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I Introduction

“We compare this [input] index with our output index and call any discrepancy ‘productivity’. . .

It is a measure of our ignorance, of the unknown, and of the magnitude of the task that is still

ahead of us.” Griliches (1961, 446)

“As a careful reading of Solow (1956, 1970) makes clear, the stylized facts for which this model was

developed were not interpreted as universal properties for every country in the world. In contrast,

the current literature imposes very strong homogeneity assumptions on the cross-country growth

process as each country is assumed to have an identical. . . production function.”

Durlauf, Kourtellos and Minkin (2001, 929)

It is an unfortunate misconception that the canonical neoclassical growth model simulta-

neously developed by Solow (1956) and Swan (1956) necessarily implies that all economies

in the world, rich or poor, industrialised or agrarian, possess the same production tech-

nology. As the above quotes show there are prominent critics of this assumption while

Solow himself suggested that “whether simple parameterizations do justice to real dif-

ferences in the way the economic mechanism functions in one place or another” was cer-

tainly worth ‘grumbling’ about (Solow, 1986, S23). Nevertheless, the notion that cross-

country empirical analysis should, in case of accounting exercises, adopt or, in case of

regression analysis, aim to arrive at a common capital coefficient of around .3 is deeply

ingrained in the minds of growth economists.

Any doubters to this common technology view (c.f. common long-run equilibrium, com-

mon convergence process and common dynamics) are typically referred to a study by

Gollin (2002) which provides strong evidence that the observed labour share of aggregate

output of around .7 varies only little across a diverse set of countries once mismeasure-

ment of labour income in less developed economies is accounted for. Note that Gollin

(2002) does not conclude that these income shares are identical across countries, but that

his data corrections result in considerable reduction in their variation and that there is

no correlation between income and the remaining differences. Nevertheless, Gollin’s

findings are typically taken to mean that under the reasonable assumption of constant
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returns to scale and the perhaps somewhat less reasonable assumption of perfect compe-

tition cross-country growth and levels accounting exercises can assume a common capi-

tal coefficient of .3 and focus their energies on chipping away at other dimensions of the

‘measure of our ignorance’ (see Caselli, 2005; Hulten, 2010).

In this paper we revisit the issue whether technology is common across countries.1 Using

annual data for the manufacturing sector in 48 developing and developed countries for

1970 to 2002 (UNIDO, 2004) we show in panel time series regressions that technology dif-

ferences are of crucial importance for understanding cross-country differences in labour

productivity and their causes. Our preferred empirical models further emphasise the im-

portance of time-series properties of output, inputs and TFP (Bond, Leblebicioglu and

Schiantarelli, 2010) as well as of accounting for unobserved heterogeneity which man-

ifests itself as cross-country correlations arising from global shocks and local spillover

effects (Chudik, Pesaran and Tosetti, 2011). Like the existing cross-country growth liter-

ature our preferred empirical implementations address concerns over endogeneity and

reverse causality. We find that once these empirical aspects are accounted for we obtain

average technology estimates (capital coefficients) that are close to .3 with favourable

residual diagnostics, whereas if we adopt the common technology assumption the esti-

mates are substantially different from .3 and residual testing indicates serious misspec-

ification. Our conclusion of technology heterogeneity is further supported by formal

parameter homogeneity tests.

A second feature of our study is the focus on manufacturing instead of aggregate econ-

omy data. The central importance of this industrial sector for successful development

has become a widely recognised ‘stylised fact’ in development economics. Yet in contrast

to the literature on cross-country growth regressions using aggregate economy (Durlauf,

Johnson and Temple, 2005) or agriculture data (Mundlak, Butzer and Larson, 2012; Eber-

hardt and Teal, 2013a, and references therein) there is comparatively little empirical work

dedicated to the analysis of the manufacturing sector in a large cross-section of countries

— with the exception of studies on the dual economy model (e.g. Martin and Mitra, 2002;

Eberhardt and Teal, 2013b), and recent work by Dani Rodrik (Rodrik, 2013; McMillan,

1We refer to ‘technology heterogeneity’ to indicate differential production function parameters on observ-
able inputs across countries, with unobservables captured as TFP.
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Rodrik and Verduzco-Gallo, 2014), cross-country empirical analysis at the sectoral level

is typically limited to the investigation of OECD economies (Bernard and Jones, 1996a,b;

Eberhardt, Helmers and Strauss, 2013). If manufacturing matters for development it is

self-evidently important to learn about the production process and its drivers in this in-

dustrial sector.

Our findings have two important implications for productivity analysis both at the sec-

toral and the aggregate economy level: first, like firms in different industries, different

countries are characterised by different production technologies. Attempts at estimating

cross-country production functions in pooled models, where by construction the same

technology is imposed on all countries, are misspecified and yield biased estimates for the

technology parameters and thus any TFP estimates derived from them. Second, merely

allowing for technology heterogeneity is also insufficient to capture the complex pro-

duction process at the country-level: in a globalising world economies interact through

trade, cultural, political and other ties and at the same time are affected differentially

by global phenomena such as the 1970s oil crises or the emergence of China as a major

economic player. This creates a web of interdependencies within and across economies,

leading to the breakdown of crucial assumptions for standard panel estimators employed

in existing cross-country studies. Our empirical strategy accommodates this interplay of

endogeneity, heterogeneity and commonality to provide evidence for the fundamental

forces driving manufacturing development across the globe.

In the following two sections we discuss the challenges and potential solutions to mod-

elling production technology (and TFP) in panel data, focusing on the cross-country

growth literature. There are however at least two separate literatures we need to mention

briefly to avoid a distorted view of existing empirical approaches to the same problem:

first, the spatial econometric literature, with the most relevant contributions the spatially

augmented Solow model (Ertur and Koch, 2007) and a Schumpeterian perspective on

growth and development (Ertur and Koch, 2011), allowing for a more flexible specifica-

tion for TFP evolution. Second, the empirical literature adopting stochastic frontier and

data envelopment methods to analyse efficiency and productivity (going back to Schmidt

and Sickles, 1984). This approach can also accommodate flexible modelling of TFP (in the
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form of αi+λ′i ft as laid out in Section III below; see Lovell, 1996; Kneip, Sickles and Song,

2012), and common technology in groups βg rather than for the entire sample of coun-

tries (Battese, Rao and O’Donnell, 2004).2 Incorporating these empirical approaches in

our analysis would go beyond the scope of our paper. Interested readers are referred to

these papers for an entry point to the respective literatures.

The remainder of the paper is structured as follows: the following Section motivates tech-

nology heterogeneity, nonstationarity and cross-section dependence, Section III lays out

the empirical framework, and discusses econometric identification. Section IV introduces

our data. Regression results are presented in Section V, their implication for productivity

analysis is discussed in Section VI. Section VII concludes.

II Modelling technology in panel data

In this section we motivate the concerns with which we approach the estimation of cross-

country production functions. We begin by motivating technology heterogeneity, then

discuss salient time series and cross-section properties of the data.

