρwallq
then we know that within the walls of the vacuum chamber the chameleon reaches

the field value which minimises its effective potential. This greatly simplifies our

calculations, as it means that we can ignore the behaviour of the chameleon in the

exterior of the vacuum chamber, and just focus on the interior, as long as we impose

the boundary condition that the chameleon minimises its effective potential within

the walls. Whilst the condition T ¡ 1{mpρwallq, needs to be checked experiment by

experiment, and chameleon model by chameleon model, in general we find that this

is satisfied for chameleon models of interest if T Á 1 mm.

In the interior of the vacuum chamber the density is much less than within

the walls, therefore the chameleon will try to adjust its value to reach the

value which minimises the effective potential for this lower density. If L ¡
1{mpρvacq then at the center of the vacuum chamber the chameleon will have

reached this minimising value. For smaller vacuum chambers the chameleon

field will still evolve in the interior, it just will not have enough room to

reach the value which minimises the effective potential. In this case we find

that at the centre of the vacuum chamber the chameleon takes a value so

that its Compton wavelength is of order the size of the vacuum chamber
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1{mpρvacq � L. The order one constant of proportionality varies depending on

the choice of chameleon model.Burrage and Sakstein(2016),Burrage and Sakstein(2017) It is

not generally possible to solve analytically for the full form of the chameleon

profile inside the vacuum chamber, but it is possible to compute it numeri-

cally.Elder et al.(2016)Elder, Khoury, Haslinger, Jaffe, Mller, and Hamilton,Schlgel et al.(2016)Schlgel, Clesse, and Fzfa

2.2. Unscreening Inside the Vacuum Chamber

The conditions for a source mass to be screened are given in Equation (??) [refer-

ence to early chapter] and will be reviewed in the next section in Equation (3,46).

Whether or not an object is screened depends on the value of the scalar field in the

interior of the source mass, and the background value that the scalar would take

if the source were absent. The advantage of performing experiments in laboratory

vacuua is that, if the field is able to respond to the lower density of the vacuum as

described in the previous subsection, then the difference between the background

value of the scalar field, and the value that minimises the potential in the interior

is increased, and the conditions for screening are satisfied for fewer objects.

In particular it has been shown that, at least in parts of the chameleon parameter

space neutrons, atomic nuclei and silica microspheres can be unscreened in vacuua

with L � 10cm and ρvac � 10�17 g/cm
3
.

In the following sub-sections we review the most constraining experiments for

chameleon models. These constraints are summarized in Figure 1.
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2.3. A comparison with astrophysical tests

In the astrophysical tests of screened and unscreened models of dark energy and

modified gravity it is often useful to use

χBG � φBG

2βBGmPl
(1)

in order to discriminate screened and unscreened objects. Here BG refers to the

background in which a given object is embedded, where φBG and βBG refer to the

background value of the scalar field and the background coupling to matter. A given

object is screened in this environment when

ΦA ¥ χBG (2)

where ΦA is the Newtonian potential at the surface of the object A. This is par-

ticularly useful in astrophysics where a host of phenomena happen in the same

environment, e.g. within a galaxy where for instance one may be interested in the

screening of stars or the galactic gas. Hence a uniform criterion depending uniquely

on the Newtonian potential makes sense and is practical. For laboratory experi-

ments, the background is far from being standardisable, i.e. it could be a cylindrical

cavity, the two plates of Casimir experiments or the single mirror for neutron energy

levels. As a result it is far more efficient to introduce the scalar charge

QA � |φBG � φc|
2mPlΦA

(3)

where φc is the value of the scalar at the center of the source object. For a specific

object in a given environment Newton’s law is corrected as

VAB � �mAmB

r
p1� 2QAQBq (4)

when the interaction range of the scalar is much smaller than the distances probed

by the experiment, and VAB is the interaction potential between two masses. The

two bodies are screened if

QA,B ¤ βBG (5)

and when screening is not operating QA,B Ñ βBG in VAB . This is what will be

used in the following. For instance for atomic interferometry, the atoms will be

unscreened whilst the source object will be. The ratio of the charge of the object to

the background coupling can be identified with 3 δRR � δM
M where δR is the size of

the thin shell over which the field varies inside the object and creates the interaction

with another object. Deep inside the object the field is constant as the mass of the

scalar field is too large to allow for any propagation of the scalar from the inside to

the outside of the object. When bodies are not spherical , or nearly spherical, as for

the Casimir effect where infinite parallel plates are used, screening operates when

mplated " 1 (6)
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where mplate is the mass of the chameleons inside the plates and d their width. For

most models this implies that the field effectively vanishes inside the plates and

varies between the plates where near vacuum has been realised.

2.4. Atom Interferometry

Atom interferometry relies on the wave-particle duality of atoms. The wave function

of an atom is split into two parts, which describe the center of mass position traveling

along two different paths. The paths start and end at the same point, but are

spatially separated otherwise. At the final point the phases of the two parts of the

wavefunction interfere, allowing for a difference in the phase accumulated along the

two paths to be detected (somewhat analogously to the double slit experiment).

The spatial position of the atoms within the experiment can be controlled using

lasers. Once they are cooled sufficiently, the momentum of an atom can be in-

creased by absorption of a laser photon with frequency tuned to a particular atomic

excitation, as conservation of momentum requires the atom to inherit the three

momentum of the absorbed photon. Similarly the atom can be made to lose mo-

mentum by stimulated emission. The probability of whether the atoms absorb (or

emit) a photon can also be controlled. So that with three laser pulses it is possible

to split the atomic wavefunction into two parts (the analogue of the beam splitter

in a classical interferometer) to reverse the direction of motion of the atoms (the

analogue of the mirrors) and to recombine the wavefunction (the analogue of the

second beam splitter).

Differences in the phase of the wavefunction along the two paths can result ei-

ther from a difference in the accumulated action along each path, or from differences

in the phase inherited from the photon at each interaction. If the atoms are expe-

riencing a constant acceleration along the direction described by the laser pulses,

then the difference in phase is particularly simple. As moving the atoms around

within the experiment directly correlates with whether the atoms are in the excited

or unexcited state it is most convenient to express this in terms of the probability

of finding the atom in the excited state at the output of the interferometer.

P9 cos2

�
akT 2

~

�
, (7)

where k is the photon momentum, T is the time between laser pulses (so that 2T

is the duration of the experiment), and a is the constant acceleration.

An acceleration a can be caused by the gravitational, or chameleon forces

due to a massive source object being placed inside the vacuum chamber.

