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Abstract—This paper proposes an efficient federated dis-
tillation learning system (EFDLS) for multi-task time series
classification (TSC). EFDLS consists of a central server and
multiple mobile users, where different users may run different
TSC tasks. EFDLS has two novel components: a feature-based
student-teacher (FBST) framework and a distance-based weights
matching (DBWM) scheme. For each user, the FBST framework
transfers knowledge from its teacher’s hidden layers to its
student’s hidden layers via knowledge distillation, where the
teacher and student have identical network structures. For each
connected user, its student model’s hidden layers’ weights are
uploaded to the EFDLS server periodically. The DBWM scheme
is deployed on the server, with the least square distance used to
measure the similarity between the weights of two given models.
This scheme finds a partner for each connected user such that
the user’s and its partner’s weights are the closest among all the
weights uploaded. The server exchanges and sends back the user’s
and its partner’s weights to these two users which then load the
received weights to their teachers’ hidden layers. Experimental
results show that compared with a number of state-of-the-art
federated learning algorithms, our proposed EFDLS wins 20 out
of 44 standard UCR2018 datasets and achieves the highest mean
accuracy (70.14%) on these datasets. In particular, compared
with a single-task Baseline, EFDLS obtains 32/4/8 regarding
‘win’/‘tie’/‘lose’ and results in an improvement of approximately
4% in terms of mean accuracy.

Index Terms—Data Mining, Deep Learning, Federated Learn-
ing, Knowledge Distillation, Time Series Classification.

I. INTRODUCTION

T IME series data is a series of time-ordered data points
associated with one or more time-dependent variables

and has been widely adopted in areas such as anomaly detec-
tion [1], [2], driving risk classification [3], service matching
[4], electroencephalography (EEG) prediction [5], healthcare
diagnosis [6], and emotion analysis [7]. A significant amount
of research attention has been dedicated to TSC [8]. For exam-
ple, Wang et al. [9] introduced a fully convolutional network
(FCN) for local feature extraction. Zhang et al. [10] devised
an attentional prototype network (TapNet) to capture rich
representations from input data. Karim et al. [11] proposed a
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long short-term memory (LSTM) fully convolutional network
(FCN-LSTM) for multivariate TSC. A robust temporal feature
network (RTFN) hybridizing temporal feature network and
LSTM-based attention network was applied to extract both
the local and global patterns of data [12]. Li et al. [13] put
forward a shapelet-neural network approach to mine highly-
diversified representative shapelets from the input. Lee et al.
[14] designed a learnable dynamic temporal pooling method to
reduce the temporal pooling size of the hidden representations
obtained.

TSC algorithms are usually data-driven, where data comes
from various application domains [8], [9], [10], [11], [14].
Some data may contain private and sensitive information,
such as bank accounts and ECG. However, traditional data
collection operations could not protect such information, easily
resulting in users’ privacy leakage during the data collection
and distribution processes involved in model training. To
overcome the problem above, Google [15], [16], [17] invented
federated learning (FL). FL allows users to collectively harvest
the advantages of shared models trained from their local data
without sending the original data to others. FederatedAverag-
ing (FedAvg), federated transfer learning (FTL), and feder-
ated knowledge distillation (FKD) are the three mainstream
research directions.

FedAvg calculates the average weights of the models of all
users and shares the weights with each user in the FL system
[18]. For instance, Ma et al. [19] devised a communication-
efficient federated generalized tensor factorization for elec-
tronic health records. Liu et al. [20] used a federated adapta-
tion framework to leverage the sparsity property of neural net-
works for generating privacy-preserving representations. A hi-
erarchical personalized FL method aggregated heterogeneous
user models, with considered privacy and model heterogeneity
considered [21]. Yang et al. [22] modified the FedAvg method
using partial networks for COVID-19 detection.

FTL introduces transfer learning techniques to promote
knowledge transfer between different users, increasing system
accuracy [23]. For example, Yang et al. [24] developed an FTL
framework, FedSteg, for secure image steganalysis. An FTL
method with dynamic gradient aggregation was proposed to
weight the local gradients in the aggregation step for speech
recognition [25]. Majeed et al. [26] proposed an FTL-based
structure to address traffic classification problems.

Unlike FedAvg and FTL, FKD takes the average of all
users’ weights as the weights for all teachers and transfers each
teacher’s knowledge to its corresponding student via knowl-
edge distillation (KD) [27]. A group knowledge transfer train-
ing algorithm was adopted to train small convolutional neural
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networks (CNNs) and transfer their knowledge to a prominent
server-side CNN [28]. Mishra et al. [29] proposed a resource-
aware FKD approach for network resource allocation. Sohei
et al. [30] devised a distillation-based semi-supervised FL
framework for communication-efficient collaborative training
with private data. Nowadays, FKD is attracting increasingly
more research attention.

In addition, there is a variety of FL-based algorithms in the
literature. For instance, Chen et al. [31] applied asynchronous
learning and temporally weighted aggregation to enhance
system performance. Sattler et al. [32] presented a sparse
ternary compression method to meet various requirements
of the FL environment. A cooperative game based on a
gradient algorithm was designed to tackle image classification
and speech recognition tasks [33]. An ensemble FL system
used a randomly selected subset of clients to learn multiple
global models against malicious clients [34]. Hong et al. [35]
combined adversarial learning and FL to produce federated
adversarial debiasing for fair and transferable representations.
Zhou et al. [36] proposed a privacy-preserving distributed
contextual federated online learning framework with big data
support for social recommender systems. Pan et al. [37] put
forward a multi-granular federated neural architecture search
framework to automate the model architecture search in a
federated and privacy-preserved manner.

