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Summary

� The N-end rule pathway is a highly conserved constituent of the ubiquitin proteasome sys-

tem, yet little is known about its biological roles.
� Here we explored the role of the N-end rule pathway in the plant immune response. We

investigated the genetic influences of components of the pathway and known protein sub-

strates on physiological, biochemical and metabolic responses to pathogen infection.
� We show that the glutamine (Gln) deamidation and cysteine (Cys) oxidation branches are

both components of the plant immune system, through the E3 ligase PROTEOLYSIS (PRT)6.

In Arabidopsis thaliana Gln-specific amino-terminal (Nt)-amidase (NTAQ1) controls the

expression of specific defence-response genes, activates the synthesis pathway for the phy-

toalexin camalexin and influences basal resistance to the hemibiotroph pathogen

Pseudomonas syringae pv tomato (Pst). The Nt-Cys ETHYLENE RESPONSE FACTOR VII tran-

scription factor substrates enhance pathogen-induced stomatal closure. Transgenic barley

with reduced HvPRT6 expression showed enhanced resistance to Ps. japonica and Blumeria

graminis f. sp. hordei, indicating a conserved role of the pathway.
� We propose that that separate branches of the N-end rule pathway act as distinct compo-

nents of the plant immune response in flowering plants.

Introduction

The regulation of protein stability through the ubiquitin protea-
some system (UPS) is a central component of cellular homeosta-
sis, environment interactions and developmental programmes
(Varshavsky, 2012), and an important component of the plant
immune system (Zhou & Zeng, 2017). Plants have evolved to
recognize the presence of a pathogen in two main ways. Basal
(primary) defence is characterised by the recognition of pathogen
elicitors called pathogen associated molecular patterns (PAMPs)
by protein receptors known as pattern recognition receptors
(PRR), activating PAMP-triggered immunity (PTI) (Boller &
Felix, 2009). When this response is effective, pathogens can
deliver effector molecules into the host cells to weaken PTI and
facilitate infection triggering a second layer of defence (effector
triggered immunity; ETI). ETI is typically a qualitative response

based on interference with pathogen effector activity by plant
resistance (R) gene products, localized inside the cell (Dangl &
Jones, 2001). Both PTI and ETI induce similar immune
responses but of different amplitude, with ETI often resulting in
a hypersensitive response (HR). The specific set of mechanisms
activated also depend to a large extent on the life strategy of the
pathogen and how adapted they are to the host. Typically, the
plant hormones jasmonic acid (JA) and ethylene (ET) mediate
responses to nonadapted necrotrophs that cause host cell death to
acquire nutrients from dead or senescent tissues (Grant & Jones,
2009; Pieterse et al., 2009) whilst salicylic acid (SA) plays a cru-
cial role in activating defence against adapted biotrophs and
hemibiotrophs. Recently, regulation of protein stability by the
Arg/N-end rule pathway of ubiquitin-mediated proteolysis has
been demonstrated to play a role in plant responses to biotic
stress. The pathway is associated with increased development of
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clubroot caused by the obligate biotroph Plasmodiophora brassicae
(Gravot et al., 2016). Induction of components of the hypoxia
response, controlled by Group VII ETHYLENE RESPONSE
FACTOR (ERFVII) transcription factor substrates (ERFVIIs),
enhanced clubroot development, indicating that the protist
hijacks the N-end rule ERFVII regulation system to enhance
infection. In another study, inactivation of different components
of the Arg/N-end rule pathway was shown to result in greater sus-
ceptibility of Arabidopsis to necrotrophic pathogens and altered
timing and amplitude of response to the hemibiotroph
Pseudomonas syringae pathovar tomato (Pst) AvrRpm1 (de Marchi
et al., 2016). A correlation between Nt-Acetylation and the stabil-
ity of a Nod-like receptor, Suppressor of NPR1, Constitutive 1
(SNC1) was also reported (Xu et al., 2015). Whilst these reports
provide evidence that the N-end rule pathway is involved in the
regulation of plant defence responses, the mechanisms, substrates
or their function in resistance have not been investigated previ-
ously (Gibbs et al., 2014a). The N-end rule pathway of ubiqui-
tin-mediated proteolysis is an ancient and conserved branch of
the UPS (Gibbs et al., 2014a). This pathway relates the half-life
of substrates to the amino-terminal (Nt-) residue, which forms
part of an N-degron (Gibbs et al., 2014a). Destabilizing residues
of the Arg/N-end rule are produced following endo-peptidase
cleavage and may be primary, secondary or tertiary (Fig. 1a).
Basic and hydrophobic primary destabilizing residues are recog-
nized directly by N-recognin E3 ligases, in plants represented by
two proteins, PROTEOLYSIS(PRT)6 and PRT1 (Gibbs et al.,
2014a). Secondary destabilizing residues (Glu, Asp and oxidized
Cys) can be N-terminally arginylated by arginyl-transferases
(ATEs), and tertiary destabilizing residues (Gln, Asn and Cys)
can undergo modifications to form secondary destabilizing
residues (Gibbs et al., 2014a). Oxidation of Cys was shown
in vitro to occur both nonenzymically (Hu et al., 2005) or enzy-
matically (Weits et al., 2014; White et al., 2017), whereas in
higher eukaryotes deamidations of Gln and Asn are carried out
by residue-specific N-terminal amidases (NTAQ1 (Wang et al.,
2009) and NTAN1 (Grigoryev et al., 1996), respectively). This
hierarchical structure is conserved in eukaryotes, and physiologi-
cal substrates with N-terminal residues representing these destabi-
lizing classes have been identified (Piatkov et al., 2014). The
Usp1 deubiquitylase is targeted for degradation through the
deamidation branch of the Arg/N-end rule via NTAQ1 as a con-
sequence of auto-cleavage, that reveals N-terminal Gln (Piatkov
et al., 2012). Proteins with similarities to mouse NTAN1 and
NTAQ1 are encoded in higher plant genomes, in Arabidopsis by
AT2G44420 (putative NTAN1) and AT2G41760 (putative
NTAQ1). Expression of these in a deamidation deficient nta1
mutant of Saccharomyces cerevisiae could functionally restore
degradation of the N-end rule reporters Asn-b-galactosidase (b-
Gal) and Gln-b-Gal, respectively. ATE activity was required for
this destabilization in yeast (Graciet et al., 2010). Although the
Arg/N-end rule pathway is evolutionarily highly conserved in
eukaryotes, few substrates or functions for different branches have
been shown. In plants the Cys branch of the Arg/N-end rule
pathway controls homeostatic response to hypoxia (low oxygen)
and NO sensing through the Met-Cys initiating ERFVII

