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Abstract 
As technology advances, modern systems are becoming increasingly complex, 

consisting of large numbers of components, and therefore large numbers of potential 

component failures.  These component failures can result in reduced system performance, 

or even system failure.  The system performance can be monitored using sensors, which 

can help to detect faults and diagnose failures present in the system.  However, sensors 

increase the weight and cost of the system, and therefore, the number of sensors may be 

limited, and only the sensors that provide the most useful system information should be 

selected.   

In this paper, a novel sensor performance metric is introduced.  This performance 

metric is used in a sensor selection process, where the sensors are chosen based on their 

ability to detect faults and diagnose failures of components, as well as the effect the 

component failures have on system performance.  The proposed performance metric is a 

suitable solution for the selection of sensors for fault diagnostics.  In order to model the 

outputs that would be measured by the sensors, a Bayesian Belief Network (BBN) is 

developed.  Sensors are selected using the performance metric, and sensor readings can be 

introduced in the BBN.  The results of the BBN can then be used to rank the component 

failures in order of likelihood of causing the sensor readings.  To illustrate the proposed 

approach, a simple flow system is used in this paper. 
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1. Introduction 
Aircraft systems, such as fuel systems, can be very complex, since they typically 

consist of a large number of different components, each of which can fail, sometimes in 

more than one failure mode.  A failure of individual components and their groups can have 

different effects on the performance of the system, i.e. some failures may affect system 

performance severely and even cause system failure, but others may have very little effect.  

In order to be able to monitor system performance and detect early signs of system failure, 

sensors can be used on the system.  These sensors can be all of one type, or a combination 

of multiple different types, such as flow, pressure and level sensors on a fuel system.   In 

addition, if the sensors can be used to diagnose a component failure, a required action can 



be undertaken accordingly.  For aircraft systems, this could be to abort the mission if it is 

unsafe for the aircraft to continue, adapt the mission if the aircraft is still safe to operate, 

but unable to complete the originally planned mission, or to continue the mission as normal 

if the component failures have no detrimental effect on the operation of the aircraft.  If the 

mission does not have to be aborted, knowing component failures can help to plan the 

required maintenance work to be undertaken at the next scheduled stop, therefore reducing 

the unplanned down-time for the aircraft. 

However, whilst it is desirable to position as many sensors as possible in order to have 

as much information as possible, it is not always practical.  Sensors have associated costs, 

such as purchase, installation and the maintenance cost.  All these costs increase the cost 

of building and operating an aircraft.  In addition, in weight critical systems, such as 

aircrafts, including a large number of sensors can be infeasible.  It is possible that some 

additional sensors do not contribute any additional information about the system behaviour, 

or some sensors might not be reliable and a level of redundancy to the sensor system is 

needed.  Therefore, a balance between the number of sensors and their position on the 

system needs to be achieved, so that suitable information about the system performance is 

obtained without increasing the weight and the cost of the system unnecessarily. 

A number of different approaches for selecting the best sensor combination for various 

different types of systems have been developed in literature.  One way is to select the 

sensors which detect the most component failures.  Snooke1 and Kang & Golay2 developed 

fault symptom matrices in order to determine suitable sensor combinations in terms of their 

ability to detect failures.  Each column in a fault symptom matrix corresponds to a different 

component failure, and each row corresponds to a different sensor.  The matrix is then 

completed using “1” or “0” to represent whether the sensor can detect the component 

failure or not, respectively.  The combination of sensors that can detect the most component 

failures can then be selected.  The likelihood of component failure is not considered in this 

approach, i.e. sensors are selected according to their ability to detect component failures, 

irrespectively of their failure probability.  

Authors, such as Memik et al.3 and Mukherjee et al.4, aimed to optimise the location of 

thermal sensors in microprocessors.  Memik et al.3 state that there are typically two 

methods for distributing sensors in such systems: uniform sensors are distributed in a grid 

like pattern, and non-uniform sensors have an increased concentration of sensors in 

sections of the system that have more hotspots.  However, the authors state that the location 

of hotspots can vary greatly depending on the application, and therefore requires significant 

testing to determine the most suitable locations.  Despite this, Mukherjee et al.4 obtain a 

75% reduction in the number of required sensors by distributing the sensors non-uniformly, 

using an algorithm to consider the number of hotspots within each potential sensor 

coverage area.  The usage of such approached demonstrates the benefit of considering 

sensor locations with higher importance. 

A performance metric for aircraft systems was developed by Maul et al.5, which was 

demonstrated using a subsystem of a space shuttle main engine.  This method considers 

whether the sensors can detect enough of the failures, whether the sensor selection can 

discriminate between the component failures in order to be able to diagnose them and 

whether the sensor selection can account for sensor failures.  However, as this suggested 

method requires some human input for some of the model parameters, the suggested 

performance metric, and therefore the sensor selection process, can be subjective. 



Khan & Ceglarek6 developed a sensor optimisation process for fault diagnosis in multi-

fixture assembly systems.  The method consists of a sensor coverage index and a 

diagnosability index.  However, like Maul et al.5, the diagnosability index includes a 

weighting factor which represents the relative importance of different fault types.  This 

requires the importance of each type of fault to be determined, and may introduce some 

subjectivity into the method. 

Pourali & Mosleh7 developed a utility function in order to select the best set of sensors.  

Expected values of the utility functions represent a decision maker’s preference on a 

monetary scale, i.e. the higher the value, the better the sensor.  This work outlines an 

algorithm for modelling the system using a BBN and selecting the best combination of 

sensors for the system using the utility function.  The ability of the sensor selection to 

distinguish between different combinations of component failures, i.e. diagnose failures, is 

not considered. 

Lambert & Farrington8 used a cost-benefit function in order to select the best sensor 

combination, for the detection of chemical, biological and radiological air contaminants.  

The work considers several case-specific factors, including the density of elderly people, 

the predicted cost of treatment per affected person and the travel time to safety for the 

affected people.  Many of these factors are case-specific, and the method appears to be 

unsuitable to other types of systems. 

A number of authors, such as Santi et al.9, Spanache et al.10, and Maul et al.,5 used 

genetic algorithms to optimise the sensor selection process for various systems, including 

aircraft/spacecraft and a benchmark actuator.  This enables a large number of different 

sensor combinations to be considered, without evaluating all possible combinations, 

especially avoiding those that have low fitness function value, used as the sensor selection 

criterion.  

Other authors, including Rosich et al.11, Sarrate et al.12 and Krysander & Frisk13, used 

structural methods for determining sensor combinations.  In these methods, a system model 

is constructed which also includes possible sensor locations.  The most suitable 

combination of sensors can be determined by using an algorithm for the calculation of the 

selection metric.  This method has been applied to a number of different systems, for 

example, Rosich et al.11 applied the method to a compressor fuel cell, Sarrate et al.12 applied 

it to a water distribution network, and Krysander & Frisk13 - to an industrial valve. 