This massive source is typically sufficiently large that it will be screened,

but the atomic nuclei are small enough that, as discussed in the previ-

ous subsection, they are unscreened over a large range of the parameter

space,Burrage et al.(2015)Burrage, Copeland, and Hinds,Burrage and Copeland(2016),Elder et al.(2016)Elder, Khoury, Haslinger, Jaffe, Mller, and Hamilton

making them sensitive probes of the chameleon field. Experiments searching for

chameleon accelerations with atom interferometry have reached a sensitivity of



March 5, 2018 17:4 WSPC/INSTRUCTION FILE BBD˙Anne

Instructions for Typing Manuscripts (Paper’s Title) 7

10�8g (g � GMC{RC is the gravitational acceleration at the surface of the

Earth).Hamilton et al.(2015)Hamilton, Jaffe, Haslinger, Simmons, Mller, and Khoury,Burrage et al.(2016)Burrage, Kuribayashi-Coleman, Stevenson, and Thrussell, Jaffe et al.(2017)Jaffe, Haslinger, Xu, Hamilton, Upadhye, Elder, Khoury, and Mller

2.5. Eöt-Wash

Torsion balance experiments have a long history of searching for fifth forces, and

modifications of gravity. The principle underlying the experiments is to have one

or more test masses suspended, and to look for deflections of the test masses to-

wards source masses by measuring the torsion in the suspension of the test masses.

Commonly the source and test masses are arranged so that the inverse-square con-

tribution to the total force is canceled, and the experiment is sensitive to deviations

from standard gravity.

The current best constraints come from the Eöt-Wash experi-

ment,Adelberger et al.(2003)Adelberger, Heckel, and Nelson,Kapner et al.(2007)Kapner, Cook, Adelberger, Gundlach, Heckel, Hoyle, and Swanson,Lambrecht et al.(2005)Lambrecht, Nesvizhevsky, Onofrio, and Reynaud

which uses circular disks for the masses. The disks have holes bored in them, and

are arranged one above the other so that if there are no modifications to gravity

there is expected to be no net torque of one plate rotating to bring the massive

parts of the disk close to the more massive parts of the second disk.

One of the challenges of these experiments is to reduce as far as possible any

electromagnetic forces between the plates that could be mistaken for modifica-

tions of gravity. One of the ways that this is done in the Eöt-Wash experiment

is to place a beryllium-copper membrane between the plates. This still allows

the experiment to search for fifth forces that are not screened, but the presence

of the plate can act to screen out, for example, chameleon forces between the

plates.Brax et al.(2008)Brax, van de Bruck, Davis, and Shaw,Adelberger et al.(2007)Adelberger, Heckel, Hoedl, Hoyle, Kapner, and Upadhye,Mota and Shaw(2006),Mota and Shaw(2007),Upadhye(2012a),Upadhye(2012b),Upadhye(2013)

This reduces the sensitivity of the experiment to screened fifth forces.

2.6. Casimir

The Casimir force is an effect predicted by quantum electrodynamics, which is

absent in classical physics. It is the force that arises between two parallel plates,

placed in vacuum, due to the quantum fluctuations of the electromagnetic field

in the space between the plates. This force scales as d�4, where d is the dis-

tance between the plates, and therefore is most easily detected when the plates

are placed close together, current experiments probe sub-mm and sub-micron dis-

tance scales.Lamoreaux and Buttler(2005),Lambrecht and Reynaud(2011)

If fifth forces exist they could also be detected by an experiment

searching for Casimir effects. These experiments are particularly sensitive

to screening through the thin-shell effect [we need to check that thin-

shell is defined in an earlier chapter], as close to the surface of a

source the field is changing rapidly, giving rise to potentially detectable

forces. The chameleon force (per unit area) between two plates scales
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asMota and Shaw(2007),Brax et al.(2007a)Brax, van de Bruck, Davis, Mota, and Shaw,Brax and Davis(2015)

Fcham

A
9d� 2n

n�2 , (8)

The experimental challenge for such a search, is to make the two plates perfectly

smooth and to keep the plates perfectly parallel. In practice it may be easier to

search for the Casimir effect between a plate and a sphere, or between two spheres

instead. In this case, the Casimir force scales as d�3 and the chameleon force would

scale as

Fcham

A
9d 2�n

n�2 . (9)

Current searches for the Casimir force are most constraining for chameleon

models with n � �4 and n � �6 when Λc is fixed to the dark energy

scale. A new generation of these experiments, specifically tailored to look for the

chameleon force with parallel plates and larger separations is currently being devel-

oped.Lambrecht et al.(2005)Lambrecht, Nesvizhevsky, Onofrio, and Reynaud,Lamoreaux and Buttler(2005)

Further sensitivity to

the chameleon could be obtained by varying the density of the gas between the two

plates.Brax et al.(2010a)Brax, van de Bruck, Davis, Shaw, and Iannuzzi,Almasi et al.(2015)Almasi, Brax, Iannuzzi, and Sedmik

2.7. Quantum Bouncing Neutrons

Neutrons

can be used to test for the presence of new interaction with the qBOUNCE experi-

ment.Abele et al.(2010)Abele, Jenke, Leeb, and Schmiedmayer,Jenke et al.(2011)Jenke, Geltenbort, Lemmel, and Abele, Jenke et al.(2014)

These experiments use ultra-cold neutrons in the terrestrial gravitational

potential above a mirror with a large enough Fermi potential to reflect

neutrons totally. As first obtained in,Nesvizhevsky et al.(2002) the energy eigen-

states are of the neutrons are discrete. The basic setup can be found

inJenke et al.(2011)Jenke, Geltenbort, Lemmel, and Abele where the energy resolution be-

tween the level is as low as 3�10�15 eV.? Recently in? the transitions between

the energy ground state E1 � 1.40672 peV and the excited states E3 � 3.32144

peV as well as E4 � 4.08321 peV have been observed. This can be achieved as fol-

lows. First, the neutrons encounter a state selector for the ground state |1y having

energy E1. This combines a polished mirror at the bottom and a rough absorbing

scatterer at the top separated by about 20 µm. Neutrons in excited states with a

diffuse wave function are scattered out of the system. Then a horizontal mirror un-

dergoes harmonic oscillations with a tunable frequency ω, which drives the system

into a coherent superposition of ground and excited states. Finally the neutrons

go through a selector which is identical to the first one and acting as a ground

state selector. When neutron are excited to higher levels than the ground state in

the second region, nothing is transmitted and a dip in the transmission rate at a

given frequency is observed. These dips allow one to measure the energy differences

between the ground state and typically the first few levels, e.g. the third and fourth.
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The quantum-mechanical description of a neutron

above a mirror in the gravitational potential is given by the Schrödinger equa-

tion.Westphal et al.(2007)Westphal, Abele, Baessler, Nesvizhevsky, Petukhov, Protasov, and Voronin