transcription factor substrates (Gibbs et al., 2011, 2014b; Licausi
et al., 2011).

In this paper, we investigated the role of distinct branches of
the Arg/N-end rule pathway in the immune response in Ara-
bidopsis and barley (Hordeum vulgare). We demonstrate that two
branches of the pathway, Glu-deamidation and Cys-oxidation,
regulate resistance to the hemibiotroph Pst and the biotroph
Blumeria graminis f. sp. hordei (Bgh). We also show a significant
role for Nt-Gln amidase NTAQ1 in the regulation of molecular
components associated with basal responses to infection, and a
role for both NTAQ1 and the known Nt-Cys ERFVII substrates
in resistance related to stomatal function.

Materials and Methods

Plant material, growth conditions and experimental design

Arabidopsis thaliana seeds were obtained from NASC, UK unless
otherwise stated, including prt6-1 (SAIL 1278_H11), ntaq1-1
(SALK_075466). Mutant ntan1-1 (Q202* mutation (CAA to
TAA)) was obtained from the Seattle TILLING project (http://till
ing.fhcrc.org). Mutant ntaq1-3 was obtained from the GABI-Kat
T-DNA insertion collection (GK_306F08). The pad3-1 null allele
was described previously (Glazebrook & Ausubel, 1994). Mutants
are in the Col-0 (wild type, WT) accession. Plants were grown
and assays performed in controlled-environment rooms under the
following conditions: 12 h of light (23°C) and 12 h of dark
(18°C), 60–70% relative humidity. Plants were treated between 3
and 4 wk after germination. Barley plant genotypes and growth
conditions were as previously described (Mendiondo et al., 2016).

Construction of transgenic Arabidopsis lines ectopically
expressing NTAQ1

To generate Arabidopsis NTAQ1 overexpressing lines, full-
length cDNA sequence (with and without the STOP codon) was
amplified from 7-d-old seedling cDNA and recombined into
pDONR221. The constructs were mobilized into pH7m34G
and pH7m24GW2, with the GSrhino tag in C-terminal or N-
terminal position of the NTAQ1, respectively (Karimi et al.,
2007). Then the constructs were transformed into Agrobacterium
tumefaciens (strain GV3101 pMP90) and Arabidopsis ntaq1-3
using standard protocols (Clough & Bent, 1998).