Fault tree analysis is one of the traditional system reliability assessment techniques, 

which has also been used as a model-based fault diagnostic technique.  It is also regularly 

used system reliability assessment.  Hurdle et al.14 used non-coherent-fault trees to model 

a simple water tank system.  Non-coherent fault trees consider NOT logic, when working 

components states can contribute to the top event occurrence.  The authors suggest that this 

method enables the system to be modelled more accurately, because some sets of 

symptoms can only be produced if some components are still working, and others are 

failed.  The authors extend this methodology and apply it to an aircraft fuel system, Hurdle 

et al.15.  A potential drawback of using fault trees for fault diagnostics is that an individual 

fault tree has to be developed for each possible set of symptoms.  This means that there is 

a lot of fault tree development work required before the model can be used to diagnose 

failures. 

An alternative method, digraphs, is used by Bartlett et al.16 to diagnose failures in the 

aircraft fuel system, also used by Hurdle et al.15.  The digraph method is compared to the 



fault tree method, and the authors state that the fault tree method determines what 

combinations of component failures can cause each combination of sensor readings, 

whereas the digraph method enables the modelling of the effects of the failure propagating 

through the system.  However, the main limitation of digraphs is that they require the 

strength of the relationship between events in the network to be classified.  This adds a 

level of subjectivity to the method.  The authors come to the conclusion that as the two 

techniques both have their positives and negatives, the two techniques should be used in 

combination. 

Another modelling technique that can be used for fault diagnostics is Petri Nets.  Lloyd 

et al.17 use Petri Nets to confirm whether the faults that are detected on an aircraft fuel rig 

are actual faults or are false arising’s.  The method considers whether the sensor readings 

produced by the system are within a certain tolerance of the predicted values, produced by 

the Petri Net.  However, if the deviation in the sensor reading is relatively small, the failures 

may not be detected, but if the size of the tolerance is reduced, the number of false arisings 

will increase. 

Bayesian Belief Networks (BBNs) is another system modelling technique that can be 

used to diagnose failures in the system.  The BBNs can be built based on expert knowledge, 

or as suggested by Lampis & Andrews18 built using the structure of fault trees.  In the latter, 

the nodes in the network represent events in the fault tree.  Evidence about a fault present 

in the system can be introduced into the BBN and it is used to calculate the probability of 

each of the components being failed, by considering the Conditional Probability Tables 

(CPTs) for each node in the network.  This can then rank the likelihood of components of 

being failed.  The BBN method is chosen as the most suitable system modelling and fault 

diagnostic technique in this study, as they are able to handle multiple failure modes for 

multiple components in the same model, and the probability of event occurrence can be 

obtained using evidence about system performance, provided by sensors. 

In this paper, a novel sensor performance metric is proposed in order for it to be used 

in the sensor selection method.  The performance metric takes into account the probability 

of detected component failures, the ease of diagnosing the component failure, and the 

effects that the detected component failures have on system performance.   A novel feature 

of the proposed performance metric is the ability to consider each of the aspects (detection, 

diagnostics and failure criticality) individually, enabling the analyst to focus on each aspect 

as appropriate to their specific application.  A BBN of the system can be created and can 

then be used to diagnose the component failures in the system.  Sensor reading evidence 

will update the probability of each of the components being in the failed state, and the BBN 

will then be able to output the components that are most likely to have failed, and therefore 

the appropriate action could be undertaken accordingly. 

In this paper, an example system is outlined in section 2 in order to be able to 

demonstrate the application of the method is given.  Section 3 introduces the sensor 

performance metric and the methodology used for fault diagnostics.  In section 4, the 

method is then applied to the example system.  Section 5 discusses the application of the 

methodology to the example system, highlighting the areas of potential improvement for 

the methodology.  In the final section, section 6, the work presented in this paper is 

concluded and potential future work is outlined. 

 



2. System Description 
An example system, shown in Figure 1 is introduced in this section, which is used to 

demonstrate the proposed methodology. 

The system consists of 5 valves (V1, V2, V3, V4 and V5) and 2 pumps (P1 and P2).  

The flow in the system is from left to right, where it exits the system via a drain which is 

indicated by the down arrow on the right hand side of the system.  11 sensors could be 

positioned on the system, with sensors S1 – S10 positioned either side of each of the valves, 

and sensor S11 positioned before the drain.  Ns is the number of possible sensors, i.e. Ns = 

11 for this example system. 

 

Under normal operating conditions, each of the pumps, P1 and P2, supply a quantity of 

fuel to the system, which passes through valve V1 and V2 respectively.  This quantity is 

represented by “1” in Table 1.  The fuel from the two parallel lines then combines and 

passes through valve V3.  This quantity of fuel is represented by “2” in Table 1. The fuel 

then splits equally before going through the next two parallel lines with valves V4 and V5, 

at the same rate.  This is at the same rate as supplied by each of the pumps and is represented 

by “1” in Table 1.  Finally, the fuel combines again and leaves the system by passing 

through the drain.  It is assumed that if there are two parallel lines, then the flow through 

each of the parallel lines is equal to half of the flow rate through the lines before and after 

the parallel section.  

Each component in the system can be in one of two states: working or failed.  The 

pumps are defined to be working when they are supplying fuel to the system.  This is the 

fixed quantity of fuel, “1”, as above.  Only this quantity of supply is considered, along with 

no fuel supplied by the pump.  The valves are defined to be working when they are allowing 

fuel to pass through the system unrestricted, and failed when they let no fuel pass through.  

No partial blockages of valves are considered in this system. 

In this work, only combinations of one component failure and two component failures 

(occurring at the same time) are considered, i.e. three or more component failures are not 

considered, due to a very low probability of such events occurring.  Note, for systems where 

the probability of combinations of three or more component failures have similar 

probabilities to combinations of one or two component failures, this assumption will not 

be valid.  Therefore, in the proposed methodology, the combinations of one or two 

component failures are defined as the considered failures.  An example of one component 

Figure 1 Example System 



failing could be “pump P1 failed” and the rest of the components are working, and a 

combination of two components failing could be “pump P1 failed, and valve V1 failed” 

and the rest of the components are working.  Note that it is assumed for the combinations 

of two component failures there is no time delay between the occurrences of the two 

failures. 

Component failures can be critical to the performance of the system and they can even 

cause system failure.  For this example system, system failure is defined as a failure that 

results in a reduction of the fuel exiting through the drain.  This occurs when at least one 

of the pumps cannot supply fuel to the drain by a pump failing off, or by at least one valve 

being blocked, depending on the location of the valves.  The minimal cut sets for this 

system failure logic are: {P1}, {P2}, {V1}, {V2}, {V3} and {V4, V5}.  Note that if valve 

V4 or valve V5 (but not both) is blocked, there is no reduction in the supply of fuel from 

the pumps, since all the fuel can pass through the other line parallel to the one with the 

failed valve, and system failure does not occur. 

In Table 1, the sensor readings for each combination of component failures are given.  

Note the first row of the table, case 0, is when the system is working as normal, with no 

component failures.  The sensor readings are as described above, with a “1” being the 

standard supply of fuel from a pump, “2” being double this value and “0.5” being half of 

this value.  The final two sensor readings, “A” and “M”, represent no flow of fuel through 

the lines with the lines being empty of fuel, and full of fuel, respectively.  Note, “A” and 

“M” are used instead of “0” in order to be able to distinguish between a situation with no 

fuel in the line, and hence no flow, and between a situation with fuel in the line, but no 

flow of fuel, respectively.  In a real system, an interval of values might need to be 

considered in each category, for example, category “1” could be described by a range of 

values between 0.9 and 1.1, depending on the application. 