Nowadays, most FL algorithms are developed for addressing
single-task problems, where multiple users work together to
complete one task, e.g., COVID-19 detection [22], traffic
classification [26] or speech recognition [25]. It means the
knowledge extracted from individual tasks is isolated. Actu-
ally, such knowledge has the potential to circulate in different
task domains so as to benefit the classification performance
of multiple tasks. For example, knowledge gained from the
motion data of a smartwatch may effectively increase the
accuracy of motion recognition on an environmental sensing
instrument. However, sharing knowledge among different TSC
tasks, i.e., the multi-task TSC, has received little research
attention in the literature. Unlike single-task TSC, multi-
task TSC aims to integrate different TSC tasks together
into a framework, e.g., motion recognition on a smartwatch,
gesture recognition on a gesture instrument, ECG detection
on an ECG device, and driving behavior recognition on a
driving instrument. In the framework, knowledge is shared
by different TSC tasks running on different instruments to
improve the accuracy of these tasks. Time series data is
collected from various instruments, such as smartwatches,
gesture instruments, and driving instruments. Each time series
dataset has specific characteristics, e.g., length and variance,
which may differ significantly from others. Thus, time series
data is highly imbalanced and strongly non-independent, and
identically distributed (Non-I.I.D.). In multi-task learning,
it is commonly recognized that knowledge sharing among
different tasks helps increase the efficiency and accuracy of
each individual task [38]. For most TSC algorithms, how to
securely share knowledge of similar expertise among different
tasks is still challenging. In other words, user privacy and
knowledge sharing are two critical issues that need to be
carefully addressed when devising practical multi-task TSC

algorithms. To the best of our knowledge, FL for multi-task
TSC has received little research attention.

We present an efficient federated distillation learning system
(EFDLS) for multi-task TSC. This system consists of a central
server and a number of mobile users running various TSC
tasks simultaneously. Given two arbitrary users, they run either
different tasks (e.g., ECG and motion) or the same task
with different data sources to mimic real-world applications.
EFDLS is characterized by a feature-based student-teacher
(FBST) framework and a distance-based weights matching
(DBWM) scheme. The FBST framework is deployed on each
user, where the student and teacher models have identical
network structures. For each user, its teacher’s hidden layers’
knowledge is transferred to its student’s hidden layers, helping
the student mine high-quality features from the data. The
DBWM scheme is deployed on the EFDLS server, where the
least square distance (LSD) is used to measure the similarity
between the weights of two models. When all connected users’
weights are uploaded completely, for an arbitrary connected
user, the DBWM scheme finds the one with the most similar
weights among all connected users. After that, the server sends
the connected user’s weights to the found one, which loads the
weights to its teacher model’s hidden layers.

Our main contributions are summarized below.

• We propose EFDLS for multi-task TSC, where each user
runs one TSC task and different users may run various
TSC tasks. The data generated on different users is
different. In EFDLS, feature-based knowledge distillation
is used for knowledge transfer in each user. Unlike the
traditional FKD that adopts the average weights of all
users to supervise the feature extraction process in each
user, EFDLS finds the one with the most similar expertise
(i.e., a partner) for each user according to LSD and
offers knowledge sharing between the user and its partner.
EFDLS aims at providing secure knowledge sharing of
similar expertise among different tasks. To our best, this
problem has not attracted enough research attention.

• Experimental results demonstrate that EFDLS out-
performs six state-of-the-art FL algorithms regard-
ing the mean accuracy, ‘win’/‘tie’/‘lose’ measure, and
AVG rank, which are all based on the top-1 accu-
racy, where 44 well-known UCR2018 datasets are con-
sidered. To be specific, EFDLS wins 20 out of 44
datasets and achieves the highest mean accuracy, namely
70.14%, on these datasets. Besides, compared with a
single-task Baseline, EFDLS obtains 32/4/8 regarding
‘win’/‘tie’/‘lose’ and results in an improvement of ap-
proximately 4% in terms of mean accuracy. The results
show the effectiveness of EFDLS in addressing TSC
problems.

The rest of the paper is organized below. Section II re-
views the existing TSC algorithms. Section III overviews the
architecture of EFDLS and describes its key components.
Section IV provides and analyzes the experimental results, and
conclusion is drawn in Section V.
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Fig. 1. The schematic diagram of EFDLS. Note that ‘FBST Framework’ and ‘DBWM Scheme’ denote the feature-based student-teacher framework deployed
on each user and the distance-based weights matching scheme run on the server. ‘Conv x 9 128’ represents a 1-dimensional convolutional neural network,
where its filter and channel sizes are set to 9 and 128. ‘BN’ is the batch normalization module, and ‘ReLU’ is the rectified linear unit activation function.

II. RELATED WORK

A large number of traditional and deep learning algorithms
have been developed for TSC.

A. Traditional Algorithms

Two representative streams of algorithms are distance- and
feature-based. For distance-based algorithms, it is quite com-
mon to combine the dynamic time warping (DTW) and near-
est neighbor (NN), e.g., DTWA, DTWI and DTWD [39].
Besides, a significant number of DTW-NN-based ensemble
algorithms have been proposed in the TSC community. For
example, Line et al. [40] presented an elastic ensemble (EE)
algorithm for feature extraction, with 11 types of 1-NN-based
elastic distance considered. A collective of the transformation-
based ensemble (COTE) with 37 NN-based classifiers was
adopted to address various TSC problems [41]. The hier-
archical vote collective of transformation-based ensembles
(HIVE-COTE) [42] and local cascade ensemble [43] are two
representative ensemble algorithms in the literature.

