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Summary1

When presented with two vowels simultaneously, hu-2

mans are often able to identify the constituent vowels.3

Computational models exist that simulate this abil-4

ity, however they predict listener confusions poorly,5

particularly in the case where the two vowels have6

the same fundamental frequency. Presented here is a7

model that is uniquely able to predict the combined8

representation of concurrent vowels. The given model9

is able to predict listener’s systematic perceptual de-10

cisions to a high degree of accuracy.11

1 Introduction12

Humans demonstrate a significant ability to identify13

and concentrate on specific speakers within a complex14

auditory environment. Whilst this clearly relies on a15

multitude of cues, listeners can still identify both of a16

pair of steady-state vowels, presented simultaneously17

[1]. The concurrent vowel identification (CVI) task18

probes the effect that cues, such as pitch differences,19

have on this recognition [2].20

Many models predicting human performance for21

CVI have been created [3, 4, 5, 6, 7]. The most22

widely accepted models generate segregated represen-23

tations of each vowel by segregating information in24

different frequency regions according to fundamental25

frequencies (F0s) inferred from the model. The seg-26

regated representations are then compared to stored27

templates of individual vowels, to predict the concur-28

rent vowel pair presented.29

Meddis and Hewitt’s model [5] is widely cited as it30

is able to qualitatively predict human improvement31

in vowel identification when pitch differences are in-32

troduced between the vowel-pair. However, when no33

F0 differences are present, it under-predicts the cor-34

rect identifications made by humans in their study35

(human: 57%, model: 37%). Recently, Chintanpalli36

and Heinz [8] further highlighted that although the 37

model qualitatively reproduced the overall improve- 38

ment with F0 differences, it very poorly accounted 39

for the specific confusions made. 40

Even when the F0s of all vowels presented are iden- 41

tical, human CVI performance is greatly above chance 42

[3]. This implies that identification cues beyond pitch 43

differences are utilized that are not well accounted 44

for in existing models. In this identical-F0 scenario, 45

all existing models construct predictions of just indi- 46

vidual vowels being identified by comparing unsepa- 47

rated representations of concurrent vowel pairs with 48

internal templates of individual vowels. Furthermore, 49

to construct predictions of concurrent vowel pairs be- 50

ing identified, either deterministic algorithms are used 51

(e.g. [4, 5, 7, 8]), or probabilistic decisions are made 52

following assumptions of independence (e.g. [3, 6]). 53

Here we explore the consequences of an alterna- 54

tive recognition process, for the important case where 55

there is no F0 difference between vowel pairs. We hy- 56

pothesize that predicting the complete internal repre- 57

sentation of the presented stimulus would be an opti- 58

mal solution to the CVI task, and might produce re- 59

sults in line with human behaviour. Therefore, inter- 60

nal representations should describe concurrent vowel 61

pairs (i.e. retaining dependent information), as op- 62

posed to individual vowels. Our model simulates dif- 63

ferent variants of auditory processing, followed by a 64

naive Bayesian classifier which allows for probabilistic 65

predictions of human decisions and systematic com- 66

parison of different recognition strategies. 67

2 Concurrent Vowel 68

Identification 69

2.1 Stimuli 70

Synthetic vowels (steady-state harmonic complexes) 71

were created using a Klatt-synthesizer [9]. The 72
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formant frequencies and bandwidths matched those73

