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A B S T R A C T

The spatial topology of the human motor cortex has been well studied, particularly using functional Magnetic
Resonance Imaging (fMRI) which allows spatial separation of haemodynamic responses arising from stimulation
of different body parts, individual digits and even spatially separate areas of the same digit. However, the spatial
organisation of electrophysiological responses, particularly neural oscillations (rhythmic changes in electrical
potential across cellular assemblies) has been less well studied. Mapping the spatial signature of neural oscilla-
tions is possible using magnetoencephalography (MEG), however spatial differentiation of responses induced by
movement of separate digits is a challenge, because the brain regions involved are separated by only a few
millimetres. In this paper we first show, in simulation, how to optimise experimental design and beamformer
spatial filtering techniques to increase the spatial specificity of MEG derived functional images. Combining this
result with experimental data, we then capture the organisation of the post-movement beta band (13–30 Hz)
oscillatory response to movement of digits 2 and 5 of the dominant hand, in individual subjects. By comparing
these MEG results to ultra-high field (7T) fMRI, we also show significant spatial agreement between beta mod-
ulation and the blood oxygenation level dependent (BOLD) response. Our results show that, when using an
optimised inverse solution and controlling subject movement (using custom fitted foam padding) the spatial
resolution of MEG can be of order 3–5mm. The method described offers exciting potential to understand better
the cortical organisation of oscillations, and to probe such organisation in patient populations where those os-
cillations are known to be abnormal.
Introduction

The topographic organisation of the sensorimotor cortices is well
established (Penfield and Boldrey, 1937), and in recent years functional
magnetic resonance imaging (fMRI) has allowed a non-invasive means to
map the brain's response to stimulation of different body parts (Maillard
et al., 2000; Sakai et al., 1995; Stippich et al., 2002), individual digits of
the hand (Francis et al., 2000; Gelnar et al., 1998; Sanchez-Panchuelo
et al., 2010), and the within digit functional parcellation of Brodmann
areas (Sanchez-Panchuelo et al., 2012). This mapping, which separates
functionally specialised brain regions lying only millimetres apart, has
been made possible by the high spatial resolution of high- and ultra-high
field fMRI. However, fMRI can only assess the haemodynamic response,
missing the underlying electrophysiology. Non-invasive electrophysio-
logical brain imaging is possible using magnetoencephalography (MEG),
which measures the extra-cranial magnetic fields generated by neural
current flow (Cohen, 1972). The millisecond temporal resolution of MEG
c.uk (M.J. Brookes).
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facilitates the capture of time-frequency dynamics, allowing assessment
of time and phase locked evoked responses, and time-locked, but
non-phase-locked induced changes in neural oscillations (rhythmic
fluctuations in electrical potential across neural assemblies). These
disparate effects, and their topographical organisation within the
sensorimotor cortex, are less well understood. Here, we develop meth-
odology to optimise the spatial resolution of MEG, and use it to investi-
gate the motortopic organisation of neural oscillations.

Successful mapping of cortical organisation requires brain imaging
with high spatial precision, however MEG is ‘classically’ thought of as
having limited spatial resolution. Firstly, the MEG inverse problem
(transforming extracranial magnetic field measurements into images of
cortical current) is ill-posed because cortical current at many thousands
of voxels must be inferred from measurements at only a few hundred
MEG sensors. This introduces an inherent blurring in source space im-
ages. Secondly, inaccurate forward modelling can result in the mis-
localisation of sources, potentially distorting functional images. Finally,
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rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

logical organisation of beta oscillations in motor cortex using MEG,

mailto:matthew.brookes@nottingham.ac.uk
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2018.06.041
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neuroimage.2018.06.041
https://doi.org/10.1016/j.neuroimage.2018.06.041


E.L. Barratt et al. NeuroImage xxx (2018) 1–14
subject movement relative to the MEG sensors results in blurring of the
measured fields, and hence reduced spatial precision. These limitations
make somatotopic/motortopic mapping a significant challenge for MEG.
Nevertheless, there have been successful demonstrations that stimulation
of different body parts elicits electrophysiological activity in demon-
strably separable cortical regions (Biermann et al., 1998; Brenner et al.,
1978; Fisher et al., 2004; Nakamura et al., 1998; Okada et al., 1984).
Previous studies have not only shown such separation of the cortical
representation of body parts in healthy individuals, but have also
demonstrated altered representations following learning (Elbert et al.,
1995; Godde et al., 2003; Liu and Ioannides, 2004), peripheral injury
(Mogilner et al., 1993; Weiss et al., 2000), and stroke/stroke recovery
(Feys et al., 2000; Forss et al., 1999; Gallien et al., 2003; Wikstr€om et al.,
2000). Alterations in digit representations have also been shown to be
measurable in focal hand dystonia (Elbert et al., 1998; McKenzie et al.,
2003) and carpal tunnel syndrome (Druschky et al., 2000; Napadow
et al., 2006; Tecchio et al., 2002) showing the clinical potential of such
measures. However, to date, most MEG studies focus on mapping the
evoked response, with comparatively few studies on neural oscillations.

In sensorimotor cortex, stimulus induced changes in neural oscilla-
tions are dominated by the beta band (13–30 Hz) with a robust decrease
in power during stimulation (Jasper and Penfield, 1949), followed by a
power increase (above baseline) on stimulus cessation (Neuper and
Pfurtscheller, 2001). These are known as the event-related beta
desynchronisation (ERBD) and post movement beta rebound (PMBR)
respectively. The reduction in beta oscillatory power during stimulation
has led to theories that high beta power is a marker of neural inhibition.
There is good supporting evidence for this, with demonstrable links be-
tween beta dynamics and the inhibitory neurotransmitter gamma ami-
nobutyric acid (GABA) (Gaetz et al., 2011; Hall et al., 2011;
Muthukumaraswamy et al., 2013). Studies also suggest that neural os-
cillations play a key role in mediation of communication between brain
regions (Fries, 2005; Hunt et al., 2016); indeed a number of well-known
resting state networks, including the sensorimotor network, exhibit co-
ordination of beta oscillations across spatially separate nodes (Brookes
et al., 2011; Hipp et al., 2012). Further, recent work (Tewarie et al.,
2018) suggests that task elicited temporal dynamics of functional con-
nectivity mirror beta power, with the highest long-range connectivity in
the sensorimotor system apparent during the PMBR. Collectively, these
studies support the hypothesis that the PMBR is an integrative signal
(Donner and Siegel, 2011; Liddle et al., 2016) which is a sensitive marker
of time resolved connectivity, and which exerts a top down inhibitory
influence on the primary sensorimotor regions. The importance of
mapping these beta modulations is growing, particularly in light of recent
evidence that the PMBR offers the potential to be a biomarker for pa-
thologies, for example schizophrenia (Robson et al., 2016) and multiple
sclerosis (Barratt et al., 2017). However, new methodologies are criti-
cally required to gain a better understanding of the spatio-temporal
signature of beta oscillations, and to realise the significant clinical po-
tential of PMBR measurement.