For feature-based algorithms, their aim is to capture suffi-
cient discriminate features from the given data. For instance,
Line et al. [44] introduced a shapelet transformation method
to find representative shapelets that reflected the trend of raw
data. A bag-of-features representation framework was used to
extract the information at different locations of sequences [45].
Dempster et al. [46] applied minimally random convolutional
kernel transform to exploring the transformed features from
data. In addition, the learned pattern similarity [47], bag of
symbolic Fourier approximation symbols [48], hidden-unit

logistic model [49], time series forest [50], and multi-feature
dictionary representation and ensemble learning [51] are also
well-known algorithms.

B. Deep Learning Algorithms

By unfolding the internal representation hierarchy of data,
deep learning algorithms focus on extracting the intrinsic
connections among representations. Most of the existing deep
learning models are either single-network- or dual-network-
based [12]. A single-network-based model captures the signifi-
cant correlations within the representation hierarchy of data by
one (usually hybridized) network, e.g., FCN [9], ResNet [9],
shapelet-neural network [13], InceptionTime [52], dynamic
temporal pooling [14], multi-process collaborative architecture
[53], and multi-scale attention convolutional neural network
[54]. In contrast, a dual-network-based model usually consists
of two parallel networks, i.e., local-feature extraction network
(LFN) and global-relation extraction network (GRN), such
as FCN-LSTM [11], RTFN [12], ResNet-Transformer [55],
RNTS [56], SelfMatch [57], and TapNet [10].

Almost all algorithms above emphasized single-task TSC,
e.g., traffic or gesture classification. However, TSC usually
involves multiple tasks in real-world scenarios, like various
applications with different TSC tasks run on different mobile
devices in a mobile computing environment. Enabling efficient
knowledge sharing of similar expertise among different tasks
helps increase the average accuracy of these tasks. Neverthe-
less, sharing knowledge among different TSC tasks securely
and efficiently is still a challenge. That is what FL aims for.
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III. EFDLS
This section first overviews the architecture of EFDLS.

Then, it introduces the feature-based student-teacher frame-
work, distance-based weights matching scheme, and commu-
nication overhead.

A. System Overview
EFDLS is a secure distributed system for multi-task TSC.

There is a central server and multiple mobile users. Let Ntot

and Nconn denote the numbers of total and connected users in
the system, respectively, where Nconn ≤ Ntot. Each user runs
one TSC task at a time and different users might run different
TSC tasks. For two arbitrary users, they run two different tasks,
such as gesture and ECG classification, or the same task with
different data sources.

The overview of EFDLS is shown in Fig. 1. In the sys-
tem, users train their models locally based on knowledge
distillation and share their model weights with users with
similar expertise via the server. We propose FBST, a feature-
based student-teacher framework that is deployed on each
user as its learning model. For each user, its teacher’s hidden
layers’ knowledge is transferred to its student’s hidden layers.
For each connected user, its student model’s hidden layers’
weights are uploaded to the EFDLS server periodically. We
propose DBWM, a distance-based weights matching scheme
deployed on the server, with the LSD adopted to measure the
similarity between the weights of two given models. After the
weights of all connected users are uploaded completely, for
each connected user, the DBWM scheme is launched to find
the one with the most similar weights among all connected
users. In this way, every user has a partner to match with. For
each connected user, its uploaded weights are sent to its partner
that then loads these weights to its teacher model’s hidden
layers. The server’s role looks like a telecom network switch.
The EFDLS system allows users to benefit from knowledge
sharing without sacrificing security and privacy.

B. Feature-based Student-Teacher Framework
In the FBST framework, the student and teacher models

have identical network structures. In each user, feature-based
KD promotes knowledge transfer from the teacher’s hidden
layers to its student’s hidden layers, helping the student capture
rich and valuable representations from the input data.

1) Feature Extractor: The feature extractor contains mul-
tiple hidden layers and a classifier, as shown in Fig. 1.
The hidden layers are responsible for local-feature extraction,
including three Convolutional Blocks (i.e., ConvBlock1, Con-
vBlock2, and ConvBlock3), an average pooling layer, and a
dense (i.e., fully-connected) layer. Each ConvBlock consists of
a 1-dimensional CNN (Conv) module, a batch normalization
(BN) module, and a rectified linear unit activation (ReLU)
function, defined as:

fconvblock(x) = frelu(fbn(Wconv ⊗ x+ bconv)) (1)

where, Wconv and bconv are the weight and bias matrices of
CNN, respectively. ⊗ represents the convolutional computa-
tion operation. fbn and frelu denote the batch normalization
and ReLU functions, respectively.

Let xbn = {x1, x2, ..., xNbn
} denote the input of batch

normalization (BN), where xi and Nbn stand for the i-th
instance and batch size, respectively. fbn(xbn) is defined in
Eq. (2)

fbn(xbn) = fbn(x1, x2, ..., xNbn
)

= (α
x1 − µ
δ + ζ

+ β, α
x2 − µ
δ + ζ

+ β, ..., α
xNbn

− µ
δ + ζ

+ β)

µ =
1

Nbn

Nbn∑
i=1

xi

δ =

√√√√Nbn∑
i=1

(xi − µ)2

(2)
where, µ and δ represent the mean and standard deviation of
xbn, respectively. α ∈ R+ and β ∈ R are the parameters to be
learned during training. ζ > 0 is an arbitrarily small number.

The classifier is composed of a dense layer and a Softmax
function, mapping high-level features extracted from the hid-
den layers to the corresponding labels.

2) Knowledge Distillation: Feature-based KD regularizes
a student model by transferring knowledge from the corre-
sponding teacher’s hidden layers to the student’s hidden layers
[58]. For an arbitrary user, its student model captures sufficient
discriminate representations from the data under its teacher
model’s supervision.

