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a b s t r a c t

We provide new exact forms of smooth and sharp-fronted travelling wave solutions
of the reaction–diffusion equation, ∂tu = R(u) + ∂x [D(u)∂xu], where the reaction
term, R(u), employs a Weak Allee effect. The resulting ordinary differential
equation system is solved by means of constructing a power series solution of
the heteroclinic trajectory in phase plane space. For specific choices of wavespeeds
and standard Weak Allee reaction terms, extending the celebrated exact travelling
wave solution of the FKPP equation with wavespeed 5/

√
6, we determine a family

of exact travelling wave solutions that are smooth or sharp-fronted.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Travelling waves arising from a general reaction–diffusion (RD) model over x ∈ R, as well as reaction–
iffusion models on the time-evolving domain x ∈ (−∞, L(t)], which we refer to as the moving-boundary
MB) model, arise in a wide range of applications and have been of continued interest in applied mathematics
or over a century [1–17]. These RD and MB travelling waves are often examined via phase plane analysis of
resulting system of nonlinear ordinary differential equations (ODEs) [1,2], with some choices of reaction–
iffusion functions leading to celebrated exact travelling wave solutions (c.f. [3–5]). The most common
hoice of reaction term in RD and MB models is logistic growth, which assumes that the population
(x, t) will always thrive and survive [3]. Another choice of reaction term is the Weak Allee effect [3],
hich reduces the population growth rate in low population densities. However, explicit travelling wave

olutions have not been reported. Furthermore, with the inclusion of standard degenerate diffusivity choices
c.f. [1,2,8–11]), numerically-computed solutions of the resulting sharp-fronted travelling waves are unreliable
r inaccurate [1]. Consequently, obtaining exact forms of sharp-front travelling waves can aid the resulting
nalysis for travelling waves obeying similar reaction–diffusion mechanisms.

In this work, we examine the resulting nonlinear ODE system that arises from travelling wave analysis
n RD and MB models [2]. Using a power series solution ansatz for the heteroclinic trajectory, we are able
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o obtain implicit analytic expressions for the travelling wave profile. For specific choices of wavespeeds and
tandard Weak Allee reaction terms, extending the celebrated exact travelling wave solution of the FKPP
quation with wavespeed 5/

√
6 [4,5], we determine a family of exact travelling wave solutions that are either

mooth or sharp-fronted.

. Travelling wave analysis in Reaction Diffusion and Moving-Boundary models

With reference to [2], we consider two non-dimensional reaction–diffusion models, describing the popu-
ation u ∈ [0, 1]. In the first, which we call the Reaction–Diffusion (RD) model, u evolves of the entire real
ine and is described via the following partial differential equation:

(RD) :
{

∂tu(x, t) = R(u) + ∂x [D(u)∂xu(x, t)] ,

lim
x→−∞

u(x, t) = 1, lim
x→+∞

u(x, t) = 0.
(1)

n the second, which we call the Moving-Boundary (MB) model [2], u evolves over the spatial domain
x ∈ (−∞, L(t)] with a moving boundary condition at x = L(t):

(MB) :

⎧⎨⎩∂tu(x, t) = R(u) + ∂x [D(u)∂xu(x, t)] ,

lim
x→−∞

u(x, t) = 1, u(L(t), t) = 0,
dL

dt
= −κD(u)∂xu(x, t)|x→L(t)− , L(0) = L0.

(2)

he moving boundary parameter, κ, relates the speed of the moving front, dL/dt, to the population flux,
D(u)∂xu(x, t). For both models, we impose that both R(u) and D(u) have convergent power series on [0, 1]

and that
0 ≤ D(u), R(u) < ∞, u ∈ [0, 1], R(u) = Os(u − 1), u → 1−. (3)

hese bounds indicate that the diffusivity D(u) is finite and non-negative and that the reaction R(u) can
nly be a source term with a simple root at u = 1. Next, we transform the PDE system into travelling wave
oordinates via z = x − L0 − ct,. In the RD model, z ∈ R, whereas in the MB model, z ∈ (−∞, 0] and
L/dt = c. By denoting

Q(z) = D(u)du

dz
, (4)

we have, as shown in [2], that the heteroclinic trajectory Q(u) satisfies the following nonlinear first-order
ODE:

− dQ(u)
du

= c + R(u)D(u)
Q(u) , Q(1) = 0, lim

u→0+
Q(u) =

{
0, (RD)
− c

κ
. (MB) (5)

3. Power series solution of the heteroclinic trajectory Q(u)

In general, explicit solutions of Eq. (5), which is an Abel equation of the second kind [18], are not readily
btainable for all R(u) and D(u) choices. However, we can construct a power series solution for Q(u) and, in
similar fashion, construct an implicit power series solution for u(z). To do this, we first make the following
ower series ansatzes:

Q(u) =
∞∑

n=1
αn(u − 1)n, R(u)D(u) =

∞∑
n=1

βn(u − 1)n, D(u) =
∞∑

n=0
δn(u − 1)n. (6)

e note that the series in Q(u) and R(u)D(u) begin at n = 1, due to the boundary condition Q(1) = 0, as
well as using the conditions stated in (3). By multiplying Eq. (5) by Q(u), we obtain from a Cauchy product
of power series that

−
∞∑

γn(u − 1)n = c

∞∑
αn(u − 1)n +

∞∑
βn(u − 1)n, (7)
n=1 n=1 n=1
2
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here γn is the discrete convolution of αn with (n + 1)αn+1:

γn =
n∑

k=1
(n − k + 1)αkαn−k+1 =

(
n + 1

2

) n∑
k=1

αkαn−k+1. (8)

herefore, by examining each power of (u − 1)n, beginning with n = 1, we have that

− α2
1 = cα1 + β1 =⇒ α1 = −c +

√
c2 − 4β1

2 > 0, (9)

ince we know that β1 < 0 and require α1 > 0. Next, for n = 2, we have that

− 3α1α2 = cα2 + β2 =⇒ α2 = − β2

c + 3α1
. (10)

inally, for n ≥ 3, we have that

αn = − 1
c + (n + 1)α1

[
βn +

(
n + 1

2

) n−1∑
k=2

αkαn−k+1

]
, n ≥ 3. (11)

hrough this recursion formula, we are able to obtain the power series of Q(u), and hence, a series solution
or κ in the MB model:

(MB) : κ = − c

Q(0) = c∑∞
n=1(−1)n+1αn

. (12)

o determine u(z), we use the same power series representations for Q(u) and D(u) and substitute these
nto Eq. (4):

∞∑
n=0

δn(u − 1)n du

dz
=

∞∑
n=1

αn(u − 1)n = (u − 1)
∞∑

n=0
αn+1(u − 1)n (13)

o determine the power series representation of the quotient D(u)/Q(u), we define

(u − 1)D(u)
Q(u) =

∞∑
n=0

ξn(u − 1)n =⇒ δn =
n∑

k=0
ξkαn−k+1. (14)

he coefficients of ξn can then be related to αn and δn via the following difference equation:

α1ξn =
n∑

k=0
δn−kAk, where A0 = 1 and An+1 = − 1

α1

n∑
k=0

Akαn−k+2, n ≥ 0. (15)

herefore, we can use this expression for ξn in (4) and obtain∫ u α1

v − 1

[ ∞∑
n=0

ξn(v − 1)n

]
dv = α1(z − z0). (16)

hus, we can determine an implicit solution z(u) that solves the RD and MB models (1) and (2):

(RD) : α1(z − z0) = δ0 ln(1 − u) +
∞∑

n=1
(u − 1)n

n∑
k=0

[
δn−kAk

n

]
, (17)

(MB) : α1z = δ0 ln(1 − u) +
∞∑

n=1

n∑
k=0

δn−kAk

[
(u − 1)n − (−1)n

n

]
. (18)

n these formulae, z0 is an arbitrary constant of integration, while αn and An are determined recursively via
11) and (15), respectively.
3
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. Exact travelling wave solutions in Weak Allee effect models

In general, the choices of D(u) and R(u), and hence, the choices of βn and δn, give rise to a multitude
of possibilities for the form of the implicit solution z(u) described in (18). Nevertheless, there are specific
function choices which give rise to key features of RD and MB travelling waves. In particular, we will focus on
a family of Weak Allee effect reaction terms, due to their frequent appearance in reaction–diffusion models.

