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Abstract

The Vickrey–Clarke–Groves and d’Aspremont–Gerard-Varet mechanisms

implement efficient social choice by compensating each agent for the externali-

ties that his report imposes on all other agents. Instead of aggregate compen-

sations, which may lead to profitable coalitional deviations, this paper provides

an alternative mechanism, in which each pair of agents directly compensate

each other for the pairwise externalities they impose. Under the assumption

of independent private values, any agent is guaranteed to receive his ex ante

efficient payoff by reporting truthfully, regardless of others’ strategies. This ab-

sence of ex ante externalities makes the mechanism coalition-proof, and makes

all equilibria efficient.
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1 Introduction

The problem of externalities which cause economic inefficiency can be solved if there

exists a procedure for internalizing the externalities. This paper develops such a pro-

cedure in a benevolent social planner’s problem in which agents have independent

private values and quasilinear preferences. The social planner (she) asks each agent

(he) to report his preferences, and then she implements the social outcome which

maximizes the total payoff of the agents. Since any agent’s report affects the social

outcome, the agents impose externalities on each other and may benefit from mis-

reporting their types (preferences). In order to induce truthful reports, the agents

should be required to compensate each other for these externalities.

The idea of internalizing the externalities has been used in the classic Vickrey–Clarke–

Groves (VCG) and d’Aspremont–Gerard-Varet (AGV) mechanisms, though in these

mechanisms agents do not directly compensate each other. In the VCG mechanism,

it is the social planner who compensates the agents for the externalities. In the AGV

mechanism, the compensation is unfair: if agent i’s report imposes externalities on

agent j and no externalities on agent k, agent k still has to partially compensate agent

i for the former externalities. As a result, both of these mechanisms internalize the

aggregate—not the pairwise—externalities and are not resistant to group deviation.

In these mechanisms, each agent individually prefers to report truthfully, but a group

of agents can coordinate on a misreport and jointly benefit.

The current paper presents an alternative mechanism, which improves upon the VCG

and AGV mechanisms by being resistant to coalitional deviations. The mechanism is

built assuming independent private values - the environment of the AGV mechanism.

There are two equivalent versions of the mechanism: the direct mechanism and the

sequential mechanism. This paper mainly focuses on the direct mechanism. Agents

simultaneously report their types. Then the social planner orders the agents in an
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arbitrary sequence, and she treats the agents’ reports as if they were arriving one

by one, according to that sequence. When the report of agent i “arrives”, the social

planner updates her beliefs over the efficient social outcome she will choose at the

end, and she updates the expected payoffs of the agents from that outcome. The

mechanism prescribes any other agent j 6= i to pay agent i the change in j’s expected

payoff which occurs as a result of i’s report. These payments are made for the

report of each agent, that is, each pair of agents i, j compensate each other for the

pairwise externalities of their reports. The sequential (version of the) mechanism is

equivalent to the direct version, except that the agents report their types sequentially

and publicly.

In the new (direct) mechanism, each pair of agents directly compensate each other

for the pairwise marginal externalities caused by their reports. As a result, all ex-

ternalities are removed at the ex ante level. If any agent i, before learning his type,

commits to reporting truthfully, he is guaranteed to get his ex ante efficient payoff,

regardless of others’ strategies. This result follows from the way the payments are

made. First, agent i receives a payment from every other agent j, equal to the change

in j’s expected payoff caused by i’s report. Since agent i reports truthfully, in expec-

tation over i’s report that change is zero, and so is j’s payment to i. Second, agent i

makes a payment to j, equal to the change in i’s expected payoff caused by j’s report.

Effectively, the utility of agent i (his payoff from social choice plus payments received

in the mechanism) does not change with j’s report. Therefore, i’s utility does not

change with reports of other agents and is equal to its ex ante value, that is, to i’s ex

ante efficient payoff.

The idea behind this mechanism is similar to that of property rights in the Coase

theorem. Before the mechanism is announced, the social planner expects each agent

i to obtain his ex ante efficient payoff. She guarantees that agent i will receive that

payoff if he reports truthfully: when reports of other agents change i’s expected payoff,
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he is compensated for these changes. The ex ante utility of agent i does not depend

on others’ strategies. This guarantee makes the mechanism attractive to any risk- or

ambiguity-averse agent, or to any agent who is struggling to predict others’ strategies.

The property of no ex ante externalities on any individual agent guarantees the social

outcome to be efficient in any Bayesian Nash equilibrium (i.e., full efficient imple-

mentation). Since truthful reporting is always an option, in any equilibrium the ex

ante utility of each agent is at least as great as his ex ante efficient payoff. The total

utility of all the agents is at least as great as the total ex ante efficient payoff. Since

the mechanism is ex post budget-balanced, the total payoff of all the agents is ex ante

efficient, and so is the social outcome.

The property of no ex ante externalities on any individual agent also ensures that the

mechanism is coalition-proof: it is not profitable for any coalition to misreport. Since

agents outside the coalition report truthfully, each of those agents is guaranteed to

receive his ex ante utility. Thus, the coalition is the residual claimant of the total

payoff, which is maximized at truthful reporting.

The social planner treats the agents’ reports sequentially, and the agents know that

sequence in advance. The payment which agent i receives from reporting his type,

is equivalent to the expected payoff of all the other agents; that payoff is estimated

conditional on the reports of agents located before i in the sequence and assuming

that agents after i report truthfully. The incentives to report truthfully thus lie

between those of the VCG and AGV mechanisms. In some environments, the solution

concept for the truthful equilibrium in the current mechanism similarly lies between

the weak dominance of VCG and the Bayesian Nash equilibrium of AGV. Assuming

that any misreport causes inefficiency in the social choice, truthful reporting becomes

a uniquely interim correlated rationalizable strategy (as in Dekel, Fudenberg and

Morris (2007), and Battigalli et al. (2011)). The last agent strictly prefers to report

truthfully regardless of his beliefs about others’ reports. Knowing that, the next-to-
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last agent strictly prefers to report truthfully as well. By induction, all the agents

have truthful reporting as their uniquely rationalizable strategy.

The mechanism has other features. The planner treats agents’ reports in a certain

order, that order determines the monetary transfers to each agent from the mecha-

nism; however, the interim utility of each agent does not depend on the order. The

mechanism can be made symmetric by uniformly choosing an order in which the

agents’ reports are revealed. Indeed, since the mechanism works for any arbitrary

deterministic ordering of the agents, it works for random ordering as well. In the

resulting symmetric mechanism, each agent pays the externalities that other agents

impose on him, and gets paid the Shapley value of the externalities that his report

imposes on others. In addition, under certain assumptions, the mechanism can be

adjusted to satisfy interim participation constraints.