Let OT,1
i , OT,2

i , OT,3
i , and OT,4

i be the outputs of Con-
vBlock 1, ConvBlock 2, ConvBlock 3, and the dense layer of
the teacher’s hidden layers. Let OS,1

i , OS,2
i , OS,3

i , and OS,4
i

be the outputs of ConvBlock 1, ConvBlock 2, ConvBlock 3,
and the dense layer of the student’s hidden layers. Following
the previous work [28], we define the KD loss, LKD

i , of Ui

as:

LKD
i =

4∑
m=1

||OT,m
i −OS,m

i ||2 (3)

For Ui, its total loss, Li, consists of KD loss, LKD
i ,

and supervised loss, LSup
i . As suggested in [10], [11], [12],

LSup
i uses the cross-entropy function to measure the average

difference between the ground truth labels and their prediction
vectors, as shown in Eq. (4).

LSup
i = − 1

Nseg

Nseg∑
j=1

yj log(ŷj) (4)

where, Nseg is the number of input vectors, and yi and ŷj are
the ground truth label and prediction vector of the j-th input
vector, respectively.

Inspired by the loss function of most KD algorithms [58],
[59], we define the total loss of Ui, Li, as:

Li = ε× LSup
i + (1− ε)× LKD

i (5)

where, ε ∈ (0, 1) is a coefficient to balance LSup
i and LKD

i .
In this paper, we set ε = 0.9 (More details can be found in
Section IV.C).
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C. Distance-based Weights Matching

Identical to the NN and DTW, the least square distance
(LSD) calculates the similarity between the weights of two
given models using the Euclidean distance. When the weights
uploaded by all the connected users are received, the DBWM
scheme immediately launches the weights matching process
to find a partner for each connected user.

1) Least Square Distance: Let FLEs denote the maximum
number of federated learning epochs. Let WS,k

i and WT,k
i be

the weights of the student and teacher models of Ui at the
k-th federated learning epoch, k = 1, 2, ..., FLEs. Denote
the hidden layers’ weights of the student and teacher models
of Ui by WShidden,k

i ⊂ WS,k
i and WThidden,k

i ⊂ WT,k
i ,

respectively. To be specific, WShidden,k
i consists of the weights

of ConvBlock 1, ConvBlock 2, ConvBlock 3, and the dense
layer, namely, WS1,k

i , WS2,k
i , WS3,k

i , and WS4,k
i . So, we have

WShidden,k
i = {WS1,k

i ,WS2,k
i , WS3,k

i ,WS4,k
i }.

At the k-th federated learning epoch, user Ui, i =
1, 2, ..., Nconn, uploads its student model’s hidden layers’
weights, WShidden,k

i , to the server. The server stores the
uploaded weights in the weight set W defined in Eq. (6).

W = [WShidden,k
1 ,WShidden,k

2 , ...,WShidden,k
Nconn

] (6)

The server then calculates the weights’ square distance set,
d, based on W. d is defined as:

d =


d1
d2
...

dNconn

 =


d1,2 ... d1,Nconn

d2,1 ... d2,Nconn

... ... ...
dNconn,1 ... dNconn,Nconn−1


(7)

where, di,j (i, j ∈ 1, ..., Nconn, i 6= j) is the square distance
between WShidden,k

i and WShidden,k
j , as defined in Eq. (8).

di,j = ||WShidden,k
i −WShidden,k

j ||2

=

4∑
m=1

||WSm,k
i −WSm,k

j ||2
(8)

We adopt the argmin function to return the index of the
smallest distance for each row in d and obtain the index set,
ID. ID is defined in Eq. (9).

ID = argmin(d) = [ID1, ID2, ..., IDNconn
] (9)

where, IDi is the index of the smallest distance for Ui.
Based on ID, we easily obtain the LSD weight set, WLSD,

from W. WLSD is defined in Eq. (10).

WLSD = [WLSD,k
1 ,WLSD,k

2 , ...,WLSD,k
Nconn

]

= [W(ID1),W(ID2), ...,W(IDNconn
)]

(10)

where, WLSD,k
i are the weights matched with those of Ui at

the k-th federated learning epoch.
Once Ui receives WLSD,k

i from the server, Ui loads these
weights to its teacher’s hidden layers at the beginning of the
next federated learning epoch, as defined in Eq. (11).

WThidden,k+1
i ←WLSD,k

i (11)

Alg. 1 and Alg. 2 show the user and server implementation
procedures, respectively.

Algorithm 1 EFDLS User Implementation Procedure
1: procedure USERPROCEDURE(Ui, FLEs)
2: Initialize all global variables;
3: for k = 1 to FLEs do
4: if k == 1 then
5: // The student model is trained alone
6: Obtain WS,k

i after the initial local training;
7: // Upload its hidden layers’ weights to server
8: Upload WShidden,k

i ⊂WS,k
i ;

9: else
10: if receiveServer(Active)==1 then
11: // Connect to the EFDLS server
12: Receive WLSD,k

i ;
13: Load WLSD,k

i to the teacher model;
14: Compute Li by Eq. (5);
15: Update WS,k+1

i using the gradient decent;
16: Upload WShidden,k+1

i ⊂WS,k+1
i ;

17: else
18: Disconnect from the EFDLS server.
19: end if
20: end if
21: end for
22: end procedure