 
Table 1 Sensor readings produced by failure combinations 

No. Failures S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 

0 No fault 1 1 1 1 2 2 1 1 1 1 2 

1 P1 M M 1 1 1 1 0.5 0.5 0.5 0.5 1 

2 P2 1 1 M M 1 1 0.5 0.5 0.5 0.5 1 

3 V1 M M 1 1 1 1 0.5 0.5 0.5 0.5 1 

4 V2 1 1 M M 1 1 0.5 0.5 0.5 0.5 1 

5 V3 M M M M M A A A A A A 

6 V4 1 1 1 1 2 2 M M 2 2 2 

7 V5 1 1 1 1 2 2 2 2 M M 2 

8 P1 P2 A A A A A A A A A A A 

9 P1 V1 A M 1 1 1 1 0.5 0.5 0.5 0.5 1 

10 P1 V2 A A M A A A A A A A A 

11 P1 V3 M M M M M A A A A A A 

12 P1 V4 M M 1 1 1 1 M M 1 1 1 

13 P1 V5 M M 1 1 1 1 1 1 M M 1 

14 P2 V1 M A A A A A A A A A A 

15 P2 V2 1 1 A M 1 1 0.5 0.5 0.5 0.5 1 



16 P2 V3 M M M M M A A A A A A 

17 P2 V4 1 1 M M 1 1 M M 1 1 1 

18 P2 V5 1 1 M M 1 1 1 1 M M 1 

19 V1 V2 M A M A A A A A A A A 

20 V1 V3 M M M M M A A A A A A 

21 V1 V4 M M 1 1 1 1 M M 1 1 1 

22 V1 V5 M M 1 1 1 1 1 1 M M 1 

23 V2 V3 M M M M M A A A A A A 

24 V2 V4 1 1 M M 1 1 M M 1 1 1 

25 V2 V5 1 1 M M 1 1 1 1 M M 1 

26 V3 V4 M M M M M A A A A A A 

27 V3 V5 M M M M M A A A A A A 

28 V4 V5 M M M M M M M A M A A 

 

If as an example, case number 1 is considered, “pump P1 failed”, then the only supply 

to the system will be from pump P2.  Therefore, the fuel will pass through sensors S3 – S6 

and they will each measure “1”.  The fuel will then split to flow equally through each of 

the parallel lines, resulting in sensors S7 – S10 measuring “0.5”.  The fuel will then 

combine again and pass through sensor S11, which will measure “1”.  Sensors S1 and S2 

measure “M”, this is because there is no flow of fuel through these sensors as pump P1 has 

failed, however, there will be static fuel in the pipe from pump P2, hence the entry is “M” 

and not “A”.  The combinations of sensor readings in Table 1 can be used for the sensor 

selection process, as well as in the testing process of the fault diagnostic process, where 

sensor readings corresponding to a component failure can be introduced to the model, and 

the diagnosis of the failure can be verified accordingly.  In the next section, the 

methodologies for sensor selection and fault diagnostics modelling are introduced. 

 

3. Proposed Methodology for Sensor Selection and Fault 

Diagnostics model 
The proposed methodology consists of two steps: the sensor selection, and the system 

modelling and fault diagnostics.  The first step is to select the most suitable combination 

of sensors for the system.  These sensors can then be included in the model of the system 

which is developed.  This model can be used to diagnose failures in the system using the 

selected sensors.  Example failures can be considered in order to demonstrate how effective 

the fault diagnostic process is. 

 

3.1. Performance metric methodology for sensor selection 
A novel sensor performance metric is proposed in this paper in order to select the most 

suitable sensors for this system.  This considers the probability of the component failure 

occurrence which can be detected by the sensors, how easy it is to diagnose the failures, 

and what effect the component failures have on system performance, for example, how 

likely they are to cause the system to fail.  For detecting faults, it is only required to be able 

to distinguish between the normal operating behaviour and the abnormal system behaviour 

produced when component failures are present.  The fault diagnostic process aims to isolate 



the failures that have caused the abnormal system behaviour.  The performance metric is 

limited to be between 0 and 1, where 1 is the best performance value for the sensors, in 

order to have a clear reference for how good the sensors are.  Sensor s in the following 

equations for the performance metric terms refers to an individual sensor or a group of 

sensors. 

 

3.1.1. Detection Term 

In order for a fault to be detected by a sensor, the reading produced by the sensor must 

deviate from the reading produced under normal system behaviour.  Note that for a group 

of sensors, only one of the sensors is required to have a deviated reading for the component 

failure to be detected, i.e. it is not necessary for all the sensors in the group to produce a 

deviated sensor reading. 

 

 

 In the detection term given in Equation 1, DE{s}, is equal to the ratio between the 

probability of occurrence of the detected failures and the probability of occurrence of the 

considered failures in the system.  In Equation 1, Pd is the sum of probabilities of 

considered failures’ occurrence that sensor s can detect, and Pmd is the sum of probabilities 

of considered failures’ occurrence that can be detected by at least one sensor out of all the 

possible sensors on the system.  Note that in some cases, there can be hidden failures that 

none of the sensors can detect, this would result in Pmd being less than the sum of 

probabilities of considered failures occurrence.  DE{s} is equal to 1 when sensor s can detect 

all the considered failures that are possible to detect, and is equal to 0 when sensor s cannot 

detect any of the failures that can occur on the system. 

 

3.1.2. Diagnostic Term 

The diagnostic term considers how easily a failure can be diagnosed using sensor s.  

For this term to be equal to 1, a unique sensor reading would need to be produced for every 

combination of component failures that can be detected.  Note, that a combination of 

component failures can also refer to a single component failure. 

However, in reality, the same sensor reading will be produced for multiple different 

component failure combinations, and therefore, the diagnostic term will normally be lower 

than 1.  The term will be close to 0 when there are many different component failure 

combinations that produce the same sensor reading and the failure combinations have 

similar occurrence probabilities.  Having many different combinations of component 

failures with similar probabilities that produce the same sensor readings will reduce the 

likelihood of diagnosing the failures correctly.  

The diagnostic term, DI{s}, is shown in Equation 2.  This term consists of two individual 

terms for each of the deviated sensor reading combinations that can be produced by sensor 

s.  The first of these terms is Psri, which is the probability that a deviated reading i of sensor 

s occurs.  For each of the possible combinations of deviated sensor readings, multiple 

different combinations of component failures can be their reason of occurrence.  For each 

of these sensor readings, there will be a combination of component failures that will be the 

most likely to have caused the deviated sensor reading, therefore, Pmli is the probability of 

DE{s} =  
Pd

Pmd

  (1) 



the most likely combination of component failures that can cause the reading i of sensor s.  

These terms are summed over the number of different deviated readings of sensor s, nrs.  

Note, the sum of Psri over all different deviated readings of sensor s is equal to Pd, as 

introduced in section 3.1.1. 

Therefore, DI{s} is the ratio between the sum of the probability of the most likely failure 

occurrence, and the sum of the probability for all the failure occurrence, across all the 

readings for sensor s.  If there is more than one deviated sensor reading combinations that 

can be produced by sensor s, then the diagnostic term is equal to a weighted ratio of the 

probability of occurrence of the most likely component failure for each sensor reading and 

the probability of occurrence of all deviated sensor readings.  This is weighted with respect 

to the probability of each of the deviated sensor reading combinations, with the deviated 

sensor reading combinations that are more likely to occur having a greater effect on the 

diagnostic term than the other terms.  This is defined in the work, so that a sensor reading 

with a low occurrence probability, but the one that can only be caused by one combination 

of component failures, does not result in the diagnostic term being unrepresentative 

(overestimate) of the sensor performance. 