The paper is organized as follows. Section 2 discusses the relevant literature. Sec-

tion 3 builds the direct mechanism and shows that truthful reporting is incentive

compatible and is the uniquely rationalizable strategy. Section 4 shows the main

properties of the mechanism: ex ante removal of externalities, coalition proofness

and full implementation. Section 5 discusses the issues related to agents’ ordering

in the mechanism. Section 6 discusses the sequential version of the mechanism, and

points out limitations of the mechanism. In the Appendix the problem of interim

participation constraints is covered.

2 Literature review

The idea of internalizing the externalities in an efficient mechanism has given rise

to the classic Vickrey–Clarke–Groves (VCG) and d’Aspremont–Gerard-Varet (AGV)

mechanisms. In the VCG mechanism, which was introduced by Vickrey (1961),

Clarke (1971), and Groves (1973), each agent is paid the externalities that his re-
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port imposes on other agents. As a result, truthful reporting is a weakly dominant

strategy. The AGV mechanism from the paper by d’Aspremont and Gerard-Varet

(1979) uses a similar approach: each agent is paid the expected externalities that his

report imposes on other agents. The payment is made budget-balanced by taking

it from the other agents with equal shares. As a result, the AGV mechanism is ex

post budget-balanced, though the solution concept is weaker: truthful reporting is

Bayesian incentive-compatible, rather than weakly dominant.

Crémer and Riordan (1985) design a mechanism in which agents report their types

sequentially. The first agent reports his type publicly, and all other agents can con-

dition their reports on his report. Crémer and Riordan show the existence of budget-

balanced monetary transfers, which make truthful reporting a weakly dominant strat-

egy for all agents except the first one, and a Bayesian incentive-compatible strategy

for the first agent. However, the mechanism by Crémer and Riordan is not coalition-

proof. Moulin (1999) designs a sequential mechanism for sharing the production cost

of a certain commodity among several agents. In the mechanism the agents sequen-

tially report their preferences for the commodity, and then each agent is asked to pay

the incremental cost of production, which has occurred due to his report. The mech-

anism by Moulin is coalition-proof, although it may not be efficient. In comparison,

the mechanism described in the current paper achieves all the properties of coalition-

proof full efficient implementation, and it works regardless of agents reporting their

types sequentially or simultaneously.

The mechanisms in Samuelson (1985) and Cramton, Gibbons, and Klemperer (1987)

perform similarly to the Coase theorem. These works consider environments where

the agents have property rights to an asset and trade these rights through efficient

mechanisms. The fact that each agent owns a share of the asset imposes participation

constraints and makes it impossible to always reach the efficient allocation of property

rights. The authors find the conditions on the initial shares under which efficiency is
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achieved. In contrast, my paper builds a mechanism in which each agent is guaranteed

to get his ex ante efficient payoff from the social outcome, which is similar to owning

an initial share of an asset. When reporting their types, agents change their efficient

payoffs and compensate each other for those changes. Since there is no participation

constraint, the mechanism always achieves efficiency.

Another series of papers studies the problem of collusion in mechanism design. Laffont

and Martimort (1997, 1998, 2000) consider the environment with two agents and

show the optimal outcome to be collusion-proof in the case of independent types.

The paper by Che and Kim (2006) extends the model to an arbitrary number of

agents and a more general environment with object allocation. Che and Kim show

that any incentive-compatible, individually rational mechanism can be adjusted to be

collusion-proof in the case where the grand coalition is formed. With an additional

requirement of ex post incentive compatibility, the same result holds if a subgroup

of agents can form a coalition and the principal knows at least two agents in the

subgroup. In another paper on auctions, Che and Kim (2009) show that with passive

beliefs and the assumption of impossibility of forming the grand coalition, the seller

can achieve the same revenue as in the case of no collusion. In comparison, I consider

the problem of achieving efficiency, rather than profit maximization, and do not

impose participation constraints. Another difference is that I construct a mechanism

where agents directly compensate each other for the pairwise, rather than aggregate,

externalities. This mechanism is resistant to any coalition, despite the entire coalition

behaving as a single player. It is essential for the mechanism in this paper (as well as

in the papers by Laffont and Martimort, and Che and Kim), that the social planner

has correct beliefs about the agents’ type distribution.

The problem of different aspects of the mechanism with collusion has been studied

more extensively in auctions. McAfee and McMillan (1992) show that the inability

of the cartel members to pay each other reduces their payoffs. Che, Condorelli and
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Kim (2013) show that in this case the seller is not hurt by the possibility of collusion.

Erdil and Klemperer (2011) propose a new class of payment rules to make the agents

less willing to submit non-truthful bids if they are colluding. Biran and Forges (2011)

consider the stability of a collusion in auctions with respect to externalities that the

each bidder who gets the object may impose on others. Chen and Micali (2012) allow

the agents to report not only their value but also the coalition to which they belong.

If several agents consistently report being in the same coalition, and one of them

wins the good and has to pay, the bids of other coalition members do not increase the

payment; this feature induces the agents to reveal that they belong to a coalition.

An independent branch of literature is devoted to full implementation: it considers

mechanism design in which all equilibria achieve the desired social outcome. In the

environment with observable types, the Maskin monotonicity condition (described in

Maskin (1998)) is necessary and essentially sufficient for full implementation. This

condition is extended to environments with incomplete information in Postlewaite

and Schmeidler (1986); and then extended in environments with agents having ex-

clusive information to the Bayesian monotonicity condition in Palfrey and Srivastava

(1989). The condition of Bayesian monotonicity is generalized to environments with

externalities in Jackson (1991). The idea is that for any undesirable outcome, there

is an agent who can credibly inform the designer if this outcome is being played and

get rewarded. However, a non-direct mechanism is needed for this communication

to be possible. Matsushima (1993) shows that with quasilinear preferences and side

payments the Bayesian monotonicity can be replaced with much weaker condition,

which is satisfied for a generic class of social outcomes. This result is further de-

veloped by Chen, Kunimoto and Sun (2015) where only small transfers are needed

for full implementation. A recent paper by Ollár and Penta (2017) shows that full

implementation is achieved by using transfer schemes which only elicit payoff-relevant

information. In their paper, the mechanism designer uses moment conditions, com-

monly known to both the designer and the agents, and makes truthful reporting the
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uniquely rationalizable strategy. The results by Ollár and Penta hold under both

private and interdependent values, in addition, their result on unique rationalizable

implementation still holds even if one weakens the restrictions of the common prior

assumption, or the designer’s knowledge of the distribution of types, or of agents’

beliefs.

3 Mechanism

I consider a setup with n agents, denoted as i ∈ {1, ..., n}, with −i standing for the

set of all agents other than i. Each agent i has a privately observed type θi ∈ Θi,

with overall type profile denoted by θ. Each set Θi lies in a Euclidean space Rni

with finite ni; each space Rni is endowed with a Borel sigma-algebra, and each set

Θi is a measurable compact set in Rni . Types θi are independently distributed across

the agents, and the ex ante distribution of types is publicly known. A set of social

outcomes S is a Borel-measurable compact set in a Euclidean space RS. Each social

outcome s ∈ S gives agent i a payoff of ui(θi, s), the function ui(θi, s) is continuous

in both variables. That is, the setup is characterized by independent private values.