In vitro assay for NTAQ1 activity

The Arabidopsis NTAQ1 coding sequence was cloned from
cDNA and flanked by an N-terminal tobacco etch virus (TEV)
protease recognition sequence (ENLYFQ-X) using primers
ss_ntaq1_tev and as_ntaq1_gw, followed by a second PCR with
as_ntaq1_gw and adapter tev attaching a Gateway attB1 site for
sub-cloning into pDONR201 (Invitrogen). An LR reaction into
pVP16 (Thao et al., 2005) leads to an N-terminal 8xHis:MBP
double affinity tag. An assay for NTAQ activity was performed as
described previously (Wang et al., 2009) with slight modifications.
The assay was performed in three technical replicates from three
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independent NTAQ1 protein expressions. The activity of NTAQ1
towards QKGSGAW was used as the 100% reference value.

Analysis of pathogen growth in plant material

The bacterial suspension was injected with a needleless syringe
into the abaxial side of leaves or sprayed on the surface of the

leaves of 3.5-wk-old plants. Pst DC3000 avrRpm1, Pst DC3000
and Pst DC3000 hrpA� were grown overnight at 28°C in Petri
dishes on King’s B medium. For analysis of bacterial growth,
three leaves per plant of at least seven plants were injected
with a bacterial suspension of 106 CFUml�1 (OD600 nm

0.1 = 108 CFUml�1) or sprayed with a suspension of
108 CFUml�1. A disc of 0.28 cm2 from each infected leaf was
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Fig. 1 Genetic characterization of the role of the N-end rule pathway in the Arabidopsis apoplastic response to Pst DC3000. (a) Schematic of the Arg/N-
end rule pathway. Single letter codes for residues are shown. PRT6, PROTEOLYSIS6; ATE, arginyl transferase; NTAN, Nt-Asn amidase; NTAQ, Nt-Gln
amidase; PCO, PLANT CYSTEINE OXIDASE. Black ovals represent protein substrates. (b) Quantification of Pst DC3000 growth in wild-type (WT) and
mutant plants 2 d and 4 d after bacterial infiltration (106 colony forming units (CFU) ml�1). (c) Ion leakage measurement in leaves 4 d after infiltration with
Pst DC3000 (107 CFUml�1). (d–f) Quantification of bacterial growth in WT and mutant plants 4 d after bacterial infiltration (106 CFUml�1). (g) Enzyme
activity of bacterially produced NTAQ1 against peptides with different Nt residues (� =GAGSW). Data represent means� SEM. Statistical differences
were analyzed by ANOVA followed by Tukey test (P < 0.05), significant differences are indicated with letters, or Student’s t-test: *, P < 0.05; **, P < 0.01.
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excised at 96 h, pooled in triplicate, homogenized, diluted and
plated for counting. Inoculation of Botrytis cinerea was performed
by pipetting a drop of 10 ll of a suspension of
59 105 spores ml�1 onto the surface of the leaves. The response
was analyzed by measuring the diameter of the symptoms pro-
duced in three leaves of at least 20 independent plants.

Barley plants were infected with Fusarium spp. and Blumeria
graminis f. sp. hordei as previously described (Ajigboye et al.,
2016). Leaf material of 25-d-old barley plants grown under con-
trolled conditions (20°C : 15°C; 16-h photoperiod; 80% RH,
500 lmol m�2 s�1 metal halide lamps (HQI) and supplemented
with tungsten bulbs) were syringe infiltrated with 0.1 OD Ps. pv
japonica obtained from the National Collection of Plant
Pathogenic Bacteria (NCPPB), UK. Leaf material was collected
before treatment and 4 d after inoculation for conductivity assays
and RNA extraction. Production of H2O2 was visualized by
staining with 3,30-diaminobenzidine tetrachloride as described
(Thordal-Christensen et al., 1997; Moreno et al., 2005).

Stomatal aperture analyses

For stomatal aperture in response to Pst assays, leaves from 3.5-
wk-old plants were used. In the morning after 2 h the lights were
switched on and peels from the abaxial side of the leaves were
placed in Petri dishes containing 10 mM MES/KOH pH 6.1,
50 mM KCl and 0.1 mM CaCl2 for 2 h in continuous light.
Then the buffer was replaced with a solution of Pst DC3000
(OD 0.2: 29 108 CFUml�1). Stomatal aperture was measured
after 0, 1 and 3 h of incubation with the bacteria. Stomatal aper-
ture measurements for ABA sensitivity assays were carried out on
detached leaf epidermis as described previously (McAinsh et al.,
1991; Chater et al., 2011).

Protein extraction and Immunoblotting

Protein extractions and immunoblotting were carried out as
described previously (Gibbs et al., 2011).