 

 

DI{s}  =   
∑ Pmli

nrs
i=1

∑ Psri
nrs
i=1

 (2) 

 

3.1.3. Criticality Term 

The criticality term considers the effects that the component failures, detected by the 

sensors, have on the system performance. 

This term is based on the Fussell-Vesely importance measure, Cheok et al.19.  This 

importance measure was selected over other importance measures, such as, Birnbaum’s 

importance measure and the criticality importance measure, because it could be adapted to 

consider sensors, and their groups with relative ease. 

It considers the contribution of individual components (and their groups, as there is an 

equivalent measure for minimal cut sets) to system unavailability, i.e. the decrease in 

system unavailability when the component is made perfectly reliable in comparison to its 

failure.  It is calculated by taking the probability of system failure and subtracting the 

probability that system failure occurs when component j is working.  The result is then 

normalised by the probability of system failure. 

In order for this importance measure to be applied to sensors (instead of components), 

the subtracted term of the equation has been modified.  This was changed to the probability 

of system failure, given that the non-deviated reading of sensor s occurs. 

The criticality term, CR{s}, is given in Equation 3.  In this equation, Qsys is the probability 

of system failure with no additional knowledge on any of the components states, and Qsys(qs 

= 0) is the probability of system failure given that the non-deviated reading of sensor s 

occurs. 

 

CR{𝑠} = 
Q

sys
− Q

sys
(q

𝑠
= 0)

Q
sys

 (3) 

 



If sensor s can detect all of the component failures, then CR{s} = 1.  Alternatively, if 

sensor s does not detect any of the critical component failures, then CR{s} = 0.  In the 

following section, combining the three terms in order to form the sensor performance 

metric is discussed. 

 

3.1.4. Example 

In order to demonstrate the process of calculating the proposed performance metric, 

each of the three terms are calculated for sensor S1 of the system, presented in section 2.  

According to Table 1, this sensor can detect 19 of the 28 component failures, 3 of which 

are single component failures and 16 are combinations of two component failures.  It is 

assumed that the probability of each component failure, A, is 0.05, such as P(A) = 0.05.  

The probability that only one component is failed and all other components are working is 

represented as P(A)·(1 – P(A))6, and the probability that only two components are failed 

and all other components are working is represented by P(A)2·(1 – P(A))5.  Note, that the 

actual values of probabilities do not influence the ranking, i.e. only the ratio between the 

probabilities of different components needs to be realistic.   

For sensor S1, Pd is given in Equation 4, and Pmd is given in Equation 5, respectively, 

and the detection term is therefore equal to 0.1412/0.2979 = 0.4740. 

 

Pd = 3×((0.05)(0.95)6)+16×((0.05)2(0.95)5) = 0.1412 (4) 

 

Pmd = 7×((0.05)(0.95)6)+21×((0.05)2(0.95)5) = 0.2979 (5) 

 

Sensor S1 produces two different deviated sensor readings, “M”, and “A”.  The sensor 

reading “M” is produced by 16 of the 19 detected component failures (3 single component 

failures and 13 combinations of two component failures), and the sensor reading “A” is 

produced by 3 of the 19 detected component failures, all of which are combinations of two 

component failures.  Therefore, nrs is equal to 2 for sensor S1.  Pmli for the sensor reading 

“M” and the sensor reading “A” are presented in Equations 6 and 7, respectively.   

 

P𝑚𝑙𝑖  = (0.05)(0.95)6 = 0.0368 (6) 

 

P𝑚𝑙𝑖  = (0.05)2(0.95)5 = 0.0019 (7) 

 

This is because the most likely failure for the sensor reading “M” is an individual 

component failure, and for the sensor reading “A” - a combination of two component 

failures, respectively.  Psri for sensor reading “M” and sensor reading “A” are presented in 

Equations 8 and 9, respectively, which considers the number of combinations of single 

failures and two component failures. 

 

Psri = 3×((0.05)(0.95)6)+13×((0.05)2(0.95)5) = 0.1354 (8) 

 

Psri = 3×((0.05)2(0.95)5) = 0.0058 (9) 

 



Therefore, the diagnostic term for sensor S1 is equal to 

(0.0368+0.0019) (0.1354+0.0058) = 0.2740.⁄  
For the system, Qsys is presented in Equation 10, since the only component failures that 

are not critical to system failure are V4 and V5, as stated in section 2.  Qsys(qs = 0) is given 

in Equation 11, i.e. it is the sum of the probabilities of component failures that cause system 

failure and that are not detected by sensor S1, divided by the sum of the probabilities of the 

occurrence of the non-deviated reading for sensor S1. 

 

Q
sys

 = 5×((0.05)(0.95)6)+21×((0.05)2(0.95)5) = 0.2244 (10) 

 

Q
sys

(q
s
=0) = 

2×((0.05)(0.95)6)+5×((0.05)2(0.95)5)

4×((0.05)(0.95)6)+5×((0.05)2(0.95)5)+(0.95)7
 = 0.0973 (11) 

 

Therefore, the criticality term is equal to (0.2244 - 0.0973)/0.2244 = 0.5665. 

 

 

3.1.5. Discussion 

The performance metric consists of the three terms, described before.  If each of the 

terms is equally important, then an average value of the three terms can be used as the 

performance metric, as shown in Equation 12. 
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However, the performance metric, expressed through this average value, can be 

unrepresentative of how useful the sensors are, if one of the terms is much greater than the 

other two terms.  For example, if sensor s only detects one component failure, then 

regardless of the probability of this component failure, the diagnostic term will be equal to 

1.  This would result in the performance metric being a significantly higher value than 

would be expected for a sensor that detects such a low percentage of component failures. 

The performance metric could be affected in a similar way, if the probability of a 

critical failure is relatively low, in comparison to the probability of any failure occurring.  

If sensor s detects all of the critical failures, but no others, this would result in a criticality 

term significantly higher than the detection term.  As before, this would result in a higher 

performance metric than expected for a sensor that detects such a low percentage of 

component failures. 

For most applications, it will be desirable to achieve a balance of all three terms, but 

there might be a need to favour one or two of the terms, at the expense of the other terms.  

A potential solution to this is to, first of all, use the average of the three terms to calculate 

the performance metric as suggested in Equation 12, but to then consider the terms 

individually for homing in the combinations of sensors with a high performance metric.  

This would result in a threshold being set that the performance metric needs to reach, but 

the combination of sensors that is most suitable to the particular application can be selected 

by looking at the individual terms.  For example, the detection term of the performance 



metric could be favoured for low safety-risk systems, such as a car engine, where the car 

could pull over safely on the side of the road in the case of failure.  The diagnostic term 

could be favoured for systems where system down-time is expensive, requiring the repair 

work to be completed as quickly as possible, such as a train engine, where the train would 

block the rail line, delaying other services.  The criticality term could be favoured for 

safety-critical systems, where critical component failures need to be detected and 

mitigating actions need to be taken, such as emergency rerouting due to a failure of an 

aircraft engine.  The proposed method allows such conditions to be satisfied, giving the 

analyst the ability to choose the best sensor combination for their particular application, a 

feature that is uncommon in previously published methods. 

