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ABSTRACT

We provide a consistent set of interaction energy curvesfor the Group 2 (11A) and Group 12 (11B) metal
cation/rare gas complexes, M*-RG, where M* = Be*—Ra" and Zn*—Hg"*; and RG = He-Rn. We report
spectroscopic constants derived from these, compare them with available data, and discusstrendsin the
values. We gain insight into the interactions that occur using a range of approaches. reduced potential
energy curves; charge and population analyses, molecular orbital diagrams and contour plots; and
Birge-Sponer plots. Although sp hybridization occurs in the Be*-RG, Mg*™-Rg and Group 12 M*-RG
complexes, this appears to be minimal and covalency is the main aspect of the interaction. However,
major sd hybridization occursin the heavier Group 2 M*-RG systems, which increases their interaction
energies but there is minimal covalency. Examination of Birge-Sponer plots reveals significant
curvature in many cases, which we ascribe to the changing amounts of hybridization or covalency asa
function of internuclear separation. This suggests why the use of a simple electrostatics-based model
potential to describe the interactionsisinadequate.



1. INTRODUCTION

Interactions between metal cationsand rare gas atoms are the simpl est systemswith which to investigate
molecular interactions that can be viewed as underpinning catalysis as well as many bioinorganic
processes. Studies of such systems allow detailed insight into the very weakest of interactions with the
He atom, through to incipient chemical bonding with Xe and Rn. As the interactions become stronger,
we expect initial distortion of the electronic clouds (physical interactions), through to hybridization and
eventually full covalent bonding. Being able to study families of systems where these regimes are
traversed is expected to increase our understanding of chemical bond formation. As such, many
theoretical studies have been undertaken previously by our group on M*-RG systems (RG = He-Rn),
with the metals coming from Group 1,2%456 Group 2,"#° Group 11,°! Group 12,*2*2 and Group
1314151617 These studies have used CCSD(T) or RCCSD(T) theory with large basis sets to calculate
interaction energy, Ein, curves (IECs), often extrapolated to the basis set limit. These IECs have been
employed to obtain spectroscopic constants and to calculate transport coefficients for the metal cations
moving in inert gases. At the commencement of the studies, the emphasis was on obtaining reliable
IECs with a view to generating transport coefficients to compare to experiment, and to the limited
spectroscopic data available. However, in a number of cases it was evident that the systems were
showing behaviour that was reminiscent of incipient chemical bonding, and so various methods were
employed to establish the extent to which “chemistry” was present in the interactions, as opposed to
just “physics’. (Here, the use of the term * chemistry” includes covalency and also hybridization that
occurs as aresult of theinteraction.) Initially, this was undertaken using a physical “model potential” 18
also including damping,*® but we have since employed various population anayses, as well as
molecular orbital diagrams including contour plots. Also, it has recently proven insightful to look at
Birge-Sponer plots of the whole set of calculated bound vibrational levels,®® as this seems to show
subtletiesin the changein shape of alEC that are otherwise difficult to see, even using such approaches
as reduced potentials.>*® Finally, contour plots and molecular orbital diagrams allow the visualization
of the interactions between the atomic orbitals.>*® In the present work, we apply the most insightful of
the above methods in an examination of the interactions of the Group 2 (Be*—Ra") and Group 12 (Zn*—

Hg") metal cations with each of the rare gases (He-Rn).

Of the systems previously studied, the metal cations belonging to groups 1, 11, and 13 all possess 'Z*
electronic ground states, and as such it might have been anticipated that the interactions within those

*—RG complexes would be of essentialy the same character. However, as previous investigations
have highlighted, interactions in the Group 11 M*-RG complexes exhibit rather strong binding
energies,'® with Au*-Xein particular being very strongly bound and proposed as exhibiting a degree of
covalency.*'® Conversely, the Group 1 complexes are comparatively weakly bound and were found to
be described well by a“physical’ model potential that included the main induction and dispersion terms

together with a simple repulsion potential.»® Group 13 is a different case again, with the heavier
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members of the M*-RG group showing similar behaviour to the Group 1 complexes,*® and the lightest

members, involving B*,*” showing strong binding energies with some incipient covalency.