The ‘new growth’ literature provides justification for heterogeneous technology param-

eters across countries. This strand of the theoretical growth literature argues that pro-

duction functions differ across countries and seeks to determine the sources of this het-

erogeneity (Durlauf et al., 2001). This can intuitively be taken to mean that countries can

choose an ‘appropriate’ production technology from a menu of feasible options. Repre-

sentative examples from this literature include the work by Azariadis and Drazen (1990),

Durlauf (1993), and Banerjee and Newman (1993). A simpler justification for heteroge-

neous production functions is offered by Durlauf et al. (2001), who argue that the Solow

model was not intended to be valid in a common specification for all countries, but may

still be a good way to investigate each country, by allowing for parameter differences

across countries. A more formal treatment of technology heterogeneity is provided in

Mundlak et al. (2012) and linked to the empirical framework we adopt here in Eberhardt

and Teal (2013b).
2We are grateful to a referee for providing us with a whirlwind tour of this literature.
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In the long-run, macro variables such as value-added or capital stock often appear to

represent ‘nonstationary’ processes in at least some countries (Lee, Pesaran and Smith,

1997; Pedroni, 2007). In empirical practice many studies establish that real value series

typically behave as I(1) processes (Nelson and Plosser, 1982; Lee et al., 1997). Pedroni

suggested that variable (non)stationarity should not be seen as a ‘global’ property, valid

for all times, but as a “feature which describes local behaviour of the series within sam-

ple” (Pedroni, 2007, p.432).

In our general empirical model we emphasise a view of TFP as a ‘measure of our igno-

rance’ (Abramowitz, 1956), incorporating a wider set of factors that can shift the produc-

tion possibility frontier (for instance “resource endowments, climate, institutions, and

so on”, Mankiw, Romer and Weil, 1992, p.410/1). This is in contrast to the notion of

TFP as a definitive efficiency index, as commonly adopted in the microeconometric lit-

erature of productivity analysis. Furthermore, it is important to allow for the possibility

that TFP is in part common to all countries, e.g. representing the global dissemination

of non-rival scientific knowledge or global shocks, such as the 1970s oil crises. Alter-

natively, we can think of multiple economic, social, political and cultural ties between

countries from which commonality (cross-section correlation) may arise. The individual

evolution paths of the unobservables making up TFP should not be restrained to follow

simple linear trends, but instead be allowed to evolve in a non-linear and even nonsta-

tionary fashion. For instance, a number of empirical papers report that their measures of

TFP display nonstationarity, whether analysed at the economy level (Bond et al., 2010)

or at the sectoral level (Bernard and Jones, 1996b). At the same time a highly flexible

approach to empirical modelling using annual data raises the question of how business

cycles influence or distort the empirical estimates (Eberhardt and Teal, 2011). All of these

concerns point to the adoption of a multi-factor TFP structure that allows for common as

well as country-specific elements and is uniquely suited for the analysis of productivity

(Bai, 2009).

Existing empirical work has primarily concerned itself with the (potential) endogeneity

of regressors in the empirical framework (e.g. Caselli, Esquivel and Lefort, 1996; Bond,

Hoeffler and Temple, 2001), an issue that is given considerably more attention in the
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literature than the data properties or the potential misspecification of the empirical re-

gression model. While the empirical methods adopted here can address the simultaneity

between TFP shocks and input accumulation, we resort to an alternative estimation ap-

proach following Pedroni (2000) to rule out the potential of reverse causality and assure

ourselves that these regressions represent production function models and not invest-

ment or labour demand equations in disguise. Thus in addition to incorporating much

desirable technology heterogeneity, our empirical analysis also addresses the major con-

cerns that have occupied the existing literature.

III Empirical Model and Identification

Our regression analysis adopts a common factor representation for a standard log-linearised

Cobb-Douglas production function model. We discuss all its features in detail below. For-

mally, for time periods t = 1, . . . , T , countries i = 1, . . . , N and inputs m= 1, . . . , k let

yi t =
k
∑

m=1

βm
i xmit + ui t ui t = αi +λ

′
i ft + εi t (1)

xmit = πmi + δ
′
mi gmt +ρ1mi f1mt + . . .+ρnmi fnmt + vmit (2)

ft = %
′ft−1 + εt and gt = κ

′gt−1 + εt (3)

where f ·mt is a subset of ft . yi t represents value-added and xi t represents the observable

inputs including labour and capital stock (all in logarithms). Technology parameters βi

can differ across countries but are assumed constant over time.3 For unobserved TFP we

employ a country-specific TFP level αi in combination with a set of common factors ft

with country-specific factor loadings λi . In equation (2) we provide an empirical repre-

sentation of the observable inputs (here: capital, labour), which are modeled as linear

functions of the unobserved common factors ft and gt , with respective country-specific

factor loadings. These factors introduce cross-section correlation in the observables and

3The latter assumption is clearly restrictive, but given the focus on cross-country technology heterogene-
ity against the background of data restrictions in the time-series dimension we cannot relax this assump-
tion for the heterogeneous regression models. For the pooled models we ran separate regressions using pre-
and post-1985 subsamples. Estimates for POLS, CCEP and FD-OLS are virtually identical for the two sub-
periods. Period estimates for the FE estimator differ somewhat but 95% confidence bounds still show con-
siderable overlap.
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unobservables. Some unobserved common factors driving the variation in the observable

inputs, gt , are not affecting value added directly, but some others, ft , do.4 For illustra-

tion, a large global shock such as the recent Global Financial Crisis does not just affect

economic performance, y , but also the evolution of inputs, such as investment in physi-

cal capital. The presence of the same unobserved factors in input and output equations

induces endogeneity in that the regressors are correlated with the unobservables in the

production function equation (ui t ), making it difficult to identify βi separately from λi

and ρi (Kapetanios, Pesaran and Yamagata, 2011). Equation (3) specifies the evolution of

the common factors, which includes the potential for nonstationary factors (%= 1, κ= 1)

and thus nonstationary inputs and output.

The most important features of this setup are (i) the potential heterogeneity in the impact

of observables and unobservables on output across countries (αi , βi , λi), (ii) the potential

nonstationarity of observables and unobservables (yi t , xi t , ft , gmt ), and (iii) the endo-

geneity of observable inputs created by the common factor structure. These properties

have important bearings on estimation and inference in macro panel data which are at

the heart of this paper. In the following we illustrate how assumptions over these aspects

give rise to different empirical estimators, relying on the classification in Table 1.5

If the data are demonstrably nonstationary, any specification choice carries implicit as-

sumptions about the long run-equilibrium relationship in the data: any pooled regres-

sion model assumes that the cointegrating relationship is identical across all countries in

the sample (common technology), whereas a heterogeneous model assumes the cointe-

grating relationship differs across countries. Note that if the econometrician makes the

wrong decision here and estimates a pooled model for what is a heterogeneous cointe-

grating relationship, then the empirical results are likely spurious by construction.6 Spu-

4We introduce gt to avoid the impression that all macro variables are by assumption driven by the iden-
tical set of unobserved common factors ft , which would be wildly unrealistic.