There is an efficient social choice function s∗(θ) that maximizes the sum of agents’

payoffs
∑

i ui(θi, s) given θ, and s∗(θ) is assumed to be measurable. The payoff of

agent i at the efficient outcome s∗(θ) is denoted by ui(θ).

I allow for monetary transfers and assume that the agents have quasilinear preferences:

if agent i receives monetary transfer of size xi, his total utility is equal to ui(θi, s)+xi.

Later in the paper, I will refer to the “payoff” as the payoff ui(θi, s) from the social

outcome, and to the “utility” as the payoff plus monetary transfers. A social planner

commits to an efficient mechanism: each agent i reports his type θ̂i, and then the

social planner chooses s∗(θ̂) as a function of the total report profile θ̂. The goal of

the social planner is to find transfers xi(θ̂), to induce agents to report truthfully. The
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VCG and AGV mechanisms achieve this goal by making all agents report their types

simultaneously, and compensating each agent for the aggregate externality that his

report imposes on others.

Definition 1 In the VCG mechanism, the monetary transfer to each agent i is

xV CGi (θ̂) =
∑
k 6=i

uk(θ̂)−max
s∈S

∑
k 6=i

uk(θ̂k, s)

That is, agent i receives a (non-positive) monetary transfer equal to the externality

that i imposes on all other agents.

Definition 2 In the AGV mechanism, the net monetary transfer to agent i is:

xAGVi (θ̂) = Eθ−i

∑
k 6=i

uk(θ̂i, θ−i)−
∑
j 6=i

1

n− 1
Eθ−j

∑
k 6=j

uk(θ̂j, θ−j)

Each agent i gets paid the expected externality his report imposes on other agents.

The AGV mechanism is ex post budget-balanced.

The VCG and AGV mechanisms are incentive compatible, however, they are both

susceptible to coalitional deviations (Section 3.1). I will now introduce new transfers,

which will achieve coalition-proofness. First, the agents are arbitrarily ordered into a

sequence 1, 2, 3, ..., n, which is publicly known before the agents start reporting their

types. Second, the agents simultaneously submit their reports.

Definition 3 Agent i’s strategy is a Borel-measurable function σi: Θi −→ ∆(Θi)

that determines his report θ̂i as dependent on his true type θi. Agent i reports truth-

fully, if σi(θi) ≡ θi, ∀θi.

For any agent j, one can estimate j’s expected payoff, given the reports of agents

1, ..., i− 1, and taking expectation over the reports of agents i, ..., n:
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Eθi,...,θn [uj(θ̂1, ..., θ̂i−1, θi, ..., θn)]. Respectively, the mechanism prescribes every other

agent j 6= i to pay i the marginal change in j’s expected payoff which is caused by i’s

report:1

Definition 4 Given the total submitted report to be θ̂, each agent j 6= i pays agent

i the change in expectation of j’s payoff, caused by report θ̂i:

xij(θ̂) ≡ Eθi+1,...,θn [uj(θ̂1, ..., θ̂i−1, θ̂i, θi+1, ..., θn)]−Eθi,θi+1,...,θn [uj(θ̂1, ..., θ̂i−1, θi, θi+1, ..., θn)]

The net monetary transfer to agent i is

xi(θ̂) =
∑
j 6=i

(
xij(θ̂)− xji(θ̂)

)

Since the payment xij(θ̂) depends only on reports of agents 1, ..., i, I will sometimes

use either the notation xij(θ̂) = xij(θ̂1, ..., θ̂i), or simply xij when there would be no

confusion. This payment xij can be negative (i.e., agent j receives a positive transfer

from agent i) if i’s report causes negative changes in the expectation of payoff uj.

Such pairwise transfers xij are made for the report of each agent i, and from each

agent j 6= i. Thus, any two agents exchange monetary transfers between themselves

according to the pairwise marginal externalities they impose on each other.

Lemma 1 The mechanism is ex-post budget balanced: for any θ̂,
∑

i xi(θ̂) = 0.

Proof.∑
i

xi(θ̂) =
∑
i

∑
j 6=i

(
xij(θ̂)− xji(θ̂)

)
=
∑
i,j,i6=j

(
xij(θ̂)− xji(θ̂)− xij(θ̂) + xji(θ̂)

)
= 0

1These transfers can be made either immediately after agent i’s report, or at the end, after all

the agents have submitted their reports.
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3.1 Example

In this section I demonstrate how the new mechanism works and that it achieves

coalition-proofness, unlike the VCG and AGV mechanisms. Assume there are three

agents {1, 2, 3} that live in a city, with agents 1, 3 living close to each other. The

social planner can build a new park for either agents 1, 3, or for agent 2. She can

build only one park, and at a zero cost. Each agent i has one of two types L or H,

with Prob(θi = H) = Prob(θi = L) = 1
2
, for all i. The payoff from having the park

for each agent equals 8 if the agent’s type is L, and 20 if the agent’s type is H; the

payoff from not having a park is zero.

The efficient social choice is to build the park for agent 2 if agents’ type profile is

(θ1, θ2, θ3) = (L,H,L), and to build the park for agents 1, 3 otherwise. The vector of

agents’ efficient payoffs (u1, u2, u3) is represented in Table 1 below as dependent on

type profile θ:

(θ1, θ3)\θ2 L H

L,L 8,0,8 0,20,0

L,H 8,0,20 8,0,20

H,L 20,0,8 20,0,8

H,H 20,0,20 20,0,20

Table 1. Efficient payoffs.

In this example neither the VCG nor AGV mechanism is resistant to group deviation:

agents 1, 3 can form a coalition and their total utility increases if they misreport their

types - that is, it is possible for them to pay each other so that each benefits from

misreporting. In the VCG mechanism, if agents 1, 3 have type L each, they can both

report H: their chance of having the park increases from 1/2 to 1, and none of them

will have to pay any monetary transfers since none of them is pivotal.2 Similarly,

2In fact, such reports constitute an inefficient equilibrium: agents 1, 3 report H, while agent 2
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in the AGV mechanism (Definition 2), if agents 1, 3 have types L each, and agent

2 reports truthfully, if agents 1, 3 submit reports θ̂1, θ̂3 = L,H, rather than truthful

reporting, their expected (over 2’s report) total utility increases from −1 to 5.5.