In this paper, our primary aim is to show (via simulations) that MEG
has the required resolution to separate spatially PMBR responses from
different digits of the same hand in individual subjects. (Note the
requirement to do this in individuals is critical if the clinical potential of
these measures is to be realised.) Our secondary aim is to use experi-
mental data to demonstrate that the PMBR exhibits a motortopic orga-
nisation in the brain. In what follows we show, both analytically and in
simulation, that the spatial resolution of MEG can be improved in cases
where experimental design is optimised such that MEG signals, generated
at separate cortical locations, can be separated in time, thus facilitating a
MEG spatial filtering methodology with enhanced spatial resolution.
Secondly, we show experimentally that, if subject motion is controlled
(using custom made foam headcasts (Liuzzi et al., 2017; Meyer et al.,
2017)), our methodology allows the separation of neural oscillatory re-
sponses elicited by movement of two separate digits (the index and little
finger) on the same hand. Finally, we compare our MEG results to those
2

obtained using ultra-high-field (7 T) fMRI, to assess the spatial agreement
between the MEG derived PMBR and the fMRI derived blood oxygena-
tion level dependent (BOLD) haemodynamic response.

Simulations: using temporal separation to enhance spatial
resolution

Beamforming

Beamforming (Robinson and Vrba, 1998; Van Veen et al., 1997) is
one of the most popular solutions to the MEG inverse problem, particu-
larly for characterisation of the spatial signature of neural oscillations.
Using a beamformer, an estimate of current amplitude, qθðtÞ, made at
time t and a predetermined location and orientation in the brain, θ, is
given by a weighted sum of MEG sensor measurements such that

qθðtÞ ¼ wT
θmðtÞ: [1]

Here m(t) is a vector of magnetic field measurements made at time t
across all MEG sensors and wθ is a vector of weighting parameters tuned
to location/orientation θ. The superscript T indicates a matrix transpose.
The weighting parameters are derived based on power minimisation: the
overall power in the output signal, E½ðqθðtÞÞ2�, is minimised with the
linear constraint that power originating from the location/orientation of
interest should remain (note EðxÞ refers to the expectation value of x).
Mathematically the beamformer problem can be written as:

minwθ

�
E
�ðqθðtÞÞ2�� subject towT

θ lθ ¼ 1: [2]

The source power is given by

E
�ðqθðtÞÞ2� ¼ wT

θCwθ; [3]

where C represents the channel level data covariance matrix calculated
over a time-frequency window of interest, which must cover all activity
of the source to be imaged. lθ is the forward field vector, which is a vector
containing a model of the magnetic fields that would be measured at each
of the sensors in response to a source of unit amplitude with location and
orientation θ. The linear constraint in Equation [2] (wT

θ lθ ¼ 1) results
directly from this definition of the forward field vector. A solution to
Equation [2] is

wT
θ ¼ lTθC

�1

lTθC
�1lθ

: [4]

Sequential application of Equations [3] and [4] to all source loca-
tions/orientations across the brain facilitates construction of an image
showing the spatial signature of electrical source power. However, a
confound is that, with increasing distance from the MEG sensors, noise
power tends to dominate genuine source power and this often leads to
artefactual inflation of power estimates close to the centre of the brain.
For this reason, source power, E½ðqθðtÞÞ2� is usually normalised by noise
power, E½ðnθðtÞÞ2� power, giving

z ¼ E
�ðqθðtÞÞ2�

E
�ðnθðtÞÞ2� ¼

wT
θCwθ

wT
θΣwθ

[5]

where Σ is the estimated sensor level noise covariance matrix which is
usually approximated as Σ ¼ υ2I (i.e. sensor noise is uncorrelated and has
equal amplitude, υ, across all sensors). z is known as the pseudo-z statistic
and is employed to give an unbiased estimate of the spatial location of
current sources in the brain.

Separating sources in time and space

In this paper, we aim to spatially resolve two sources in close prox-
imity. First we examine, in simulation, how the pseudo-z-statistic
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behaves around two closely spaced sources by modelling two nearby
sources located on an ellipsoidal surface inside the brain. Initially, the
brain surface was extracted from an anatomical MRI of an individual
subject (who had also previously undergone a MEG experiment). An
ellipsoid was fitted to the outside surface of the brain, and then shrunk,
yielding a second ellipsoid at a depth of approximately 1.5 cm beneath
the brain's surface (see Fig. 1A). Simulating all sources on this surface
ensured they had equivalent depth in the head, and therefore similar
signal to noise ratio (SNR) at the MEG sensors. Two sources were then
simulated at random locations on this ellipsoidal surface, separated by a
known (linear) distance d. Having defined these source locations, we
aimed to generate a 1-dimensional beamformer image along a line
joining the two sources (see Fig. 1B).

Source timecourses were simulated such that the sources were
sequentially active; this was designed to mimic a real experiment in
which a paradigm required sequential movement of two digits on the
same hand. A single simulated “trial” lasted 20 s; Source 1 was active in
the time window 0< t< 2 s, and Source 2 in the time window
10< t< 12 s. The timecourses comprised random Gaussian noise multi-
plied by a boxcar function, such that the strength of source activity was
31� 3 nAm (mean� standard deviation over trials) (see Fig. 1C). A total
of 44 trials was used. Each dipole timecourse was multiplied by the
forward field, and a noise term added such that the simulated MEG data
were given by

msimðtÞ ¼ B1q1ðtÞ þ B2q2ðtÞ þNðtÞ [6]

Here, B1 is the forward field for Source 1 (with timecourse q1ðtÞ) and B2

is the forward field for Source 2 (with timecourse q2ðtÞ). Source orien-
tations were defined to be in a plane tangential to the radial orientation
and at an arbitrary angle with respect to the azimuthal orientation. The
forward fields were generated using a dipole approximation (Sarvas,
1987) and a multiple local sphere head model (Huang et al., 1999). The
position of the head within the MEG helmet was taken from an experi-
mental recording, allowing the necessary co-registration parameters for
forward calculations. In all simulations, the sampling rate was 600Hz.
MEG sensor noise was added in two ways:
Fig. 1. Schematic of the simulation. A) The generation of an ellipsoid, approximate
sources generated in close proximity, and a 1-dimensional beamformer image genera
such that each source was sequentially active, to mimic the experimental set-up use

3

1) Gaussian Noise: Noise was generated as a Gaussian random process
(i.e. uncorrelated and equal in strength across all MEG sensors) with 3
amplitudes: 36 fT (low SNR condition); 21 fT (medium SNR condi-
tion); 8 fT (high SNR condition).

2) Empty room Noise: An 880 s real MEG recording was made, using a
275 channel CTF system, with no subject present, to represent
genuine background magnetic interference. To facilitate multiple
realisations of these empty room noise data, a multi-variate phase
randomisation process was applied (Prichard and Theiler, 1994). This
allowed generation of new noise datasets ad infinitum, with the same
Fourier spectra and linear covariance as the original, whilst scram-
bling the phases of the Fourier components ensured fundamentally
different noise timecourses.