Another logical comparison presentsitself in the case of the Group 2 and Group 12 M *—RG complexes.
For these complexes, a single unpaired electron is present in the outermost valence ns orbital, and as
such these al possess common 2&* electronic ground states. Consequently, on the basis of valence
isoelectronic arguments, the complexes from both of these groups might be expected to exhibit close
similaritiesin their interactions. In previous work we have examined the Group 2 complexesin detail 8°
but not consistently with dl of the above-described methods. Unfortunately, at that time, consistent
basis sets were not available for the whole set of Group 2 metals and so custom-designed ones were
employed in some cases, albeit to match the quality of standard Dunning-style aug-cc-pV5Z basis sets
combined with an effective core potentia for the heavier species. A similar situation occurred with the

Group 12 species,*>13 but also at that time a detailed analysis of the interactions was not undertaken.

In the present work, we firstly report high-quality IECs, employing consistent basis sets across the
whole set of complexes and extrapolating to the basis set limit. Furthermore, we undertake anal yses of
the interactions across the series using various approaches, which alow usto compare and contrast the

interactions in these val ence i soelectronic species.
2. COMPUTATIONAL DETAILS

As noted above, some of our previous studies on the Group 2 and Group 12 M*-RG complexes
employed custom-designed basis sets of the same overall construction as the Dunning-style quintuple-C
quality basis sets. Since then, appropriate basis sets have subsequently been published for al relevant
metal s°21-22 and we have now undertaken RCCSD(T) cal culations with these to obtain consistent IECs
for all of the complexes; further, since both quadruple-C and quintuple-{ quality basis sets became
available, we could also extrapolate the interaction potentials pointwise to the complete basis set limit
using the X method of Halkier et al.% In our earlier work on Be*-RG and Mg*-RG,® the basis sets
employed were pre-publication versions, and these were slightly modified in their published form, and

so those calculations were repeated using the published basis sets, for consistency.

RCCSD(T) IECsfor each of the 54 complexes have been calculated using MOL PRO,? covering arange
of internuclear separations that covered the long- and short-range as well as equilibrium separation
regions. The final extrapolated curves may be represented as RCCSD(T)/apCVowoZ or
RCCSD(T)/apwCVooZ quality. LeRoy’s LEVEL 8.0 code? was then employed to obtain rovibrational
energy levels from each of these curves. A number of spectroscopic constants were then obtained from
standard Morse expressions, as discussed below. Birge-Sponer-like (BS) plots were created using the

calculated separations between the vibrational levels.



The details of the basis sets employed for the metals are as follows (with X = Q, 5): for beryllium and
magnesium, all-electron aug-cc-pwCV X Z (weighted-core); for Ca, Sr and Baaug-cc-pCV XZ-PP (non-
weighted-core) valence basis sets along with relativistic, small-core effective core potentials
ECP10MDF, ECP28MDF and ECP46M DF, respectively; and for Zn, Cd, Hg and Ra aug-cc-pwCV X Z-
PP valence basis sets with relativistic, small-core effective core potentias ECP1OMDF, ECP28MDF,
ECP60MDF and ECP78MDF, respectively. For the rare gases, aug-cc-pV XZ basis sets were used for
He, and for Kr—Rn aug-cc-pwCV XZ-PP valence basis sets were employed with small-core effective
core potentials ECP10MDF, ECP28MDF, and ECP60MDF, respectively. For Ne and Ar, either aug-
cc-pCVXZ or aug-cc-pwCV XZ basis sets were used to match whether a core-weighted basis set was
used for the metal cation or not. The use of either core-valence or weighted-core-valence basis setsis
not expected to impact the results significantly, with any effect having even less impact on interaction
energies. In our previous work on the Be™-RG and Mg"-RG complexes, we employed doubly-
augmented basis sets, thus giving a better description of the diffuse regions of eectron density.
Although we mostly employ singly-augmented basis sets here, we found that in several casesthere was
arequirement for the second set of diffuse functions; hence, as will be discussed below, in those cases
we present RCCSD(T)/d-aCVZ results.

For Be* dl electrons were correlated, while for Mg* al but the 1s electron were correlated; for the
heavier Group 2 metals, all electrons on the metal not described by the ECPs were correlated. In the
cases of the rare gas atoms, the Ne 1s orbitals and Ar 1s, 2s, and 2p orbitals were frozen. Each of the
heavier rare gases RG = Kr—Rn had the inner-valence (n-1)s and (n-1)p orbitals frozen. As regards
Group 12, each of the metals Zn—-Hg had only their inner-valence (n-1)s orbitals frozen, since the (n-
1)p orbitals for these cations are higher in energy than the analogous Group 2 cation orbitals, and all
other electrons (save for those described by the ECP) were correlated. The same correlation scheme
that was used for the rare gas atoms in the Group 2 complexes was also used for Zn*-RG and Cd*-RG,
and also for the Hg*-He, Hg"-Ne, and Hg*"-Ar complexes, but the 5p orbitals on the mercury cation are
energetically closer to the inner-valence orbitals for RG = Kr—Rn. As such, for those three complexes
the inner-valence Hg* 5s orbital was frozen, and all others outside of the ECPs (including those on the

rare gas) were correlated.