� ~2

2m

B2ψnpzq
Bz2

�mgz ψnpzq � Enψnpzq . (10)

with a characteristic length scale

z0 � 3

d
~2

2m2g
� 5.87µm , (11)

and a typical energy scale E0 = pp~2mg2q{2q1{3 which are given by the mass m of

the neutron and the acceleration of the earth g. Above the mirror the normalized

wavefunctions for z ¡ 0 read

ψp0qn pzq � Cp1qn Ai
�z � zn

z0

	
, (12)

with normalisation

Cp1qn � 1
?
z0 Ai1

�
� zn
z0

	 , (13)

and zn � En
mg

. Here zn is the n-th zero of the Airy function which characterises the

energy levels of the neutrons. Outside this region the wavefunctions vanish as the

neutron do not penetrate inside the mirror. The first few energy levels are given in

Table 1. When a new interaction of the chameleon type is present, the potential is

State Energy [peV]

|1y E1 � 1.40672

|2y E2 � 2.45951

|3y E3 � 3.32144

|4y E4 � 4.08321

|5y E5 � 4.77958

|6y E6 � 5.42846

shifted to

V pzq � mgz �mpApφpzqq � 1q (14)

where φpzq is the profile of the scalar field above the mirror. This can be easily

obtained for chameleons or symmetrons for instance. The perturbations to the n-th
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energy level is obtained as, where xz|ny � ψ
p0q
n pzq,

δEn � mxn|pA� φpzq � 1q|ny (15)

to first order in perturbation theory. This has to be less than the precision of order

3� 10�15 eV and leads to interesting constrained on dark energy models.

2.8. Precision Atomic Tests

As we have discussed above atomic nuclei can be unscreened in a laboratory vac-

uum. In the atom interferometry experiments discussed above the atoms were test

particles probing the chameleon field due to a macroscopic source. But the nuclei

can also be considered as the source of a chameleon field that is probed by the

orbiting electrons. If the unscreened chameleon force is very strong then this could

cause measurable perturbations to atomic energy levels, with an extra contribution

to the electron Hamiltonian of the form

δH � me

M
φN, (16)

where φN is the chameleon field sourced by the nucleus.

The most precise measurements currently are of the structure of hydro-

genic atoms. The shifts to the lowest energy levels due to a chameleon force

areBrax and Burrage(2011)

∆E1s � �ZmNme

4πa0M2
(17)

∆E2s � ∆E2p � � ZmNme

16πa0M2
, (18)

where Z is the atomic number, mN is the nucleon mass, and a0 is the Bohr radius.

The potential coupling of the chameleons to photons, discussed in the next section,

will break the degeneracy between the 2S and 2P levels.

The best measured transition is currently the 1S-2S transition in atomic hy-

drogen, with a total uncertainty of 10�9 eV (at

1σ).Jaeckel and Roy(2010),Schwob et al.(1999)Schwob, Jozefowski, de Beauvoir, Hilico, Nez, Julien, Biraben, Acef, Zondy, and Clairon,Simon et al.(1980)Simon, Schmitt, Borkowski, and Walther

No signs of a deviation from standard electromagnetism have been found, and so

the chameleon coupling must be constrained to be

M Á 10 TeV. (19)

3. The Symmetron

The constraints from all of the experiments detailed above have also been studied

for the symmetron model. The symmetron is similar to the chameleon in that it

has canonical kinetic terms, and its screening is through terms that are non-linear

in the field. However the difference between the models is that the chameleon can

screen because it varies its mass with the environment, and the symmetron because
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it varies the strength of its coupling to matter. This occurs because the symmetron

has a spontaneous symmetry breaking potential, and couples to matter in such a

way that regions of high density can restore the symmetry. The resulting effective

potential is:

Veffpφq � 1

2

�
�µ2 � ρ

M2

	
φ2 � λ

4!
φ4 (20)

where µ is the bare mass of the symmetron, M the energy scale controlling strength

of the coupling to matter, and λ the dimensionless constant controlling the self

interactions of the field. The form of the coupling to matter also means that the

symmetron fifth force experienced by a test particle is ~F � φ~∇φ{M2. The conse-

quence of this is that when the symmetry is restored in regions where ρ ¡ µ2M2 the

fifth force is switched off. As can be seen from Equation (20) the mass of the sym-

metron in the symmetry broken phase is approximately µ. Unlike the chameleon,

therefore, the symmetron does not have the ability to adjust its mass in the low

density environment of laboratory vacuum chamber. If the Compton wavelength of

the symmetron is larger than the size of the vacuum chamber, µL ! 1, the field is

not able to vary within the chamber and so no fifth force can be present. Conversely,

if the Compton wavelength of the symmetron is smaller than the distances probed

in the experiment (for example the distance between test and source masses) then

the fifth force will be exponentially suppressed by the Yukawa term e�md where m

is the symmetron mass and d the distance between two objects. This means that

any experiment is only sensitive to symmetron models whose masses fall between

these two limits. This can be seen directly by considering the form of the symmetron

field profile around a spherical source of radius R and constant density embedded

in a lower density background.

φ � φout � pφout � φinqRemoutpR�rq

r

�
minR� tanhminR

minR�Rmout tanhminR



(21)

Inside the source the field reaches a minimum value φ � φin, and the mass of

the field is min. Similarly in the background surrounding the source the field takes

the value φ � φout and has mass mout. This profile is exponentially suppressed

at distances larger than 1{mout away from the source. It is also suppressed when

φout � φin. This occurs when the mass of the field mout is too large for the field to

evolve within the vacuum chamber.

Constraints on the symmetron model have not been computed for all of the

experiments described above. But those from atom-interferometry, and from the

Eöt-Wash experiment are shown in Figure 2, with constraints coming from astro-

physical observations included for comparison.

4. The Field Profile in a Cylinder

We have mentioned several times already that the chameleon field can “resonate”

inside cavities. This can be made completely explicit using a simple model of a
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Fig. 2. Experimental constraints on the symmetron parameters M and λ. The Eöt-Wash region

corresponds to µ � 2.4 meV; the outlines for values µ � t10�4, 10�3, 10�2u eV are shown by
the solid, dashed, and dotted green lines respectively. The atom interferometry lines correspond

to the regions excluded for µ � t10�4, 10�4.5, 10�5, 10�5, 2.4 � 10�3u eV from top to bottom

respectively, the latter value corresponding to the dark energy scale. The astrophysical bounds are
insensitive to the value of µ for the values considered here.

cylinder filled with a low density gas surrounded by a dense metallic bore. In this

case one can use a “bootstrapping” algorithm whereby the value of the field at the

centre of the cylinder is left unknown, then solve the equations for the scalar field and

finally impose that the value at the centre is indeed the one postulated initially. This

yields a self-consistency condition which turns out to be the“resonance” criterion.