specified by Chintanpalli and Heinz [8]. The funda-74

mental frequency of all vowels were 100 Hz, and all75

vowels were set to 65 dB SPL. All vowels had a du-76

ration of 400ms (including 10ms on-set/offset raised77

cosine ramps).78

With a total of 5 individual synthetic vowels79

(/i/,/a/,/u/,/æ/,/Ç/) there are a total of 15 unique80

pairwise combinations. The waveforms were added to81

one another to create concurrent vowel pairs.82

2.2 Task83

The CVI task and data are detailed in Chintanpalli84

and Heinz [8]. Five subjects were randomly presented85

one of the 15 concurrent vowel pairs and were required86

to identify two vowels from the set of five (different87

or identical). Each subject responded to 300 trials88

of concurrent vowels with identical F0s. Participants89

had considerable training with individual and concur-90

rent vowel stimuli.91

3 Computational Model92

Our computational model generated ideal-observer93

based predictions of human decisions. For each con-94

current vowel pair a probabilistic distribution of au-95

ditory activity was generated from a simulation of the96

auditory system. This was compared to distributions97

associated with all selectable concurrent vowel pairs,98

or individual vowels as in previous models.99

3.1 Auditory System100

Waveforms of concurrent vowel pairs (/vi, vj/ where101

vi, vj ∈ {i,a,u,æ,Ç}) were bandpass filtered, simulat-102

ing middle and outer ear effects, and then passed to a103

linear cochlear filter bank. This comprised 100 gam-104

matone filters centred at logarithmically spaced fre-105

quencies from 80 to 4000 Hz. Different filter band-106

widths could be implemented, determined from mask-107

ing experiments in humans [10, 11] or guinea-pigs [12].108

The outputs of each filter were then half-wave recti-109

fied. An auditory representation (µij) followed from110

one of two processing pathways:111

• Spectral processing. The logarithm of the112

RMS of each channel was calculated and stan-113

dardised across channels (mean of 0, SD of 1).114

• Temporal processing. An autocorrelation115

function was applied to each channel [6]. These116

were pooled across all channels and then stan-117

dardised as above.118

Independent, normal, zero-mean noise with identical119

variance was then added to each value of this repre-120

sentation. This resulted in a distribution of auditory121

activity (a ∼ N (µij , σ
2I)). The variance was the122

only free parameter in our model.123

3.2 Classification 124

The task of the listeners, and our classifier, was to
determine what stimulus had been presented for all
instances of auditory activity (a). We did this using
a naive Bayesian classifier, which determined regions
of auditory activity (Rk) where a given stimulus class
(Ck) was more probable than any other stimulus class
to have produced said auditory activity (i.e. a ∈ Rk

if k = arg maxi P (Ci|a)). Given the presentation of a
concurrent vowel pair, the probability that our model
predicted a certain stimulus class had been presented
was

P (Ck|/vi, vj/) =

∫
a∈Rk

P (a|/vi, vj/) da (1)

These high dimensional integrals were then evaluated 125

numerically. 126

We modelled two approaches for classification 127

which differed in the stimulus classes used, each pro- 128

ducing a confusion matrix (P (/vx, vy/|/vi, vj/) where 129

vx, vy ∈ {i,a,u,æ,Ç}): 130

• Combined Classes. Each class was a prob- 131

abilistic template describing a combination of 132

vowels. These were constructed by passing con- 133

current vowel pairs through our auditory model. 134

Due to the equivalence of stimuli classes with the 135

stimuli presented, calculating Eq. 1 produced a 136

suitable confusion matrix. 137

• Individual Classes. Each class was a proba- 138

bilistic template describing an individual vowel 139

(calculating Eq. 1 resulted in P (/vz/|/vi, vj/) 140

where vz ∈ {i,a,u,æ,Ç}). To obtain predictions 141

of concurrent vowel pair presentation probabil- 142

ities, individual vowel presentation probabilities 143

were multiplied together. This approach, assum- 144

ing individual vowels are identified independently 145

of one another, was initially proposed in [4]. 146

For each model variant, we selected the variance of 147

the internal noise (σ2; single free parameter) to pre- 148

dict the closest fit to the overall percent of concurrent 149

vowels correctly identified by listeners. 150

Present concurrent vowel waveform
/𝑣𝑖 , 𝑣𝑗/

Auditory system (spectral/temporal)

Add noise

𝝁𝑖𝑗

Classify auditory activity: Eq. 1

𝑅𝑘

𝑃 𝒂 /𝑣𝑖 , 𝑣𝑗/

Determine regions of auditory activity most 

likely to have originated from each class.

Figure 1: A diagram describing our model of CVI.
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Figure 2: A scatter plot comparing the probabili-
ties with which humans predicted concurrent vowel
pairs had been presented, against probabilities pre-
dicted from the combined-class (◦; σ2 = 1.03) and
individual-class (×; σ2 = 1.20) variants of our spec-
tral model. The probabilities of confusing /Ç,Ç/ for
/u,Ç/, and correctly identifying /a,æ/, are indicated.

4 Results151

The model predicts the combined auditory response152

of presented concurrent vowels (section 3.2: combined153

classes). Given this assumption it was able to match154

the mean number of concurrent vowels correctly iden-155

tified by listeners in the absence of any F0 differences156

(73%). More importantly, however, the probabilities157

of individual decisions (i.e. the confusions) predicted158

by our model are acutely similar to those made by159

listeners (Fig. 2, circles), despite the fact that no160

attempt was made to fit the confusions themselves.161

Spectral processing models were best at predicting162

human decision probabilities (r>0.94,p<0.01; r was163

calculated between sets of values, ignoring any ma-164

trix structure). Decisions predicted using temporal165

processing were less accurate (although in all cases166

r>0.86,p<0.01).167

We also considered a model which compared audi-168

tory responses of concurrent vowels to representations169

of individual vowels (section 3.2: individual classes).170

Like similar previously published models, it fails to171

approach the mean number of concurrent vowels cor-172

rectly identified by listeners for any amount of inter-173

nal noise, predicting a maximum value of 42% when a174

temporal pathway was implemented. Additionally the175

probability of individual decisions were poorly corre-176

lated with human data (max r of 0.42,p<0.01).177

The predictions from the best fitting of such mod-178

els (Fig. 2, crosses) are clustered close to 0% and179

100% correct, suggesting that these errors are much180

more specific and confident than those of human lis-181

teners. Consistent with this, the entropy of the de-182

Sp Te Sp Te Sp Te
0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n 

co
ef

fi
ci

en
ts

 (
r) a b c

[11]
[12]
[13]