In the next section, the methodology for system modelling and fault diagnostics is 

introduced. 

 

3.2. Fault Diagnostics model 
In this section, the construction process of the fault diagnostic model is outlined.  The 

fault diagnostics technique used in this paper is the BBN method.  BBNs are probabilistic 

graphical models which are represented by directed acyclic graphs.  Each network consists 

of a number of nodes, each of which has a finite number of discrete states.  The probability 

of each of the states of the nodes are controlled by using Conditional Probability Tables 

(CPTs).  The dependency of connected nodes is modelled using the CPTs, enabling the 

propagation of information through the system, Koski & Noble20.  The constructed BBN 

is used for the diagnostics of component failures in the system.  The BBN in this paper was 

constructed using the software, “HUGIN Researcher”. 

When constructing a BBN for modelling the systems, the first step is to create a node 

for each of the components in the system.  Each component node will have a state for each 

of the component states.  For the example system, discussed in section 2, there are two 

states for each component node: working and failed.  The next step in the construction 

process of the BBN is to introduce any intermediate nodes, if they are required.  The 

intermediate nodes consider the state of groups of components and can be used to 

determine values of the parameters of the system, such as flow value at a junction.  The 

final step is to include a node for each sensor.  These nodes consider the states of the 

intermediate nodes in order to determine the sensor readings, with a state assigned to each 

possible sensor reading.  Note, only the nodes for selected sensors need to be included in 

the network, however in this example all sensors were included in the network for 

completeness. 

Intermediate nodes could be omitted from the network.  However, if there are no 

intermediate nodes, the sensor nodes will have to consider more combinations of 

component states than if they were grouped together by the intermediate nodes.  As the 

number of entries in the CPT for a node is equal to the product of the number of states for 

each of the parent nodes and the number of states in the node, the more states the parent 

nodes have, and the more parent nodes there are, and the larger the CPTs are for the child 

nodes.  However, if no intermediate nodes are included, fewer nodes are required in the 

BBN to represent all the required information.  The number of nodes in the network, and 

the size of the CPTs for the nodes should be balanced, so that the number of nodes in the 

network and the number of entries in the CPTs are not too high. 



Once the BBN is constructed, it can be used to diagnose component failures in the 

system.  This is achieved by introducing sensor readings to the BBN as evidence.  The state 

for each of the selected sensors that corresponds to the sensor readings is chosen, and the 

probability of the components being in each of their states is calculated.  The probability 

of each state for each component can be calculated using Bayesian updating formulas, 

when evidence about system performance, captured by sensors, is introduced in the model.  

This step is completed automatically using the software, “HUGIN Researcher”.  The BBN 

will then identify which components are most likely to be in the failed state.  If the 

identified component is not the component that has actually failed, then more evidence can 

be introduced, and the diagnosis is repeated.  This additional evidence could be that a 

component is in its working state.  The BBN not identifying the correct component failure 

initially is usually not due to a method limitation, it is due to multiple different component 

failures producing the same symptoms on the system, which is a common feature of 

systems. 

In the next section, the proposed methodology is applied to the example system. 

 
4. Application of the Methodology 

As stated in Section 3.1.4, it is assumed that the probability of each component failure 

in the example system, A, is 0.05, such as P(A) = 0.05.  Note, in a real system, component 

failure rates would be used as quoted by the manufacturer of the components. 

4.1. Sensor Selection 
The best possible performance metric can be calculated by considering all 11 sensors 

on the system at once.  This process results in the performance metric value being equal to 

0.8961: with detection and criticality terms of 1, and a diagnostics term of 0.6883.  This 

means that it is possible to detect all of the considered combinations of component failures 

(as DE{s} = 1).  As all considered component failures can also be detected, all critical 

failures can be detected (CR{s} = 1).  However, as the performance metric is less than 1, 

and the value of DI{s} is less than 1, it suggests that the diagnostics approach based on these 

sensors does not diagnose all of the components correctly. 

4.1.1. Results 
This best possible performance metric, as discussed above, can be achieved by some 

combinations of four sensors.  Therefore, there is no benefit to considering any more than 

four sensors.  For illustration, the performance metric was calculated for all combinations 

of one, two, three and four sensors in this example.  The rankings for individual sensors 

are given in Table 2, and the top six combinations of two and three sensors are given in 

Table 3.  Note, in Table 3, only one combination of sensors is given per ranking for brevity.  

The reason that there are multiple combinations of sensors that have the same performance 

metric is that there is symmetry in the system because of the parallel fuel lines in the 

system.  There are four combinations of four sensors that achieve the maximum 

performance metric, i.e. I{s} = 0.8961, DE{s} = 1, DI{s} = 0.6883, and CR{s} =1.  These 

combinations of sensors are: 

 S1 S2 S3 S7 

 S1 S2 S3 S9 

 S1 S3 S4 S7 



 S1 S3 S4 S9 

 
Table 2 Ranking of individual sensors for the system 

Rank Sensor I{s} DE{s} DI{s} CR{s} 

1 S7 0.8062 0.9740 0.5067 0.9512 

S8 0.8062 0.9740 0.5067 0.9512 

S9 0.8062 0.9740 0.5067 0.9512 

S10 0.8062 0.9740 0.5067 0.9512 

2 S5 0.6688 0.7532 0.3362 1.0000 

S6 0.6688 0.7532 0.3362 1.0000 

3 S11 0.6667 0.7532 0.3276 1.0000 

4 

 

S1 0.3901 0.4740 0.2740 0.5665 

S2 0.3901 0.4740 0.2740 0.5665 

S3 0.3901 0.4740 0.2740 0.5665 

S4 0.3901 0.4740 0.2740 0.5665 

 
Table 3 Ranking of combinations of 2 and 3 sensors for the system 

Rank Sensors I{s} DE{s} DI{s} CR{s} 

1 S1 S7 0.8684 0.9870 0.6513 0.9754 

2 S2 S7 0.8663 0.9870 0.6447 0.9754 

3 S5 S7 0.8398 1.0000 0.5195 1.0000 

4 S5 S8 0.8377 1.0000 0.5130 1.0000 

5 S8 S10 0.8355 1.0000 0.5065 1.0000 

6 S7 S8 0.8084 0.9740 0.5133 0.9512 

1 S1 S3 S7 0.8939 1.0000 0.6818 1.0000 

2 S1 S3 S8 0.8918 1.0000 0.6753 1.0000 

3 S1 S4 S7 0.8896 1.0000 0.6688 1.0000 

4 S1 S4 S8 0.8874 1.0000 0.6623 1.0000 

5 S1 S8 S10 0.8853 1.0000 0.6558 1.0000 

6 S2 S4 S8 0.8831 1.0000 0.6494 1.0000 

 

As can be seen by comparing the best combination of three sensors, there is very little 

benefit to considering an additional fourth sensor.  As a result of this, and due to the large 

number of combinations of four sensors that are available (double the number of 

combinations of three sensors), further combinations of four sensors were not considered 

in this paper. 