Now let’s find transfers in the new mechanism. Let the planner order the agents in

the following sequence: {1, 2, 3}, and consider all agents to report low types. Before

the reports, the social planner estimates the agents’ ex ante efficient payoffs by taking

the average across all eight cells from Table 1: Eθ[u1, u2, u3](θ) = (13, 2.5, 13). After

agent 1 reports type θ̂1 = L, the updated expected payoffs of agents are average

across the first two rows of Table 1: Eθ−1 [u1, u2, u3](θ1 = L, θ−1) = (6, 5, 12). By

Definition 4, the pairwise transfer to agent 1 from each of agents j = 2, 3 is the

change in j’s expected payoff: x12(θ̂1 = L) = 5− (2.5) = 2.5, x13(θ̂1 = L) = 12−13 =

−1. After agent 2 reports θ̂2 = L, the updated expected payoffs of agents will be:

Eθ3 [u1, u2, u3](θ1 = L, θ2 = L, θ3) = (8, 0, 14). The pairwise transfers to agent 2 are

the marginal changes in expected payoffs of agents 1, 3: x21(θ̂1 = L, θ̂2 = L) = 8−6 =

2, x23(θ̂1 = L, θ̂2 = L) = 14 − 12 = 2. Afterwards, agent 3’s report does not affect

the expected payoffs of other agents, and x31 = x32 = 0.

The pairwise transfers x12, x13, x21, x23, x31, x32 can be thus calculated for all reports

θ̂:

(θ̂1, θ̂3)\θ̂2 L H

L,L 2.5,-1,2,2,0,0 2.5,-1,-2,-2,-4,10

L,H 2.5,-1,2,2,0,0 2.5,-1,-2,-2,4,-10

H,L -2.5,1,0,0,0,0 -2.5,1,0,0,0,0

H,H -2.5,1,0,0,0,0 -2.5,1,0,0,0,0

Table 3. Pairwise transfers in the new mechanism.

With such monetary transfers, if agents 1, 3 have types θ1 = θ3 = L, and assuming

reports truthfully.
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that agent 2 reports truthfully, then the total expected utility of 1, 3 is maximized

if they both report truthfully (unlike in VCG or AGV). The total utility of agents

1, 3 is U1,3 ≡ u1 + u3 + x12 − x21 − x23 + x32. If agents 1, 3 report truthfully, their

total expected utility (over 2’s report) is 15.5. If agent 1 reports θ̂1 = H, then

U1,3 = u1 + u3 + x12 = 13.5. Similarly, let agent 1 report θ̂1 = L, and agent 3 report

θ̂3 = H. Then the expected utility of agents 1, 3 equals 13.5, which is still smaller

than the utility of truthtelling.

There is a general way to show that any misreporting by agents 1, 3 is not beneficial to

them as a group. Regardless of the joint strategy of agents 1, 3, the utility of truthful

agent 2, U2 ≡ u2 − x12 + x21 + x23 − x32, in expectation over θ2, equals 2’s ex ante

efficient payoff of 2.5. For example, if agents 1, 3 report their types to be θ̂1 = θ̂3 = L,

then with probability 1/2 agent 2 has type θ2 = L (θ2 = H), and 2’s total utility is

U2 = 1.5 (U2 = 3.5). The average is 2.5. Since agent 2 has his utility equal to his

ex ante efficient payoff (when reporting truthfully), and the mechanism is budget-

balanced, agents 1, 3 as a group become the residual claimants of the total payoff

and suffer from misreporting. Moreover, each of agents 1, 3 can also guarantee his

ex ante efficient payoff by reporting truthfully (Section 4), thus leaving no profitable

deviations for any group.

Note that the current mechanism has similarities with the sequential mechanism by

Cremer and Riordan (1985): in both mechanisms, each agent gets compensated for

either the expected externalities, or the ex post externalities its report imposes on

others. However, the mechanism of Cremer and Riordan considers aggregate rather

than pairwise externalities, and does not achieve coalition-proofness: in the example,

the transfer to agent 2 is u1(θ̂) + u3(θ̂) − Eθ2,θ3 [u1 + u2 + u3](θ̂1, θ2, θ3), the transfer

to agent 3 is u1(θ̂) + u2(θ̂)−Eθ2,θ3 [u1 + u2 + u3](θ̂1, θ2, θ3). Let agent 1 report type L.

If agents 2, 3 have types θ2, θ3 = H,L, then their total utility will strictly increase if

they misreport both their types to be high; and the social choice will change. Such a
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deviation is not profitable under the new mechanism.

3.2 Incentive compatibility and rationalizability

The transfers given by Definition 4 have the following property:

Lemma 2 For any agent i and reports θ̂1, ..., θ̂i−1, if agent i reports truthfully, every

agent j 6= i expects to pay zero to agent i, over i’s report: Eθi [xij(θ̂1, ..., θ̂i−1, θi)] = 0.

Proof.

The amount xij that agent j 6= i pays agent i is

Eθi+1,...,θn [uj(θ̂1, ..., θ̂i−1, θ̂i, θi+1, ..., θn)]− Eθi,θi+1,...,θn [uj(θ̂1, ..., θ̂i−1, θi, θi+1, ...θn)]

If one substitutes i’s true type θi for his report θ̂i and takes the expectation over i’s

type, the value of j’s payment to agent i becomes zero. In other words, agent j pays

i the change in j’s expected payoff caused by i’s report, and that change has to be

zero in expectation by the law of iterated expectations. Q.E.D.

The mechanism with transfers given by Definition 4 is incentive compatible: if all

agents but i report truthfully, then agent i prefers to report truthfully as well.

Proposition 1 For any report θ̂1, ..., θ̂i−1, any pair of types θi, θ̂i ∈ Θi and given

that all agents j > i report truthfully, one has:

Eθi+1,...,θn

[
ui(θi, s

∗(θ̂1, ..., θ̂i−1, θi, θi+1, ..., θn)) + xi(θ̂1, ..., θ̂i−1, θi, θi+1, ..., θn)
]
≥

Eθi+1,...,θn

[
ui(θi, s

∗(θ̂1, ..., θ̂i−1, θ̂i, θi+1, ..., θn)) + xi(θ̂1, ..., θ̂i−1, θ̂i, θi+1, ..., θn)
]

Proof.
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Since all agents j > i report truthfully, due to Lemma 2, agent i expects to pay zero

to each of them. Thus, agent i’s report affects only pairwise transfers xik made to

him, and his expected payoff from the social outcome, which sum up to∑
k 6=i

xik(θ̂1, ..., θ̂i−1, θ̂i) + Eθi+1,...,θn [ui(θi, s
∗(θ̂1, ..., θ̂i−1, θ̂i, θi+1, ..., θn))] =

=
∑
k 6=i

Eθi+1,...,θn [uk(θ̂1, ..., θ̂i−1, θ̂i, θi+1, ..., θn)]−
∑
k 6=i

Eθi,θi+1,...,θn [uk(θ̂1, ..., θ̂i−1, θi, θi+1, ...θn)]+

+Eθi+1,...,θn [ui(θi, s
∗(θ̂1, ..., θ̂i−1, θ̂i, θi+1, ..., θn))]

The first and the third terms sum up to the total expected payoff across all the agents,

which is maximized if i reports truthfully. The second term does not depend on i’s

report, because an expectation over θi is taken. Q.E.D.