Orbital contour plots were also produced for these complexes: the orbital energies were taken from
Hartree-Fock calculations performed using triple-C basis sets of the same designation as those used for
the IEC calculations; the equilibrium separation employed was that obtained using the CCSD(T)-
extrapolated basis set results. Calculated contours were visualized using MOLDEN.?

Partial atomic charges were obtained using Mulliken populations,? natura population analysis
(NPA),?® and the atoms-in-molecules (AIM)? theories. For the NPA and AIM analyses, we analyzed

the density from QCISD calculations performed with Gaussian 09 using the same triple-{ basis sets



asjust noted. The NPA analysis used the NBO6 software,®! whilst the AIM analysis used AIMAII.*2
3. RESULTSAND DISCUSSION
A. IECsand Spectroscopic Constants

The IECs are plotted in Figure 1 for the Group 2 M*-RG complexes, and in Figure 2 for the Group 12
M*-RG complexes. Full interaction energy curves are provided as Supplementary Materia for all
species. A summary of the derived spectroscopic constants obtained from the |ECs are provided in
Table 1 for the Group 2 complexes, and Table 2 for the Group 12 complexes. The key experimenta
data33'34'35’36’37'38'39’40'41'42’43'44'45’46’47'48'49'50'51'52 are dlsplayed in Tables 1 and 2, as well as Comparisons
between the present and our previous work. Since these complexes have been previously studied using
subsets of the approaches taken here, and in those studies generally very good agreement between
previous theoretical and experimental work was seen,®7891213 g ful| survey of previous experimental
and theoretical studiesis not repeated herein. In most cases, those experimental results are spectroscopic
studies and it was possible to compare to the calculated spectroscopic constants. The previous IECs
from our group for the titular species were also used to calculate ion transport coefficients and this
provided ancther avenue of comparison by which to eval uate the quality of the calculated potentialsvia
ion transport studies of metal cations moving through a bath of rare gas.”#%1213 Some comment will,

however, be made on several studies that have been published since that earlier work.

For the Be™-RG and Mg*-RG complexes, the new IECs are almost identical to those published
previously® (since there were only minimal changesto the basis sets between thetwo studies). We noted
in that work that for Be™-Ar and Be*-Kr particularly, but aso for Be*-Xe, high-quality spectroscopic
information is available from Coxon et al.*334% |n Ref. 9, we compared to the experimental rotational
and vibrational constants and obtai ned excellent agreement. There, we used the v=0, 1 and 2 energies
to derive the standard Morse (@we and wexe) constants; and By and B; values to obtain the Be and a
parameters — this method mimics that used in a spectroscopic experiment. In the present work, we note
that Re and D. can be obtained from the interpolated |EC from the LEVEL program. The R. value allows
the calculation of Be and together with By, we can obtain ¢« ; similarly, with De and thev=0and 1
energies, the Morse vibrational constants can be obtained. The latter approach should be more
representative of the lowest regions of an IEC and so more representative of the curvature there — we
report the results from this approach in Tables 1 and 2. As an example, for Be™-He, we obtain Be =
0.7189 cm* and o = 0.1175 cm from the | atter approach, but the corresponding values are 0.7242 cm't
and 0.1420 cm* using the former. The differences between the two approaches become less marked as
the well depth increases, as expected. Even though these two dlightly different methods have been used
to obtain the spectrascopic constants, the agreement of the present results with our previous calculated

values, and the limited available experimental spectroscopic ones, isexcellent (see Table 1).