Gene expression analysis

RNA extraction, cDNA synthesis, semiquantitative and quantita-
tive RT-PCR were performed as previously described for Ara-
bidopsis (Gibbs et al., 2011, 2014b) and barley (Mendiondo
et al., 2016). For primers used see Supporting Information
Table S1.

Analysis of nitrate reductase activity

Nitrate reductase was assayed as previously (Vicente et al., 2017)
with modifications described elsewhere (Kaiser & Lewis, 1984).

Analysis of protein, RNA and metabolites

Protein extraction, immunoblotting and histochemistry were car-
ried out as described previously (Gibbs et al., 2011). Quantitative
RT-PCR was performed as previously described for Arabidopsis

(Gibbs et al., 2014b) and barley (Mendiondo et al., 2016). Pro-
teomics (Vu et al., 2016) and metabolomics (Gamir et al., 2012;
S�anchez-Bel et al., 2018) analyses were carried out as previously
described.

Experimental statistical analyses

All experiments were performed at least in triplicate. Statistical
comparisons were conducted using GraphPad PRISM 7.0 software.
Horizontal lines represent standard error of the mean values in all
graphs. For statistical comparisons we used Student’s t-test, where
statistically significant differences are reported as: ***, P < 0.001;
**, P < 0.01; *, P < 0.05; and one-way analysis of variance
(ANOVA) with Tukey’s multiple comparisons test, where signifi-
cant differences (a < 0.05) are denoted with different letters.

Results

Nt-Gln amidase and Cys oxidation branches of the Arg/
N-end rule pathway increase basal resistance against Pst
DC3000

The role for the Arg/N-end rule pathway in the plant immune
response was assessed using the model bacterial pathogen P.
syringae pv tomato DC3000 and T-DNA insertion null mutants
of the putative Gln-specific amino-terminal amidase NTAQ1
(AT2G41760) (Fig. S1a–d) and N-recognin E3 ligase PRT6
(AT5G02310) genes, and a premature termination allele of the
putative Asn-specific amino-terminal amidase NTAN1
(AT2G44420) (Q202*) (Fig. 1a). The entire effect of NTAQ1,
NTAN1 and Cys branches of the Arg/N-end rule pathway on
response to pathogen challenge can be assessed by analysis of the
prt6 mutant, as this removes E3 ligase activity, thus stabilizing all
substrates of NTAQ1, NTAN1 and substrates with Nt-Cys
(Fig. 1a). Bacterial growth in leaves of prt6 was significantly lower
by 4 d post-infiltration with virulent (Pst DC3000) or avirulent
(Pst DC3000 avrRmp1) strains, indicating that substrates destabi-
lized by PRT6 action contribute to the immune response
(Figs 1b, S2a). In comparison, ntaq1 alleles also showed signifi-
cantly lower bacterial growth (comparable with that of prt6 )
compared with both the ntan1-1 mutant or the wild type (WT)
Col-0 for plants grown from seed in soil under neutral days
(12 h : 12 h, light : dark). These results are opposite to those
obtained by de Marchi et al. (2016), who found enhanced sensi-
tivity to Pst DC3000 of N-end rule mutants prt6 and ate1 ate2
(which removes ATE Nt-arginylation activity, Fig. 1a). To inves-
tigate this difference, we assayed bacterial growth under condi-
tions used by de Marchi et al. for plant growth and infection. In
their case, germination and initial 7 d growth of seedlings was
carried out on agar containing MS medium and 0.5% sucrose
before transfer to soil and, following transfer, plants were grown
under short-day conditions (9 h : 15 h, light : dark). We grew
Col-0, prt6-1 and ate1 ate2 under these conditions and assayed
bacterial growth at 2 d and 4 d post-infiltration. For plants grown
under neutral days, we found that by 4 d post-infection, bacterial
growth was significantly lower in N-end rule mutants than in the
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WT (Fig. S2b). All subsequent reported experiments were carried
out using plants grown from seed under neutral-day conditions.

Tissue cellular leakage measured 4 d following infection was
significantly lower in prt6 and ntaq1 mutants (Figs 1c, S1d).
Expression in WT of NTAQ1 and PRT6 was not strongly
affected by infection with either bacterial strain (Fig. S2c). Inocu-
lation with the PTI inducer Pst DC3000 hrpA� (with a compro-
mised type-three secretion system), resulted in reduced
susceptibility of prt6 and ntaq1 mutants compared with WT or
ntan1 (Fig. 1d). Ectopic expression of either Nt- or C-terminally
tagged NTAQ1 removed enhanced resistance of ntaq1-3
(Fig. 1e), and the double mutant prt6-1 ntaq1-3 did not show
significant difference compared with the single mutants prt6-1 or