Under the following assumption, which requires that any individual misreport de-

creases the total payoff, it will be shown that truthful reporting is a uniquely ratio-

nalizable strategy in this mechanism:

Assumption 1 For any agent i, any type profile θ−i, and any two types θi 6= θ′i:∑
j 6=i

uj(θj, s
∗(θ−i, θi)) + ui(θi, s

∗(θ−i, θi)) >
∑
j 6=i

uj(θj, s
∗(θ−i, θ

′
i)) + ui(θi, s

∗(θ−i, θ
′
i))

I use Assumption 1 only for the remainder of this section, and do not require it

anymore in the next sections. While the Assumption is restrictive, it holds in some

applications, for example, in some problems of efficient choice of quantity of public

good. More generally, Assumption 1 holds in the problems that satisfy ”strict” version

of ”single-crossing condition with public concavity” (SCC-PC), described in the paper

by Ollár and Penta (2017): for each i, the type set Θi is a compact subset on a real

line R, the set of social outcomes S is a compact set in R, the payoff function ui(θi, s)

is twice continuously differentiable with ∂2ui(θi,s)
∂θi∂s

> 0, ∂
2ui
∂2s

< 0, and the allocation rule
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is linear: s∗(θ) =
∑

i αiθi with αi > 0 for all i. An example of such an environment

is when agents have quadratic valuations.

I use the concept of interim correlated rationalizability (ICR) from Dekel, Fudenberg

and Morris (2007), and Battigalli et al. (2011). Agents’ ex ante type distribution is a

common knowledge, therefore, I restrict analysis to the payoff types of agents (that is,

θi for each agent i). Each type θi forms a set of measurable conjectures σθi(θ−i)[θ̂−i]

over the report θ̂−i of the other agents, dependent on their type profile θ−i. The ex

ante distribution of type profile θ−i is denoted by a measurable function f−i(θ−i).

For each θi and σθi(θ−i), i’s best-response correspondence consists of reports θ̂i that

maximize i’s expected utility:

BRθi(σθi(θ−i)) ≡

argmax
θ̂i∈Θi

∫
Θ−i×Θ−i

[
ui(θi, s

∗(θ̂i, θ̂−i)) + xi(θ̂i, θ̂−i)
]
dσθi(θ−i)[θ̂−i]df−i(θ−i)

where the integral is taken over all possible pairs (θ−i, θ̂−i) ∈ Θ−i ×Θ−i.

For each set T−i ∈ Θ−i, σθi(θ−i) is called consistent with T−i, if σθi(θ−i) assigns

probability 1 to the event θ̂−i ∈ T−i (if T−i is not measurable, then instead, σθi(θ−i)

would assign probability 1 to the event θ̂−i ∈ T ′−i for some measurable T ′−i ⊆ T−i).

ICR consists of an iterated deletion procedure in which, for each type θi, a report θ̂∗i

survives the k-th round of deletion if and only if it can be justified by a conjecture

that is consistent with the previous round of deletion:

Definition 5 (ICR-Rationalizability) For each i and θi, let R0
i (θi) = Θi, and

for each k = 1, 2, ..., let Rk−1
−i ({θj}j 6=i) = ×j 6=iRk−1

j (θj), and let Rk
i (θi) =θ̂

∗
i :

there exists a measurable σθi : Θ−i → ∆(Θ−i) such that

(1)∀θ−i, σθi(θ−i) is consistent with Rk−1
−i (θ−i) : supp(σθi(θ−i)) ⊆ Rk−1

−i (θ−i)

(2) θ̂∗i ∈ BRθi(σθi(θ−i))


and let Ri(θi) ≡

⋂
k≥0R

k
i (θi)
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That is, agent i allows for correlation between reports of other agents, however, agent

i keeps the ex ante belief in the (independent) distribution of others’ types.

Proposition 2 In the mechanism with transfers given by Definition 4, under As-

sumption 1, for any i and θi, Ri(θi) = {θi}.

Proof.

The social planner orders the agents in a sequence 1, ..., n. The total amount of the

pairwise transfers paid to agent n when n’s report is revealed, is:∑
k 6=n

[uk(θ̂1, ..., θ̂n−1, θ̂n)− Eθnuk(θ̂1, ..., θ̂n−1, θn)]

The second term does not depend on agent n’s report, θ̂n. The first term together

with n’s payoff from the social choice, causes agent n’s utility to be equal to the

total payoff of all the agents from the social choice. Take any two types θn 6= θ′n,

and consider agent n of type θn misreporting to be θ′n. By Assumption 1, for each

report θ̂−n of other agents, the misreport of θ′n causes the total payoff of all agents

to decrease by a strictly positive amount y(θ̂−n) > 0, dependent on θ̂−n. Since s∗(θ)

is measurable, so is y(θ̂−n), and thus, for any conjecture µn of agent n over others’

report θ̂−n, the expected value of y is positive, and so is the expected loss of agent n

from misreport. Thus, agent n does not want to misreport for each of his type.

Now let’s look at agent n − 1. Since agent n reports truthfully, and agent n − 1

believes θn to have its ex ante distribution, agent n− 1 expects to pay zero to agent

n (Lemma 2). Thus, report θ̂n−1 affects only the transfers made to agent n− 1 at the

stage when the planner reveals n− 1’s report. These transfers equal to:∑
k 6=n−1

[Eθn [uk(θ̂1, ..., θ̂n−2, θ̂n−1, θn)]− Eθn−1,θn [uk(θ̂1, ..., θ̂n−2, θn−1, θn)]]

Report θ̂n−1 affects only the first term, which, together with agent n − 1’s payoff

from the social choice, makes his utility equal to the total expected payoff of all the
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agents. Similar to the case of agent n, one can show that for each type θn−1 and each

conjecture µn−1, if agent n−1 misreports his type to be θ′n−1 6= θn−1, he will expect to

suffer a strictly positive loss. Thus, agent n− 1 has a unique best strategy to report

truthfully.

Similarly, all agents 1,...,n − 2 can each be shown to have truthful reporting as the

only interim correlated rationalizable strategy as well. Q.E.D.

Note that one needs the assumption of independent private values for Proposition 2:

private values ensure that the payoff ui of each agent i does not depend on θ−i and

does not depend on whether the reports of agents 1, ..., i − 1 were truthful or not;

while independence allows i’s expected payoff to be independent from truthful reports

of agents i + 1, ..., n. On the contrary, with correlated types, agents’ beliefs about

each other’s types would differ from those of the social planner, and the transfers in

the mechanism, that are built according to the planner’s beliefs, would not induce

truthtelling. In particular, the mechanism is not ex post incentive compatible, as

shown in the example below.