Outside the vacuum, and far inside the metal, the field settles at φ8 where the

mass is m8 and the field minimises the effective potential. Inside the vacuum we

assume that the field takes a value φ0 at the centre of the cylinder for r � 0. The

mass there is defined as the second derivative of the effective potential m0. Hence

for r ¥ R we have

d2φ

dr2
� 1

r

dφ

dr
�m2

8pφ� φ8q � 0 (22)

whilst inside

d2φ

dr2
� 1

r

dφ

dr
�m2

0pφ� φ0q � V 1eff pφ0q (23)

where V 1eff pφ0q � dVeff
dφ pφ0q � 0 if φ0 is not the minimum of the effective potential in

vacuum. The solutions can be expressed in terms of Bessel and Neumann functions

of zeroth order

r   R φ � CJ0pim0rq � φ0 �
V 1eff pφ0q
m2

0

r ¥ R φ � ApJ0pim8rq � iN0pim8rqq � φ8
(24)

where A and C are constants obtained by matching the field and its first derivative

at r � R. When the mass inside the metallic bore is very large, i.e. m8R " 1, this
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simplifies to

φ �
φ8 � φ0 � V 1

eff pφ0q
m2

0

J0pim0Rq J0pim0rq � φ0 �
V 1eff pφ0q
m2

0

(25)

for r ¤ R. Evaluating this solution at r � 0 gives us the resonance condition

φ8 � φ0 �
V 1eff pφ0q
m2

0

pJ0pim0Rq � 1q. (26)

Let us consider now two archetypical models. First for inverse power law chameleons

and putting the density inside the cylinder to zero, we have φ8 ! φ0

J0pim0Rq � n� 2. (27)

This is a resonance condition for m0R which should be of order one, i.e. the mass of

the scalar field in the cylinder adapts itself to the radius of the cylinder. A simplified

solution to this equation is m0R � 2
?
n� 1 which is useful as an order of magnitude

estimate. Using

m2
0 �

npn� 1qΛn�4

φn�2
0

(28)

one can easily evaluate the field inside the cavity.

For symmetrons, the solution to the resonance condition is more complex and

can be deduced using the resonance condition written as

J0pim0Rq �
1� 2m2

0

m2
vac

1� m2
0

m2
vac

(29)

where we have defined m2
vac � 2µ2 to be the mass of the symmetron in the symmetry

breaking phase when to matter density is present, i.e. for φvac � µ?
λ

. This condition

admits solutions only when

mvacR Á 1, (30)

i.e. for values of mvac À 1 the only solution is φ � φ8 � 0 inside the whole

apparatus. When a solution exists we have

m0 � mvacp1 � 1

2

c
πmvacR

2
e�mvacRq (31)

which implies that

φ0 � φvac (32)

i.e. in the symmetron case and when the solution inside the chamber exists it is

exponetially close to the vacuum solution in the absence of cavity. This is a very

useful criterion which is used when analysing atomic interferometry data.
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5. The Dilaton as a Worked out Example

5.1. The model

We will now describe the laboratory constraints on different models from chameleons

and symmetrons. In this section, we will work out another simple example: the en-

vironmentally dependent dilaton.Brax et al.(2010b)Brax, van de Bruck, Davis, and Shaw This

model has the advantage of being easily tractable and relatively well motivated.

This will allow us to make completely explicit all the constraints which we have

mentioned so far in a very simple setting. The potential for the dilaton is given by

V pφq � V0e
�λφ{mPl (33)

where V0 is an energy scale related to the dark energy of the Universe and λ a

numerical constant. This potential corresponds to the string theory dilaton potential

in the strong coupling limit.Damour et al.(2002)Damour, Piazza, and Veneziano The coupling

function is inspired by the least coupling principleDamour and Polyakov(1994) where one

assumes that in high density regions, the coupling of the dilaton to matter is driven

to zero. It reads

Apφq � 1� A2

2m2
Pl

φ2. (34)

where A2 " 1 to satisfy the solar system tests, see below. Notice the similarity with

the symmetron with

A2 � m2
Pl

M2
. (35)

In a dense environment with matter density ρ, the effective potential

Veffpφq � V0e
�λφ{mPl � A2ρ

2m2
Pl

φ2 (36)

admits a minimum at

φρ � λV0mPl

A2ρ
. (37)

where we have assumed that λφ ! mPl as can be easily checked. The coupling to

matter

βpφq � mPl
B lnApφq
Bφ � A2

φ

mPl
(38)

becomes

βρ � λV0mPl

A2ρ
. (39)

The mass at the minimum of the potential is given by

m2
ρ �

λ2V0

m2
Pl

� A2

m2
Pl

ρ. (40)



March 5, 2018 17:4 WSPC/INSTRUCTION FILE BBD˙Anne

Instructions for Typing Manuscripts (Paper’s Title) 15

The value of the potential at the minimum is given by

Vρ � V0 � λ2V 2
0

2A2ρ
(41)

which is always close to V0 and we choose to tune it to the value of the vacuum

energy now

V0 � 3ΩΛ0m
2
PlH

2
0 (42)

where ΩΛ0 � 0.7. Notice that the coupling to matter in the cosmological vacuum is

given by

β0 � λ
ΩΛ0

Ωm0
. (43)

which can be arbitrarily small with λ.

The strongest constraint on the dilaton models comes from the Laser Lunar

Ranging experimentWilliams et al.(2012)Williams, Turyshev, and Boggs giving

η � 2
|a` � amoon|
a` � amoon

À 10�13 (44)

for the moon and the earth in the background of the sun. This is related to the

way screened bodies like the sun, the earth and the moon (because of their large

densities) couple to the scalar field

η � Qd|Q` �Qmoon| (45)

where the charge QA � β is the coupling to matter in the environment of an object

for unscreened bodies and

QA � φG
2mPlΦA

(46)

for a screened body of Newtonian potential ΦA at its surface and embedded in the

environment where the scalar field takes a value φG. For the LLR experiment, φG
is the field value in the galactic medium of density ρG � 106ρm0 where ρm0 is the

cosmological Cold Dark Matter density. This implies that

η � 10�1 φ2
G

mPlΦ2`
(47)

where Φ` � 10�9, Φd � 10�6, Φmoon � 10�11. This leads to the bound

A2

λ
Á Φ�1

` � 109 (48)

and finally for the mass of the dilaton in the cosmological background

m0 Á
?
λΦ

�1{2
` H0 (49)

which for λ � 1 becomesBrax and Davis(2015)

m0 Á 34500H0. (50)