There are multiple ways to employ beamforming to reconstruct these
simulated sources, which differ depending on how covariance matrices,
and hence beamformer weights, are constructed. Specifically, three
possible covariance matrices can be generated: C1 is generated using data
in which only Source 1 is active (i.e. data within the 0 < t < 10 swindow
(for every trial) – yellow boxes in Fig. 1C). C2 is generated using data in
which only Source 2 is active (i.e. data within the 10 < t < 20 s window
(for every trial) – green boxes in Fig. 1C). C is generated using all data
(i.e. red box in Fig. 1C). Following this, the beamformer can be con-
structed in three possible ways.

1) Single weight vector; Single image: Only C is used to generate the
beamformer image: A single set of beamformer weights is generated

per source space location/orientation as wT
θ ¼ lTθ C

�1

lTθ C
�1lθ

. A single image

is then generated as zθ ¼ wT
θ Cwθ

υ2wT
θwθ

. This image contains 2 peaks, one for

each source.
2) Single weight vector; Two images: As above, C is used to generate a

single set of beamformer weights so that wT
θ ¼ lTθ C

�1

lTθ C
�1lθ

. However, two

separate images are generated as z1θ ¼ wT
θ C1wθ

υ2wT
θwθ

and z2θ ¼ wT
θ C2wθ

υ2wT
θwθ

, which

should peak at the spatial location of Source 1 and Source 2
respectively.
ly 1.5 cm below the brain surface, upon which all sources were simulated. B) Two
ted along a line joining the two sources. C) Source timecourses were simulated
d later.
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3) Two weight vectors; Two images: Here, two separate beamformer
weight vectors are used to generate the images of the two sources

independently. A weight vector, wT
1θ ¼ lTθ C

�1
1

lTθ C
�1
1 lθ

, and an image, z1θ ¼
wT

1θC1w1θ

υ2wT
1θw1θ

, are used to spatially localise Source 1, and a second weight

vector wT
2θ ¼ lTθ C

�1
2

lTθ C
�1
2 lθ

and a corresponding image z2θ ¼ wT
2θC2w2θ

υ2wT
2θw2θ

, are

used to spatially localise Source 2.

Methods 1 and 2 have the advantage that the beamformer weights are
reliant on a data covariance matrix which has been constructed using all
the available data. This, in principle, makes the covariance matrix more
reliable and increases the stability of matrix inversion (required for the
weights calculation). However, reducing the number of sources of no
interest that a beamformer must minimise facilitates increased spatial
resolution. Thus, method 3, in which the weights are derived using
covariance matrices which contain data on only a single source, poten-
tially offers an advantage.

Fig. 2A shows beamformer projected power (upper row) and pseudo-
z-statistical image (lower row) for Gaussian noise simulations with high
(left) medium (centre) and low (right) SNR. The three beamformer
methodologies are shown in different colours (Single Weights; Single
Image is shown in yellow. Single Weights; Two Images is shown in blue.
Two Weights; Two Images is shown in red). In order to compare these
simulated methods to a case in which data covariance is perfect (i.e. has
no reliance on the amount of data used) we also included analytical
computations for methods 1 and 3, shown by the dashed lines (the
theoretical equations used to generate these analytical curves are given in
Appendix 1). In all cases the beamformer derived pseudo-z-statistical
image accurately pinpoints both sources, which here are separated by
Fig. 2. Simulation results. A) Beamformer projected power (top) and pseudo-z-im
single image (yellow). Single weight vector; two images (blue). Two weight vectors; T
integration limit). The case of high, medium and low SNR are shown in the left, centr
the interference is taken from an empty room. C) Schematic diagram showing how sp
between the peaks (points marked A, B and C) had to be less than 80% of the max
mentations. The left hand plot shows the case for Gaussian noise and the right hand
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d¼ 1.2 cm. However, qualitatively, the sources are better delineated in
the case where separate weights vectors are derived based on temporal
separation of the sources (method 3). Fig. 2B shows the equivalent plots
for empty room noise. Again, qualitatively, deriving separate weights
vectors based upon temporal separation of the sources appears
advantageous.

To better quantify the results presented in Fig. 2A and B, a more
expansive simulation was undertaken. Following random selection of
two initial source locations (see Fig. 1B), the distance, d, between the two
sources was reduced sequentially. For each value of d, we derived a new
beamformer image, with the aim of finding the minimum separation of
the two sources (smallest d) when the peaks in the image could be
resolved successfully. The condition for resolution is shown schemati-
cally in Fig. 2C, and is based upon the local minima between the source
locations (i.e. the points labelled A, B, and C in the Figure). For the two
sources to be resolved, we required that this local minimumwas less than
or equal to 80% of the maximum height of the two peaks. The minimum
separation was computed independently for the three beamformer
implementations. This simulation was repeated 50 times with the sources
in different locations on the ellipsoidal surface, and a different noise
realisation, on each iteration.

Results are shown in Fig. 2D, for Gaussian Noise (left), and empty
room noise (right), with the analytical case also shown, which is in
excellent agreement with the Gaussian noise simulation. Note the
discrepancy between analytical and simulated results is greater in the
empty room noise case since the analytical equations (Appendix 1)
cannot mimic the complex (real) sensor-space correlations introduced by
real magnetic interference. (I.e. here, to derive the analytical results, we
simply matched the noise amplitude level (υ in appendix 1) to the
measured standard deviation of the empty room noise, and used the same
age (bottom), for the three beamformer implementations (Single weight vector;
wo images (red) – dashed lines show analytical images computed in the infinite
e, and right plots respectively. Sensor noise is Gaussian. B) Equivalent to (A) but
atial separation of two sources was calculated: the amplitude of the local minima
imum peak height. D) Spatial resolution for the 3 different beamformer imple-
plot shows the case for empty room noise.
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Equations as for the Gaussian case). Most importantly, for Gaussian and
realistic interference, we see a significant decrease in the resolvable
distance when splitting the weight vectors in time (Method 3). Quanti-
tatively, the minimum resolvable distanced dropped from 16.5mm (1wt
vector, 1 image) to 2.8mm (2wt vectors, 2 images case) (p< 0.00001 –

paired t-test) for the Gaussian noise case. For the empty room noise
condition, there was again a significant decrease in the resolvable dis-
tance from 21.4mm (1wt vector, 1 image) to 5.4mm (2wt vectors, 2
images case) (p< 0.00001).