ntaq1-3 (Fig. 1f). It was previously suggested that formation of
N-terminal pyroglutamate by glutaminyl cyclase (GC) might
compete with NTAQ1 for Nt-Gln substrates (Wang et al.,
2009), implying that a lack of GC activity could lead to
enhanced susceptibility. We observed a similar response to Pst
DC3000 of WT and a mutant of GLUTAMINYL CYCLASE1
(GC1) (Schilling et al., 2007) (Fig. S2d), indicating that competi-
tion for Nt-Gln substrates between NTAQ1 and GC1 is not rele-
vant for the regulation of bacterial growth following infection.
To define the biochemical action of NTAQ1, we analysed the
Nt-deamidation capacity of recombinant Arabidopsis NTAQ1
that showed high specificity for Nt-Gln in comparison with Nt-
Asn, -Gly and-Lys (Fig. 1g).
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Using mutants in which ERFVII activity was removed (Abbas
et al., 2015) (rap2.12 rap2.2 rap2.3 hre1 hre2 pentuple mutant,
hereafter erfVII, and the prt6 erfVII sextuple mutant), analysis of
infections of Pst DC3000 following infiltration showed no signif-
icant influence of ERFVIIs in affecting apoplastic growth of
either virulent or avirulent Pst strains (Figs 2a, S3a). Bacterial
growth 4 d following foliar spray application of Pst DC3000
revealed greater resistance of both prt6-1 and ntaq1-3 mutants
compared with WT or ntan1-1 (Figs 2b, S3b), which for both
foliar spray and injection required SA, analysed in double mutant
combinations of prt6-1 or ntaq1-3 with sid2-1. SID2 is an iso-
chorismate synthase required for SA synthesis (Nawrath &
Metraux, 1999) (Fig. S3c). Stomatal closure is a key component
of early defence response following pathogen attack (Arnaud &
Hwang, 2015). We found that, in response to Pst, WT initially
closed and then, induced by the pathogen, reopened its stomata,
as did prt6-1 and ntaq1-3. The erfVII and prt6 erfVII mutants
failed to close stomata at any point (Fig. 2c). ERFVIIs have previ-
ously been shown to regulate stomatal ABA sensitivity via the N-
end rule pathway (Vicente et al., 2017), and we also found ntaq1-
3 stomata were hypersensitive to ABA (Fig. S3d). In response to
Pst DC3000 infection following foliar spray application, resis-
tance was significantly lower in the absence of ERFVII transcrip-
tion factors (either erfVII or prt6 erfVII) compared with WT or
prt6 (Fig. 2d), respectively. Response to the foliar spray applica-
tion of Pst DC3000 was associated with a large decrease in activ-
ity and expression of NITRATE REDUCTASE (NR) (Fig. 2e,f).
This reduction has been previously linked with increased basal
resistance against Pst (Park et al., 2011), whereas expression of
ADH1, a marker for hypoxia, was only increased immediately
following pathogen challenge (Fig. S3e). Infection with Pst
DC3000 was associated by 24 h with increased stabilization of an
artificial Cys-Arg/N-end rule substrate derived from the construct
35S:MC-HAGUS, that following constitutive MetAP activity is
expressed as C-HAGUS (Gibbs et al., 2014b; Vicente et al., 2017)
(Fig. 2g). To clarify whether plant-derived factors were solely
responsible for the control of the stability of C-HAGUS, we
injected the PAMP peptide flg22, and showed that injection of
flg22 was able to stabilize C-HAGUS (Fig. 2h).

The Arg/N-end end rule pathway has a conserved function
in the immune response

To determine the conservation of Arg/N-end rule pathway role
in the immune response, we tested responses to pathogens in bar-
ley, a monocot species distantly related to Arabidopsis, in which
the expression of the PRT6 orthologue gene HvPRT6 was
reduced by RNAi (Mendiondo et al., 2016). Following inocula-
tion with a strain of P. syringae pv japonica with known
pathogenicity to barley (Dey et al., 2014), significantly lower bac-
terial load was observed in HvPRT6 RNAi leaves compared with
the WT (Fig. 3a). Similarly, HvPRT6 RNAi plants exhibited
reduced development and severity of mildew caused by Bgh
(Fig. 3b,c). By contrast, susceptibility of HvPRT6 RNAi to
Fusarium graminearum or F. culmorum, tested on detached leaves
was increased compared with the WT (Fig. 3d). To assess the

response of prt6-1 in Arabidopsis to a necrotroph we inoculated
the mutant and WT with the fungal pathogen B. cinerea but we
failed to observe any significant differences in disease severity,
measured as diameter of necrotic lesions (Fig. S3f). Infection of
barley with Ps pv japonica or Bgh also resulted in accumulation of
the artificial Nt-Cys substrate CGGAIL-GUS (from pUBI:
MCGGAIL-GUS, containing the first highly conserved seven
residues of ERFVIIs; Gibbs et al., 2014b; Mendiondo et al.,
2016; Vicente et al., 2017), therefore Nt-Cys stabilization in
response to infection is conserved in flowering plants (Fig. 3e).