This implies that the effects of the dilaton on the growth of cosmic structure would

occur on scales less than 1 Mpc.
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5.2. Laboratory experiments

The first step in modeling the behaviour of the dilaton in an experimental context

is to solve for the field profile between two infinitely thick plates located at |z| ¥ d

where 2d is the inter-plate distance. Inside the plate which has a density ρc the field

converges to φc deep inside. Between the plates, the field profile would be given by

φb for the density ρb if the distance d were infinite. As d is finite, the field reaches

a smaller value φ0 for z � 0. As ρc " ρb we can approximate φc � 0 and the field

profile between the plates is given by

φ12pzq � 2pVeffpφq � Veffpφ0qq (51)

where a very good approximation is given by

Veffpφq � Vb � 1

2
m2
bpφ� φbq2 (52)

depending on the density ρb. Explicitly this gives

φpzq � φb

�
1� coshmbz

coshmbd



. (53)

In particular we have

φ0 � φb

�
1� 1

coshmbd



(54)

which converges to φb when mbd " 1.

It turns out that the pressure exerted by one of the plates on the other one, i.e.

the scalar equivalent to the Casimir effect, is given byBrax and Davis(2015)

∆F

A
� Veffpφbq � Veffpφ0q (55)

depending on the potential difference between the energy stored in the field config-

uration in the absence and in the presence of the plates. In the dilaton case, this

becomes

∆F

A
� � m2

bφ
2
b

2 cosh2mbd
(56)

which is attractive. There are two clear regimes. When mbd " 1, we have

∆F

A
� �m

2
bφ

2
b

2
e�2mbd (57)

corresponding to a Yukawa suppressed interaction (as the distance is 2d) whilst for

mbd ! 1 we have

∆F

A
� �m

2
bφ

2
b

2
(58)

corresponding to a pressure given by the amount of energy stored by the scalar field

in vacuum.

The most stringent laboratory constraint on dilatons springs from the nega-

tive experimental results on the
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existence of short range scalar interactions by the Eöt-Wash experiment in Seat-

tle.Kapner et al.(2007)Kapner, Cook, Adelberger, Gundlach, Heckel, Hoyle, and Swanson The mea-

sured torque between two torsion pendulum is given

byBrax et al.(2008)Brax, van de Bruck, Davis, and Shaw

T � aθ

» 8
d

dx|∆F
A
pxq| (59)

where aθ is a constant depending on the experiment and the Eötwash constraint is

T ¤ aθΛ
3
T where λT � 0.35Λ, where V0 � Λ4, for d � 55 µm. As long as dmb ! 1,

the torque is given by

T � aθ
λ2V 2

0

2A2ρbmb
� aθ

λ2V0

2m2
Plm

3
b

(60)

coinciding with (5.6) in.Brax and Davis(2015) As a result we find that

mb Á H2
0 Λ (61)

and using the background density ρb � 10�27 GeV4, this gives the weak constraint

on the mass m0 in the cosmological backgroundBrax and Davis(2015)

m0 Á 55 H0 (62)

The same type of techniques can be applied to the chameleon and symmetron

models which we will not detail and refer only to the existing literature. The main

difference in the chameleon and symmetron case is that one must take into account

the electrostatic shield between the two plates implying that the torque is reduced

by the Yukawa suppression

T Ñ e�msDT (63)

where ms is the scalar mass in the shield and D its width. For chameleons, this

is responsible for the loss of sensitivity of the Eötwash experiment at very large

coupling β where the mass becomes large and the torque is essentially zero.

6. Tomographic parameterisation

The models that we have considered, i.e. chameleons, symmetrons and dilatons can

all be described using an implicit definition of the coupling function Apφq and V pφq.
This method, which is called tomographic, uses the explicit link between the density

dependence of the minimum of the effective potential as a function of the matter

density in the environment and the shape of the potential and coupling functions.

This applies to inverse power law chameleon models, symmetrons and dilatons which

are all scalar-tensor theories described by the Lagrangian

S �
»
d4x

?�g
�

R

16πGN
� pBφq2

2
� V pφq



� Smpψ,A2pφqgµνq (64)
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where Apφq is a function which defines the coupling between matter fields ψ and

the scalar φ. The coupling to matter itself is

βpφq � mPl
d lnApφq

dφ
. (65)

The scalar field dynamics are determined by an effective potential which takes into

account the presence of the conserved matter density ρ in the environmenta

Veffpφq � V pφq � pApφq � 1qρ. (66)

where the �1 is introduced for convenience. Chameleon-like theories, e.g. sym-

metrons and dilatons, are such that the effective potential admits a mini-

mum as a function of the density where the mass function mpρq and the

coupling βpρq at the minimum of the effcetive potential become density de-

pendent.Brax et al.(2012a)Brax, Davis, Li, and Winther,Brax et al.(2012b)Brax, Davis, and Li It is

easier in view of comparing with cosmological tests to characterise the functions

mpρq and βpρq using the time evolution of the matter density of the Universe

ρpaq � ρ0

a3 where a ¤ 1 is the scale factor of the Universe whose value now is

a0 � 1. This allows one to parameterise all chameleon-like theories using simply the

a dependence of βpaq and mpaq. Parametrically we have

φpaq � φc
mPl

� 9Ωm0H
2
0

» a
ac

da
βpaq

a4m2paq , (67)

where the Hubble rate now is H0 � 10�43 GeV and the matter fraction is Ωm0 �
0.27. and the mass function is defined as the mass at the minimum of the effective

potential φpρpaqq

m2paq � d2Veff

dφ2
|φ�φpρpaqq. (68)

Similarly the coupling is

βpaq � mPl
d lnA

dφ
|φ�φpρpaqq. (69)

and the potential value is given by

V paq � Vc � �27Ω2
m0H

4
0

» a
ac

da
β2paqm2

Pl

a7m2paq . (70)

This implicit parameterisation of V pφq and Apφq is obtained directly from from

mpaq and βpaq, i.e. one can reconstruct the potential by eliminating a between (67)

and (70).