Algorithm 2 EFDLS Server Implementation Procedure
1: procedure SERVERPROCEDURE(Ntot, Nconn, FLEs)
2: Initialize all global variables;
3: Set W = ∅;
4: for k = 1 to FLEs do
5: // Run on the server;
6: Clear and initialize W;
7: for i = 1 to Nconn do
8: // Receive model weights from users;
9: Receive WShidden,k

i ;
10: Include WShidden,k

i in W.
11: end for
12: for i = 1 to Nconn do
13: Obtain WLSD,k

i based on W by Eqs. (6)-(10);
14: Send WLSD,k

i to Ui.
15: end for
16: end for
17: end procedure

D. Communication Overhead

EFDLS does not launch the DBWM scheme unless the
weights from all the Nconn connected users are received. It
helps reduce the interaction between the server and users,
promoting the system’s service efficiency. For user Ui, i =
1, 2, ..., Nconn, we analyze the communication overhead of
uploading and downloading its weights. Denote the bandwidth
requirement for uploading the student model’s hidden layers’
weights of Ui once by BW . Clearly, the bandwidth require-
ment for downloading the student model’s hidden layers’
weights from the server once is also BW . That is because,
for an arbitrary connected user, the weights uploaded to and
those downloaded from the server are of the same size, given
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TABLE I
DETAILS OF 44 SELECTED DATASETS FROM THE UCR 2018. ABBREVIATION: FLOPS–FLOATING POINT OPERATIONS.

Scale Dataset Train Test Class SeriesLength Type Feature Extractor’s
Parameter

Feature Extractor’s
FLOPs

Short

Chinatown 20 345 2 24 Traffic 346,626 696,581
MelbournePedestrian 1194 2439 10 24 Traffic 347,658 698,629
SonyAIBORobotSur.2 27 953 2 65 Sensor 346,626 696,581
SonyAIBORobotSur.1 20 601 2 70 Sensor 346,626 696,581
DistalPhalanxO.A.G 400 139 3 80 Image 346,755 696,837
DistalPhalanxO.C. 600 276 2 80 Image 346,626 696,581
DistalPhalanxTW 400 139 6 80 Image 347,142 697,605

TwoLeadECG 23 1139 2 82 ECG 346,626 696,581
MoteStrain 20 1252 2 84 Sensor 346,626 696,581
ECG200 100 100 2 96 ECG 346,626 696,581

CBF 30 900 3 128 Simulated 346,755 696,837

Medium

DodgerLoopDay 78 80 7 288 Sensor 347,271 697,861
DodgerLoopGame 20 138 2 288 Sensor 346,626 696,581

DodgerLoopWeekend 20 138 2 288 Sensor 346,626 696,581
CricketX 390 390 12 300 Motion 347,916 699,141
CricketY 390 390 12 300 Motion 347,916 699,141
CricketZ 390 390 12 300 Motion 347,916 699,141
FaceFour 24 88 4 350 Image 346,884 697,093

Ham 109 105 2 431 Spectro 346,626 696,581
Meat 60 60 3 448 Spectro 346,755 696,837
Fish 175 175 7 463 Image 347,271 697,861
Beef 30 30 5 470 Spectro 347,013 697,349

Long

OliveOil 30 30 4 570 Spectro 346,884 697,093
Car 60 60 4 577 Sensor 346,884 697,093

Lightning2 60 61 2 637 Sensor 346,626 696,581
Computers 250 250 2 720 Device 346,626 696,581

Mallat 55 2345 8 1024 Simulated 347,400 698,117
Phoneme 214 1896 39 1024 Sensor 351,399 706,053

StarLightCurves 1000 8236 3 1024 Sensor 346,755 696,837
MixedShapesRegularT. 500 2425 5 1024 Image 347,013 697,349
MixedShapesSmallT. 100 2425 5 1024 Image 347,013 697,349

ACSF1 100 100 10 1460 Device 347,658 698,629
SemgHandG.Ch2 300 600 2 1500 Spectrum 346,626 696,581

Vary

AllGestureWiimoteX 300 700 10 Vary Sensor 347,658 698,629
AllGestureWiimoteY 300 700 10 Vary Sensor 347,658 698,629
AllGestureWiimoteZ 300 700 10 Vary Sensor 347,658 698,629

GestureMidAirD1 208 130 26 Vary Trajectory 349,722 702,725
GestureMidAirD2 208 130 26 Vary Trajectory 349,722 702,725
GestureMidAirD3 208 130 26 Vary Trajectory 349,722 702,725
GesturePebbleZ1 132 172 6 Vary Sensor 347,142 697,605
GesturePebbleZ2 146 158 6 Vary Sensor 347,142 697,605

PickupGestureW.Z 50 50 10 Vary Sensor 347,658 698,629
PLAID 537 537 11 Vary Device 347,787 698,885

ShakeGestureW.Z 50 50 10 Vary Sensor 347,658 698,629

that each user has exactly the same model structure. At each
federated learning epoch, the bandwidth requirement for user
Ui, i = 1, 2, ..., Nconn is estimated as BW + BW = 2BW .
For Ui, its total communication overhead is in proportion to
2BW · FLEs. Hence, the total communication overhead is
proportional to 2BW · FLEs ·Nconn.

IV. PERFORMANCE EVALUATION

This section first introduces the experimental setup and
performance metrics and then focuses on the ablation study.
Finally, the performance of EFDLS and communication effi-
ciency is evaluated.