Consider a public good problem with two agents 1,2 with quadratic valuations: agents’

types θ1, θ2 are i.i.d., and are uniformly distributed on [0, 1], and the payoff function

of agent i is ui(θi, s) = −(θi − s)2. The efficient social choice is s∗(θ) = θ1+θ2
2

, with

payoffs u1(θ) = u2(θ) = − (θ1−θ2)2

4
. The ex ante payoff of each agent Eθui(θ) =

Eθ[− (θ1−θ2)2

4
] = − 1

24
, while after the report θ̂1 of agent 1, the expected payoff of each

agent Eθ2ui(θ̂1, θ2) = 1
4
(−θ̂2

1 + θ̂1− 1
3
). Respectively, the monetary transfer from agent

2 to agent 1 is x12(θ̂1) = Eθ2u2(θ̂1, θ2)−Eθu2(θ) = 1
4
(−θ̂2

1 + θ̂1− 1
6
), while the monetary

transfer from 1 to 2 is x21(θ̂) = u1(θ̂)− Eθ2u1(θ̂1, θ2) = 1
2
θ̂1θ̂2 − 1

4
θ̂1 − 1

4
θ̂2

2 + 1
12

.

The payoff from the social choice for agent 1 is equal to u1(θ1, s
∗(θ̂)) = −(θ1− θ̂1+θ̂2

2
)2.

The total utility of agent 1 from report θ̂ is u1(θ1, s
∗(θ̂)) +x12(θ̂1)−x21(θ̂), and if one

considers terms that contain θ̂1, one gets in total −1
2
θ̂2

1 + 1
2
θ̂1 + θ1θ̂1 − θ̂1θ̂2. If agent

1 does not observe 2’s report θ̂2, and believes 2 to report truthfully, in expectation
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θ̂2 = 1
2
, which reduces the expression above to −1

2
θ̂2

1 + θ1θ̂1, with truthful report

θ̂∗1 = θ1 being optimal for agent 1. However, if 1 knows 2’s report θ̂2, 1’s optimal

report becomes θ̂∗1 = θ1 + (1
2
− θ̂2). The additional term of 1

2
− θ̂2 makes agent 1

misreport his type in the “opposite” direction compared to 2’s report: this would

make the planner to overestimate the negative externalities 2’s report imposes on 1,

thus reducing the transfer x21 agent 1 has to pay.

Since the mechanism is not ex post incentive compatible, the result in Proposition 2

cannot be extended to belief-free rationalizability (Battigalli et al., 2011). In addition,

and as discussed in Section 6, the reporting in the mechanism can be made sequential.

In that case, the truthful reporting would be Bayesian incentive compatible, but not

uniquely interim sequentially rationalizable (Penta, 2012) nor uniquely (belief-free)

backwards rationalizable (Penta, 2015).

4 Properties of the mechanism

In this section I show the main property of the mechanism, later referred to as ex

ante removal of externalities (here and later I do not require Assumption 1 that was

used to show Proposition 2), for each agent i:

Theorem 1 In the efficient mechanism with transfers given by Definition 4, the

truthful strategy of agent i: σi(θi) ≡ θi guarantees him his ex ante efficient payoff, in

expectation over type θi, regardless of others’ reports:

∀θ̂−i, Eθi [ui(θi, s∗(θi, θ̂−i)) + xi(θi, θ̂−i)] = Eθui(θ).

Note that Theorem 1 allows all agents except for i to coordinate their reports, still

they cannot affect i’s expected utility.

Proof.
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The social planner “reveals” agents’ reports one by one, in the order 1, ..., n. After

the reports of agents 1, ..., j are revealed, the current expected payoff of agent i is

Eθj+1,...,θn [ui(θ̂1, ..., θ̂j, θj+1, ..., θn)], while the current transfer to agent i (that is, a

sum of transfers to/from agent i as determined by the reports of agents 1, ..., j) is

−
∑

k≤j xki if j < i, or is −
∑

k≤j,k 6=i xki +
∑

k 6=i xik if j ≥ i. Let’s show that the

total current utility of agent i—sum of i’s current expected payoff, and i’s current

transfer—does not change with the report of any agent m 6= i, and does not change

in expectation over the truthful report of agent i.

Indeed, when the report of agent m 6= i, θ̂m, is revealed, i’s current expected payoff

changes from Eθm,...,θn [ui(θ̂1, ..., θ̂m−1, θm, ..., θn)] toEθm+1,...,θn [ui(θ̂1, ..., θ̂m, θm+1, ..., θn)],

however, i pays back that change to m through xmi. In other words, i always com-

pensates the other agents for the change in his payoff, and thus, their reports (joint or

not) cannot affect i’s total current utility. When i’s report is revealed, due to Lemma

2, every agent j 6= i pays zero in expectation to i; plus, the change in i’s current

expected payoff, Eθi+1,...,θn [ui(θ̂1, ..., θ̂i, θi+1, ..., θn)] − Eθi,...,θn [ui(θ̂1, ..., θ̂i−1, θi, ..., θn)],

caused by i’s report, is zero in expectation over i’s truthful report. Thus, i’s current

utility does not change in expectation over θi.

Before agents start reporting their types, i’s current utility is Eθui(θ), and so is

i’s current utility after all reports, in expectation over θi: Eθi [ui(θi, s
∗(θi, θ̂−i)) +

xi(θi, θ̂−i)] = Eθui(θ). Q.E.D.

The assumption of independent private values is essential for Theorem 1. With corre-

lated types, there may be agent j who reports before agent i, and who can condition

his report θ̂j on i’s (expected truthful) report, affecting i’s expected utility. With

interdependent values i’s ex post payoff from social choice directly depends on oth-

ers’ types, thus causing pairwise transfers not to properly compensate agent i for the

externalities others impose on him.
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4.1 Coalition-proofness

Theorem 1 shows that any agent can guarantee himself his ex ante efficient pay-

off, regardless of others’ strategies. This allows to extend incentive compatibility

result in Proposition 1 to groups: any group C of agents cannot increase their to-

tal expected utility by misreporting. A joint strategy of agents in C is defined as

a Borel-measurable function σC :
∏

i∈C Θi → ∆
(∏

i∈C Θi

)
, allowing the coalition to

condition reports of all its agents i ∈ C on its entire type profile θC .

Definition 6 A mechanism is coalition-proof, if for any coalition C ⊂ {1, ..., n},

and any joint type profile of its members θC,

Eθ−C

∑
i∈C

[ui(θi, s
∗(θC , θ−C)) + xi(θC , θ−C)] ≥ Eθ−C

∑
i∈C

[
ui(θi, s

∗(θ̂C , θ−C)) + xi(θ̂C , θ−C)
]

Definition 6 implies that the members of coalition C are able to transfer money to

each other; thus a profitable coalitional deviation improves the sum of its members’

utilities, rather than each of its members utilities separately. Coalition C can be

thought of as a single player: the types of its members are a common knowledge

within C; and there is no threat of a subcoalitional deviation. The property of

coalition-proofness from Definition 6 resembles a concept of Strong Nash equilibrium

in Aumann (1959), and Bernheim, Peleg, and Whinston (1987), in which agents in a

coalition coordinate their reports without a risk of a further subcoalitional deviation.