Familiar models can be easily described using this method. Chameleons with a

potential of the type

V pφq � Λ4 � Λ4�n

φn
� . . . (71)

aThe conserved energy density is related to the density defined a ρE � �T 0
0 in the Einstein frame

as ρE � Aρ.
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where n ¡ 0, and Λ � 10�3 eV is the cosmological vacuum energy now, and the

coupling function is Apφq � expp βφmPl
q, can be reconstructed using βpaq � β and

mpaq � m0a
�r (72)

where r � 3pn�2q
2pn�1q . The mass scale m0 is determined by

m
2pn�1q
0 � pn� 1qn�1

3n

p3βΩm0H
2
0mPlqn�2

Λ4�n . (73)

For fpRq models in the large curvature regime

fpRq � Λ0 �R� fR0

n

Rn�1
0

Rn
. (74)

where Λ0 is the cosmological constant and R0 is the present day curvature, we have

βpaq � 1{?6 and the mass function

mpaq � m0p4ΩΛ0 � Ωm0a
�3

4ΩΛ0 � Ωm0
qpn�2q{2 (75)

where the mass on large cosmological scale is given by m0 � H0

b
4ΩΛ0�Ωm0

pn�1qfR0
, and

ΩΛ0 � 0.73 is the dark energy fraction now.Brax et al.(2012a)Brax, Davis, Li, and Winther

When a ! 1, i.e. physical situations where the environment is dense, the mass

dependence on a is a power law mpaq � m0a
�r where r � 3pn�2q

2 . Dilatons are

described by

βpaq � β0a
3 (76)

and the mass function

m2paq � 3A2
H2

0

a3
. (77)

Finally the symmetrons are defined by the potential

V pφq � V0 � λ

4
φ4 � µ2

2
φ2 (78)

and a coupling function

Apφq � 1� β�
2φ�mPl

φ2 (79)

where the transition from the minimum of the effective potential at the origin to a

non-zero value happens for a density ρ�. Defining

m� �
?

2µ, φ� � 2β�ρ�
m2�mPl

, λ � µ2

φ2�
(80)

where ρ� � ρm0

a3
�

, the model can be reconstructed using

mpaq � m�

c
1� pa�

a
q3 (81)
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and

βpaq � β�

c
1� pa�

a
q3 (82)

for a ¡ a� and βpaq � 0 for a   a�. For all these models, the comparison with

laboratory tests can be done using the same techniques as the ones outlined in the

previous section for the dilaton.

7. Vainshtein mechanism

The Vainshtein screening is difficult to constrain with laboratory tests, at least for

cosmologically interesting models. Theories which contain Vainshtein screening rely

on non-linear kinetic terms. This means that the variation in the field is extremely

slow, and so the field can only respond to spatial variations in the local density

over long distance scales. As with other types of screening the fifth force can be

suppressed by the environment so that, for example, fifth forces in the solar sys-

tem are screened by the galactic density. However, unlike theories with chameleon

screening, fifth forces with Vainshtein screening do not respond quickly enough to

changes in density that they can be unscreened in a laboratory vacuum.

It is still possible to place

bounds on theories with Vainshtein screening from laboratory tests, for example

on the Galileon models.Brax et al.(2011a)Brax, Burrage, and Davis However these bounds

are weak, and the relationship between the parameters that can be constrained in

these experiments, and the fundamental parameters relevant for the cosmology is

non-trivial.

Both Eöt-Wash and Casimir experiments use planar geometry. Considering the

Galileon with planar symmetry one find the non-linear terms cancel order by order,

so the fifth force is completely

unscreened.Bloomfield et al.(2015)Bloomfield, Burrage, and Davis One finds the ratio of the

Galileon to Newtonian force is

Fφ
FG

� 2β2 . (83)

Similarly one can compute the screening for a cylindrical object and show the screen-

ing is reduced. Here the ratio of the Galileon to Newtonian force for the cubic

Galileon is

Fφ
FG

� 2β2 r

rv
, (84)

compared to the spherically symmetric case of

Fφ
FG

� 2β2

�
r

rv


3{2
. (85)

In both cases rv is the Vainshtein radius.Thus searching for Galileons in planar

symmetric objects would yield a strong fifth force. The Galileon force around a
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plate of density ρ and thickness ∆ when there is no screening is

φ1 � ρ

2c2

$&
%

∆ r ¡ ∆{2
2z ∆{2 ¡ r ¡ �∆{2
�∆ �∆{2 ¡ r

, (86)

where we have approximated the plate as a one-dimensional object and imposed

continuity at the boundary. When one considers laboratory experiments one needs to

consider the environment as well as the physical set-up. Both Eöt-Wash and Casimir

experiments are performed on Earth, which must be taken into consideration since

the radius of the Earth is less than the typical Vainshtein radius. In order to take

this into account one writes φp~xq � φ`prq�δφpzq, where δφ is the perturbation due

to the plates used in the experiment and the background field due to the Earth is

φ`prq. Substituting this into the equation of motion one find that it depends on a

function Zprq which is approximately constant at r � R`,

Z` � R`
π 1̀

�
2ρ`

3
� 8c4

�
π1`
R3`


3

� 32c5

�
π1`
R3`


4
�
. (87)

The exact size of Z` depends on the parameters c4 and c5. Laboratory experiments

can be used to constrain the combination of coefficients in Z`. Of-course the effect of

the cavity needs to be taken into account as well. However, after detailed calculation

it was found that in the background field of the Earth the cavity and plates behave

as a linear theory with c2 replaced by Z`.

The experiments we consider consist of two plates, aligned perpendicular to the

z-direction, whose extent in the x,y-directions is much larger that their separation

so we can approximate them as infinite. The plates have density ρ. The lower edge

of one plate and the upper edge of the other is positioned at z � d and z � �d
respectively, and the plates have width ∆. Therefore φ1, the strength of the Galileon

force due to the configuration, is given by

φ1 � ρ

Z`

$&
%
z � d d   z   d�∆

0 �d   z   d

z � d �pd�∆q   z   �d
, (88)

where we have imposed continuity of π1 at the boundary of the plates, and π1pzq �
�π1p�zq. The approximation that the plates are infinite is valid whenever their

extent in the x,y-directions is much larger than the distance 2d between the plates.

Applying this to the Eöt-Wash experiment described earlier we find the torque

induced by the Galileon is

T � ρ2∆3

6Z`
aT , (89)

where aT � dA{dθ is a constant which depends on the experimental setup aT �
3 � 10�3 m2. The width of the plates is ∆ � 1 mm and the plates are made of
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molybdenum with a density ρ � 10.28 gcm�3. The constraint on the Galileon force

thus becomes

Z` ¡ 6.05� 1040GeV2 , (90)

¡ p20mP q2 , (91)

which translates into a constraint on the coupling

β   0.05 . (92)

Hence we find that in the context of the Eöt-Wash experiment, the Galileon force

between the plates must be much weaker than the gravitational one. This sets a

bound on a previously unconstrained combination of the Galileon parameters.