These data show that, in cases where paradigm design allows two
sources to be separated in time, segmenting the MEG recording into two
datasets, to compute separate covariance matrices and beamformer
weights, offers better spatial separation. This is a consequence of the
minimisation in Equation [2]. When the beamformer is used to probe a
specific source location, the derived weights are optimised to minimise
other spatially separate sources. However, the fewer sources of no in-
terest there are to minimise, the sharper the peak will be in the beam-
former derived image. Let us now suppose that we want to generate an
image of Source 1, meaning that Source 2 is effectively an interference
source: In methods 1 and 2, beamformer weights are derived based upon
all of the data (hence both sources 1 and 2 are represented in the
covariance matrix), and the weights are derived to minimise Source 2
(apparent in the blue power curves shown in Fig. 2A). This minimisation
works, but increases the full-width at half maximum of the peak over
Source 1. However, in method 3, where sources are segmented in time so
that weights are based only on a time window in which Source 1 is active,
Source 2 is completely invisible and is not represented in the covariance
matrix, therefore it doesn't require minimisation. This means that the
beamformer is able to better optimise spatial specificity around the
source that is active in the time window selected (Source 1), hence
improving spatial specificity. Similar arguments have been made previ-
ously relating to data averaging (Brookes et al. (2010)). The more sources
of no interest that can be eliminated (by segmenting data in time, or in
frequency) the better the spatial resolution around sources of interest.
However, critically, this is dependent on having sufficient data to
construct an accurate data covariance matrix (and its inverse). In cases
with fewer trials, these results do not hold (see discussion and supple-
mentary information Figure S2). It should be noted that the quantitative
values for spatial resolution presented here are based on dipoles oriented
arbitrarily; it has previously been shown (Vrba and Robinson, 2002) that
the best spatial resolution between two dipoles will occur when those
diploes are oriented perpendicular to one another, whereas parallel di-
poles will exhibit the worst resolution. These two cases represent the
extrema; our simulation (using arbitrary angles) represents an average.

The topographical organisation of beta oscillations: experimental
method

Using insights from the simulations above, we aim to use a MEG
beamformer to determine the topological organisation of the PMBR in
motor cortex: Specifically, to show, in individual subjects, significant
spatial separation of responses to moving either the second digit (D2 –

index finger), or the fifth digit (D5 – little finger) of the dominant (right)
hand.

Participants

Three healthy adults (1 female – age 35 years; 2 male – aged 26 and
24 years) took part in the study, having given full written consent. The
study was approved by the University of Nottingham Medical School
Research Ethics Committee. Each subject was scanned 8 times in theMEG
system across 2–4 days. The same subjects took part in a separate fMRI
session to allow comparison between the spatial topology of beta band
neural oscillations and the BOLD response.
5

Paradigm design

Finger movement paradigms were optimised for MEG and fMRI
measurements separately. In both cases, a visual cue instructed subjects
to “tap” (execute flexion and extension) either D2 or D5 against a surface
at a frequency of approximately 2–4 Hz (though this was not monitored
explicitly). For MEG, the paradigm was designed to mimic the simula-
tions and thus optimise spatial resolution. Each trial lasted 20 s and
comprised 2 s of tapping D2, followed by 8 s rest, and then 2 s of tapping
D5, followed by a further 8 s rest (see Fig. 3, left hand side), with 44 trials
collected. The entire MEG experiment was then repeated 8 times in each
subject. For fMRI, subjects were again instructed to tap D2 or D5, but
given the latency and longevity of the haemodynamic response and poor
temporal resolution of fMRI, tapping of each digit was performed for 8 s,
followed by a 20 s rest period between digits (see Fig. 3, right hand side)
with 6 trials collected. In order to enhance SNR sufficiently to allow digit
separation in fMRI, where necessary, this experiment was repeated, and
data concatenated across repeats. Subject 1 took part in one scan (6 tri-
als); Subject 2 took part in 4 scans (24 trials); and Subject 3 took part in 2
scans (12 trials). A high-resolution T2*- weighted scan was acquired
following fMRI to allow detection of the veins.

Data acquisition: MEG

The representations of D2 and D5 in motor cortex are separated
spatially by only a few millimetres. Given this, it was important to limit
subject movement within the MEG helmet throughout the ~15-min
recording which could obscure measurement of digit separation. Thus,
we constructed subject-specific foam headcasts, the internal surface of
which fitted closely to the subjects' scalp, whilst the external surface
fitted to the MEG scanner helmet. Similar headcasts have been shown
experimentally to reduce subject motion to ~1mm (Liuzzi et al., 2017;
Meyer et al., 2017).

To generate the headcast, an anatomical MRI of the subject's head was
acquired using a 3T Philips Ingenia scanner running a 3DTFE sequence
with resolution of 1mm3. Sequence parameters (TR/TE¼ 4.5ms/
1.97ms; FOV (AP, FH, RL)¼ 256� 256� 183mm; BW¼ 775Hz) were
optimised to provide a high bandwidth/voxel and hence minimise spatial
distortion due to susceptibility effects around the face and scalp. A 3D
mesh representing the outer surface of the head and face was extracted
from the anatomical MRI. This 3D model of the subject's head was placed
inside a virtual realisation of the MEG helmet. The head-model was
augmented with spacing elements, to optimise the distance between the
scalp and sensors. In addition, a 3D representation of three head local-
isation coils, used for localising head position in the MEG scanner was
added, with coils placed at the nasion and left and right preauricular
points. This 3D digital representation of the head surface, spacers, and
localisation coils was 3D printed and placed inside a manufacturer-
provided replica of the MEG-helmet. Finally, liquid resin was poured
into the negative space between the surfaces. This expands and sets,
resulting in flexible foam headcasts which can also house the localising
coils.

All MEG data were acquired using a 275-channel whole head CTF
system (MISL, Coquitlam, Canada) operating in third order gradiometer
configuration at a sampling frequency of 600Hz. The subject was seated
throughout the recording. Prior to acquisition, three localisation coils
were placed in the headcast. These were energised continuously during
the scan, allowing tracking of any movement of the headcast relative to
the scanner. The headcast design involved a complete digital represen-
tation of the subject's brain anatomy, relative to the localisation coils.
Further, energising these coils allowed knowledge of the locations of the
three coils relative to the MEG sensor locations. Combining the headcast
geometry with the MEG data thus allowed co-registration between the
system geometry and the brain anatomy. Visual cues for the MEG para-
digm were presented via projection through a waveguide onto a back-
projection screen placed ~40 cm in front of the subject.



Fig. 3. Paradigm design for the digit tapping experiment used in MEG (left) and fMRI (right).
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Data acquisition: fMRI

All fMRI data were acquired using a Philips 7T Achieva system
(Philips Medical Systems) with a head only volume transmit coil and 32-
channel receive coil (Nova Medical). Foam padding was placed around
each subject's head to minimise movement. Data were acquired using a
gradient-echo, echo-planar-imaging (GE-EPI) sequence with the
following acquisition parameters: TR¼ 2 s, echo time (TE)¼ 25ms, flip
angle (FA)¼ 75� (Ernst angle), SENSE factor 2.5. 26 axial slices, with
1.5 mm3 isotropic resolution (FOV¼ 183� 39� 183mm3) were ac-
quired to cover the sensorimotor regions. Throughout the scan, visual
cues for the fMRI paradigm were presented via projection onto a back-
projection screen placed at the end of the magnet bore which subjects
viewed via a pair of prism glasses.
Data analysis: MEG

All MEG data were inspected visually and any trials containing
excessive interference (e.g. due to the magnetomyogram) were removed
– this resulted in the reduction of the trial count to 42� 2 in Subject 1;
41� 3 in Subject 2 and 42� 2 in Subject 3 (mean and standard deviation
across 8 runs in each subject). The mean (across 8 runs) maximum
movement for subjects 1, 2 and 3 was 0.3mm, 1.2mm and 0.3mm
respectively, illustrating the distinct advantage of using a headcast; no
trials were removed due to subject movement. Data were frequency
filtered between 1 and 150Hz.