5We use the following abbreviations: POLS — pooled OLS; 2FE — two-way fixed effects; FD — first
difference estimator; FE — country fixed effects; CCEP — Pesaran (2006) Common Correlated Effects Pooled
estimator; IFE — Bai (2009) Interactive Fixed Effects estimator; CD-MG — cross-sectionally demeaned Mean
Group estimator; MG — Pesaran and Smith (1995) Mean Group; GM-FMOLS — Pedroni (2000) Group-
Mean Fully Modified OLS; CMG — Pesaran (2006) Common Correlated Effects Mean Group, and AMG —
Augmented MG, described in detail in the Appendix.

6This is very easy to show: since our specification choice of homogeneity — imposing a common param-
eter, say β — is wrong we enter linear combinations of the nonstationary observables (βi −β)x i t in the error
terms, which are thus nonstationary by construction.
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rious results indicating serious empirical misspecification can however be detected by

investigating residuals for nonstationarity or by implementing formal cointegration tests

— we apply both strategies below.

Assumptions about unobservable TFP also have direct implications for specification and

thus identification: if TFP is nonstationary, then we face the difficulty that the estimation

of the cointegrating relationship would somehow need to account for an unobservable pro-

cess. Again, if the econometrician makes the wrong decision here in terms of specification

— common versus idiosyncratic TFP evolution or a mix of the two — then regression

results may be spurious. If, on the other hand, TFP is assumed stationary, then deter-

ministic components (year dummies, linear trends) should go a long way of accounting

for its impact and we can still estimate a cointegrating relationship between observable

inputs and output (Pedroni, 2007). Our empirical implementation allows us to represent

different scenarios for the specification of TFP representative of our assumptions about

the heterogeneity or homogeneity of TFP evolution.

One of the central focal points of the cross-country growth empirical literature over the

past two decades has been the endogeneity of inputs and, closely related, potential re-

verse causality in the estimation equation. The former implies that the capital and labour

inputs of our production function are correlated with unobservable TFP; conceptually, it

seems highly plausible that technical progress does not merely affect output directly, but

also affects the choice of factor inputs. Similarly for other aspects of TFP such as common

shocks. Reverse causality implies that although we have written down a production

function, we may run the risk of this representing a misspecified investment or labour

demand equation. In the existing literature identification in the face of these difficulties

is typically argued to be achieved through instrumentation, in panel models frequently

employing the own-instrumentation strategy of the GMM estimators by Arellano and

Bond (1991) and Blundell and Bond (1998). These estimators however assume common

technology, stationary variable series, as well as cross-section independence, and their

identification strategy is invalid if any of these assumptions are violated (Pesaran and

Smith, 1995).7

7This criticism extends to the various control function estimators used in the microeconometric literature
on production functions. See the discussion in Eberhardt and Teal (2011) for details.
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Our own empirical implementation allows us to adopt a flexible approach to dealing with

this endogeneity problem, in that we employ unobservable common factors ft which in-

duce the correlation with observable inputs in all countries. Note that TFP is of course a

catch-all, in that shocks such as the 1970s oil crises affect both output and inputs directly,

with no means for the existing empirical analysis of production functions to distinguish

this type of shock from technological progress through knowledge accumulation and

diffusion. Furthermore, shocks may not always be global in nature — for instance ex-

treme weather episodes leading to productivity shocks in only a small set of countries

— so that it is important to emphasise that the common factor framework also allows

us to acount for common factors which are more ‘local’ in their impact. In our preferred

implementation the resulting endogeneity problem will be tackled by accounting for the

presence of the unobservables in the empirical specification. In alternative implementa-

tions (i) these factors are estimated (Bai, 2009), or (ii) a time-series econometric estima-

tion approach (fully modified OLS) corrects for the endogeneity bias arising in this setup

but with more restrictive assumptions about common factors and thus TFP evolution

(Phillips and Hansen, 1990; Pedroni, 2000). In order to tackle reverse causality, we will

resort to a combination of the implementation dealing with the common factors and the

‘fully modified OLS’ approach.

Conveniently, we can employ residual diagnostic tests to investigate whether our imple-

mentation has successfully captured the systematic relationships in unobservable TFP:

focusing on the time-varying aspects of TFP, there is much to be said for interdependence

across countries, whereby for instance knowledge created in one country spills over im-

perfectly to other countries. These spillovers induce dependence between unobservable

TFP across countries, and since TFP is also correlated with the observable variables of

the model between labour and capital inputs across countries. By investigating whether

residual series are cross-sectionally correlated we can highlight to what extent we have

been able to deal with the dependence caused by the unobservable factors and thus indi-

rectly whether we have addressed the endogeneity concern: if residuals are white noise

we know that empirical results do not suffer from endogeneity bias.

As this discussion highlights, the choice between estimating a pooled and a heteroge-
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neous model as well as the treatment of TFP in this context is not some minor specifi-

cation choice but a matter of great importance. We expect to see significant differences

in estimates when moving between results for pooled and heterogeneous estimators, as

well as between models which make different assumptions about the nature of TFP. We

expect to see that things go very wrong if we make bad specification choices: parameter

estimates may have nonsensical magnitudes or turn out insignificant, residuals will be

nonstationary and further diagnostic tests will indicate other serious shortcomings. This

line of argument is the reason why below we also present results for estimators which we

would dismiss on theoretical grounds as unreliable or biased: if the assumptions implic-

itly made by adopting these estimators are seriously violated, then our diagnostic tests

should pick this up.

We use Table 1 to categorise the various estimators adopted in our study and to pro-

vide some examples of previous work in the cross-country growth literature. With ref-

erence to equation (1) we also highlight the assumptions made about the TFP process

in each case. The estimators assuming homogeneous technology in the upper panel of

the diagram differ in their assumptions about the TFP process. The CCEP estimator by

Pesaran (2006) and Bai’s (2009) IFE assume that TFP evolution differs across countries

but can have common elements. The former represents an augmented version of a stan-

dard fixed effects model where cross-section averages of all variables, i.e. ȳt = N−1
∑

yi t

and x̄t = N−1
∑

xi t , are introduced in the pooled regression to capture the unobserved

common factors. In order to account for heterogeneity in the impact of these factors

across countries the coefficients on the cross-section averages are allowed to differ for

each country. An alternative is provided by the IFE estimator (Bai, 2009), which is in

the tradition of implementations which first estimate the common factors using Principle

Component Analysis and then include them in the regression equation, which is then

estimated iteratively until convergence is achieved (e.g. Bai, Kao and Ng, 2009).8 In the

past one criticism of this approach focused on the necessity to employ information crite-

ria prior to estimation to establish the number of ‘relevant’ common factors in the data.

Recent theoretical work by Moon and Weidner (2015), however, showed that assuming

8A related approach by Kneip et al. (2012) instead combines nonparametric methods with PCA to obtain
the common factors.
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too many common factors has minimal impact on the consistency of the estimator. In

contrast the pooled OLS (POLS), two-way fixed effect (2FE) and first difference OLS (FD)

estimators all assume common TFP evolution, captured by common year effects, but

represent different assumptions about country-specific TFP levels: for 2FE and FD these

are like in the CCEP assumed to differ across countries, as for instance in Islam (1995),

whereas they are assumed common in the POLS — matching the original Mankiw et al.

(1992) assumption.