For Casimir experiments the formalism described above is not relevant to the

experiments

of Decca et alDecca et al.(2007)Decca, Lopez, Fischbach, Klimchitskaya, Krause, and Mostepanenko

,Chen et al.(2016)Chen, Tham, Krause, Lopez, Fischbach, and Decca where the force between a

plate and a sphere is measured, It can be applied to the force between two parallel

plates,Bressi et al.(2002)Bressi, Carugno, Onofrio, and RuosoBressi et al.(2000)Bressi, Carugno, Galvani, Onofrio, and Ruoso

However, following the procedure outlined for Eöt-Wash we find the Galileon force

could not be detected in these experiments.

In,Brax et al.(2010a)Brax, van de Bruck, Davis, Shaw, and IannuzziAlmasi et al.(2015)Almasi, Brax, Iannuzzi, and Sedmik

it was proposed that a modified parallel plate Casimir experiment could be used to

search for the Chameleon by exploiting the change in the Chameleon force as the

density of the inter-plate medium changes. As the Galileon force also depends on

the local energy density this experiment could also provide useful constraints on the

Galileon model.

8. Coupling to Photons

Conformally coupled scalar fields do not, classically, interact with photons. This can

be seen directly from the conformal invariance of the photon terms of the standard

model Lagrangian;

g̃µν � A2pφqgµν (93)

where gµν is the Einstein frame metric. Assuming no coupling between the scalar

and photons in the Jordan frame,

SF � �1

4

»
d4x

a
�g̃g̃µρg̃νλFµνFρλ (94)

with Fµν � BµAν � BνAµ. We see that in the Einstein frame

SF � �1

4

»
d4x

?�ggµρgνλFµνFρλ (95)

which makes explicit the scale invariance of the photon Lagrangian.

However there is not reason to forbid a interactions between the scalar and

photons, and there are a number of reasons to expect such a coupling to emerge,

which we will describe in the next section.
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8.1. Quantum Coupling

Whilst a classical Weyl rescaling does not induce a coupling between the scalar and

photons, it can be shown that, after quantisation of the fields such a coupling does

indeed emerge.Brax et al.(2011b)Brax, Burrage, Davis, Seery, and Weltman The conformal in-

variance of the photon Lagrangian is broken by a quantum anomaly which comes

from the rescaling of the fermions ψ Ñ A3{2pφqψ from the Jordan to the Einstein

frame and the subsequent change of the measure in the path integral defining the

quantum theory.

Additionally, if there are heavy charged fermions beyond the Standard Model

then the fermions, which will couple directly to the scalar, will be able to medi-

ate interactions between the scalar and photons through a triangle loop diagram.

Integrating these heavy fermions out, leaves a low energy effective theory which

possesses a contact interaction between the conformally coupled scalar and two pho-

tons,Brax et al.(2011b)Brax, Burrage, Davis, Seery, and Weltman,Nitti and Piazza(2012) the Ein-

stein frame action picks up a field dependent coupling to photons

SF � �1

4

»
d4x

?�gBpφqgµρgνλFµνFρλ (96)

such that the dimensionless constant controlling the strength of the coupling

βγ � mPl
B lnB

Bφ (97)

becomes

βγ � p3Nf �
N¡
f

3
q α
4π
βm (98)

where we have introduced

βm � mPl
B lnA

Bφ . (99)

Here Nf is the total number of fermions in the model, for instance the fermions of

the standard model, and N¡
f the number of fermions which have been integrated

out, e.g. the fermions with a mass at the grand unification scale. Of course as N¡
f

is not known, the precise value of βm cannot be inferred and in general is taken to

be a non-vanishing parameter of the model.

8.2. Photon-scalar mixing

The presence of the coupling βγ implies that the photons and scalars mix and

therefore that the mass eigenstates do not coincide with the propagating fields.

Physically this can be seen as the effect such that a propagating photon has a non-

zero probability of becoming a scalar before reverting back to a photon state. Hence

this will have two consequences: the effective speed of the photons is affected by

the coupling βγ as the photon wave function picks up a non-vanishing phase shift

after a finite distance and the amplitude of the wave function is also altered. This
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happens when a magnetic field ~B is present where the scalar-Maxwell equations

become

l ~A � βγ
mPl

~∇φ^ ~B (100)

and

lφ�m2φ � βγ
mPl

~B .~∇^ ~A (101)

Assuming that the magnetic field is perpendicular to the propagation of the photon,

only the parallel polarisation of the photon along the magnetic field mixes with the

scalar. Define the mixing angle as

tan 2θ � 2Bω

Mm2
(102)

where βγ � mPl

M and m is the mass of the scalar in the magnetised region

where the photon propagates. The energy of the initial photon is ω and the

two propagating modes of the system have momenta along the photon direc-

tionBrax et al.(2007b)Brax, van de Bruck, Davis, Mota, and Shaw

k� � ω � m2θ2

2ω
, k� � ω � m2

2ω
(103)

where we assume that the mixing angle θ ! 1 is small. After a distance z, the

photon wave function becomes

a‖pzq � p1� apzqq cospωz � δq (104)

where

apzq � 2θ2 sin2 m
2z

4ω
(105)

and

δ � θ2m
2

2ω
z � θ2 sin

m2z

2ω
. (106)

This is the result for the free propagation of photons. Inside a cavity, the photons

are reflected N times before leaving and being detected. Introducing the coherence

length

zcoh � 2ω

m2
(107)

and the number of coherent passes P in a cavity of length L

PL � 2πzcoh (108)

the overall change of amplitude and phase shift

becomeBrax et al.(2007b)Brax, van de Bruck, Davis, Mota, and Shaw

aT � θ2, δT � πNθ2

P
. (109)



March 5, 2018 17:4 WSPC/INSTRUCTION FILE BBD˙Anne

Instructions for Typing Manuscripts (Paper’s Title) 25

It is possible to measure the rotation of the initial polarisation per pass and the

induced ellipticity of the polarisation which does not remail linear

rotation{pass � θ2

2N
, ellipticity{pass � πθ2

2P
. (110)

Laser experiments constrain these observables and therefore give constraints on the

coupling to photons.

8.3. Scalar reflection

As the mass of the scalar jumps from a low value inside the cavity to a

large value inside the cavity’s walls, the scalar wave function is distorted

by the presence of the wall. This induces another phase shift compared to

the one calculated in the previous section. The phenomenology of scalars in-

side cavities has been thoroughly investigated for chameleons and we refer

toBrax et al.(2007b)Brax, van de Bruck, Davis, Mota, and Shaw for details. Here we will elab-

orate on the dilaton case as the calculations are simpler.