4.1.2. Discussion 
If the individual terms of the performance metric in Table 2 are studied, it supports the 

suggestion of considering the three terms individually, rather than the average values, for 

the final sensor selection.  As an example, sensors S7 to S10 are ranked the highest, but 

sensors S5 and S6 have a higher criticality term, even though they are ranked second.  This 



would, most likely, lead to the analyst selecting either sensor S5 or S6, if it is imperative 

to be able to detect as many as possible of the critical failures. 

Similar conclusions can be drawn when studying the combinations of two sensor 

rankings in Table 3.  In this case, it can be seen that the sensor combination ranked 3rd (S5 

S7) detects all of the considered failures, and therefore has a detection term of 1.  The other 

sensor combinations that are ranked higher than this, such as (S1 S7), have a lower 

detection term.  This will result in the analyst selecting the 3rd best combination of sensors, 

if it is imperative to be able to detect all of the component failures. 

When combinations of sensors consist of two sensors in close proximity to each other 

and located in the same section of the system, there is only a small increase in the 

performance metric, in comparison to a single sensor being positioned in that section.  For 

example, the performance metric for the sensor combination (S7 S8) is 0.8084, but the 

performance metric for sensor S7 on its own is 0.8062.  In this case, only one of the terms 

has actually increased, i.e. the diagnostic term has changed from 0.5067 to 0.5133.  This 

results in the conclusion that it will normally be better to pick sensors that are not in close 

proximity to each other, as it is likely that the sensors that are in close proximity will 

provide similar information on what is happening in the system.  This could be useful when 

the number of sensors needs to be minimised. 

The maximum performance metric that is achievable for each different number of 

sensors increases for each additional sensor.  However, for each additional sensor the 

returns are diminishing.  This is in line with the motivation for finding a balance between 

the sensor cost and the quantity of information to be obtained. 

For the fault diagnostics application on this system presented in the next section, the 

combination of sensors selected is: sensors S1, S3 and S7.  This combination of sensors 

has the highest performance metric in Table 3.  The position of these selected sensors on 

the system is such that there is a sensor positioned next to each pump and before the 

corresponding valve, and there is a sensor before one of the valves in the final section of 

the system.  Using these three sensors, the flow throughout the entire system can be 

determined, since the sensors next to each of the pumps give information about fuel supply, 

and the sensor in the final section of the system informs the analyst about the fuel passing 

through the corresponding valve.  The analyst can then determine the flow of fuel 

throughout the whole system, therefore, if there is any change in the system which results 

in a deviation from the flow under normal operating conditions, then these three sensors 

can detect it. 

4.2. Construction of the fault diagnostics model 

4.2.1. BBN development 
As described in the proposed methodology, a node is added for each of the components 

in the BBN.  The values in the CPTs correspond to the probability of each component being 

in the working or failed state, 0.95 and 0.05 respectively, as outlined above. 

A number of intermediate nodes are introduced next, which are used to determine the 

flow at various points in the system.  The intermediate nodes are used to split the example 

system into three sections.  The first section consists of the two valves, V1 and V2, and the 

two pumps, P1 and P2.  The second section consists of valve V3 only, and the final section 

consists of the remaining components, valves V4 and V5.  Each of these nodes can be used 



to represent the supply of fuel downstream of the system, and also to indicate the lines that 

the fuel is able to pass through.   

Finally, nodes are introduced to the network for each of the 11 considered sensors.  

These sensor nodes are connected to the intermediate nodes, and in some cases the 

component nodes, as required.  Connecting the sensor nodes to the intermediate nodes 

means that the number of states that are required to be considered is reduced, in comparison 

to omitting the intermediate nodes.  For example, for sensors S5 to S11, the only 

information required from section 1 of the system is the fuel supply.  If it is “1”, it is 

unnecessary to know which pump the supply is coming from, and the reason why the fuel 

is not coming from the other pump (e.g. pump failed, valve failed).  This results in fewer 

entries in the CPTs for each of the sensor nodes.  For example, if the intermediate nodes in 

the first section are not included, then there will be 16 combinations of component states 

to consider for the components in the first section.  However, including the intermediate 

nodes reduces the number of combinations down to 3, i.e. Full Supply (FS, “2”), Partial 

Supply (PS, “1”) and No Supply (NS).  This method therefore reduces the number of entries 

for each of the sensor nodes from 16 to 3 of the number of entries, if intermediate nodes 

are included. 

The CPT for sensor S11 is given as an example in Table 4.  This table demonstrates the 

reduction in size of the CPT.  Without including the intermediate nodes in the second 

section included, for every three columns in Table 4, there would be 16 columns.  The BBN 

of the system is given in Figure 2. 

 

 

Section 3 Both Open V4 open, V5 blocked V5 open V4 blocked both blocked 

Valve 3 Open Blocked Open Blocked Open Blocked Open Blocked 

Supply FS PS NS FS PS NS FS PS NS FS PS NS FS PS NS FS PS NS FS PS NS FS PS NS 

No flow 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 

Half flow 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Normal flow 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Figure 2 BBN of example system 

Table 4 CPT for sensor S11 



4.2.2. Discussion 
The sensor nodes in the BBN are used to represent the sensors in the system.  The node 

states represent the sensor readings that would be produced by the sensors on a system.  

Each state of the sensor nodes corresponds to a different sensor reading that can be 

produced by that sensor.  If there are a large number of different potential sensor readings 

for a larger system, some of the sensor readings may have to be grouped together in ranges, 

in order to prevent the number of entries in the CPTs getting too large.  However, this 

would result in a reduction of the accuracy of the model. 

By introducing intermediate nodes to the network, the total number of entries in all of 

the CPTs is reduced.  However, the process highlighted the fact that even with these 

intermediate nodes included, the total number of entries in all of the CPTs can be large, 

even for this simple example system with approximately 1400 entries in CPTs in the BBN.  

Alternatively, for large systems a structure learning algorithm could be used to construct 

the BBN automatically, removing the need to manually complete the CPTs.  Mittal & 

Maskara21 present a review of some structure learning algorithms for BBN construction. 

The BBN is used to aid in the diagnosis of failures in the system, as shown in the 

following section. 

4.3. Fault diagnostics 
The BBN fault diagnostics model is used to diagnose example component failures.  The 

sensor combination selected is the sensors S1, S3 and S7, as outlined above.  All of the 

combinations of component failures given in Table 1 are considered.  The corresponding 

sensor readings for each of these combinations are introduced to the BBN as evidence, and 

the diagnostic process, as described in the final paragraph of section 3.2, is applied. 

All of the component failures can be diagnosed using the BBN with relative ease.  There 

were some cases that were not diagnosed correctly immediately, but no more than one 

additional component needed to be inspected for all the component failures to be diagnosed 

correctly.  This demonstrates that the BBN can be used to diagnose failures in the system, 

using the selected sensors.  In the following paragraphs, a number of example cases are 

outlined that demonstrate how successful the methodology is.  The 28 different 

combinations of component failures are grouped in to seven different cases of different 

types of success in Table 5.  In this section, “inspected” refers to determining whether the 

component is functioning or not, and “repairing or replacing” refers to returning that 

component back to normal operating behaviour. 