Nonstationarity has different implications for this set of pooled estimators: for POLS and

2FE we assume homogeneous cointegration. Since both estimators account for time fixed

effects9 there is nothing preventing us from including unobserved TFP in this cointegrat-

ing relationship, provided it is common to all countries. If our specification choice is

correct the estimates from these models under cointegration would be super-consistent,

implying that endogeneity would not lead to first order bias in these models (Engle and

Granger, 1987). The FD estimator is unaffected by nonstationarity, since the differenc-

ing of the estimation equation renders its observables and unobservables stationary by

construction. At the same time we are prevented from making any statements about a

‘long-run equilibrium’ relationship from the FD estimate. The CCEP estimator theoreti-

cally yields consistent, but not super-consistent, estimates of β or the mean of βi regard-

less of whether our choice of homogeneous cointegration is correct (Kapetanios et al.,

2011). However, in practice it is often found that this estimator yields very different esti-

mates from its Mean Group version (see below) and concerns for heterogeneity misspec-

ification remain. The Bai (2009) IFE assumes the common factors are stationary, though

since the PCA estimation is implemented on the differenced data, consistency may well

extend to the nonstationary case, although to the best of our knowledge no theoretical

results are available.

All models in the lower panel of the diagram allow for heterogeneous technology and

are implemented in two steps: the first step represents some country-specific regression,

while the second step consists of the averaging of country-specific estimates across the

sample. All of these models thus represent ‘Mean Group’-type estimators, named after

9For POLS in form of year dummies, in the case of 2FE, the mathematically equivalent data transforma-
tion into deviations from the cross-section mean.

12



the seminal contribution by Pesaran and Smith (1995). Again they differ in their assump-

tions about the TFP process, where we have to distinguish both the commonality and the

nature of TFP growth over time (all models allow for different TFP levels across coun-

tries): the estimators in the first and third columns (CD-MG, AMG, CMG) allow for TFP

to evolve in an unrestricted fashion, which includes the possibility of nonstationary TFP.

In the latter case they can accommodate cointegration between inputs, output and TFP.

These implementations however differ in their assumption about the commonality of

TFP: in the CD-MG TFP evolution is assumed common to all countries in the sample,

whereas in the AMG and CMG it is allowed to differ. These models are implemented

by use of data in deviation from the cross-section means (CD-MG), or by augmentation

of the country-specific estimation equation with cross-section averages of all variables

(CMG, see Pesaran, 2006; Chudik et al., 2011; Kapetanios et al., 2011) or alternative esti-

mated placeholders (AMG, see Bond and Eberhardt, 2013, and the Appendix) — estima-

tion is always by OLS.

The heterogeneous estimators in the second column (MG, GM-FMOLS) of the diagram in

contrast assume constant TFP growth and thus stationary TFP: these estimators adopt lin-

ear trends to capture TFP evolution over time and require a cointegrating relationship be-

tween inputs and output. Although parameter estimates are in this case super-consistent

it was found that corrections for endogeneity and dynamic misspecification — both lead-

ing to second order bias — as implemented in the ‘fully modified OLS’ (FMOLS) estima-

tor are necessary in finite samples (Phillips and Hansen, 1990).

As was indicated above, for the AMG and CMG estimates we cannot rule out reverse

causality, which represents a major shortcoming. In order to address this we simply

adopt FMOLS versions of these estimators, thus using augmented estimation equations,

where the augmentations are cross-section averages or other placeholders. This empirical

strategy can address endogeneity, serial correlation and reverse causality even in the case

of nonstationary TFP.

Inference for the pooled estimators builds on standard White heteroskedasticity-robust

standard errors,10 with the exception of the CCEP, where we employed the bootstrap.

10Standard errors for the capital coefficients increase to 0.05 in the POLS and to 0.11 in the FD models if
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Inference in the heterogeneous parameter models follows Pesaran and Smith (1995), em-

ploying a non-parametric variance estimator to construct standard errors and t-ratios –

the exception here is the Group Mean version of the FMOLS estimator, which obtains

‘panel t-statistics’ as t̄β∗ = N−1/2
∑

i t i , where t i is the t-ratio in country i and N is the

number of countries.

IV Data and Data Properties

For our empirical analysis we employ aggregate sectoral data for manufacturing from

developed and developing countries for the period 1970 to 2002 (UNIDO, 2004) — data

from the same source (albeit at a higher level of disaggregation) were recently used by Ro-

drik (2013) to investigate cross-country convergence in manufacturing value-added. Our

sample represents an unbalanced panel of 48 countries with an average of 24 time-series

observations (min: 11, max: 33).11 Basic descriptive statistics and the sample makeup

are detailed in the Appendix. The data allow us to estimate production functions with

manufacturing sector value-added as output, and labour force and capital stock in man-

ufacturing as inputs — the latter is created from data on gross fixed capital formation

following the standard perpetual inventory methodology. Our focus here is on value-

added specifications, though we also considered gross-output specifications, results for

which can be found in Eberhardt (2009). Further discussion of the data and their con-

struction is confined to an Appendix.

In preparation for our regression analysis in Section V we carried out a range of variable

unit root tests — detailed results are contained in the Appendix. Despite all the problems

related to panel unit root testing, as well as considering the present data dimensions and

characteristics, we can conclude that these results strongly suggest that the variable series

in levels are nonstationarity I(1). We further applied the Pesaran (2015) test for weak

we cluster by country — those for the 2FE model are unchanged since the Stata implementation we adopt
clusters standard errors.

11We do not carry out any interpolation to fill gaps in the time series and do not account for missing obser-
vations in any way. Our preferred empirical specifications are based on heterogeneous parameter models,
where arguably the unbalancedness (around 25% of observations in the balanced panel are missing) comes
less to bear on the estimation results than in the homogeneous models due to the averaging of estimates. See
Table TA-2 in the Appendix for details on missing observations.
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cross-section dependence to our model variables. Results presented in the Appendix

suggest that all series are subject to strong dependence.

V Regression results

Results in Table 2, Panel A, are based on estimating pooled models with variables in lev-

els or first differences, including year dummies or in the CCEP country-specific period-

averages following Pesaran (2006). Estimates for the capital coefficient in these regres-

sions with constant returns to scale imposed are statistically significant at the 5% level or

1% level. For all three estimators in levels the regression diagnostics (not reported) sug-

gest serial correlation in the error terms, while constant returns to scale are rejected at the

1% level of significance except for POLS. Further, the OLS and 2FE residuals are found

to be nonstationary, suggesting the empirical results reported are potentially spurious.

Cross-section dependence is present in all residual series to a greater or lesser extent,

with 2FE and CCEP models rejecting weak cross-section dependence at the 5% level.