4.1. Quadratic Q(u)

From (11), it is worth noting that if β3 = −2α2
2 and βn = 0 for n ≥ 4, then αn = 0 for n ≥ 3 and Q(u)

reduces to a quadratic function. Furthermore, it can be shown from (15) that An = (−α2/α1)n and hence,

α1z = δ0 ln(1 − u) +
∞∑

n=1

(
−α2

α1

)n [
(u − 1)n − (−1)n

n

] [
n∑

k=0
δk

(
−α1

α2

)k
]

, κ = c

α1 − α2
. (19)

s an example of a new explicit solution of MB travelling waves, we consider the case where diffusion is
onstant and a Weak Allee effect is employed in the reaction term [2,19,20]:

(MB) : D(u) = 1, R(u) = u(1 − u)(ρu + 1 − ρ), ρ ∈
[

1
2 , 1

)
. (20)

y identifying δ0 = 1, β1,2,3 = {−1, −1 − ρ, −ρ}, and all other coefficients being zero, we have that a
articular wavespeed ĉ gives rise to a quadratic form of Q(u):

ĉ = 2ρ − 1√
2ρ

=⇒ α1 = 1√
2ρ

, α2 =
√

ρ

2 , αn≥3 = 0

=⇒ Q(u) = (u − 1)[1 + ρ(u − 1)]√
2ρ

, κ = 2ρ − 1
1 − ρ

. (21)

By noting that α2 = ρα1, we have from (19) that

z√
2ρ

= ln
[

(1 − ρ)(1 − u)
1 − ρ(1 − u)

]
⇐⇒ u(z) =

(1 − ρ)
[
1 − exp

(
z√
2ρ

)]
1 − ρ

[
1 − exp

(
z√
2ρ

)] . (22)

his Weak Allee effect class can also be extended to RD travelling waves when ρ = 1, which allows Q(0) = 0:

(RD) : ĉ = 1√
2

=⇒ Q(u) = u(u − 1)√
2

, u(z) =
[
1 + exp

(
z − z0√

2

)]−1
. (23)

.2. General polynomial Q(u)

In a similar fashion to quadratic solutions of Q(u), we can also choose βn via (11) to force a polynomial
olution for Q(u) of degree N , i.e. having αN non-zero and αn = 0 for n > N . Due to the discrete convolution
erms appearing in (11), we require that β2N−1 is non-zero, while βn = 0 for n ≥ 2N . We can the relate
1, . . . αN and c to β1, . . . β2N−1 by means of a system 2N − 1 quadratic equations obtained from (11).

As a means of illustrating the more general forms of polynomial Q(u), we consider a MB model whereby
egenerate diffusion is employed alongside a family of Weak Allee models akin to those presented in [9]:

(MB) : D(u) = un, R(u) = u[σu(1 − un+1) + (1 − u)(1 − σ − nσ)], σ ∈
[

1
,

1
)

. (24)

n + 2 n + 1

4
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e note that this general reaction–diffusion model reduces to the quadratic Q(u) explored in the previous
ubsection when n = 0. Furthermore, the degenerate diffusion D(u) creates travelling waves with infinite
lope at x = L(t), while the population flux, −D(u)∂xu, remains finite [1,2]. For the wavespeed c̃ =
(n + 2)σ − 1√

(n + 2)σ
, we determine from (11) that Q(u) is a polynomial of degree n + 2:

Q(u) = σu(un+1 − 1) + (u − 1)(1 − σ − nσ)√
(n + 2)σ

, κ = (n + 2)σ − 1
1 − (n + 1)σ . (25)

hile the implicit travelling wave z(u) can be obtained via integration or (15), for any permissible value of
, it has been omitted here for brevity. For the special case when c = 0, the closed-form expression for z(u)

can be determined as

(MB) : σ = 1
n + 2 =⇒ Q(u) = un+3 − 1

n + 2 , z(u) = −Bun+2

(
n + 1
n + 2 , 0

)
, (26)

here Bx(p, q) is the incomplete Beta function [21]. Similar to the previous subsection, this class of reaction–
iffusion functions can also be extended to RD travelling waves when σ = (n + 1)−1, which allows
(0) = 0:

(RD) : c̃ = 1√
(n + 1)(n + 2)

=⇒ Q(u) = u(un+1 − 1)√
(n + 1)(n + 2)

,

z(u) = z0 −
√

n + 2
n + 1Bun+1

(
n

n + 1 , 0
)

. (27)

e note that while this travelling wave solution is only permitted in the RD model, due to Q(0) = 0, the
esulting travelling wave is still sharp-fronted and is identically zero for z > z0 (c.f. [9]). Furthermore, due to
he change in argument in the incomplete Beta function, we note that the leading edge of the RD travelling
ave is proportional to (z0 − z) 1

n , while the leading edge of the MB travelling waves are proportional to
−z)

1
n+1 [2]. This power law change demonstrates the qualitative differences between sharp-fronted RD and

MB travelling waves.