NTAQ1 regulates expression of the camalexin biosynthesis
pathway

A shotgun proteomic analysis of total proteins from untreated
ntaq1-3 and WT adult leaves revealed 13 proteins which were
significantly differentially regulated, 12 exhibited increased and
one decreased abundance in ntaq1-3 (Table S2). The functions
of most ntaq1 upregulated proteins are related to oxidative,
biotic and abiotic stresses, including a 2-OXOGLUTARATE
OXYGENASE (AT3G19010) potentially involved in quercetin
biosynthesis and targeted by bacterial effectors (Truman et al.,
2006) and DJ-1 protein homolog E (DJ1E) involved in response
to PAMPs (Lehmeyer et al., 2016). Not all ntaq1 upregulated
proteins were also upregulated at the level of RNA (Fig. S4). Sev-
eral ntaq1 over-accumulated proteins are involved in the regula-
tion of reactive oxygen species (ROS). However, analysis of gene
expression of a ROS accumulation marker, the antioxidant
enzyme CATALASE1 (CAT1), and histochemical analysis of the
accumulation of the ROS hydrogen peroxide (H2O2) during
infections with Pst failed to reveal significant differences between
the mutants ntaq1 and prt6 and WT (Fig. S5). Increased toler-
ance of the mutants which was associated with less cellular dam-
age required SID2, an isochorismate synthase required for SA
synthesis (Nawrath & Metraux, 1999), as double mutant combi-
nations of prt6-1 or ntaq1-3 with sid2-1 showed susceptibility
similar to the sid2 single mutant (Fig. S3c). Analysis of phytohor-
mone levels indicated that there were no differences between
ntaq1-3, prt6-1 or WT in untreated or infected leaves for SA, JA
or IAA (Figs 4, S6). These results together suggest a functional
redundancy of ntaq1 upregulated proteins with other antioxidant
mechanisms, already documented in the case of the
GLUTATHIONE S-TRANSFERASEs (GSTs) (Sappl et al.,
2009), or alternative roles for ntaq1 upregulated proteins in plant
defence.

One of the identified proteins upregulated in ntaq1, the phi
class GSTF6, functions in secondary metabolism related to the
synthesis of the major Arabidopsis phytoalexin, camalexin (Su
et al., 2011), as do the upregulated proteins PUTATIVE
ANTHRANILATE PHOSPHORIBOSYLTRANSFERASE (in-
volved in the synthesis of the camalexin precursor tryptophan;
Zhao & Last, 1996) and IAA-AMINO ACID HYDROLASE
(ILL4), that generates indole-3-acetic acid (IAA) from its conju-
gated form (Davies et al., 1999). Another upregulated protein,
GSTF7 was hypothesized to play a role in camalexin synthesis
based on its induction in the constitutively active MKK9 mutant
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(Su et al., 2011). Our analysis of previously published transcrip-
tome data (de Marchi et al., 2016) comparing gene expression in
ate1 ate2 with WT, and comparing gene expression during Pst
infection in Col-0 and ate1 ate2 also showed increased expression
of RNAs encoding camalexin synthesis genes (Tables S3, S4).
Analysis of transcript expression indicated greater accumulation
for most genes of camalexin synthesis in mature uninfected leaves
of ntaq1 and prt6 compared to WT (Figs 4, S7), including PAD3
(CYP71B15), that catalyzes the final two steps of camalexin syn-
thesis. Interestingly, during a time course following infiltration
with Pst DC3000, levels of camalexin-associated transcripts,
including GSTF6 and PAD3, as well as GSTF7 increased in WT
but to a lesser extent in mutant leaves (Figs 4, S7). Whilst basal
levels of camalexin in uninfected leaves were similar in mutants
and WT they increased to a greater degree in mutants than WT
in response to infection (Fig. 4). Mutant plants showed greater
basal levels of indole-3-carboxylic acid (I3CA), a compound syn-
thesized during the defence response and a potential precursor of
camalexin through the action of GH3.5 (Forcat et al., 2010;

Wang et al., 2012) that was also upregulated at the RNA level in
untreated leaves of ntaq1-3 (Fig. 4). Camalexin synthesis is highly
interconnected with other pathways of secondary metabolism, for
example it has been reported that vte2 and cyp83a1, mutants of
key steps of tocopherol and aliphatic glucosinolate synthesis path-
ways respectively, show increased levels of camalexin (Sattler
et al., 2006; Liu et al., 2016). VTE2 and CYP83A1 showed
decreased expression in ntaq1-3 and prt6-1 in both basal and
infected conditions (Figs 4, S8). Combination of a null pad3
allele with prt6-1 resulted in a loss of the prt6 enhanced resistance
to injected Pst DC3000 (Fig. 5).