The current paper differs in the presence of privately observed types and monetary

transfers within the coalition.

Theorem 2 The efficient mechanism with transfers given by Definition 4 is coalition-

proof.

Proof.
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Given any type realisation θ−C of agents outside coalition C, and any report θ̂C of

coalition C, one gets the following expression for the total utility of all agents:∑
i∈C

(ui(θi, s
∗(θ̂C , θ−C)) + xi(θ̂C , θ−C)) +

∑
j /∈C

(uj(θj, s
∗(θ̂C , θ−C)) + xj(θ̂C , θ−C)) =

=
∑
i∈C

ui(θi, s
∗(θ̂C , θ−C)) +

∑
j /∈C

uj(θj, s
∗(θ̂C , θ−C))

which holds due to ex post budget balance (Lemma 1). Since each agent j /∈ C

reports truthfully, if one takes expectation over θ−C of the above equation, due to

Theorem 1, j’s expected utility equals his ex ante efficient payoff Eθuj(θ).

Eθ−C

[∑
i∈C

(ui(θi, s
∗(θ̂C , θ−C)) + xi(θ̂C , θ−C))

]
+
∑
j /∈C

Eθuj(θ) =

= Eθ−C

∑
i∈C

ui(θi, s
∗(θ̂C , θ−C)) +

∑
j /∈C

uj(θj, s
∗(θ̂C , θ−C))


The total expected utility of agents in C (first term on left-hand side) is equal to a

total payoff of all the agents (right-hand side), up to a constant. The total payoff is

maximized if coalition C reports truthfully. 3 Q.E.D.

4.2 Full efficient implementation

Theorem 1 guarantees that each agent can get his ex ante efficient payoff. Respec-

tively, in any Bayesian-Nash equilibrium, in which agents’ total report θ̂ is a random

variable dependent on θ, the total payoff of agents is ex ante efficient:

Theorem 3 In any Bayesian-Nash equilibrium: Eθ

[∑
i ui(θi, s

∗(θ̂))
]

=
∑

iEθiui(θ)

3In other words, given any type θC , if agents in C misreport, then this misreport will cause the

expected (over reports of non-collusive agents) total payoff to decrease by X, and, respectively, the

expected utility of C will decrease by X.
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Proof.

In any Bayesian-Nash equilibrium,4 the overall report θ̂ is a measurable function that

depends on θ, according to the total equilibrium strategy profile of all agents, σ. The

ex post total utility of any agent i is equal to ui(θi, s
∗(θ̂))+xi(θ̂). Agent i’s equilibrium

strategy gives him at least as much as his truthful report. Thus, in expectation over

θi, i gets at least his ex ante efficient payoff: Eθi [ui(θi, s
∗(θ̂))+xi(θ̂)] ≥ Eθui(θ). Since

any agent can guarantee to get his ex ante efficient payoff, by taking expectation over

the total profile θ, and taking sum across all agents, one gets

Eθ

[∑
i

(ui(θi, s
∗(θ̂)) + xi(θ̂))

]
≥ Eθ

∑
i

ui(θ)

Since the mechanism is budget-balanced,
∑

i xi(θ̂) = 0, and

Eθ

[∑
i

ui(θi, s
∗(θ̂))

]
≥ Eθ

∑
i

ui(θ)

The total payoff cannot exceed its efficient value, thus the expression above holds

with equality. Q.E.D.

Theorem 3 implies that the total payoff in equilibrium,
∑

i ui(θi, s
∗) reaches its effi-

cient value with probability 1. However, the total payoff can be inefficient conditional

on zero probability events. For example, assume a single-good auction environment

with two agents 1,2. Agent 1 has valuations of either 5 or 10 with probability 1/2-

1/2 each, while agent 2 has valuation 15 with probability 1, and valuation 7 with

probability 0. If agent 1 with valuation 5 misreports his valuation to be 10, there

would be an inefficiency in case of agent 2 having a valuation of 7. However, this is

a zero probability event, thus this misreport does not reduce the expected monetary

transfer of agent 1, making the misreport an equilibrium choice.

4Truthful reporting is a Bayesian-Nash equilibrium, thus the set of equilibria is non-empty.
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5 Ordering of agents

The ordering of the agents’ reports determines the ex post monetary transfers (to-

gether with their utilities). However, the total interim utility of agent i—estimated

after i learnt his type but before the agents announce their types in the mechanism—

does not depend on the ordering:

Proposition 3 In the efficient mechanism with transfers given by Definition 4, for

any agent i and any type θi, under truthful reporting, agent i’s interim utility does

not depend on the ordering.

Proof.

The total utility of agent i is equal to:

ui(θi, s
∗(θ))−

∑
j 6=i

xji(θ) +
∑
j 6=i

xij(θ)

The social choice s∗(θ) does not depend on the ordering, and neither does i’s payoff

ui. Due to Lemma 2, for any j, Eθjxji(θ) = 0. Finally, for each j 6= i, transfer xij(θ)

is equal to:

Eθi+1,...,θn [uj(θ1, ..., θi−1, θi, θi+1, ..., θn)]− Eθi,θi+1,...,θn [uj(θ1, ..., θi−1, θi, θi+1, ...θn)]

Taking expectation over truthful reporting of types θ1, ..., θi−1, one gets

Eθ−i
uj(θi, θ−i)− Eθuj(θ)

that depends only on θi. Q.E.D.

It is possible to make the mechanism symmetric by randomizing over the agents’

orderings:

Corollary 1 The statements of Theorems 1, 2, 3 hold for the symmetric mecha-

nism: Take transfers given by Definition 4 for each ordering of the agents, and take

the average across all orderings.
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In the resulting symmetric mechanism, each agent i receives the following transfer:

xi(θ̂) = Eθui(θ)− ui(θ̂) + (1)

+
m=n−1∑
m=0

m!(n−m− 1)!

n!

∑
j1,j2,...,jm 6=i

[Eθj1 ,...,θjma({θ̂k}k 6=i,j1,j2,...,jm , θ̂i, θj1 , ..., θjm)−

−Eθi,θj1 ,...,θjma({θ̂k}k 6=i,j1,j2,...,jm , θi, θj1 , ..., θjm)]

where θ̂ is the total report submitted, and a(θ) =
∑

i ui(θ) is the efficient total payoff.

The symmetric payment scheme from Corollary 1 has similarities with coalitional

games and the Shapley value (Shapley (1953)). The Shapley value is defined as

follows: In an n-player coalitional game each group S ⊂ n of players is assigned

a value v(S) - the total sum of payoffs that members of S are able to obtain by

cooperation. The Shapley value for player i is:

φi(v) =
∑

S⊂n/{i}

|S|!(|n| − |S| − 1)!

|n|!
(v(S ∪ {i})− v(S))

In other words, the Shapley value gives i his marginal contribution to a random

subcoalition S. The Shapley value describes a way to distribute the total payoff v(n)

between players, and it has nice properties of efficiency, linearity and symmetry.