In Ref. 9 we ran calculations with doubly-augmented basis sets. Here, for Be*-Ne, we ran sets of
calculations with singly-, doubly-, and triply-augmented basis sets, with the latter obtained in an even-
tempered way from the former. We found that the double-augmentation gave results that were
significantly different from the singly-augmented ones, while the triple augmentation essentially gave
no further improvement. Thus, for Be*-Ne we conclude that doubly-augmented basis sets are required
to give converged results and these are the ones presented in Table 1. With this in mind, we aso
performed the same set of calculationsfor Be*-Ar, and obtained no further improvement over the singly-
augmented basis set, and so use the latter resultsin further analyses. In fact, double augmentation of the

basis set was only important for the Be*-Ne and Mg*-Ne species.

Table 1 shows selected available experimental results for M* = Mg*, Ca", Sr* and Ba'; there are no
experimental data for M* = Ra’. Generally the close agreement between the previous and present
spectroscopic parameters means that the previous comments’® apply. We are aware of only a few
studies published on the Group 2 M*-RG complexes subsequent to our previous work.® Three of these
arefocused on asingle Group 2 M*-RG complex, Be™-Ar%3, Be*-Kr* and Ba'-X €*®; while amore recent
study tackled the Ba*-RG series, for RG = He-Xe.*

The very recent study on Be™-Ar by Niu et al.>® used CASSCF/icMRCI+Q calculations in conjunction
with both triple- and quadruple-{ quality Dunning-style basis sets, allowing extrapolation to the basis
set limit. Several electronic states were calculated and spectroscopic constants derived for each state.
For the ground state, De was reported as ~4030 cm?, which is significantly lower than the values
obtained in the present and our previous work;® the agreement for Reisfairly good, albeit with a shorter
value of 2.065 A compared to that reported here, with our value being in excellent agreement with that
of the previous spectroscopic study® of 2.086 A. We note that the given units (cm™) for the De valuein
Ref. 53 are incorrect, and should be eV; converting the given value to cm® then yields a value of 4380
cmt, whichisin fairly good agreement with the present value, albeit lower. Other given spectroscopic
constants are also in fairly good agreement, but our values are in excellent agreement with experiment
throughout. On the other hand, for Be*-Kr, the De value in ref. 54 of 6180 cm™ is slightly larger than
the value obtained here, while the R. value of 2.232 A is slightly longer than the present value and the
spectroscopic vaue* — see Table 1. With regard to the other constants, we and Be agree well, but wexe
and o are in somewhat poorer agreement with our previous and spectroscopic values. We conclude that
the MRCI calculations of Ref. 54 are somewhat compromised in their description of the X2<* ground
state, owing to their state-averaged nature; additionally, the basis sets used in the present work are

larger, making the extrapolation to the basis set limit more reliable.

The study on Ba™-Xe by Abdessalem et al.>® used a pseudopotential plus core-polarization function for
the Ba?*-Xe ‘core’ . In that work only the lone 6s electron was active in the configuration interaction

treatment, which was used to calculate severa electronic states of Ba“™-Xe (and Ba-X¢€). For the ground
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state of Ba™-Xe, the reported equilibrium separation showed poor agreement with our value, with theirs
being 3.77 A compared to the present CCSD(T) result of 3.581 A. Similarly poor agreement is seenin
the valuesfor De, asthe value reported by Abdessalemis 1971 cm?, significantly higher than the present

result of 1731 cm™.

Very recently, Buchachenko and Viehland®® studied the Ba™-RG series as part of a wider study of the
interactions of the rare gases with neutral, singly- and doubly-charged barium atoms. A range of
different basis sets were employed, with the calculations being carried out at the RCCSD(T) level.
Various sizes of Dunning-type basis sets were employed, with and without bond functions; additionally,
for the cases where an ECP was employed, small-core versions were also tried. These calculations are
very similar to those employed here: we also employ the RCCSD(T) method, and employ the
corresponding Dunning-type basis sets, and small-core ECPS. Extrapolation to the basis set limit was
performed in Ref. 56, with and without bond functions, but not with the small-core ECPs. In addition,
the radon-contai ning complexes were not considered. When we compare the resultsin Table 1 to those
in Ref. 56, we find excellent agreement for both Re and De for each of Ba'-He and Ba'-Ne, with the
extrapolated results that employed the non-bond function basis sets, while for RG = Ar—Xe, our Re
valuesare dlightly shorter and the De values slightly larger. The decreasing trend of Re and theincreasing
trend of De with improvementsin the basis set in Ref. 56, suggests that the present results are likely the
more reliable. There are experimental spectroscopic and transport data available for Ba™Ar (see Table
1). The agreement for R. from Ref. 56 is slightly closer to the experimental value, but the values of the
dissociation energy from Ref. 56 and the present value suggest the spectroscopic estimate® is alittle
low, and that the transport value®® is more in line with the calculated values. With regard to the
vibrational parameters, the we value from Ref. 56 isin sightly better agreement with experiment, while
the present weXe is better. Overal, the results from the present study and those of Ref. 56 may be
regarded as being of asimilar reliability.