The POLS results in [1] suggest that failure to account for time-invariant (TFP level) het-

erogeneity across countries yields biased results: at around .8 the capital coefficient is

considerably inflated. Accounting for country-specific intercepts in [2] reduces these co-

efficient estimates somewhat. The same parameter in the CCEP results in [3] is yet lower

still, around .6. The OLS regression in first differences in [4] yields quite different results:

the capital coefficient is now around .3, CRS cannot be rejected, the AR(1) tests (not re-

ported) show only first order serial correlation for this model, which is to be expected

given that errors are in first differences. This echoes the favourable performance in simu-

lation exercises to capture the average of a heterogeneous technology coefficient (see Bond

and Eberhardt, 2013, and related online Appendix). However, recall that the first differ-

ence specification cannot be interpreted as a long-run equilibrium equation and we may

well be capturing short-run (business cycle) fluctuations in these results. Nevertheless,

it appears that the FD estimator obtains sound diagnostics and a theory-consistent tech-

nology estimate – this indicates that accounting for nonstationarity (of factor inputs and
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TFP) plays a crucial role in estimating cross-country production functions.12

We can make use of the year dummy coefficients derived from the pooled FD model to

obtain an estimate of the common dynamic process µ̂•t , an estimate of the average TFP

evolution — see Appendix for details. Figure 1 illustrates the evolution path of this com-

mon dynamic process for the unrestricted and CRS models. The graphs show severe

slumps following the two oil shocks in the 1970s, while the 1980s and 1990s indicate con-

siderable upward movement.13 If we follow the ‘measure of our ignorance’ interpretation

of TFP, then a decline in global manufacturing TFP as evidenced in the 1970s should not

be interpreted as a decline in knowledge, but a worsening global manufacturing environ-

ment, which seems plausible.

In the following we relax the assumption implicit in the pooled regressions that all coun-

tries possess the same production technology. At the same time, we maintain that com-

mon shocks and/or cross-sectional dependence have to be accounted for in some fash-

ion. Unweighted averages of country parameter estimates are presented in Panel B of

Table 2.14 The t-statistics for the country-regression averages reported are measures of

dispersion for the sample of country-specific estimates, following Pesaran and Smith

(1995).

Our first observation regarding the averaged country results is that across all specifica-

tions the means of the capital coefficients are considerably lower than in the pooled levels

models: between .2 and .5, rather than between .6 and .9.15 Closer inspection suggests the

following patterns across the heterogeneous parameter regression results: firstly, the two

more restrictive specifications in [1] and [2] are misspecified. For the MG, which assumes

12Simulation exercises (Bond and Eberhardt, 2013) generally highlight the favourable performance of the
FD estimator in standard nonstationary panel setups. However, while this may yield an unbiased estimate
of average technology, country-specific TFP estimates are nevertheless biased if the ‘true’ technology differs
across countries.

13These graphs are ‘data-specific’: for years where data coverage is good, this can be interpreted as ‘global’,
whereas in later years (10 countries have data for 2001, only 2 for 2002, omitted from the graph) this inter-
pretation collapses.

14Robust means weighing down outliers yield very similar results, with kernel estimates of the distribu-
tion of capital coefficients showing no influential outliers.

15Results presented are robust to alternative specifications (all results available on request): firstly, we
estimated all models in first differences; secondly, we adopted alternative country-level deterministics (ad-
ditional squared trend in the levels models, additional trend in the models in a first difference specifica-
tion); thirdly, we estimated gross-output-based models including material inputs as additional covariate;
and fourthly, we estimated dynamic ARDL versions of the presented static models.
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linear TFP evolution, residual diagnostics indicate strong cross-section dependence; for

the CD-MG, assuming common TFP evolution, residual appear nonstationary, so that we

cannot rule out that these results are spurious. Secondly, for the AMG estimators, which

account for a flexible TFP process in the estimation equation, diagnostic test results are

favourable and averaged coefficients around .3. Thirdly, the results for the CMG with

and without additional country trend differ considerably, with the former close to the

AMG results and the latter slightly larger, around .45. Diagnostic tests however suggest

that the standard CMG suffers from cross-sectionally strongly dependent residuals (see

Pesaran (2015) CD test results).

Our results imply that (i) heterogeneous specifications which allow for a combination of

commonality and idiosyncracy in the TFP evolution provide the closest match to the data

and most favourable diagnostics; (ii) estimated capital coefficients in the preferred em-

pirical specifications are close to .3; (iii) TFP appears to be nonstationary and thus leading

to empirical misspecification in models which ignore this property;16 (iv) our preferred

results based on favourable residual diagnostics represent a close match between the Pe-

saran (2006) CMG and the Bond and Eberhardt (2013) AMG estimators.

These conclusions are backed up by the results for an alternative estimator, the Bai (2009)

Interactive Fixed Effects, which are presented in Table 3: capital coefficients are uniformly

close to .3, except in case of the single common factor model in [1], for which the esti-

mate is close to .6. This model also displays nonstationary residuals. The diagnostics are

favourable for all other models, suggesting stationary and only weakly dependent resid-

uals, although it is notable that only the specifications with two and five common factors

do not reject constant returns to scale. The relative stability of these results regardless of

the number of factors included (other than the case of just a single factor) suggests that

the model in column [2] assuming two factors captures the data quite well. Comparing

these results with those for the AMG and CMG, it appears that the standard CMG im-

plementation in Panel B, column [5] of Table 2, which on the basis of containing a single

observed covariate (log capital stock per worker) can only capture a single common factor

16A comparison of results for the unit root analysis of the regression residuals ε̂ and of y − β̂k or its
heterogeneous technology variant (which contains ε̂ and the common factors) indicates that the POLS, 2FE
and CD-MG models cannot capture nonstationary TFP.
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ft , is biased upwards.

Finally, the Pedroni (2000) Group-Mean FMOLS approach for which results are presented

in the Appendix, provides further evidence that failure to account for nonstationary TFP

leads to the collapse of the empirical estimates when analysing cross-country manufac-

turing production. When we investigate the full sample of 48 countries, we find that the

standard GM-FMOLS yields a very low and statistically insignificant coefficient estimates

for capital, whereas upon inclusion of the common dynamic process or of cross-section

averages we obtain results which closely match those from the previous Table of OLS-

based results. Since the FMOLS methodology is robust to reverse causality this provides

assurance that our AMG and CMG estimates represent production function coefficients

and not misspecified investment or labour demand equations. In a further robustness

check we limit the sample to 26 countries for which individual time-series unit root and

stationarity (DF and KPSS) tests could not reject nonstationarity (the FMOLS approach

assumes nonstationarity and cointegration),17 to show that results do not change in any

significant way.

Based on residual diagnostic our empirical results thus largely favour models with het-

erogeneous technology which account for a combination of heterogeneous and common

TFP. The notable exception here is the (pooled) First Difference estimator, which we found

relatively unaffected by the failure to explicitly model these features, likely due to the

absence of integrated variables and processes once data are differenced. In our minds

the fact that the FD estimator obtains a similar capital coefficient to that in the averaged

AMG or CMG results is in spite of technology heterogeneity, and not because pooled spec-

ifications are favourable. To this end we also carried out a significant number of formal

parameter homogeneity tests (see Appendix) which confirmed our preference for hetero-

geneous technology. Since residual testing for stationarity represents a somewhat ad hoc

cointegration test we also confirmed this property in our preferred heterogeneous model

adopting the Gengenbach, Westerlund and Urbain (2016) testing procedure (for results

see Appendix).