In this paper, for each group S, one can define the effect of type θS on the total

payoff, that is, one estimates the total expected payoff of all agents, given that types

in S are known: v(S) ≡ Eθ−S

[∑n
j=1 uj(θj, s

∗(θS, θ−S))
]
. With such a value function

v(S), the corresponding Shapley value gives each agent i the marginal externality his

report imposes on the total payoff, conditional on knowing reports of a random group

S ⊂ n/{i}. The scheme from Corollary 1 makes agent i pay the externality that

other agents’ reports impose on his payoff (first line in expression(1)); and get paid

the Shapley value of his report - a marginal externality caused by i’s report θ̂i on the

total payoff, conditional on knowing the types in a random group S = n/{i, j1, ..., jm}.
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6 Conclusion

This paper provides an efficient mechanism with agents having independent private

values and quasilinear preferences. In the mechanism, each pair of agents directly

exchange monetary transfers according to the pairwise externalities they impose on

each other. The transfers internalize the externalities, thereby achieving coalition-

proofness and full efficient implementation.

The reporting is simultaneous in the mechanism, although the reports are treated in

a sequential manner. In fact, the reporting can be made sequential, so that agents

could observe the previous reports before reporting themselves. The sequential re-

porting would change strategies of agents and coalitions, since agents (coalitions)

could condition their reports on previous reports. Nevertheless, it can be shown that

the statement of Theorem 1 holds even if agents submit their reports sequentially and

publicly, and can condition their reports on all previous reports (Safronov, 2016). In-

deed, in the proof of Theorem 1, even if agents that report after i can condition their

reports on i’s report θ̂i, i would still guarantee to get his ex ante efficient payoff if

reporting truthfully. Moreover, with an appropriate definition of strategies and a con-

cept of equilibrium, the proofs of Theorems 2, 3 can be readjusted so that statements

of Theorems hold in the sequential case.

At the same time, the unique rationalizability result from Proposition 2 is not directly

extended to the sequential case. For dynamic games, interim correlated rationaliz-

ability is extended to the concept of interim sequential rationalizability (Penta, 2012),

and for truthful reporting to be a uniquely sequentially rationalizable strategy, the

mechanism would have to be ex post incentive compatible, which is not true. In order

to achieve unique rationalizablity, one would need a new concept, according to which

agent i keeps ex ante beliefs about the types of agents that have not reported yet.

The mechanism requires the type distribution to be common knowledge, which is a
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widely used assumption in the mechanism design literature. This assumption may

seem to be too demanding, according to the Wilson doctrine. However, Crémer

(1996) shows that is generally impossible to have truthful reporting as a weakly

dominant strategy for coalitions, that is, the social planner needs knowledge of types

distribution to achieve coalition proofness. The mechanism in this paper achieves

coalition proofness assuming independent private values; an extension to correlated

types is not straightforward. Crémer and McLean (1988) have studied auctions with

agents having correlated types, they have shown that the auctioneer can use the

correlation to extract full surplus from the agents: each agent would face a lottery

with weights dependent on others’ reports, and the lottery can be adjusted to ensure

truthful reporting. The method developed by Crémer and McLean’s was later used in

other mechanism design papers with correlated types. However, this method requires

that for each agent i, the conditional distribution of others’ types varies enough with

i’s type θi. This requirement is likely to fail when one considers coalitions as players:

the number of possible types for a large coalition C is greater than the number of

type profiles of agents outside the coalition, thus the type profile θ−C outside coalition

C would not vary enough with θC . A new method has to be developed to achieve

coalition-proofness in the case of correlated types.
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A Individual rationality

The mechanism in this paper is coalition-proof, efficient and budget-balanced, how-

ever, it is assumed that agents cannot quit the mechanism. Adding participation con-

straint as another requirement is impossible in general, due to Myerson–Satterwaite

impossibility theorem: if the agents could decide on participation after learning their

types, they might choose to quit.5 Despite the impossibility result, a different ques-

tion may be asked. The current paper extends the property of incentive compatibility

to coalition-proofness. Assuming there exists an incentive-compatible mechanism M

that also satisfies individual rationality, is it possible to repeat the exercise of ex-

tending the incentive compatibility to coalition proofness while preserving individual

rationality? The answer is positive if there is “enough structure” on agents’ types, as

shown below.

I consider the setting by Krishna and Perry (2000). The set of possible social choices S

5By Theorem 1, if the agents decided on participation at the ex ante stage, the mechanism would

be as attractive to each agent as in the first-best case.
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is finite and has k elements. The agents i ∈ {1, ..., n} have independently distributed

private values, with each type θi having a continuous density function, with full

support on a compact and convex subset Θi of Euclidean space Rk. A direct efficient

mechanism M is a pair (s∗, x) of a measurable efficient social choice rule s∗(θ̂) and a

transfer vector x(θ̂), as dependent on the report profile θ̂. Mechanism M is incentive

compatible, if truthtelling is a Bayesian Nash equilibrium in the resulting game.

Proposition 4 If a direct efficient mechanism M is incentive compatible, budget-

balanced, and interim individually rational, then there exists an alternative direct

efficient mechanism M ′, that satisfies all the three properties above, and in addition

satisfies the statements of Theorems 2, 3.

Proof.

Given the efficient rule s∗(θ̂) of mechanism M , one can construct a coalition-proof

mechanism M̂ using transfers from Definition 4, the latter transfers are denoted as

xM̂(θ̂). Since both mechanisms M and M̂ are incentive compatible, by Lemma 1

in Krishna and Perry, there exists a set of type-independent constants {yi}ni=1, such

that for each type θi of agent i, i’s total interim utility in mechanism M differs from

i’s total interim utility in mechanism M̂ by yi. Let’s show that a mechanism M ′,

that has the same efficient rule s∗(θ̂) and transfers xM
′

i (θ̂) = xM̂i (θ̂) + yi, satisfies the

claim of Proposition 4. First, by construction, both M and M ′ give the same interim

utility to each agent, thus M ′ is interim individually rational. Next, i’s ex ante total

utility, Eθ[ui(θi, s
∗(θ)) +xMi (θ)], in mechanism M differs from i’s ex ante total utility

in mechanism M̂ by yi. Since both M, M̂ have the same allocation rule, it has to

be that the ex ante monetary transfer to i, Eθx
M
i (θ), in mechanism M differs from

the one in M̂ by yi. Since both M and M̂ are budget-balanced, this means that∑
i yi = 0, and that mechanism M ′ is (ex post) budget balanced. Finally, adding a

constant transfer yi into mechanism M̂ did not change incentives, thus mechanism

M ′ is incentive compatible, and it satisfies Theorems 2, 3. Q.E.D.
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