A. Experimental Setup

1) Data Description: The UCR 2018 archive is one of
the most popular time series repositories with 128 datasets in
various application domains [60]. Following the previous work
[53], we divide the UCR 2018 archive into 4 categories with

respect to dataset length, namely, ‘short’, ‘medium’, ‘long’,
and ‘vary’. The length of a ‘short’ dataset is no more than 200.
That of a ‘medium’ one varies from 200 to 500. A ‘long’ one
has a length of over 500 while a ‘vary’ one has an indefinite
length. Each ‘vary’ dataset has some NaN data, where NaN
stands for Not A Number and is one of the common ways to
represent the missing value in the data. It is a unique floating-
point value and cannot be converted to any other type than
float. NaN value is one of the significant challenges in data
analysis. The 128 datasets are composed of 41 ‘short’ , 32
‘medium’, 44 ‘long’, and 11 ‘vary’ datasets. Unfortunately,
our limited computing resources do not allow us to consider
the whole 128 datasets (detailed hardware specifications can
be found in Subsection Implementation Details). There were
seven algorithms for performance comparison and the average
training time on the 128 datasets costs more than 32 hours for
a single federated learning epoch. So, we select 11 datasets
from each category, resulting in 44 datasets. More details are
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Fig. 2. MeanACC results obtained by EFDLS with different ratios of Nconn

to Ntot on 44 datasets when Ntot = 44.

found in Table III.
2) Implementation Details: Following previous studies [8],

[9], [10], [11], [53], we set the decay value of batch nor-
malization to 0.9. We use the L2 regularization to avoid
overfitting during the training process. Meanwhile, we adopt
the AdamOptimizer with Pytorch1, where the initial learn-
ing rate is set to 0.0001. Our source code is available at
http://github.com/xiaozw1994/EFDLS.

All experiments were conducted on a desktop with an
Nvidia GTX 1080Ti GPU with 11GB memory and an AMD
R5 1400 CPU with 16G RAM under the Ubuntu 18.04 OS.

B. Performance Metrics

To evaluate FL algorithms’ performance, we use three well-
known metrics: ‘win’/‘tie’/‘lose’, mean accuracy (MeanACC),
and AVG rank, all based on the top-1 accuracy. As suggested
in [9], [10], [11], [12], [13], [14], [53], [56], for an arbitrary
algorithm, its ‘win’, ‘tie’, and ‘lose’ values indicate on how
many datasets it is better than, equal to, and worse than the
others, respectively; its ‘best’ value is the summation of the
corresponding ‘win’ and ‘tie’ values. Following [9], [11], [12],
[53], [56], we adopt the AVG rank score, one of the most
widely used robustness tests for ranking various algorithms,
where the corresponding results are obtained by the Wilcoxon
signed-rank test with Holm’s alpha (5%) correction.

C. Ablation Study

We use the 44 UCR2018 datasets above to study the impact
of parameter settings on the performance of EFDLS. Assume
there are 44 users in the system, i.e., Ntot = 44. Each user
runs a TSC task with data coming from a specific dataset.
For any two users, if they run identical tasks, e.g., motion
recognition, their data sources come from different datasets,
e.g., CricketX and CricketY. In the experiments, each user’s
data comes from one of the 44 datasets.

1https://pytorch.org/

Fig. 3. MeanACC results with different ε values on 44 datasets when Nconn

= 44 and Ntot = 44.

1) Impact of Nconn: To investigate the impact of Nconn on
the EFDLS’s performance, we select four ratios of Nconn to
Ntot, namely 40%, 60%, 80%, and 100%. For example, 40%
means there are 18 connected users for weights uploading,
given Ntot = 44. The MeanACC results obtained by EFDLS
with different Nconn values on 44 datasets are shown in Fig.
2. One can easily observe that a larger Nconn tends to result in
a higher MeanACC value. That is because as Nconn increases,
more time series data is made use of by the system, and thus
more discriminate representations are captured.

2) Impact of ε: ε is a coefficient to balance each connected
user’s supervised and KD losses in EFDLS. Fig. 3 shows
the MeanACC results with different ε values when Nconn

= 44 and Ntot = 44. It is seen that ε = 0.90 results in the
highest MeanACC score, i.e., 0.7014. That means ε = 0.90 is
appropriate to reduce each user’s entropy on its data during
training.

D. Experimental Analysis

To evaluate the overall performance of EFDLS, we com-
pare it with seven benchmark algorithms listed below against
‘Win’/‘Lose’/‘Tie’, MeanACC, and AVG rank.

• Baseline: the single-task TSC algorithm with the feature
extractor in Fig. 1 deployed on each user. Note that each
user has a unique dataset to run and knowledge sharing
among the users is disabled.

• FedAvg: the FederatedAveraging method using the fea-
ture extractor in Fig. 1 [18].

• FedAvgM: the modified FedAvg using the feature extrac-
tor in Fig. 1 [27].

• FedGrad: the federated gradient method using the feature
extractor in Fig. 1 [16].

• FTL: the federated transfer learning method using the
feature extractor in Fig. 1 [23].

• FTLS: FTL [23] based on the DBWM scheme using the
feature extractor in Fig. 1.

• FKD: the federated knowledge distillation using the fea-
ture extractor in Fig. 1 [27], [28]. For fair comparison,
FKD uses the same student-teacher network structure as
EFDLS.
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TABLE II
EXPERIMENTAL RESULTS OF DIFFERENT ALGORITHMS ON 44 DATASETS WHEN Nconn = 44 AND Ntot = 44.

Dataset Baseline FedAvg FedAvgM FedGrad FTL FTLS FKD EFDLS
Chinatown 0.9623 0.2754 0.2754 0.9623 0.9665 0.9537 0.9275 0.9478

MelbournePedestrian 0.9139 0.1 0.1 0.7784 0.8486 0.8922 0.9379 0.9453
SonyAIBORobotSur.2 0.8961 0.383 0.383 0.8363 0.8688 0.9035 0.915 0.8961
SonyAIBORobotSur.1 0.8652 0.5707 0.6619 0.7887 0.8236 0.8702 0.8369 0.8819
DistalPhalanxO.A.G 0.6763 0.1079 0.1079 0.6187 0.6259 0.6475 0.6691 0.6475
DistalPhalanxO.C. 0.75 0.417 0.6619 0.6776 0.7464 0.7465 0.7536 0.7428
DistalPhalanxTW 0.6547 0.1295 0.1295 0.554 0.6259 0.6547 0.6835 0.6403