17We appreciate that single time series tests employed typically have low power in the present short time
series, but this analysis is intended to be indicative of the remarkable robustness of our findings to a reduc-
tion in the sample to countries with plausibly rather than definitively I(1) variable series.
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Our general production function framework provides a number of insights into TFP es-

timation: firstly, it seems sensible to allow for maximum flexibility in the structure of the

empirical TFP terms; if TFP represents a ‘measure of our ignorance’ then it makes sense

to allow for differential TFP across countries and time, with the latter unconstrained with

regard to nonstationarity.

Secondly, it further makes sense to keep an open mind about the commonality of TFP:

while early empirical models (Mankiw et al., 1992; Islam, 1995) assumed common TFP

growth for all countries, later studies preferred to specify differential TFP evolution across

countries. We believe the arguments for commonality (non-rival nature of knowledge,

spillovers, global shocks) and idiosyncracy (patents, tacit knowledge, learning-by-doing)

call for an empirical specification which does not rule out either by construction.

Thirdly, following Durlauf et al. (2001) and Pedroni (2007) we argue for an empirical

specification that allows for parameter heterogeneity across countries and for a shift away

from the widespread focus on TFP analysis and toward an integrated treatment of the

production technology in its entirety, including technology heterogeneity, TFP levels and

growth rates.

We can illustrate the contribution of these three aspects of production technology in Fig-

ure 2, where we plot country-specific linear regressions of value-added per worker on

capital stock per worker for our manufacturing data from 48 countries: in the left plot,

which ignores TFP growth over time, the slopes of these production functions appear

very similar, reinforcing the notion of a common production technology, whether we

assume common or heterogeneous intercept terms (TFP levels) and common or hetero-

geneous slopes (capital coefficients). The same result obtains if we assume common TFP

growth for all countries in the sample. From this we conclude that common TFP evolu-

tion in combination with either common or heterogeneous technology leads to empirical

results which run counter to the macro factor share evidence, namely a capital coefficient

around .7 rather than around .3.

In the right plot we adjust the value-added per worker variable for TFP evolution over
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time18 and again plot the country-specific regression lines implied by a production func-

tion model. Thus allowing for heterogeneous TFP and common shocks, we can see that

the fitted regression lines now provide clear evidence of technology heterogeneity, with

the average capital coefficient from a heterogeneous parameter model around .3, while a

pooled model still yields an inflated estimate of .79. From this we can conclude that het-

erogeneous TFP evolution alone yields results in conflict with the macro data, whereas

the combination of heterogeneous technology and heterogeneous TFP evolution yields a

global average of .3.

VI TFP in a heterogeneous technology world

What are the implications of homogeneity misspecification for estimated TFP levels and

growth rates? In the following we provide some insights into the resulting patterns of

TFP growth and introduce a new approach to estimate TFP levels which is necessitated

by the adoption of a heterogeneous technology model. In both cases we try to estab-

lish whether the choice between homogeneous and heterogeneous technology makes a

substantial difference to TFP measurement.

In the top left plot of Figure 3 we compare the distribution of the annual TFP growth esti-

mates from growth accounting (dashed transparent histogram) and our preferred panel

time series regression (grey histogram). While both distributions look Gaussian, it is ob-

vious that the accounted TFP growth rates are substantially greater in range. The top

right plot in the same Figure fits a linear regression line (with 90% confidence bands) for

the annual TFP growth rates against value-added per worker (in logs). While the esti-

mated TFP growth rates from the preferred heterogeneous estimator seem to display a

negative relationship with output, a tendency which disappears if we omit the top and

bottom 5% of the distribution in the bottom right plot or if we employ total period av-

erages of TFP growth and value-added per worker in the bottom left plot, the accounted

TFP growth rates consistently display a positive relationship regardless of censoring or

averaging.

18We compute lyadj = ly− ĉi t− d̂iµ̂
•
t following equation (4) below, using the results for the empirical model

in Table 2, Panel B, column [3].
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We can draw two conclusions from this analysis: firstly, the range and variance of the

common technology TFP growth estimates are artificially inflated, thus providing in-

creased likelihood of statistically significant results in further ‘TFP regressions.’ Secondly,

under the assumption of common technology these TFP growth series are clearly linked

to the level of development, with richer countries enjoying higher TFP growth.

A further implication of a shift from common to heterogeneous technology is that we

require a new methodology to arrive at TFP level estimates from our preferred country-

level regression models: from these regressions we can obtain estimates for the intercept,

technology parameters, idiosyncratic and common trend coefficients or the parameters

on the cross-section averages for AMG and CMG specifications, respectively. One may

be tempted to view the coefficients on the intercepts as TFP level estimates, just like in

the pooled fixed effects case. However, once we allow for heterogeneity in the slope co-

efficients, the interpretation of the intercept as an estimate for base-year TFP level is no

longer valid, as was already recognised by Bernard and Jones (1996a). In order to illus-

trate our case, we employ a simple linear relationship between value-added and capital

where the contribution of TFP growth has already been accounted for (see Equation (4)

below).

In Figure 4 we provide scatter plots for ‘adjusted’ log value-added per worker (y-axis)

against log capital per worker (x-axis) as well as a fitted regression line for these obser-

vations in each of the following four countries: in the upper panel France (circles) and

Belgium (triangles), in the lower panel South Korea (circles) and Malaysia (triangles).

The ‘adjustment’ is based on the country-specific estimates from the AMG regression in

Table 2, Panel B: we compute

yad j
i t = yi t − ĉi t − d̂iµ̂

•
t (4)

where ĉi and d̂i are the country-specific estimates for the linear trend term and the com-

mon dynamic process respectively. We then plot this variable against log capital per

worker for each country separately. This provides a visual equivalent of the estimates for

the capital coefficient (slope) and a candidate TFP level estimate (intercept) in the country
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regression.

The upper panel of Figure 4 shows two countries (France, Belgium) with virtually identi-

cal capital coefficient estimates (slopes). The in-sample fitted regression line is plotted as

a solid line, the out-of-sample extrapolation toward the y-axis is plotted in dashes. The

country-estimates for the intercepts can be interpreted as TFP levels, since these coun-

tries have very similar capital coefficient estimates (b̂FRA ≈ b̂BEL ≈ b̂). In this case, the

graph represents the linear model yad j
i t = âi + b̂ log(K/L)i t , where âi possesses the ceteris

paribus property. In contrast, the lower panel shows two countries (Malaysia, South Ko-

rea) which exhibit very different capital coefficient estimates. In this case âi cannot be

interpreted as possessing the ceteris paribus quality since b̂MY S 6= b̂KOR: ceteris non paribus,

or as Bernard and Jones (1996a) put it: ‘comparing apples to oranges.’ In the graph

we can see that Malaysia has a considerably higher intercept term than South Korea,

even though the latter’s observations lie above those of the former at any given point

in time. This illustrates that once technology parameters in the production function dif-

fer across countries the regression intercept can no longer be interpreted as a TFP-level

estimate.