Figure 3: Correlation coefficients (r) between pre-
dicted confusions for model variants, and listener
confusions. ‘Sp’: Spectral pathway, ‘Te’: Tempo-
ral pathway. [11],[12],[13] are references to different
cochlea filter-shapes. a) Individual classes, b) Com-
bined classes, c) Combined classes with non-linear
cochlear model [13].

cision probabilities, corresponding to their random- 183

ness, was lower for models of individual-class recog- 184

nition (<4.86 bits) than either the human data (5.11 185

bits) or the combined-class recognition model (>5.05 186

bits). Thus, the models of individual-class recognition 187

make more errors than people because they make the 188

wrong decisions consistently, and despite the proba- 189

bilistic nature of the models. 190

The combined-class model which predicted human 191

decisions best used spectral processing, outperforming 192

the temporal representation. Perhaps surprisingly, 193

neither temporal nor spectral processing depended on 194

whether filterbanks were based on human or guinea- 195

pig bandwidth estimates (Fig. 3b). Further investiga- 196

tion revealed that for spectral processing, filters with 197

narrower bandwidths approached human like perfor- 198

mance with more internal noise (Fig. 4, solid lines). 199

This was not the case when using a temporal pathway, 200

in which frequency resolution is not such a constraint 201

(Fig. 4, dashed lines). In contrast, identification from 202

individual classes (Fig. 4, dotted and dash-dotted 203

lines) did not converge on human performance for any 204

amount of internal noise. 205

Finally, we tested a more sophisticated model of 206

the guinea-pig cochlea, which incorporated non-linear 207

filtering and haircell transduction [13]. This pro- 208

duced the same qualitative relationships aforemen- 209

tioned (Fig. 3c). 210

5 Discussion 211

The presented model demonstrated how predicting 212

the complete internal representation of concurrent 213

vowels produces decisions in line with listener be- 214

haviour, when no F0 differences are presented. How- 215



Smith et al., p. 4

0 0.5 1 1.5 2

Internal noise (σ2)

0

20

40

60

80

100
M

ea
n 

%
 C

or
re

ct

[13]

[12]

[11]

Human data
Combined classes (spectral)
Combined classes (temporal)
Individual classes (spectral)
Individual classes (temporal)

Figure 4: (Colour online) Average number of concur-
rent vowels correctly predicted as a function of in-
ternal noise, for variants of our model. [11],[12],[13]
reference different cochlea filter-shapes.

ever, instead assuming individual vowels are identified216

independently of one another (section 3.2: individ-217

ual classes) produced poor estimates of listener con-218

fusions. In fact fitting a confusion matrix in order to219

optimise the correlation coefficient between predicted220

and human confusions, under the constraint that indi-221

vidual vowels are identified independently of one an-222

other, results in a theoretical maximum r of 0.88.223

Assmann and Summerfield [3] explored the effect224

of various transformations to auditory excitation pat-225

terns on predictions of listener CVI data, incorporat-226

ing this assumption of independence. They achieved227

correlations with listener confusions between 0.42 and228

0.71, over 0.25 lower than our best prediction. The229

authors found that emphasising spectral peaks best230

matched their listener data.231

The work promotes the use of an ideal observer type232

model as an initial point to investigate cues beyond233

pitch for the CVI task. The model hints at a pro-234

cess that seeks to optimally predict which concurrent-235

vowel pair led to a corresponding auditory represen-236

tation. Considering where listener behaviour deviates237

most from ‘ideal’ could represent a structured ap-238

proach to extending, and improving the performance,239

of this model.240

6 Conclusion241

A novel computational model predicts human CVI242

behaviour, when vowels have identical pitches. It is243

better at predicting listener’s systematic perceptual244

confusions than existing models, when ideal represen-245

tations of combined speech were implemented. The246

model’s simplicity allows potential extension to more 247

complex scenarios with more identification cues (e.g. 248

F0 differences), and to investigate the possible mech- 249

anisms underlying CVI. 250
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