The first case is when the components are diagnosed correctly: these are the 

combinations 6, 7, 8, 9, 15 and 28.  As can be seen in Table 5, the BBN confirms that these 

combinations of components have failed and it diagnoses the failures correctly.  Therefore, 

the system can return to normal operating conditions by inspecting and addressing 

(repairing or replacing) the same number of components, as the number of components that 

have failed. 

The second case is when the components are diagnosed correctly, but the BBN 

identifies the component failures with the highest (but not 100%) probability of failure.  

These cases are combination 5 (with 95.84% probability) and combinations 10 and 14 (with 

95.47% probability for one of the components and 100% for the other component).  For 

combinations 10 and 14 the same set of sensor readings in each case can be produced by 

other combinations of 3 or more component failures. For example, the readings for 



combination 10 can be also produced by a combination of component failures, P1, V1 and 

V3. Hence for combinations 10 and 14 the probability for the second component failure in 

less than 100%.  Therefore, the BBN also diagnoses the failures for these combinations 

correctly, and the system can return to normal operating conditions by inspecting the same 

number of components as the number of components that have failed, as in the first case. 

The third case is when the failures are not guaranteed to be diagnosed correctly at the 

first attempt.  This is because two different component failures produce the same 

symptoms.  The combinations of component failures are 1, 2, 3 and 4.  There is a 50% 

probability that a component failure will be diagnosed correctly, as both failures are equally 

likely to occur.  This means that the component failure will be diagnosed correctly if both 

failures can be inspected, i.e. 50% of the time, there will be one component that is inspected 

but it has not failed.  Therefore, the system will be returned to normal operating conditions 

by inspecting one or two components, when there is one component failure. 

The fourth case is similar to the third case, when an additional component to the 

component failures, described in the third case, is failed.  These combinations are 12, 13, 

17, 18, 21, 22, 24 and 25.  In this case, the system will be returned to normal operating 

conditions by inspecting up to three components, when there are two component failures. 

The fifth case is when the diagnosed component failure is valve V3, but the actual 

failure involves another failure, valve V4 or valve V5, as in combinations 26 and 27, where 

the symptoms are the same.  Therefore, as it is significantly more likely that only one 

component has failed than two components have failed, the BBN outputs that only valve 

V3 has failed.  However, if valve V3 is repaired, the sensors will produce readings that are 

not the same as those obtained during the normal operating conditions.  When this evidence 

is introduced to the BBN, the correct component failure will then be diagnosed.  Therefore, 

the system will be returned to normal operating conditions by inspecting two components 

when there are two component failures. 

The penultimate case, the sixth case, is similar to the fifth case: when valve V3 is 

repaired it will become apparent that there is another failure.  This will then result in the 

situation discussed in the third case.  This case is different to the fourth case because in the 

fourth case the results of the BBN suggest that there are two failures straight away, but the 

sixth case requires valve V3 to be repaired/replaced before it detects that there is a second 

failure.  These combinations are 11, 16, 20 and 23.  Therefore, the system will be returned 

to normal operating conditions by inspecting either two or three components, when there 

are two component failures. 

The final case, the seventh case, is when the BBN predicts that valve V3 is failed with 

probability of 95.84%.  However, using these sensors, valve V1 and valve V2 failure 

produces the same sensor readings, combination number 19.  As this combination is 

significantly less likely to occur than valve V3 failing, it is not diagnosed correctly.  When 

this component is inspected and found to be not failed, this evidence can be introduced to 

the BBN.  This will then update the probability that each of the other components are in 

their failed state and will then diagnose the failures correctly.  Therefore, the system will 

be returned to normal operating conditions by inspecting three components, when there are 

two component failures. 

The example cases discussed above result in the diagnostic term being less than 1, (DI{s} 

= 0.6818), as there are some cases where failures cannot be diagnosed correctly.  However, 

the reason that these cases were not diagnosed correctly is because the symptoms produced 



are exactly the same for multiple different component failures.  The performance could not 

be improved by including more sensors. 

If the best combination of four sensors is considered, the final case, (combination 19), 

would be diagnosed correctly on the first attempt.  This is because introducing either sensor 

S2 or S4 will give the additional information required to diagnose this failure combination 

correctly, and diagnosing this failure correctly is the only benefit of adding the fourth 

sensor to the combination. 

In the next section, an analysis of the methodology is given, along with some potential 

improvements. 

 
Table 5 Diagnosis of component failures using S1, S3 and S7 

Case No. Actual 

failure 

Diagnosed 

Failure 1 

Probability Diagnosed 

Failure 2 

Probability Diagnosed 

Failure 3 

Probability 

1 6 V4 V4 100%     

 7 V5 V5 100%     

 8 P1 P2 P1 100% P2 100%   

 9 P1 V1 P1 100% V1 100%   

 15 P2 V2 P2 100% V2 100%   

 28 V4 V5 V4 100% V5 100%   

2 5 V3 V3 95.84%     

 10 P1 V2 P1 100% V2 95.47%   

 14 P2 V1 P2 100% V1 95.47%   

3 1 P1 P1 50% V1 50%   

 2 P2 P2 50% V2 50%   

 3 V1 P1 50% V1 50%   

 4 V2 P2 50% V2 50%   

4 12 P1 V4 V4 100% P1 50% V1 50% 

 13 P1 V5 V5 100% P1 50% V1 50% 

 17 P2 V4 V4 100% P2 50% V2 50% 

 18 P2 V5 V5 100% P2 50% V2 50% 

 21 V1 V4 V4 100% P1 50% V1 50% 

 22 V1 V5 V5 100% P1 50% V1 50% 

 24 V2 V4 V4 100% P2 50% V2 50% 

 25 V2 V5 V5 100% P2 50% V2 50% 

5 26 V3 V4 V3 95.84%     

 27 V3 V5 V3 95.84%     

6 11 P1 V3 V3 95.84%     

 16 P2 V3 V3 95.84%     

 20 V1 V3 V3 95.84%     

 23 V2 V3 V3 95.84%     

7 19 V1 V2 V3 95.84%     

 

5. Analysis of the proposed methodology 
The first step of the methodology is to calculate the performance metric of individual 

sensors and combinations of sensors.  The maximum possible performance metric can be 



calculated by considering all of the sensors on the system.  This can give the analyst a 

target to achieve, and can, therefore, reduce the risk of wasting resources attempting to 

achieve a better performance metric exhaustively.  For example, for this example system, 

combinations of 5 sensors could have been calculated unnecessarily.   

The proposed methodology could be modified, since it was observed that the BBN 

model could be used to calculate the sensor performance metric automatically.  Component 

state evidence can be introduced to the network, and the BBN will automatically produce 

the sensor readings and the probability of occurrence of the evidence that has been 

introduced.  This means that if this is repeated for all possible component failure 

combinations, the three terms of the performance metric can be calculated, and therefore, 

the performance metric can also be calculated.  This would be particularly useful for 

complex systems with a large number of components and sensors. 

 

5.1. Sensor selection 
In section 3.1.5, it was suggested that the performance metric, given in Equation 12, 

should only be used as a guide to narrow down the selection of sensors.  The higher ranked 

combinations should then be studied in more detail, looking at each of the terms 

individually in order to select the sensors to be used on the system.  This will result in the 

analyst having the ability to select the combination of sensors that has certain terms higher 

than others, if desired.  This would eliminate the risk of selecting a sensor combination 

with one term that is significantly lower than desired, making the sensor selection more 

applicable. 