Note that the present mexe value for Ba'-Xe is significantly smaller than that from our previous work’
and also that from Ref. 56. We checked this, and we find that values from the two unextrapolated
potentials arein good agreement with the previous val ues, but the extrapolated |EC leads to this smaller

value; since there are no experimental datafor this complex, further evaluation cannot be made.
No studies subsequent to our previous work!?* seem to have been published for M* = Zn*—Hg".
B. Reduced Potentials

It may be seen from Figures 1 and 2 that it is difficult to compare the bonding directly from the IECs,
since the binding energies are very different and changes to the shapes of the curves are not apparent.
In Figures 3 and 4 we show reduced potential plots,>”*%59%0 where the interaction energies are

normalized to De and the internucl ear separationsto Re, making any differencein the shapes of the IECs
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more evident. Such plotsare expected to be close to each other for afamily of species, if theinteractions
aresimilar; any differences can be attributed to differencesin the interactions, and so have implications
for whether a universal diatomic potential function exists.®*2 As may be seen for the Group 2 M*-RG
complexes, the M*-Ne curves are markedly different from the others, being significantly flatter. We
examined such plots for Be™-RG and Mg*-RG in Ref. 9. There it was noted that Be*-Ne was unusual;
however, it is clear from Figure 3 that the M*-Ne species are somewhat out of line for all of the Group
2 complexes. In contrast, the reduced potentials for the Group 12 M*-RG species in Figure 4 are all
somewhat similar. The implication from the reduced potential plotsis that the repulsive region of the
Group 2 M*-Ne complexes is comparatively more important at Re than for the other species, and

particularly so for Be*-Ne — we shall come back to this point later.

Another way of examining the interactionsis viathe x parameter®® (which is essentially the Sutherland
parameter put forward in 1938),% which has been termed the “reduced curvature of the potential at

Re",%® and may be expressed as:
K= COeZ/ZBeDe

(1)

The kvaluesfor the Group 2 and Group 12 M*-RG complexes are given in Table 3 and plotted in Figure
5. It may be seen that the Group 2 M*-Ne complexes have x valuesthat are significantly different to the
other species, in line with their different reduced potentials. In contrast, for the Group 12 M*-RG
complexes, the x values fall in a narrower range, although the values for Hg*-RG are somewhat more
erratic. Winn®® has noted that x values in the range 0-20 are indicative of strong chemical bonding,
which would seem to include Be™-Ne, with the heavier Be*-RG complexes having values close to this
range. This does not fit with the relatively weak binding in these complexes and indicates that x values
should only be used in a comparative way within groups of similar species, rather than as a global
indicator. For the Group 2 complexes, there is an overall increase and plateauing of the x values as the
atomic number of M* increases, with the Ba'-containing complexes being unusual. With regard to the
atomic number of RG, thereisafall from Heto Ne for all complexes. There isthen agradua rise and
plateauing for the other RG atoms when M* = Mg'—Sr™ and Ra’, while the Be*-RG and Ba'-RG

complexes have the opposite trend for RG = Ar-Rn.

For the Group 12 species, there is arise of x with the atomic number of M*. Additionally, there is an
overal fal in x with the atomic number of RG, although the trend is somewhat erratic. It isinteresting
to note that for RG = Ar—Rn, the Be"™-RG and Ba'-RG trends are similar to those of the corresponding
Group 12 species.

Overal, we feel that the k parameter has limited use, and the reduced potential plots themselves seem
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more transparent in highlighting differences in the interactions. We make a further comment on the «

parameter at the end of the following subsection.