TwoLeadECG 0.7463 0.4996 0.4996 0.7305 0.7287 0.7278 0.8112 0.7665
MoteStrain 0.7788 0.5391 0.5391 0.6933 0.7923 0.8283 0.8163 0.8203
ECG200 0.86 0.36 0.36 0.8 0.84 0.85 0.87 0.85

CBF 0.987 0.3333 0.5911 0.5911 0.973 0.9922 0.9922 0.9956
DodgerLoopDay 0.575 0.15 0.15 0.3875 0.55 0.525 0.5125 0.5375

DodgerLoopGame 0.6884 0.5217 0.5217 0.6232 0.7826 0.7609 0.7609 0.7464
DodgerLoopWeekend 0.8261 0.7391 0.7391 0.7319 0.8841 0.8913 0.913 0.9203

CricketX 0.5897 0.0692 0.1371 0.2256 0.5667 0.6128 0.659 0.6718
CricketY 0.5051 0.0949 0.1357 0.1949 0.5 0.4949 0.5538 0.5974
CricketZ 0.6205 0.0846 0.0846 0.2256 0.5692 0.6 0.6692 0.7256
FaceFour 0.6477 0.1591 0.1591 0.4659 0.6591 0.6932 0.6932 0.6818

Ham 0.7143 0.4857 0.4857 0.6762 0.7048 0.7143 0.7048 0.6952
Meat 0.8667 0.3333 0.3333 0.7333 0.8333 0.8333 0.9 0.917
Fish 0.5657 0.1371 0.1371 0.2857 0.5771 0.6 0.6 0.6229
Beef 0.7667 0.2 0.2 0.5667 0.7 0.7 0.7 0.7667

OliveOil 0.8333 0.167 0.167 0.7 0.8667 0.8667 0.8333 0.8333
Car 0.5833 0.233 0.233 0.5 0.5667 0.5833 0.5667 0.6333

Lightning2 0.7869 0.459 0.459 0.7705 0.7869 0.8033 0.7541 0.7869
Computers 0.78 0.5 0.5 0.584 0.688 0.748 0.788 0.804

Mallat 0.7446 0.1254 0.1254 0.4141 0.7638 0.7539 0.7906 0.8299
Phoneme 0.2231 0.02 0.02 0.1108 0.2147 0.2247 0.2859 0.2954

StarLightCurves 0.9534 0.1429 0.1429 0.5062 0.9519 0.9584 0.9571 0.9582
MixedShapesRegularT. 0.8586 0.1889 0.1889 0.2223 0.8384 0.8598 0.8643 0.8907
MixedShapesSmallT. 0.8029 0.1889 0.1889 0.2421 0.7942 0.8062 0.8318 0.8388

ACSF1 0.77 0.1 0.19 0.19 0.82 0.89 0.87 0.88
SemgHandG.Ch2 0.7067 0.65 0.65 0.555 0.72 0.7383 0.6867 0.72

AllGestureWiimoteX 0.2643 0.1 0.1 0.1371 0.2729 0.3043 0.2929 0.2914
AllGestureWiimoteY 0.2585 0.1 0.1 0.1357 0.3186 0.3029 0.2529 0.2829
AllGestureWiimoteZ 0.2886 0.1 0.1 0.1343 0.2671 0.29 0.4014 0.3786

GestureMidAirD1 0.5538 0.0384 0.0384 0.0923 0.5462 0.5538 0.4615 0.5769
GestureMidAirD2 0.4231 0.0384 0.0384 0.0923 0.4154 0.4462 0.4692 0.5308
GestureMidAirD3 0.3 0.0384 0.0384 0.0923 0.2693 0.2615 0.2231 0.2769
GesturePebbleZ1 0.4419 0.1628 0.1628 0.2558 0.4767 0.4826 0.5 0.4883
GesturePebbleZ2 0.4241 0.1519 0.1519 0.2722 0.5126 0.557 0.6013 0.5886

PickupGestureW.Z 0.56 0.1 0.1 0.24 0.62 0.6 0.7 0.74
PLAID 0.203 0.0615 0.0615 0.0615 0.2198 0.2253 0.2924 0.2589

ShakeGestureW.Z 0.92 0.1 0.1 0.1 0.96 0.92 0.96 0.96
Win 4 0 0 0 3 7 10 18
Tie 1 0 0 0 2 1 1 2

Lose 39 44 44 44 39 36 33 24
Best 5 0 0 0 5 8 11 20

MeanACC 0.6622 0.2377 0.2557 0.4445 0.6604 0.6743 0.6878 0.7014
AVG rank 3.5455 7.5 7.3409 6.0113 3.9204 2.8977 2.6364 2.1478

Table II shows the top-1 accuracy results with various
algorithms on 44 UCR2018 datasets when Nconn = 44 and
Ntot = 44. To visualize the differences between EFDLS and
the others, Fig. 4 depicts the accuracy plots of EFDLS against
each of the remaining algorithms on 44 datasets. In addition,
the AVG rank results are shown in Fig. 5.

First of all, we study the effectiveness of knowledge sharing
among users by comparing EFDLS with Baseline. One can
observe that EFDLS beats Baseline in every aspect, including
‘Win’/‘Lose’/‘Tie’, MeanACC, and AVG rank. For example,

the former wins 18 out of 44 datasets while the latter wins
only 4. The accuracy plot of EFDLS vs. Baseline in Fig. 4(a)
also supports the finding above. The main difference between
EFDLS and Baseline is that the latter only uses standalone
feature extractors which do not share the locally collected
knowledge with each other. On the other hand, with sufficient
knowledge sharing of similar expertise among the connected
users, EFDLS improves the system’s generalization ability and
thus achieves promising multi-task TSC performance.