Following preprocessing, MEG data were modelled using a scalar
beamformer, as described above. Forward fields were computed using a
dipole approximation (Sarvas, 1987) and a multiple-local-spheres head
model (Huang et al., 1999). Data were projected into source space onto
the vertices of a regular 2mm grid spanning the entire brain – facilitating
a volumetric image. Given the results of our simulations, in order to
optimise spatial specificity, separate beamformer weights were calcu-
lated to represent each digit independently: weights for D2 (wD2Þ were
constructed using data covariance measured in the 0 < t < 10 s window
(relative to the start of all trials). Weights for D5 (wD5Þ were generated
using data covariance measured in the 10 < t < 20 s time window (again
relative to the start of all trials). In both cases, data were frequency
filtered to the beta (13–30 Hz) band. Since the number of effective
samples (degrees of freedom) in the data is given by 2BWΔ, where BW is
the signal bandwidth and Δ is the total duration of data (in seconds), this
means a total of (2� 17ðHzÞ� 10ðsÞ� 44ðtrialsÞ ¼ ) 14,960 samples with
which to quantify covariance; this is considered sufficient according to a
previous theoretical study (Brookes et al., 2008).

The spatial signature of beta modulation was determined using a
pseudo t-statistical approach, which contrasts ‘active’ and ‘control’
windows. The image for D2 was generated using

TθD2 ¼ wT
D2CaD2wD2 �wT

D2CcD2wD2

2wT
D2wD2

: [7]

Since we aimed to image the spatial distribution of the PMBR, the
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active window to generate CaD2 was taken from 2.5 to 4 s and the control
window to generate CcD2 from 7.5 to 9 s. Similarly, pseudo t-statistical
images showing the spatial distribution of PMBR for D5 tapping were
given by

TθD5 ¼ wT
D5CaD5wD5 �wT

D5CcD5wD5

2wT
D5wD5

; [8]

where the active window to generate CaD5 was 12.5–14 s and the control
window to generate CcD5 was 17.5–19 s. The main focus here is on the
PMBR, but see Figure S1 for the spatial localisation of the ERBD. In
Equations [7] and [8], the denominator was constructed to remove bias
towards the centre of the brain.

These analyses produced pseudo-t-statistical images from which to
determine a peak location (location of the largest response) of the PMBR,
in left sensorimotor cortex, for each of the 8 experimental runs in each
participant independently. The coordinates of these peaks were deter-
mined in each subject's ‘native’MEG space. Given the known motortopic
organisation of the motor cortex we expected that the representation of
D5 would appear superior to the representation for D2. Thus, a one-sided
paired t-test was applied to the z-co-ordinate (foot to head) to determine
if the peak locations were significantly different spatially, following
tapping of D2 compared to D5. In keeping with our aim to show
motortopic organisation in individuals, this test was performed on each
subject separately as well as at the group level. For visualisation pur-
poses, these peak locations were overlaid onto coronal, saggittal, and
axial slices of the individual subjects MRI.
fMRI

Data were motion corrected using MCFLIRT (Jenkinson et al., 2002)
and high-pass filtered at 0.01 Hz. No spatial smoothing was applied to the
7T fMRI data to minimise loss of spatial resolution. fMRI data were
analysed using a GLM (FSL FEAT (Jenkinson et al., 2012):) with the
motion parameters used as covariates of no interest in the design matrix,
and an additional variable included to ensure no confound of concate-
nation of data across multiple runs in the same subject. Contrasts of D2
and D5 activation, as well as a differential contrast was performed be-
tween the digits (D2>D5) and (D5>D2) giving z-score maps for each
contrast. These z-score maps were then combined by masking the dif-
ferential contrasts with the individual functional images for D2 and D5.
In addition, a venous mask was created from T2*-weighted images,
which was applied to the z-score maps to remove any voxels comprising
draining vein effects. The resulting z-score maps were then transformed
linearly into the MEG data space, allowing direct comparison of the
spatial signature of BOLD changes to the MEG pseudo-t-statistical maps.
All differential contrasts were originally thresholded to a z-score of 1.96.
For visualisation purposes, these were then further masked by the acti-
vation maps at a level dependent upon the noise of each subject and digit
(for Subject 1, both digit masks were thresholded at z¼ 2.3; for Subject 2,
the D2 mask was thresholded at z¼ 2.3, while the D5 mask was
thresholded at z¼ 5.2); and for Subject 3, D2 was thresholded at z¼ 2.3
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while D5 was thresholded at z¼ 5.2).

Comparison of MEG and fMRI spatial maps

The MEG and fMRI results were compared quantitatively by
measuring the distance between peak locations of digits. Specifically, for
each subject, we measured the distance between each MEG-D2 peak from
each experimental run, and the corresponding D2 and D5 fMRI peaks. We
hypothesised that MEG-D2-to-fMRI-D2 distance should be smaller than
the MEG-D2-to-fMRI-D5 distance. This numerical analysis was repeated
for D5, and data were combined. These analyses yielded a “corresponding
digit distance" (i.e. MEG-D2-to-fMRI-D2 and MEG-D5-to-fMRI-D5) and an
“alternate digit distance" (MEG-D2-to-fMRI-D5 and MEG-D5-to-fMRI-D2).
These values were assessed to determine if the corresponding digit dis-
tance was smaller than the alternate digit distance, using a one sided
paired t-test. Again, in keeping with our aim to achieve spatial separation
of MEG responses in individuals, this metric was measured for each in-
dividual subject as well as at the group level.

The topographical organisation of beta oscillations: results

Fig. 4 shows example pseudo-T-statistical images for a representative
run in a single subject. The spatial representations of PMBR following D2
and D5 tapping are shown in red and blue respectively. Note, as expected,
a spatial shift is apparent with the representation of D5 superior to that of
D2. The peak PMBR locations from the pseudo-T-statistical maps for all
runs and all subjects are shown in Fig. 5; PMBR peaks following D2
tapping are shown as red circles, and PMBR peaks following D5 tapping
are shown as blue circles (Fig. 5, left panel). These peak locations have
been projected onto single axial, coronal and saggittal slices for visual-
isation. The pseudo-T statistical values (mean� standard deviation) for
D2 tapping were 9.5� 2.5, 10.3� 1.8 and 11.0� 2.3 for subjects 1–3
respectively. The equivalent pseudo-T statistical values for D5 tapping
were 11.9� 2.3, 10.0� 1.4 and 9.7� 2.6. The right hand panel of Fig. 5
shows the mean PMBR peak locations (across runs) for D2 and D5 as red
and blue crosses respectively.