4.3. Other Weak Allee effect models

We conclude by considering a final family of Weak Allee effect models that extend beyond polynomial
Q(u) solutions and is motivated by the celebrated exact travelling wave solution discussed in [4]:

(RD) : D(u) = 1, R(u) = u

r
(1 − ur) , r > 0. (28)

e note that in the case where r = 1, we retrieve the standard logistic growth reaction term and have an
xplicit solution for c = 5/

√
6 in [4]:

r = 1, c = 5√
6

=⇒ u(z) =
[
1 + exp

(
z − z0√

6

)]−2
, Q(u) =

√
2
3u

(√
u − 1

)
. (29)

otivated from this form of Q(u), which incorporates rational powers of u, we adopt the following ansatz
o solve (28):

Q(u) = αu(uβ − 1) =⇒ α =

√
2

r(r + 2) , β = r

2 , c = r + 4√
2r(r + 2)

. (30)

herefore, for the special wavespeed c = r + 4√
2r(r + 2)

, we can determine both the heteroclinic trajectory as

well as the travelling wave solution to (28):

c = r + 4√ =⇒ Q(u) =

√
2

r(r + 2)u
(

ur/2 − 1
)

, u(z) =
[
1 + exp

(
(z − z0)

√
r

2(r + 2)

)]− 2
r

. (31)

2r(r + 2)

5



N.T. Fadai Applied Mathematics Letters 135 (2023) 108433

a
A
s
t

5

d
t
s
e
r

e
m
s
h
w
w

D

R

Fig. 1. Explicit travelling wave solutions u(z) for Weak Allee effect models described in (a) Section 4.1, (b) Section 4.2 with n = 2,
nd (c) Section 4.3. Note that all RD-labelled travelling waves are defined for z ∈ R, while MB travelling waves are defined for z ≤ 0.
ll smooth RD travelling waves are translated in z so that z = 0 corresponds to the inflection point of the travelling wave. The

harp-fronted RD travelling wave in (b) is identically zero for z > z0 = −1/2. The travelling wave in (c) with r = 1 corresponds to
he FKPP explicit solution described in [4].

. Conclusion

In this work, we report new exact forms of smooth and sharp-fronted travelling wave solutions of reaction–
iffusion equations that employ a Weak Allee effect. Motivated by polynomial solutions of the heteroclinic
rajectory in phase plane space, we examine power series solutions of the travelling wave differential equation
ystem. For a variety of Weak Allee effect models, we determine the necessary wavespeed conditions for an
xplicit heteroclinic trajectory solution, resulting in exact sharp-fronted and smooth travelling waves for
eaction–diffusion equations on infinite domains and moving-boundary domains (Fig. 1).

This focus on explicit travelling wave solutions by means of an explicit heteroclinic trajectory provides
xciting future avenues of travelling wave analysis. As shown in one particular family of Weak Allee effect
odels, the explicit heteroclinic trajectory need not be a polynomial to obtain an explicit travelling wave

olution. Many reaction–diffusion model choices can result in other explicit solutions to the associated
eteroclinic trajectory, which is a solution to an Abel equation of the second kind (c.f. [18]). Therefore,
e anticipate that an even larger family of reaction–diffusion model choices can present explicit travelling
ave solutions for specific wavespeed choices.

ata availability

No data was used for the research described in the article.

eferences

[1] N.T. Fadai, M.J. Simpson, New travelling wave solutions of the Porous–Fisher model with a moving boundary, J. Phys.
A 53 (9) (2020) 095601.

[2] N.T. Fadai, Semi-infinite travelling waves arising in a general reaction-diffusion stefan model, Nonlinearity 34 (2) (2021)
725.