Secondly, we study the effectiveness of the FBST framework
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(a) EFDLS vs. Baseline (b) EFDLS vs. FedAvg (c) EFDLS vs. FedAvgM (d) EFDLS vs. FedGrad

(e) EFDLS vs. FTL (f) EFDLS vs. FTLS (g) EFDLS vs. FKD

Fig. 4. Accuracy plot results reflecting the performance difference between two given algorithms.

by comparing EFDLS with FTLS. It is easily seen that
EFDLS outperforms FTLS regarding the ‘best’, MeanACC,
and AVG rank values. The accuracy plot of EFDLS vs. FTLS
in Fig. 4(f) also supports this. The FBST framework allows
efficient knowledge transfer from teacher to student, helping
the student capture sufficient discriminate representations from
the input data. On the contrary, the FTLS’s learning model
lacks self-generalization, leading to deteriorated performance
during knowledge sharing.

Thirdly, we study the effectiveness of the DBWM scheme by
comparing EFDLS with FKD. Apparently, EFDLS overweighs
FKD with respect to ‘best’, MeanACC, and AVG rank. It is
backed by the accuracy plot of EFDLS vs. FTLS in Fig. 4(g).
As mentioned before, at each federated learning epoch, the
DBWM scheme finds a partner for each user and then EFDLS
offers weights exchange between each pair of connected users,
which realizes knowledge sharing of similar expertise among
different users. In contrast, FKD adopts the average weights
to supervise the feature extraction process in each user. It is
likely to lead to catastrophic forgetting in a user whose weights
significantly differ from the average weights.

Last but not least, we compare EFDLS with all the seven
algorithms. One can easily observe that our EFDLS is no doubt
the best among all algorithms for comparison since ours ob-
tains the highest MeanACC and ‘best’ values, namely 0.7014
and 20, and the smallest AVG rank value, namely 2.1478. The
FKD takes the second position when considering its ‘best’,
MeanACC, and AVG rank values, namely, 11, 0.6878, and
2.6364. On the other hand, FedAvg and its variant, FedAvgM,
are the two worst algorithms. The following explains the
reasons behind the findings above. When faced with the multi-
task TSC problem, each user runs one TSC task, and different
users may run different TSC tasks. The FBST framework
and the DBWM scheme help EFDLS to realize fine-grained

knowledge sharing between any pair of users with the most
similar expertise. FKD uses the average of all users’ weights
to guide each user to capture valuable features from the data,
promoting coarse-grained knowledge sharing among users. On
the other hand, FedAvg and FedAvgM simply take the average
weights of all users as each user’s weights, which may cause
catastrophic forgetting and hence poor performance on multi-
task TSC.

TABLE III
ACCELERATION PERFORMANCE OF VARIOUS FL ALGORITHMS ON 44

DATASETS ACCORDING TO FEDAVG WHEN Nconn = 44 AND Ntot = 44.

Method FedAvg FedGrad FTL FTLS FKD EFDLS
Acceleration 1.0000× 0.9383× 0.8942× 0.8296× 0.7335× 0.6895×

E. Communication Efficiency

For each user, the number of hidden layers’ parameters of its
feature extractor is 346,368. Assume each parameter is a float-
type value requiring a space of 4 bytes to store. If we want the
parameters to be uploaded (or downloaded) completely within
one second, the upload (or download) bandwidth requirement,
BW , is calculated as 346, 368×4×8 = 11, 083, 776 bps ≈ 11
Mbps. In this paper, we ignore the packet headers at transport,
network and link layers as they are trivial compared with the
payload per packet. When Nconn = 44, the total upload or
download bandwidth requirement of EFDLS is BW ×Nconn,
namely, 11×44 = 484 Mbps, at each federated learning epoch.
Thus, the total bandwidth requirement of EFDLS is 484×2 =
968 Mbps after each iteration.

To study the communication efficiency of EFDLS, we
compare it with FedAvg, FedGrad, FTL, FTLS, and FKD.
Like the previous work [61], we calculate all algorithms’

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2022.3201203

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on August 30,2022 at 09:34:17 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 10

Fig. 5. AVG rank results of various FL algorithms on 44 datasets.

acceleration values based on FedAvg. Table III shows the
acceleration results of various FL algorithms on 44 datasets.
One can easily observe that the proposed EFDLS has the
slowest rate among all algorithms. This is because, unlike
the average weights method, EFDLS uses the DBWM scheme
deployed on the server to find the one with the most similar
expertise (i.e., a partner) for each user according to LSD.
Compared with non-KD methods, FBST deployed on each
user consumes additional computational resources to transfer
the knowledge from the teacher to its student.

V. CONCLUSION

The FBST framework promotes knowledge transfer from a
teacher’s to its student’s hidden layers, helping the student cap-
ture instance-level representations from the input. The DBWM
scheme finds a partner for each user in terms of similarity
between their uploaded weights, enabling knowledge sharing
of similar expertise among different users. With FBST and
DBWM, the proposed EFDLS securely shares knowledge of
similar expertise among different tasks for multi-task time
series classification. Experimental results show that compared
with six benchmark FL algorithms, EFDLS is a winner on
44 datasets with respect to the MeanACC and AVG rank
metrics and on 20 datasets in terms of the ‘best’ measure.
In particular, compared with the single-task Baseline, EFDLS
obtains 32/4/8 regarding the ‘win’/‘tie’/‘lose’ metric. That
reflects the potential of EFDLS to be applied to multi-task TSC
problems in various real-world domains. We plan to validate
EFDLS on more real-world datasets collected from various
instruments in the future.
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