 

5.2. Modelling the system 
The system modelling technique of constructing a BBN of the system produces a good 

representation of the example system.  The components and sensors in the system are 

represented using nodes in the BBN model and this allows the relationship between the 

component states and sensor readings to be modelled consistently.  The sensor readings 

that would be output by a real system are output by the BBN model. 

The example system is a simple system, for example, partial failures, leaks, pipe 

blockages etc. are not considered, which reduces the accuracy of the model.  The BBN 

model could be constructed considering the additional failure modes, which would increase 

its size.  If BBNs could not be scaled up to large systems, alternative system modelling 

techniques will have to be considered.  

 

5.3. Fault diagnostics 
In section 4.3, the fault diagnostic process was applied to the system.  It was shown 

that it successfully diagnosed all of the component failures.  In some cases, the diagnosis 

was not completely correct initially, but it was always able to diagnose the failures whilst 

inspecting no more than one component that has not actually failed.  However, the accuracy 

of the diagnostics process could be improved slightly by considering one of the 

combinations of 4 sensors, presented in section 4.1.1.  As discussed in section 4.3, using 

four sensors would result in failure number 19 (case number 7 in Table 5) to be diagnosed 

correctly, i.e. 100%.  No further improvement could be achieved even by using all 11 

sensors, i.e. there would be still the same cases where the diagnostics is not completely 

correct.  This is because some component failures produce the same set of symptoms and 



are, therefore, indistinguishable, for example, with the current set of sensors failures of 

pump P1 and valve V1 produce the same set of symptoms.  

One of the key benefits of the BBN methodology is that it outputs the probabilities of 

events that each of the components have failed.  Therefore, a certain threshold could be set 

and a spare for any component that has a probability of being failed above it could be taken 

to the aircraft, when it is attended to by the maintenance team.  This would reduce the 

likelihood of taking a large number of replacement components unnecessarily, whilst also 

reducing the time waiting for other components to be brought to the system, if the most 

likely failure has not occurred.  This could happen when there are multiple components 

with a similar probability of failing.  In the example system given, if the sensor reading 

combination produced is combination 1, then both replacement components for pump P1 

and valve V1 would be taken to the system.  Doing this would achieve a reduction in the 

overall downtime of the system, reducing waiting time for replacement components that 

have been misdiagnosed. 

 

5.4. Fault diagnostics using an alternative sensor selection method 
The performance of the selected sensors using the proposed method and an alternative 

method is briefly compared in terms of fault diagnostics results.  Using the fault symptom 

matrix approach by Snooke1 (presented in Introduction) any of the combinations of three 

sensors given in Table 3 could have been chosen as the best, as any of these combinations 

can detect all component failures.  For example, if the combination of sensors S2, S4 and 

S8 is chosen, the diagnostics results are given in Table 6. 

 
Table 6 Diagnosis of the component failures using S2, S4 and S8 

Case No. Actual 

failure 

Diagnosed 

Failure 1 

Probability Diagnosed 

Failure 2 

Probability Diagnosed 

Failure 3 

Probability 

1 6 V4 V4 100%     

  7 V5 V5 100%         

2 5 V3 V3 95.47%         

3 1 P1 P1 51.28% V1 51.28%   

 2 P2 P2 51.28% V2 51.28%   

 3 V1 P1 51.28% V1 51.28%   

  4 V2 P2 51.28% V2 51.28%     

4 12 P1 V4 V4 100% P1 51.28% V1 51.28% 

 13 P1 V5 V5 100% P1 51.28% V1 51.28% 

 17 P2 V4 V4 100% P2 51.28% V2 51.28% 

 18 P2 V5 V5 100% P2 51.28% V2 51.28% 

 21 V1 V4 V4 100% P1 51.28% V1 51.28% 

 22 V1 V5 V5 100% P1 51.28% V1 51.28% 

 24 V2 V4 V4 100% P2 51.28% V2 51.28% 

  25 V2 V5 V5 100% P2 51.28% V2 51.28% 

5 9 P1 V1 P1 51.28% V1 51.28%   

 15 P2 V2 P2 51.28% V2 51.28%   

 8 P1 P2 P1 51.28% P2 51.28% V1 51.28% 

 10 P1 V2 P1 51.28% P2 51.28% V1 51.28% 

 14 P2 V1 P1 51.28% P2 51.28% V1 51.28% 



  19 V1 V2 P1 51.28% P2 51.28% V1 51.28% 

6 26 V3 V4 V3 95.47%     

  27 V3 V5 V3 95.47%         

7 11 P1 V3 V3 95.47%     

 16 P2 V3 V3 95.47%     

 20 V1 V3 V3 95.47%     

  23 V2 V3 V3 95.47%         

8 28 V4 V5 V3 95.47%         

 

By comparing Tables 5 and 6, it can be observed that the diagnostics results using S2, 

S4 and S8 are slightly worse, for example, there are fewer combinations of component 

failures that are diagnosed correctly with 100% probability (case 1), i.e. 2 failures in Table 

6 instead of 6 failures in Table 5.  A similar situation is with case 2, as there are fewer 

combinations that can be diagnosed correctly.  Note, that the result for component failure 

19 (which could not be diagnosed correctly in Table 5) has now improved as one of the 

component failures, V1, is identified correctly, however, there is another failure (failure 

28) in Table 6 that cannot be diagnosed correctly.  Overall, it can be said that the proposed 

method can be used to identify a suitable set of sensors, especially in situations when the 

diagnostics capability is of importance.  

6. Conclusions and future work 
In summary, this paper proposed a methodology for selecting sensors and using the 

sensors to diagnose failures that may occur in the system.  The sensor selection method 

entails using a newly developed performance metric, which considers the sensor ability to 

detect faults and diagnose failures, as well as considering the effects of the detected failures 

on the system performance.  It was suggested that after considering the average of the three 

terms for the performance metric, the three terms of the performance metric should then be 

considered individually for the final sensor selection process.  This will enable the analyst 

to consider each of the three terms individually and select the sensors that best suit the 

considered application. 

A BBN-based system modelling methodology was developed using the selected 

sensors.  A BBN is constructed for the system which includes nodes for the components, 

sensors and other nodes, as required.  Sensor readings can be introduced to the BBN in the 

form of evidence and they are used to update the probability of each of the component 

states.  This process enables the component failures to be diagnosed, and it can be used to 

restore system operation as quickly as possible. 

There are a number of potential future research areas that could be explored.  The first 

of these is to analyse the scalability of the methodology, by testing it on a larger system.  It 

may require some automation of the sensor selection process, particularly the calculation 

of the sensor performance metric.  It would also be beneficial to consider multiple system 

operation phases.  This would enable phased missions to be modelled, as it is observed on 

aircraft systems, such as take-off, cruise, fuel transfer and landing.  As different 

components will have different behaviour during the mission phases, more component 

failure modes will need to be considered.  When the complexity of the system increases, 

an optimisation technique, such as Genetic Algorithms, could be applied together with the 

sensor selection process.  In that case the solution would be obtained without the need to 



evaluate a large number of sensor combinations exhaustively.  The complexity of the 

considered sensors could also be increased by considering the sensors cost and sensor 

failure modes in the proposed method. 
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