We can suggest an alternative measure for TFP-levels which is robust to parameter het-

erogeneity. Referring back to the scatter plots in Figure 4, we marked the base-year level

of log capital per worker by vertical lines for each of the four countries. We suggest to

use the locus where the solid (in-sample) regression line hits the vertical base-year capi-

tal stock level as an indicator of TFP-level in the base year. These adjusted base-year and

final-year TFP-levels are thus

âi + b̂i log(K/L)0,i and âi + b̂i log(K/L)0,i + ĉiτ+ d̂iµ̂
•
τ (5)

respectively, where log(K/L)0,i is the country-specific base-year value for capital per worker

(in logs), τ is the total period for which country i is in the sample and µ̂•τ is the accumu-

lated common TFP growth for this period τ with the country-specific parameter d̂i — it

is easy to see that the intercept-problem only has bearings on TFP-level estimates.

Table 4 provides details on absolute rank differences implied by TFP level rankings for
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accounting (‘Levels’) and regression (‘2FE’, ‘AMG’ and ‘CMG’) exercises. These descrip-

tives indicate the very substantial differences arising from TFP levels obtained from com-

mon versus heterogeneous technology models.

VII Concluding remarks

In this paper we investigated how manufacturing sector technology differences across

countries can be modelled empirically. We adopted an encompassing framework which

allows for the possibility that the impact of observable and unobservable inputs on out-

put differs across countries, as well as for nonstationary evolution of these processes. Our

regression framework enabled us to model a number of characteristics which are likely

to be prevalent in manufacturing data from a diverse set of countries: firstly, we allowed

for technology heterogeneity across countries. Empirical results are confirmed by formal

testing procedures to suggest that technology parameters in manufacturing production

indeed differ across countries. This finding supports earlier work using aggregate econ-

omy data (Durlauf, 2001; Pedroni, 2007): if production technology differs in cross-country

manufacturing, aggregate economy technology is unlikely to be homogeneous.

Secondly, we allowed for unobserved common factors to drive output, but with differ-

ential impact across countries, thus inducing cross-section dependence. These common

factors are visualised by our common dynamic process, which follows patterns over the

1970-2002 sample period that match historical events. The interpretation of this common

dynamic process µ̂•t would be that for the manufacturing sector similar factors drive pro-

duction in all countries, albeit to a different extent. This is equivalent to suggesting the

‘global tide’ of innovation can ‘lift all boats’, but that technology transfer from devel-

oped to developing countries is dependent on the recipient’s production technology and

absorptive capacity, among other things.

Thirdly, our empirical setup allows for a type of endogeneity whereby unobservables

driving output are also driving the evolution of inputs. This leads to an identification

problem, in that standard panel estimators cannot identify the parameters on the ob-

servable inputs as distinct from the impact of unobservables. Monte Carlo simulations
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(Bond and Eberhardt, 2013) have highlighted the ability of the CMG and AMG estimates

to deal with this problem successfully and our empirical results indicate parity between

these two heterogeneous panel estimators. Furthermore, additional analysis confirms

that the empirical results are robust to the use of an alternative panel time-series econo-

metric approach which further addresses reverse causality. Standard practices to deal

with endogeneity (Arellano and Bond, 1991; Blundell and Bond, 1998) are only appropri-

ate in a stationary framework with homogeneous technology (Pesaran and Smith, 1995).

Adopting a nonstationary panel econometric approach that accounts for cross-section de-

pendence in our view is a sound empirical strategy to address both these concerns and

should be applied more widely to cross-country productivity-analysis.

Our analysis represents a step toward making cross-country empirics relevant to individ-

ual countries by moving away from empirical results that characterise the average country

and toward a deeper understanding of the differences across countries, a notion which is

clearly echoed elsewhere in the literature (Temple, 1999; Durlauf, 2001; Durlauf et al.,

2001, 2005). Cross-country regressions of time averages, in the empirical tradition of

Barro (1991) and Mankiw et al. (1992), emphasise the variation in the data across coun-

tries (‘between variation’) and implicitly assume that the processes driving capital accu-

mulation in, say, the United States and Malawi are the same, and that at a distant point in

time the latter can feasibly reach the capital-labour ratio of the former to achieve the same

level of development. However, development is an evolution over time which requires

that apart from recognising the potential for differences across countries we analyse the

individual evolution paths of countries over time (emphasising the ‘within variation’ in

the data). The empirical methods used in this paper enable us to incorporate all of these

concerns within one unifying empirical framework. A second conclusion from this study

is that the key to understanding cross-country differences in income is not exclusively

linked to understanding TFP differences, but requires a careful concern for differences in

production technology. Since modelling production technology as heterogeneous across

countries requires an entirely different set of empirical methods we have focused on de-

veloping this aspect in the present paper and have left empirical testing of rival hypothe-

ses about the patterns and sources of technological differences for future research.
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Tables and Figures

Table 1: Technology Heterogeneity and Unobserved Common Factors

Factor loadings λ homogeneous heterogeneous

Factors f unrestricted linear unrestricted

Technology β homogeneous POLS, 2FE, FD FE w/ trends CCEP, IFE
α{i} +λ ft αi +λi t αi +λ′i ft

MRW, Islam, (CEL) MM (CD)

heterogeneous CD-MG MG, GM-FMOLS AMG, CMG
αi +λ ft αi +λi t αi +λ′i ft

DKM, Pedroni ET, EHS

Notes: In addition to the various estimators we provide examples of empirical applications in the cross-country growth
literature which adopted these implementations. MRW – Mankiw et al. (1992); Islam – Islam (1995); CEL – Caselli et al.
(1996); MM – Martin and Mitra (2002); CD – Costantini and Destefanis (2009); DKM – Durlauf et al. (2001); Pedroni –
Pedroni (2007); ET – Eberhardt and Teal (2013a); EHS – Eberhardt et al. (2013). A number of these references are in
parentheses: Caselli et al. (1996) use the Arellano and Bond (1991) estimator while Costantini and Destefanis (2009)
adopt the Bai and Kao (2006) estimator, however their empirical specifications nevertheless fit into the respective cells in
our schematic presentation. For each case we report the algebraic representation of how TFP is modelled when using this
estimator. α referes to TFP levels, and the combination of λ and ft (potentially nonlinear) or t (linear) to TFP evolution
over time — refer to equation (1) for the encompassing model. α{i} is intended to highlight that in the POLS model we
have α but in the 2FE and FD models αi – to further separate these cases would have constituted table overkill.
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Table 2: Main Regression Results

Panel A: Pooled Models

[1] [2] [3] [4]
estimator POLS 2FE CCEP FD

dependent variable ly ly ly ∆ly

log capital pw 0.7895 0.6752 0.5823
[0.011]∗∗ [0.066]∗∗ [0.037]∗∗

∆log capital pw 0.3195
[0.089]∗∗

Diagnostics
CRS: p-value .96 .00 .00 .72
(y − β̂k) I(1): p-value .99 .99 .99 .00
ε̂ I(1): p-value 1.00 .78 .00 .00
ε̂ CD: p-value .15 .05 .03 .39
RMSE .462 .135 .113 .103

Panel B: Heterogeneous Models (average estimates)