For all subjects, there was a significant superior shift in peak location
of D5 (blue) compared to D2 (red) as expected from the known organi-
sation of motor cortex. For Subject 1, the average superior-inferior (S-I)
separation between D2 and D5 peaks was 3.5� 0.7mm (p¼ 0.001); for
Subject 2, the S-I separation was 2� 1mm (p¼ 0.03); and for Subject 3,
the S-I separation was 1.5� 0.3mm (p¼ 0.001). (The Euclidean sepa-
ration of the peaks was 5.5� 1mm for Subject 1, 4.3� 2mm for Subject
2 and 2.8� 0.4mm for Subject 3). Treating the three subjects as a group
(i.e. performing a 1 tailed t-test over the 24 individual measurements)
resulted in a significant S-I shift with p¼ 0.00001. At the group level
there was also a significant (p¼ 0.01) left-right shift in peak locations,
with D5 peak appearing more medial (as expected), however this medial
Fig. 4. Example pseudo-T-statistical images, from a single run in a single subject. The
red. The PMBR following D5 movement is shown in blue. Note, qualitatively, a spatia
expected from the known organisation of the sensorimotor cortex.
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shift did not reach statistical significance in individual subjects. Impor-
tantly, these significant separations of the representation of D2 and D5
were only observable when deriving optimised beamformer weights,
capturing D2 and D5 movement separately. If a single weights vector was
employed, the spatial shifts were diminished significantly (see Appendix
2 and Discussion).

Fig. 6 shows the spatial relationship between the MEG derived PMBR
and the BOLD response. In Fig. 6A, the red and blue circles show PMBR
peaks for D2 and D5 respectively, for all 8 experimental runs in each
subject. The grey overlay shows the BOLD response elicited by D2 tap-
ping; the green overlay shows the BOLD response elicited by D5 tapping.
Coronal and axial projections are shown. Note that, whilst there is clear
discrepancy (of approximately 1 cm) between the PMBR and BOLD lo-
cations, particularly in Subject 3, the superior shift between D2 and D5 is
apparent in both modalities. The locations of the MEG and fMRI derived
peaks, in MNI space, are given in Table 1. Fig. 6B shows the corre-
sponding and alternate digit distances. As expected, the corresponding
digit distance was lower than the alternate digit distance, although this
was only significant in Subjects 1 and 2. In Subject 3, there was a larger
discrepancy, with the largest BOLD response being located in sensory
rather than motor cortex. At the group level, the mean corresponding
digit distance was 12.6mm compared to a mean alternate digit distance
of 13.9mm; the significant (p¼ 0.003, one-sided paired t-test) difference
between these values shows that, on average, the PMBR has a spatial
organisation which is similar to that of the BOLD response.

Discussion

A number of studies have demonstrated the ability to spatially
differentiate cortical responses to movement or stimulation of a given
digit using fMRI (Besle et al., 2014; Kolasinski et al., 2016; Martuzzi
et al., 2014; Sanchez-Panchuelo et al., 2010; Stringer et al., 2011). In
contrast, the spatial resolution of MEG has traditionally been thought of
as limited due to the ill-posed nature of the inverse problem, inaccuracies
in modelling magnetic fields generated by electrical sources, and prac-
tical problems such as subject movement, making motortopic mapping of
the digits challenging. In this paper, via optimisation of the spatial
specificity of a beamformer, and by exploiting the use of custom made
foam head padding to reduce subject movement, we were able to
spatially separate the PMBR response induced by the movement of two
separate digits (the index (D2) and little (D5) finger) of the same hand, in
individual subjects. Specifically, our results show a statistically signifi-
cant superior shift in the spatial location of the PMBR response to D5
relative to D2 movement across 8 independent MEG experiments, as
would be expected given the known spatial organisation of the motor
cortex. This was repeated in three individuals. Further, we showed sig-
nificant agreement between the PMBR and the measured location of the
BOLD fMRI response.
spatial distribution of the PMBR measured following D2 movement is shown in
l shift in the two responses with the representation of D5 appearing superior, as



Fig. 5. MEG experimental results: The spatial distribution of the PMBR response, shown for Subjects 1–3 in panels A–C respectively. In all cases, the spatial dis-
tributions of PMBR responses for D2 tapping are shown in red, for D5 tapping in blue. In the left hand panel, peak locations for all 8 runs are shown in each subject,
projected onto axial, coronal and sagittal slices of the MRI. In the right hand panel, the average locations (across all 8 runs) are shown.
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The beamformer methodology was key to the spatial separation of the
PMBR of D2 and D5. The beamformer method places minima over
sources that are not generated at the spatial location being probed (the
minimisation term in Equation [2]). This ability to adaptively remove
sources of no interest is one of the significant advantages of this approach
(Sekihara et al., 2006). However, the more sources of no interest it must
minimise, the lower the spatial specificity around a true source will be. It
is therefore a significant advantage to segment data, in either time or
frequency, to remove sources of no interest prior to construction of the
beamformer weights vectors. This was the approach taken here; the data
were segmented temporally into periods when only a single source was
active, and the beamformer weights were tuned specifically to that
source. This resulted in a significant improvement in spatial resolution in
our simulations, and was critical in showing robust experimental sepa-
ration of responses to D2 and D5 movement. In the absence of such
segmentation (i.e. when a single beamformer weights vector is defined
using data covariance calculated across the whole experiment) our sim-
ulations showed a drop in spatial resolution. Moreover, in our experi-
mental data, separation of the cortical representations of D2 and D5 was
no longer possible in two out of the three subjects, and Euclidean sepa-
ration was reduced significantly across all subjects (See appendix 2).

Exploitation of this segmentation approach comes with the caveat
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that sufficient data must have been collected to allow temporal (or
spectral) separation. Using fewer data points, the accuracy of the
covariance matrix will degrade, which will cause the beamformer pro-
jected power to deviate from its expected value. This is illustrated in
Figure S2 in which beamformer reconstructed power, summed across a 1-
dimensional image, is measured in simulation (i.e. using data derived
covariance) and analytically (where covariance has no dependence on
the volume of data used). Any deviation of the data-derived versus
analytical projected power will degrade the spatial accuracy of the
beamformer reconstruction. It can be seen that, as the number of trials,
and hence amount of data, is reduced, for methodologies in which data
are segmented, the power deviates quicker from the expected result than
for cases where the data are not segmented (Brookes et al., 2008). Thus,
to exploit fully a temporal segmentation of sources to optimise spatial
specificity, sufficient data are required for each source independently;
this should be taken into consideration in the experimental design for
future studies.