C. Trendsin the Spectroscopic Constants of the Group 2 M*-RG Series
Equilibrium Internuclear Separations

In Figure 6 we plot the Re values for the Group 2 and 12 M*-RG to allow an examination of trendsin
the values. Firgt, it is clear (see dso Tables 1 and 2) that the Group 12 species generally have shorter
bond lengths than their corresponding Group 2 counterparts along the same row of the Periodic Table.
Next, we note that for the same RG atom, the Re values generally show an overal increase with
increasing atomic number of the metal cation for the Group 2 M*-RG complexes. Thisincreaseis mostly
monotonic with the increasing atomic number of the metal, but for RG = Ar—Rn, asmall dip is seen at

Ba"

Examining now the trends throughout each M*-RG series astherare gas atom is changed, for the Group
2 species a uniform behaviour is seen for all series, marked by a decrease from RG = He through Ar,
followed by an increase thereafter. We interpret this in terms of a subtle balance between the attractive
and repulsive terms. From helium through argon, the rate at which the attractive terms increase with R
evidently outpaces the increase in repulsive terms, leading to successively contracting bond lengths.
From argon onwards, however, the repulsive terms are seen to be becoming relatively more important
and so the equilibrium separationsincrease in response. It is clearly surprising that thereisthefall from

Heto Ar, since the RG atom is becoming larger and this will be discussed later.

For the same RG atom, the M*-RG complexes involving the Group 12 metals all show similar
behaviour, in that the Cd*™-RG complexes show the longest bond lengths in each case and the Zn*-RG
complexes the shortest, with the Hg*-RG bond lengths close to those of Zn*-RG for the lighter RG
atoms. A rationale for this arises through consideration of the ionic radii of the metal cations, for
example using the Wright-Breckenridge radius, Rws,** whereby an estimate for the ionic radius of a
cation is found by subtracting half the He, dimer equilibrium separation, (1.49 A) from the value of
M~*-He. For the Group 12 metal cations, this treatment leads to the ordering of theionic radii being Cd*
> Hg" = Zn* —aresult which isin line with the lanthanide and relativistic contraction experienced by

mercury, and accounts for the observed trends.

Examining each Group 12 M*-RG series for a fixed M*, a rather different picture is seen, which is

similar to the trends seen for the Group 2 complexes, abeit less pronounced. For al three series, there



isan initial decrease in bond length as the atomic number of the rare gas increases, followed by arise
for the heavier rare gases, with the turning point being at M*-Ar for Zn*-RG and Cd*-RG, but at Kr for
Hg"-RG. The same explanation given above for the Group 2 species is applicable, in that there is a

bal ance between the attractive and repulsive terms in each complex.

Dissociation Energies and k

In Figure 7 we plot the De values for the Groups 2 and 12 M*-RG, and it may immediately be seen that
the Group 12 (M*=Zn*—Hg") species have larger dissociation energies than their corresponding Group

2 (Ca'-Ba") counterparts.

There is a general trend in the D values of decreasing dissociation energy with increasing atomic
number and size of the metal cation, thisisin line with the leading term, -o/2R?, of the ion/induced-
dipole interaction. In the case of the lightest two rare gases, there are much sharper decreases in
interaction energy seen for the lighter metal cations, which eventually give way to the more-slowly
changing interaction energies for M* = Ca’™—Ra". Notably thereis avery small increase in dissociation

energy at Ba™-RG.

For the heavier rare gases, the interaction energies are generally much higher than for the He and Ne
analogues and therise is particularly steep for Be*-RG. The explanation of thisisthe small size of Be",
which alowsthe close approach of RG and so asignificant increase in the attractive el ectrostatic terms,

in particular the leading charge/induced-dipole term, -a/2R".

Trends for the harmonic vibrational frequencies, we, are usually generaly less clear since the harmonic
vibrational frequencies are aconseguence of two main effects: the el ectronic interaction and the reduced
mass of each system. Hence, we focus on the trends in the force constant obtained from Hooke's law,
k, and these are plotted in Figure 8 for both the Group 2 and Group 12 M*-RG complexes. The trends

in k are very similar to those in De, as might be expected.
Comment on x

We noted above that the k parameter was quantitatively not very indicative of the bonding in these
species. We have noted in the above subsections that the variation in these parameters can be quite
marked and is not always monotonic. It may be seen from its definition (Equation 1) that it depends on
e, Re (ViaBg) and De. As such, the k parameter depends on different aspects of the interaction, both at
Re and at the dissociation asymptote; when we consider Birge-Sponer plots and discuss the contour
plots of the molecular orbitals later on, it will become more obvious that linking « to the strength of

bonding is simplistic.
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D. Molecular Orbital Diagrams and Contour Plots

In discussing the interactions in the M*-RG complexes, it will be useful to refer to the energies of some
of the lowest M* excited states, which are presented in Table 4 and are taken from Ref. 65.