The Arg/N-end rule pathway regulates an age-dependent
primed state in uninfected plants

Previous work showed that hypoxia-associated genes are ectopi-
cally upregulated in prt6 and ate1 ate2 mutant seedlings (Gibbs
et al., 2011; Licausi, 2013). However, it was recently shown that
this is age-dependent, that in mature mutant plants these genes
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are not upregulated (Giuntoli et al., 2017). We also observe a
large reduction in expression of hypoxia genes in older prt6 plants
and saw a similar trend in WT for some genes (Fig. S9a). No
age-related differences were found in NTAQ1 expression in either
WT or prt6 backgrounds (Fig. S9b), however GSTF6/7 and
PAD3 showed increased expression with age in prt6-1 and ntaq1-
3 plants compared with WT (Fig. 6a). In N-end rule mutants,
compared to WT we found age-related increases for the SA-
responsive PATHOGENESIS RELATED (PR) protein genes
PR1 and PR5, whilst JA and ET responsive PR3 and PR4 showed
no differences (Fig. 6b). In barley, constitutive increase in expres-
sion of the SA-responsive genes HvPR1 and Hvß1-3 glucanase
(Horvath et al., 2003; Rostoks et al., 2003) was found in leaves of
HvPRT6 RNAi plants, and infection with Bgh did not result in
an increase in expression in HvPRT6 RNAi plants, that was
observed in WT plants (Fig. 6c).

Discussion

We show here that a role for Arg/N-end rule pathway-mediated
immunity is conserved in flowering plants. In Arabidopsis we
demonstrate physiological, biochemical and molecular roles for N-
end rule component NTAQ1 in influencing basal defence by
enhancing expression of defence proteins and synthesis of
camalexin, and a role for the ERFVII known substrates in influ-
encing stomatal response, against the hemibiotroph Pst. We show
a role in barley of the Arg/N-end rule in response to the biotroph
Bgh and hemibiotroph Ps japonica. We suggest that benefits of
increased immunity may not be realized against necrotrophic
pathogens (as shown in the interaction between Fusarium spp. and

barley). It has been documented that camalexin is part of the
defence response against the necrotroph fungus B. cinerea, inhibit-
ing its growth in a dose-dependent manner (Ferrari et al., 2003).
In our experiments, there were no differences in responses of WT
and prt6 to B. cinerea suggesting that independently of other
mechanisms activated, an increase in camalexin in prt6 may not
reach a level necessary for reduction in fungal growth. A recent
report showed N-end rule mutants, including alleles of prt6, ate1
ate2 and ntaq1 to be in general equal or more sensitive than WT
Arabidopsis to a wide range of bacterial and fungal pathogens with
diverse infection strategies and lifestyles (de Marchi et al., 2016).
Our results, in which plants were grown under either neutral days
or under the short-day condition used by de Marchi et al. showed
the opposite results (of increased resistance). Our results provide a
consistent pattern across different levels of expression (including
enhanced defence gene transcripts and increased levels of
camalexin synthesis proteins in untreated plants, and consistent
phenotypes between Arabidopsis and barley) that indicate a role
for NTAQ1 substrates and ERFVIIs as components of the
immune response that enhance resistance. Therefore, differences
in observed phenotypes of N-end rule mutants in response to
infection between our studies remain to be resolved.