Arguably the greatest limitation of spatial resolution in MEG is sub-
ject movement relative to the MEG sensors, causing blurring of the
measured fields and hence a reduction in the accuracy of the inverse
models that are used to reconstruct the data. In typical studies, motion
tolerance is often set at 5mm (challenging for many subjects over a



Fig. 6. The spatial relationship between the PMBR and the BOLD response. A) The spatial location of the 8 MEG derived peak locations of the PMBR are shown by
red (D2) and blue (D5) circles. The grey and green overlays show the peak BOLD signal change in response to D2 and D5 respectively. All differential contrasts were
thresholded at a z-score of 1.96, before further thresholding using the activation maps. B) The bar charts show the corresponding digit distance (i.e. MEG-D2-to-fMRI-
D2 and MEG-D5-to-fMRI-D5) and alternate digit distances (i.e. MEG-D2-to-fMRI-D5 and MEG-D5-to-fMRI-D2); note as expected that the corresponding digit distance is
smaller than the alternate digit distance in all subjects (although this is only significant in Subjects 1 and 2).

Table 1
MNI coordinates and locations of the peak PMBR and BOLD responses. In
the case of PMBR, the mean across all 8 runs is given alongside the SD in brackets.
The locations are based on MNI indexing.

MNI x-
coordinate

MNI y-
coordinate

MNI z-
coordinate

Location

Subject
1

PMBR –

D2
�37 (1) �24 (2) 51 (1) Post

central
gyrus

PMBR –

D5
�35 (1) �20 (2) 54 (1) Pre central

gyrus
fMRI –
D2

�40 �20 50 Post
central
gyrus

fMRI –
D5

�36 �18 68 Pre central
gyrus

Subject
2

PMBR –

D2
�35 (5) �15 (4) 53 (2) Pre central

gyrus
PMBR –

D5
�32 (1) �13 (1) 56 (1) Pre central

gyrus
fMRI –
D2

�50 �22 42 Post
central
gyrus

fMRI –
D5

�36 �14 52 Pre central
gyrus

Subject
3

PMBR –

D2
�32 (2) �11 (3) 58 (2) Pre central

gyrus
PMBR –

D5
�31 (2) �11 (4) 60 (3) Pre central

gyrus
fMRI –
D2

�38 �28 54 Post
central
gyrus

fMRI –
D5

�32 �28 68 Post
central
gyrus
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15min MEG recording). However, the spatial separation of D2 and D5
sources was expected to be of this order, requiring headcasts to limit
subject movement. The headcasts limited head motion to ~1mm
throughout the measurement, sufficient to allow digit separation in
motor cortex. These flexible foam pads are an attractive option to reduce
head motion at source. However, it should be noted that they are
expensive, and the complete elimination of the ability to move the head
may make the scanner experience intolerable for some subjects, in
particular patients. For this reason, practical use of MEG to measure
motortopic organisation in patient populations might require other so-
lutions. Recent years have seen the development of methods for post-hoc
correction of MEG data recorded in the presence of head movement
(Medvedovsky et al., 2007; Nenonen et al. 2010, 2012; Taulu and Simola,
2006; Uutela et al., 2001). However, these methods cannot deal with the
inherent change in SNR to sources brought about by movement relative
to sensors (i.e. a large left to right shift would give left hemisphere
sources decreased SNR and right hemisphere sources increased SNR). In
addition, motion correction of the data tends to reduce degrees of
freedom which itself might lower the spatial resolution of the beam-
former. This therefore poses a fundamental problem for the current
generation of MEG. However, the introduction of novel field sensors and
head mounted arrays which can be worn whilst subject moves naturally
(Boto et al., 2016; Boto et al., 2017; Boto et al., 2018), offers a practical
solution.

Our data showed agreement (at the group level and in two of the three
subjects scanned) between the spatial representation of the PMBR and
the BOLD response. This finding adds weight to a body of work which
suggests that oscillatory changes might, at least in part, drive the meta-
bolic demandwhich elicits haemodynamic changes (Brookes et al., 2005;
Hall et al., 2014; Logothetis et al., 2001; Winterer et al., 2007). However,
there was not a perfect overlap between the MEG findings and the BOLD
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response. This could relate to a bias in the forward model used for MEG -
we have assumed a point dipole model for the underlying sources,
however it is clear that, in practice the PMBR will be generated from a
finite volume of tissue. This potentially means that the precise locations
of the MEG sources may undergo a systematic shift because the dipole
model cannot capture the complex geometry of activation in an extended
volume of cortex. This may also explain why the spatial separation of D2
and D5 responses was greater in fMRI (15� 3mm) than in MEG
(4� 1mm). This said, the discrepancy between PMBR and BOLD could
also be neurophysiological in origin. The BOLD response represents in-
tegrated cortical activity, which in the case of our paradigm will exist in
both the sensory and the motor regions. However, the PMBR may relate
more directly to motor control; indeed there is some evidence for this
since spatially, the PMBR has robustly been shown to originate from a
location anterior in the brain to the commonly measured ERBD, with the
former originating predominantly from the precentral gyrus, and the
latter ostensibly from the post central sulcus (Barratt et al., 2017; Fry
et al., 2016; Jurkiewicz et al., 2006; Stanc�ak Jr and Pfurtscheller, 1995).
It is conceivable that, if the PMBR represents motor activity, a spatial
shift between this and the BOLD response (which shows both motor and
sensory activation) wouldn't be surprising. Indeed, this is the case in
Subject 3 where the PMBR occurs in primary motor cortex (pre-cen-
tral-sulcus) and the peak BOLD response is localised to primary sensory
cortex (post-central-sulcus). Future studies, in which electrophysiological
forward models are based on an activated volume rather than a point
dipole will be valuable in determining the precise origins of these spatial
shifts. Indeed, the use of fMRI to derive a volumar activation model
would likely be of significant interest.

Finally, we should recognise the clinical potential of these metrics.
We chose to focus on the PMBR specifically due to recent findings of its
perturbation in disease. For example, Barratt et al. previously showed the
timing of the PMBR to be delayed significantly in patients suffering from
multiple sclerosis (Barratt et al., 2017), whilst Robson et al. showed the
PMBR to be significantly reduced in amplitude in patients with schizo-
phrenia (Robson et al., 2016). Furthermore, Hunt et al. (Hunt et al., In
Press) have shown that the magnitude of the PMBR changes with per-
sonality type, being reduced in those subjects who showed high
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schizotypy (a personality variant which subjectively relates experiences
and behaviour to that of schizophrenia patients). All of these studies
probed the time-frequency dynamics of the PMBR, but not its spatial
organisation across digits or body parts. The ability to spatially separate
PMBR responses in the cortex may therefore be important in these dis-
orders. Moreover, there are a number of disorders associated with
abnormal hand movement, such as focal hand dystonia and carpel tunnel
syndrome, where understanding the spatial organisation of the cortex
could be valuable clinically. The demonstration and methods presented
here may therefore help in the management of these patients.