Be'-RG and Mg*-RG

We present molecular orbital diagrams and associated contour plots in Figure 9 for Be™-RG and
Mg*-RG (RG = He, Ar and Xe). For dl RG, ¢ corresponds largely to the outermost ns orbital on RG —
it appears at a significantly lower energy in the complex than on the isolated RG atom, since in the
cationic complex it experiences the coulombic field from M*, which lowers its energy, but this is
ameliorated by e—e repulsion. In the case of M*-He, it can be seen that ¢, is largely the outermost ns
orbital on M* and is at almost the same energy in the complex and in the atomic cation. For RG = Ar
and Xethe situation isalittle more complicated as there are now four molecular orbitals made up from
the interactions between the outermost ns orbital on M* and the outermost np orbitals on RG. (We
neglect the expected small contributions from the outermost ns orbital on RG.) Note that there will be
aloss of degeneracy of the three MOs that largely correspond to the three RG np orbitals (¢>—¢s) from
the interaction with the positive charge on M™*. Further deviations may then occur as a result of
covalency, which will be accompanied by a concomitant risein the energy of ¢s from the atomic energy
of the outermost ns orbital on M*, making this orbital antibonding in nature. The latter clearly
destabilizes the overall interaction, but this is balanced by the other stabilizing interactions that occur.
These deviations in the orbital energies are clearly significant. Although ¢s is predominantly the
outermost M* ns orbital, thereis clearly an interaction with the outermost RG np orbital; although less
clear from the contours, there is also a small amount of M* outermost ns character in ¢,. Further, there
are small contributions to ¢s from the formally unoccupied M* (n+1)p orbitas, which arise from the sp
hybridization of the metal centre; thiswill lead to ¢s being stabilized, reducing its antibonding character.
This effect is only slight since the excited M* p orbitals are relatively high in energy (Table 4). The
effect of this small amount of sp hybridization is to facilitate the movement of electron density away
from the internuclear region and so reduce the electron repulsion between the electron in the M* ns
orbital and theincoming RG atom; thisalso allows RG to approach the M* core more closely, increasing
the various attractive el ectrostatic terms, aswell asalowing RG to see a higher effective nuclear charge.
The sp hybridization effects can be discerned in minor perturbations to the contour plots of the M*
electron density on the side opposite to the RG atom. The overdl effect of the covalency and sp
hybridization isa clear stabilization of the interaction. It is notable that the extent of these effects seem
to be similar for the Ar and Xe complexes. increased degrees of interaction would seem to require a
distortion of the inner regions of the singly-occupied ns orbital and the latter is clearly more strongly
held by the nuclear charge and we conclude the energy cost of this is too high to be recouped from

increased charge/induced-dipole terms arising from moving the RG atom closer. Similar comments
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apply to the Mg*-RG complexes, but to a much lesser extent; this can be attributed to the larger size of
the Mg* ion, which means that the amount of energy gained from attractive interactions with the RG

atomsis lower, because of the leading -a/2R* ion/induced-dipol e interaction.

Comparison of Interactionsin Groups 2 and 12

In Figures 10-12 we show comparisons of the Group 2 M*-RG complex with the Group 12 species
located along the same period. We start by considering the MO diagram for Ca"™-He in Figure 10, where
d—¢s almost entirely correspond to the Ca* atomic 3p orbitals, ¢. to the He 1s orbital (but lowered in
energy owing to the coulombicfield) and ¢s to the Ca* 4sorbital. In the case of Zn*-He, the same picture
may be seen to apply, except the penultimate occupied orbitals on Zn* are the 3d orbitas, which are
almost entirely degenerate. Note that ¢ is coincidentally very closein energy to ¢i—¢s, and arises from
the coulombically-lowered He 1s orbital; however, the lowering in energy of ¢ is minimal, suggesting
thisinteraction isweak, even though the contours show mixed character. It may be seenthat ¢;islargely
the unperturbed Zn* 4s orbital. Reference to the M*-He diagrams helps us to orient ourselves when
considering the M*-Ar and M*-Xe MO diagrams, with the observation that the coulombically-lowered
RG ns orbital becomes ¢: for Zn*-Ar and Zn*-Xe, and ¢—¢s are the (n-1)d orbitals. First, we note that
for Ca'-Ar and Ca'-Xe ¢g—¢3 stay approximately degenerate, and this is also the case for ¢—¢s for
Zn*-Ar and Zn*-Xe; consequently, we can conclude that these orbitals remain atom-localized and are
largely unaffected by the complexation. However, ¢s-¢; for Ca*-Ar and Ca'™-Xe, and ¢r—¢o for Zn*-Ar
and Zn*-Xe lose their degeneracy, and further, there is arise in energy of ¢, suggesting covalency.