[1] [2] [3] [4] [5] [6]
estimator MG CD-MG AMG AMG CMG CMG

dependent variable ly ly[ ly-µ̂•t ly ly ly

log capital pw 0.1789 0.5295 0.2896 0.2982 0.4663 0.3125
[0.081]∗ [0.056]∗∗ [0.074]∗∗ [0.081]∗∗ [0.070]∗∗ [0.085]∗∗

common dynamic process 0.8787
[0.202]∗∗

country trend 0.0174 0.0001 0.0023 0.0108
[0.003]∗∗ [0.003] [0.004] [0.004]∗∗

Diagnostics
CRS: p-value .90 .20 .99 .96 .05 .98
(y − β̂i k) I(1): p-value .99 .66 .99 .99 .51 .99
ε̂ I(1): p-value .00 .60 .00 .00 .00 .00
ε̂ CD: p-value .00 .25 .96 .30 .02 .82
RMSE .100 .123 .097 .091 .100 .088

Notes: Regressions are for N=48 countries, n=1,194 (n=1,128) observations in the levels (first difference) specifications.
Values in brackets are White heteroskedasticity-consistent standard errors in Panel A, except for [3] where we present
bootstrapped (100 replication) standard errors; and standard errors following Pesaran and Smith (1995) in Panel B. We
indicate statistical significance at the 5% and 1% level by ∗ and ∗∗ respectively. Intercept estimates as well as average
estimates on cross-section averages in Model [3] of Panel A and Models [5] and [6] of Panel B are omitted to save space.
Dependent variable: ly — log value-added per worker. ly[ — log value added per worker in deviation from the
cross-section mean (dto. for capital stock pw). ∆ly — growth rate of value-added (per worker). µ̂•t in Panel B is derived
from the year dummy coefficients of a pooled regression (CRS imposed) in first differences (FD) as described in the main
text. Models [1], [2] and [4] in Panel A contain T − 1 year dummies (for [4] in first differences).
For all diagnostic tests (except RMSE) we report p-values: (i) The null hypothesis for the ‘CRS’ Wald tests is constant
returns. (ii) ‘(y − β̂i k) I(1)’ reports analysis of regression residuals incorporating TFP, using a Pesaran (2007) CIPS test with
2 lags, null of nonstationarity (full results available on request). For this and the following CIPS test we adopted a
pragmatic approach in setting the lags equal to 2: shorter lags may be insufficient to capture serial correlation, longer
lags will demand too much from the data given the very moderate time series dimension (and further force us to drop
country series). (iii) ‘ε̂ I(1)’ reports results for a Pesaran (2007) CIPS test with 2 lags, null of nonstationarity (full results
available on request). (iv) The Pesaran (2015) CD test has the null of cross-sectional weak dependence. Due to data
restrictions (unbalanced panel with missing observations) we are forced to drop 2 (8) countries from the sample to
compute this test for the levels (FD) residuals. (v) RMSE is the root mean squared error.
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Table 3: Homogeneous Models using Bai’s (2009) IFE

[1] [2] [3] [4] [5]
estimator IFE IFE IFE IFE IFE

dependent variable ly ly ly ly ly
number of factors 1 2 3 4 5

log capital pw 0.5645 0.3380 0.3251 0.3378 0.2654
[.0983]∗∗∗ [.0770]∗∗∗ [.0637]∗∗∗ [.0847]∗∗∗ [.0557]∗∗∗

Diagnostics
CRS: p-value 0.10 0.47 0.00 0.00 0.29
(y − β̂i k) I(1): p-value 0.95 0.33 0.38 0.33 0.63
ε̂ I(1): p-value 0.37 0.01 0.00 0.00 0.00
ε̂ CD: p-value 0.23 0.13 0.18 0.22 0.31
RMSE 0.112 0.096 0.086 0.077 0.065

Notes: The results presented are for the Bai (2009) Interactive Fixed Effects (IFE) estimator. All regression models absorb
country and time fixed effects – results without these fixed effects are broadly similar (available on request). Values in
brackets are absolute standard errors clustered at the country-level. Results using a bootstrap procedure are broadly in
line with those presented above albeit less precise – this is not surprising given the unbalanced nature of the panel. All
models were estimated in Stata using the regife written by Matthieu Gomez. See notes to Table 2.
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Table 4: Country rankings by TFP-level

Absolute Rank Difference between Implementations
[1] [2] [3] [4] [5] [6]

AMG–FE CMG–FE Levels–FE Levels–AMG Levels–CMG CMG–AMG

Min 0.0 0.0 0.0 0.0 0.0 0.0
Mean 10.5 10.2 7.0 5.8 5.4 1.1
Median 10.0 10.0 5.0 5.0 4.5 1.0
IQR 7.5 9.0 7.0 7.0 6.8 1.0
Max 33.0 34.0 24.0 17.0 19.0 7.0

Notes: The table provides distributional statistics on the relative TFP level ranking (by magnitude) derived from the
three regression models as well as the levels accounting for 1990: ‘AMG–FE’ is based on the absolute difference between
TFP level rankings implied by the AMG and FE estimators, similarly for the other comparisons. FE refers to the
Two-way Fixed Effects estimator, Table 2, Panel (A), column [2]; AMG refers to the Augmented Mean Group estimator,
Table 2, Panel (B), column [3]. CMG refers to the Mean Group version of the Pesaran (2006) CCE estimator, ibid. column
[5]. IQR reports the interquartile range of rank differences.
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Figure 1: Evolution of ‘average’ TFP

Notes: Derived from results in column [4], Panel (A) of Table 2.

34



Figure 2: Technology Heterog. in the Analysis of Development & TFP

Notes: The graph on the left simple fits a linear regression line from country-specific data on manufacturing value-added
per worker on manufacturing capital stock per worker (in logs) separately in 48 countries (teal-coloured lines), thus
ignoring TFP evolution, spillovers and common shocks. The red line represents the pooled OLS regression slope. We
further report the estimated slopes for pooled model with and without fixed effects and the mean slope for a naive Mean
Group model (with country intercepts only). Values in parentheses are t-ratios. The graph on the right uses log
manufacturing value-added per worker adjusted for annual country-specific TFP and plots this variable against log
manufacturing capital stock per worker separately for each of the 48 sample countries. Although virtually identical, the
pooled regression line in red here is for adjusted value-added per worker. Again we report slope coefficients for pooled
OLS with and without country fixed effects, and the Mean Group result (which is a graphical representation of the AMG
result in Panel B, column [3] of Table 2).
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Figure 3: TFP growth from regression and growth accounting (βK = .33)

Notes: We compare the TFP growth estimates derived from our preferred regression model, the AMG estimator, Table 2,
Panel (B), column [3] (grey histogram and 90% confidence interval; capital coefficients differ across countries), with those
obtained from simple TFP growth accounting (transparent histogram and dashed 90% confidence intervals; common
capital coefficient: .33). Clockwise from the top left the graphs provide (i) histograms for these two sets of estimates, (ii)
linear regression lines (and 90% confidence intervals) of TFP growth against log value-added per worker, (iii) as in (ii)
but removing the top and bottom 5% of TFP growth estimates as computed in either exercise, and (iv) as in (ii) but using
48 country TFP growth averages.
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Figure 4: Regression intercepts and TFP level estimates

Notes: In-sample (solid) and out-of-sample (dashed) linear prediction of the relationship between TFP-adjusted
value-added per worker (on the y-axis) and capital stock per worker (on the x-axis), all variables in logarithms — see
maintext for details on the TFP adjustment.
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