Conclusion

We have shown that by using an optimised beamformer and custom
made headcasts to limit subject movement, MEG can offer sufficient
spatial specificity to probe the motortopic organisation of the human
brain. We showed that the PMBR elicited by little finger movement
mapped significantly superior in the cortex to that elicited by index finger
movement. Comparison of these results to ultra-high field fMRI shows
the two modalities to be in significant agreement. Critically, the spatial
separation of cortical digit representations was only obtainable if
beamformer weights vectors were derived independently for each
source. This means that in future studies aiming to maximise spatial
resolution of MEG beamforming, researchers should incorporate careful
experimental design in order to temporally (or even spectrally) segment
sources, and thus take advantage of this effect. From a neuroscientific
perspective, these results shed further light on the nature of the PMBR,
and offer exciting potential to understand the topological cortical orga-
nisation of neural oscillations in healthy individuals, and in patient
populations where the PMBR is known to be altered.
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Appendix 1. The theoretical distribution of beamformer projected source power

Consider a single source with a forward field B1 and r.m.s. amplitude, q1. The analytical form of the data covariance matrix is given by

C1 ¼ υ2I þ q21B1BT
1 ; [A1]

where the first term represents sensor level noise (whichwe assume to be uncorrelated and equal across sensors; υ2represents noise power, and I denotes
the identity matrix). The second term represents the genuine source covariance. The Sherman-Morrison-Woodbury matrix inversion lemma (Sherman
and Morrison, 1950; Woodbury, 1950) allows inversion of this matrix, giving

C�1
1 ¼ 1

υ2

"
I � q21B1BT

1

υ2 þ q21jjB1jj2F

#
[A2]

The beamformer estimated source power, at some ‘probe’ location and orientation θ is given by

P ¼ wT
θCwθ ¼

�
lTθC

�1
1 lθ

��1
[A3]

Substitution of Equation [A2] into Equation [A3] (see Brookes et al., 2008) gives

P ¼ υ2

jjlθjj2Fð1� Gcos2λÞ [A4]

where cosλ ¼ BT
1 lθ

jjB1 jjF jjlθ jjF is effectively a measure of the linear correlation between the modelled lead field at the probe location lθ and the forward field for

the source B1. G ¼ q21 jjB1 jj2F
υ2þq21 jjB1 jj2F

. Equation [A4] shows, analytically, the behaviour of beamformer reconstructed source power at any location around a

single source.
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It is possible to expand this single source case to two sources. Here, we assume two dipolar sources with forward fields B1 and B2 and source
amplitudes q1 and q2 respectively. Assuming uncorrelated noise across sensors, the source covariance is given by

C12 ¼ υ2I þ q21B1BT
1 þ q22B2BT

2 ; [A5]

and the inverse covariance is (Brookes et al., 2009)

C�1
12 ¼ 1

υ2

"
I � 1

1� F1F2 cos2ðλ12Þ

 
F1

B1BT
1

jjB1jj2F
þ F2

B2BT
2

jjB2jj2F
� F1F2 cosð λ12Þ B2BT

1 þ B1BT
2

jjB1jjF jjB2jjF

!#
[A6]

where

F1 ¼ q21jjB1jj2F
υ2 þ q21jjB1jj2F

[A7]

F2 ¼ q22jjB2jj2F
υ2 þ q22jjB2jj2F

[A8]

and

cosðλ12Þ ¼ BT
1B2

jjB1jjF jjB2jjF
[A9]

Substituting Equation [A6] into the expression for beamformer projected source power yields an expression for source power in the 2 source case

P ¼ ν2

jjlθjj2F

�
1� F1F2 cos2ðλ12Þ

1� F1 cos2ðαÞ � F2 cos2ðβÞ � F1F2cosðλ12Þfcosðλ12 � 2 cosðαÞcosðβÞg
�

[A10]

where

cosðαÞ ¼ BT
1 l

jjB1jjF jjlθjjF
; [A11]

and

cosðβÞ ¼ BT
2 l

jjB2jjF jjlθjjF
: [A12]

Here, the cosðαÞ term is related to the correlation between sensor level spatial topographies of Source 1 and the forward solution at the probe
location. Similarly, cosðβÞ is related to the sensor level correlation between Source 2 and the probe location.

Appendix 2. Spatial characterisation of PMBR using non-optimised covariance calculation

Results in Figs. 4–6 show that, using an optimised covariance calculation (with separate beamformer weights defined for D2 and D5 movement) we
were able to spatially separate the representation of the index and little finger of a subject's dominant hand. In this appendix we show that, without our
optimised weights strategy, this spatial separation is more challenging.

Our MEG data for all subjects were reanalysed using the same beamformer spatial filtering approach with sensor space data projected into source
space onto the vertices of a regular 2mm grid spanning the entire brain. However, rather than separate beamformer weights for each experimental
condition (i.e. wD2 constructed using covariance measured in the 0 < t < 10 s window and wD5 generated using covariance measured in the 10 < t <
20 s time window), here we constructed a generic set of weights, wGen, using data from the whole trial. The spatial signature of beta modulation was
then determined using the same pseudo t-statistical approach, contrasting ‘active’ and ‘control’ windows. The image for D2 was generated using

TθD2 ¼ wT
GenCaD2wGen �wT

GenCcD2wGen

2wT
GenwGen

: [A13]

As previously, CaD2 was taken from the 2.5–4 s window and CcD2 was taken from the 7.5–9 s window (timings with respect to trial onset). Similarly,
pseudo t-statistical images showing the spatial distribution of PMBR for D5 tapping were given by

TθD5 ¼ wT
GenCaD5wGen �wT

GenCcD5wGen

2wT
GenwGen

; [A14]

where CaD5 was generated in the 12.5–14 s window and CcD5 was generated in the 17.5–19 s. Notice that Equations A13 and A14 are identical to
Equations (7) and (8), apart from the fact that a single beamformer weights vector,wGen, was employed to generate both images (i.e. this is equivalent to
the “single weights vector – two images” case in our simulations).
11
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In Figure A1A, the left hand column shows the mean (across all 8 experimental runs) location of the peak PMBR response for D2 (red) and D5 (blue)
in the optimised covariance case, with images generated using Equations (7) and (8) (this is equivalent to the result shown in Fig. 5). The centre column
shows the same thing, but with a generic weights vector defined based upon covariance calculated across the whole experiment. The right hand column
shows Euclidean separation of the D2 and D5 cortical representations in both cases. The three rows in the Figure show the case for three separate
subjects. Figure A1B shows Euclidean separation between D2 and D5 cortical representations, averaged across subjects. We observed a significant
(p¼ 0.0019) decrease in spatial separation when using a single weights vector, compared to the optimised weights. Further, the significant superior
shift in representation of D5 compared to D2, that we had observed in our primary results in all three subjects, only remained significant in a single
subject (1) when using a single weights vector. This result therefore shows the critical importance of the optimised covariance strategy if the full
potential for high spatial resolution mapping in beamformer imaging is to be realised.

Fig. A1. A) Left hand column shows the mean location of the peak PMBR response for D2 (red) and D5 (blue) in the optimised covariance case. The centre column
shows the mean location of the peak PMBR response for D2 (red) and D5 (blue) using a generic weights vector. The right hand column shows Euclidean separation of
D2 and D5 cortical representations in both cases. Separate rows show three different subjects. B) Euclidean separation between D2 and D5, averaged across subjects,
for the two different weights calculations.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.neuroimage.2018.06.041.
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