[3] J.D. Murray, Mathematical Biology I: An Introduction, Spring-Verlag, 2003.
[4] M.J. Ablowitz, A. Zeppetella, Explicit solutions of Fisher’s equation for a special wave speed, Bull. Math. Biol. 41 (6)

(1979) 835–840.
[5] S.W. McCue, M. El-Hachem, M.J. Simpson, Exact sharp-fronted travelling wave solutions of the Fisher–KPP equation,

Appl. Math. Lett. 114 (2021) 106918.
[6] M. El-Hachem, S.W. McCue, W. Jin, Y. Du, M.J. Simpson, Revisiting the Fisher–Kolmogorov–Petrovsky–Piskunov

equation to interpret the spreading–extinction dichotomy, in: Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, Vol. 475, no. 20190378, The Royal Society Publishing, 2019.

[7] D.G. Aronson, Density-dependent interaction–diffusion systems, in: Dynamics and Modelling of Reactive Systems,

Elsevier, 1980, pp. 161–176.

6

http://refhub.elsevier.com/S0893-9659(22)00296-8/sb1
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb1
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb1
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb2
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb2
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb2
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb3
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb4
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb4
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb4
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb5
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb5
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb5
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb6
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb6
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb6
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb6
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb6
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb7
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb7
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb7


N.T. Fadai Applied Mathematics Letters 135 (2023) 108433
[8] J.A. Sherratt, J.D. Murray, Models of epidermal wound healing, Proc. Royal Soc. B: Biol. Sci. 241 (1300) (1990) 29–36.
[9] W.I. Newman, The long-time behavior of the solution to a non-linear diffusion problem in population genetics and

combustion, J. Theoret. Biol. 104 (4) (1983) 473–484.
[10] T.P. Witelski, Merging traveling waves for the Porous-Fisher’s equation, Appl. Math. Lett. 8 (4) (1995) 57–62.
[11] T.P. Witelski, Shocks in nonlinear diffusion, Appl. Math. Lett. 8 (5) (1995) 27–32.
[12] R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugen. 7 (4) (1937) 355–369.
[13] A. de Pablo, A. Vázquez, Travelling wave behaviour for a Porous-Fisher equation, European J. Appl. Math. 9 (3) (1998)

285–304.
[14] W. Bao, Y. Du, Z. Lin, H. Zhu, Free boundary models for mosquito range movement driven by climate warming, J.

Math. Biol. 76 (4) (2018) 841–875.
[15] Y. Du, Z. Lin, Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal.

42 (1) (2010) 377–405.
[16] M. El-Hachem, S.W. McCue, M.J. Simpson, A sharp-front moving boundary model for malignant invasion, Physica D

412 (2020) 132639.
[17] R.J. Murphy, P.R. Buenzli, R.E. Baker, M.J. Simpson, Travelling waves in a free boundary mechanobiological model of

an epithelial tissue, Appl. Math. Lett. 111 (2021) 106636.
[18] A.D. Polyanin, V.F. Zaitsev, Handbook of Ordinary Differential Equations: Exact Solutions, Methods, and Problems,

Chapman and Hall/CRC, 2017.
[19] E.E. Holmes, M.A. Lewis, J.E. Banks, R.R. Veit, Partial differential equations in ecology: Spatial interactions and

population dynamics, Ecology 75 (1) (1994) 17–29.
[20] N.T. Fadai, M.J. Simpson, Population dynamics with threshold effects give rise to a diverse family of Allee effects, Bull.

Math. Biol. 82 (6) (2020) 1–22.
[21] M.A. Chaudhry, A. Qadir, M. Rafique, S. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math. 78 (1)

(1997) 19–32.
7

http://refhub.elsevier.com/S0893-9659(22)00296-8/sb8
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb9
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb9
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb9
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb10
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb11
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb12
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb13
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb13
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb13
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb14
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb14
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb14
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb15
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb15
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb15
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb16
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb16
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb16
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb17
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb17
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb17
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb18
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb18
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb18
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb19
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb19
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb19
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb20
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb20
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb20
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb21
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb21
http://refhub.elsevier.com/S0893-9659(22)00296-8/sb21

	Exact smooth and sharp-fronted travelling waves of reaction–diffusion equations with Weak Allee effects
	Introduction
	Travelling wave analysis in Reaction Diffusion and Moving-Boundary models
	Power series solution of the heteroclinic trajectory Q(u)
	Exact travelling wave solutions in Weak Allee effect models
	Quadratic Q(u)
	General polynomial Q(u)
	Other Weak Allee effect models

	Conclusion
	Data availability
	References