For a dilaton in a cavity with a vacuum density ρb and walls of density ρc and

associated minima of the effective potential φb,c, the static profile of the scalar is

obtained by solving

φ12pzq � Veffpφq � Veffpφbq (111)

for z ¥ 0 where the wall is at z � 0 here. For a dilaton we find

φpzq � φ0 � pφb � φ0qp1� e�mbzq (112)

where φ0 � φp0q � φc as ρc " ρb. The mass of the scalar evolves away from the

wall as

m2pzq � m2
b

�
1� λ3V0

A2ρb

φpzq � φb
mPl



� m2

b

�
1� λ3V0

A2ρb

φb � φc
mPl

e�mbz



(113)

i.e. the mass decreases exponentially. Let us consider a scalar wave which is a solu-

tion of

d2δφ

dz2
� pω2 �m2pzqqδφ � 0. (114)

There are three regions to consider. Inside the cavity where mpzq � mb, the scalar

propagates as a wave alongside the photons. In the walls when ω ¤ mc, the field is

attenuated and the scalar is therefore reflected. This has been tested in afterglow

experiments where a laser beam is turned off and one expects that the trapped

scalars in the cavity will regenerate photons which would then be seen as afterglows.

Finally when ω is not much larger than mb, the scalar is reflected at zω where

mpzωq � ω implying that this induces a phase shift compared to the photons, i.e.

the scalar is reflected before the photons. This plays a crucial role for chameleons

and was taken into account in.Brax et al.(2007b)Brax, van de Bruck, Davis, Mota, and Shaw
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8.4. Experimental results

There are three types of experiments which must be taken into account. We will

give the bounds for the chameleon model as this is the most studied case. In the

symmetron case, the phenomenology has not been worked out and should be closer

to the dilaton case presented in the previous section than to the chameleon case.

The first type of experiments measure the induced ellipticity and rotation angle of a

laser beam where a transverse magnetic field is present inside a high quality cavity.

From the 2007 PVLAS resultsZavattini et al.(2008) with N � 45000 passes, the total

ellipticity is constrained to be

ellipticity ¤ 1.4� 10�8 (115)

and the rotation

rotation ¤ 10�8 (116)

with a cavity length of L � 1 m, a beam with ω � 1.17 eV and a magnetic field

CAST
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Fig. 3. Experimental constraints on the coupling of the chameleon to photons as a function of
the chameleon coupling to matter, for the chameleon potential V pφq � Λ5{φ.

B � 2.3 T. When βγ � MPl

Mγ
and β � MPl

Mc
are such that Mγ � Mc this yields

Mγ ¥ 2�106 GeV. The ALPS experiment at DESYEhret et al.(2010) has performed a

light-shining-through-walls experiment, where a laser beam with ω � 2.33 eV faces

a wall after L � 4.3 m in a magnetic field B � 5 T. The probability that a photon

converts into a scalar after L

PγÑφ � sin2 2θ sin2 λωL (117)

where λ � m2

2ω2 p1� tan2 2θq is constrained to be

PγÑφ ¤ 2.08� 10�25. (118)
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This competes with the CHASE experimentSteffen(2010) where the afterglow phe-

nomenon has been investigated and a bound Mγ ¥ 3 � 107 GeV was found. Sim-

ilarly inside the sun in the tachocline where the solar magnetic field is assumed

to emerge, chameleons could be created and then observed with the CAST exper-

iment where X-rays would be back-converted from solar chameleons which would

have escaped the sun.Brax and Zioutas(2010),Brax et al.(2012c)Brax, Lindner, and Zioutas The

production and regeneration of X-rays depend on the coupling to photons βγ . All

these constraints are summarised in figure 1.

V. Anastassopoulos et al. / Physics Letters B 749 (2015) 172–180 179

Fig. 12. The exclusion region for chameleons in the βγ –βm plane, achieved by CAST 
in 2013 (purple). We show the bounds set by torsion pendulum tests (in green) [25], 
neutron interferometry measurements (lilac) [26], CHASE (pale orange) [12] and 
collider experiments (yellow) [30]. The forecasts of the atom-interferometry tech-
nique [27] and the astronomical polarisation [28] are represented with lines.

Table 2
Upper limit on βγ derived at CAST for different val-
ues of the index n which defines the chameleon 
model.

index n βγ at 95% CL

1 9.26 × 1010

2 9.21 × 1010

4 9.20 × 1010

6 9.19 × 1010

Higher values of n could be envisaged but would not alter 
the physical picture discussed here (see [7] for a discussion of 
the n = 4 case). Our results are to a large extent insensitive to n
(Table 2), provided we are only interested in the region of param-
eter space below the resonance in the matter coupling.

We studied the uncertainties in the assumptions for the solar 
model and their effect on the CAST result. If for example the solar 
luminosity bound is reduced by a factor 10, βsun

γ is reduced by 
a factor 101/2, whilst βγ remains constant, resulting in a weaker 
limit relative to the solar luminosity bound. Rather conservatively, 
the details of the radial field strength and its distribution at the 
tachocline may affect the βγ limit by a factor of 1.6 (Table 1). 
For the uncertainty on the magnitude of the magnetic field at the 
tachocline we have considered a range from 4 to 25–30 T, which 
produces an uncertainty in βγ of a factor of about 1.6 up and down 
respectively (Fig. 11).

All in all, we find that the chameleon parameter space has been 
significantly reduced. Additional CAST data with the InGrid de-
tector and an X-ray telescope will improve the photon coupling 
sensitivity beyond the solar bound in the near future. In parallel 
CAST is developing a detection technique which exploits the cou-
pling of chameleons to matter. Chameleons of solar origin, focused 
by an X-ray telescope on CAST, can be directly detected by a radi-
ation pressure device [29].

9. Conclusions

CAST has made a first dedicated sub-keV search for solar 
chameleons based on the Primakoff effect. This search, running in 
a vacuum configuration using a readily-available apparatus, did not 
observe an excess above background and has set a limit for the 
coupling strength to photons which for n ≥ 1 excludes a new re-
gion of parameter space covering 3 orders of magnitude in matter 

coupling and reaches down to the level of photon coupling cor-
responding to both the 10% solar luminosity bound and also the 
limit derived by CHASE.
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9. Conclusions

In summary, laboratory experiments have a huge amount to tell us about possible

modifications of gravity. For theories with screening, these experiments necessarily

probe the non-linear parts of the theory, although we have shown how the effects of

local screening due to the galactic environment can be ‘un-screened’ in a laboratory

vacuum chamber. As they probe the non-linear regime, there is no model indepen-

dent way to connect these constraints to the parametrized linear and quasi-linear

theories used to obtain cosmological constraints. However, once a model is specified,

we have shown the power of combining experimental searched on all scales from the

sub-atomic to the cosmological.
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