A specific effect for ERFVIIs was observed in the stomatal
response to Pst. ABA is an important component of stomatal
response to pathogens (McLachlan et al., 2014) and stabilized
ERFVIIs enhance ABA sensitivity of stomata (Vicente et al.,
2017). We observed a large increase in stability of artificial
Nt-Cys reporters in both Arabidopsis and barley. Stabilisation
could be caused by shielding of the Nt, or a reduction of
either NO or oxygen. We did not observe an increase in
hypoxia-related gene expression (of ADH1) at the same time
as GUS stabilization, however we did observe a decline in NR
activity. Seemingly contradictory to this assertion is the well
known burst of NO in response to Pst infection (Delledonne
et al., 1998). However, this burst occurs early following infec-
tion, well before the reduction in NR activity and stabilization
of artificial Nt-Cys reporters in both Arabidopsis and barley.
It has previously been shown that in the NR null mutant
nia1 nia2, which produces very low NO levels, the NO burst
in response to infection is highly reduced (Modolo et al.,
2006; Chen et al., 2014). Further experiments would be
required to determine a causative role of reduced NR activity
leading to enhanced stabilization. Regardless of the mechanism
of stabilization, the observation of increased stability of Nt-
Cys substrates following infection in both Arabidopsis and
barley indicates a conserved role for modulation of the Cys-
Arg/N-end rule pathway, and function for Nt-Cys substrates,
in response to pathogen infection that deserves further investi-
gation. Enhanced ABA sensitivity and stomatal response to Pst
of the ntaq1 mutant also suggests that Nt-Gln substrate(s)
contribute to the stomatal ABA response to pathogens, and
explains why erfVII is more sensitive to Pst than prt6 erfVII
(where NTAQ1 substrates are still stabilized). An opposite
effect of ERFVIIs was shown for interactions of Arabidopsis
with the biotroph P. brassicae, as ERFVIIs enhanced infection
indirectly by influencing fermentation (Gravot et al., 2016).
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These observations and others (Gibbs et al., 2015) indicate an
important role for ERFVIIs in the plant immune response.

Analysis of the response to Pst DC3000 hrpA�, together with
increased expression of SA-associated defence genes and increased
camalexin synthesis, suggests a role for NTAQ1 in the onset of

general and inducible PTI defence. An age-related increase in SA-
related defence gene expression in N-end rule mutants was not
matched by increased SA levels. This suggests a possible role for
immune-related MAPK cascade activating MPK3/6 that are suf-
ficient for SA-independent induction of most SA-responsive
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genes, including PR1 (Asai et al., 2002). Concomitantly, it has
been demonstrated that both MPK3 and MPK6 activation trig-
ger GSTF6, 7 (and DJ1E) protein accumulation, which produces
an increase in camalexin (Xu et al., 2008; Su et al., 2011). The
observed increased accumulation of camalexin in ntaq1 and prt6
provides one explanation for the increased resistance of these
mutants. Although expression of camalexin synthesis genes was
ectopically upregulated in uninfected mature leaves of mutants,
enhanced camalexin accumulation was only observed in response
to infection. This may be the result of shunting of intermediate(s)
to other secondary metabolism pathways. In line with this,
unchallenged ntaq1 and prt6 plants show greater levels of I3CA.
The observation that mutation of pad3 reverts the enhanced
resistance of prt6 highlights the role of N-end rule regulated
camalexin synthesis in enhancing the immune response.

How might NTAQ1 function during development and in
response to pathogen attack? NTAQ1 and PRT6 expression do
not change in response to pathogen attack. NTAQ1 function
influences defence gene expression and camalexin synthesis. We
demonstrate that downstream responses to NTAQ1, measured as
responsive gene expression, are modified during development
(although the expression of NTAQ1 (and PRT6 ) transcripts were
not affected by ageing), suggesting that NTAQ1 substrate(s) may
show an age-dependent increase in abundance. Following pro-
tease cleavage their activity would be revealed in the ntaq1
mutant, where they would remain ectopically stabilized. Follow-
ing protease cleavage to reveal Nt-Gln, NTAQ1 substrates should
be degraded in WT plants. In this case, in mature WT leaves
down-regulation of NTAQ1-linked protease activity (or NTAQ1
activity) in response to pathogen attack could result in substrate
stabilization. Stabilized NTAQ1 substrate(s) (or uncleaved pro-
tease targets that provide substrates) may then function to
enhance gene expression associated with defence genes and
camalexin synthesis, both resulting in an enhanced basal immune
response.

Our data support a conserved role of the Arg/N-end rule path-
way in influencing plant immune responses. Barley contains one
NTAQ1 gene (MLOC_70886) (Mayer et al., 2012). Manipula-
tion of expression or activity of this gene will be required to
understand whether NTAQ1 activity is also required for defence
in barley. An important goal of future work will be to identify
Nt-Gln substrates that influence the immune response. Although
NTAQ1-related genes are present in all major groups of eukary-
otes, only a single example exists of a biochemical role for this
enzyme and its associated substrate (Usp1) (Piatkov et al., 2012).
There is already evidence for Nt-Gln-bearing peptide fragments
derived from proteins of diverse functions present in the plant
METACASPASE-9 degradome (Tsiatsiani et al., 2013), suggest-
ing that substrates for NTAQ1 exist. Our results establish new
components of the plant immune response, and offer new targets
to enhance resistance against plant pathogens.
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