Moreover, ¢gin both Ca'™-Ar and Ca’'-X e shows off-axis 3d contributions, arising from sd hybridization.

In contrast, for the Zn*-RG systems the main effect appears to be covalency, with interaction between
the M* 4s and the RG outermost np;, orbitals, causing ¢- to lower in energy; thereisaso arisein energy
of ¢o. Inthe cases of Zn*-Ar and Zn*-Xe there are small perturbations to the contour plots of ¢i0 0n
the side opposite to the incoming RG atom, arising asaresult of very small amounts of sp hybridization;
these are small, however, owing to the relatively high energy of the M* excited p orbitals (Table 4).
Small, but noticeable, contributions from a d,2- orbital may also be seen in ¢ in the case of Zn*-Xe,
which moves electron density off-axis by means of the “ring” of this orbital. This likely involves the
3d,2 orbital, noting that the 3d°%4s” state is fairly low in energy (see Table 4 and comments on Hg*-Xe,
below). Note that any mixing between the 3d'%4s! and 3d°4s? states leads to an increased occupancy of
the 4s orbital, and so to increased repulsion. Finally, we note a very small amount of © bonding from

the RG atom through the highest occupied np orbitalsinto the Zn* dx orbitals (dx. and dy;).

Similar, athough dlightly less marked, observations can be made for the MO and contour plots for
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Sr*-RG and Cd*™-RG in Figure 11. On the other hand, for the Ba™-RG plots in Figure 12, the
perturbations are significant. First, we note that the case of Ba'™-He appears to show very little sign of
anything except physical interactions. For Ba™-Ar, however, it is clear that the degeneracies of ¢—¢@a
are broken dlightly, and that ¢s rises in energy a little compared to Ba" 6s, aongside movement in the
energy of ¢s; these are indicative of minor incipient chemical effects. Most noticeable, however, isthe
contour of ¢g where quite dramatic off-axis contributions from the low-lying Ba 5d orbitals (Table 4)
can be seen, showing that thereis significant sd hybridization in these species. Very little further change

is seen when moving to Ba™-Xe.

The implication of the above is that sd hybridization is significant for M* = Ca*—Ra", but covalency is
only aminor effect —it isthelowering of electron density in theinternuclear region that isthe key driver
in these complexes, alowing the RG atom to get close to the M* centre and so lower the energy,

predominantly viathe -a/2R* term.

Considering now Hg*-RG, again Hg*-He shows little indication of any covalency, while for Hg*-Ar
and Hg™-Xe thereisalossin degeneracy of both the Hg 5d orbitals (¢—¢s) and the RG np orbitals (¢—
@), together with a small rise in energy of ¢10 compared to Hg* 6s, indicating that a small amount of
covalency is now present. There are minor perturbations in the ¢ contour on the side opposite to the
incoming RG atom, showing that avery small amount of sp hybridization is occurring — noting the high
energy of the Hg™ excited p orbitals (Table 4). Finally, we note that there is a small, but increased
amount of 7 bonding from the RG atom through its highest occupied np orbitalsinto the Hg" d= orbitals
(dy and dyz). In addition, there is a small amount of mixing between the 5d . orbital and the RG np;
orbital.

Summary

Theoveradl pictureisthat the M*-RG complexesinvolving Group 12 cations, Be* and Mg* demonstrate
a significant amount of covalency, while those involving Ca*—Ra* show significant sd hybridization,
which clearly has a major impact on the interactions via the lowering of electron density in the
internuclear region, and can occur when the excited d orbitalslielow in energy. Conversely, the amount
of sp hybridization that can occur appearsto be small, owing to the high energy of the excited p orbitals
in all cases (see Table 4). In fact, the lowest unoccupied (n+1)p orbital on Ca™—Ra* is actually lower in
energy than those for Be* and Mg*. Hence, some sp as well as sd hybridization is possible in the Ca'™—

Ra" species, but the latter is by far the most pronounced.

The observed covalency islargely driven by the small radii of theseions, particularly for Be*; thisalso

occursfor the Group 12 cations, whose smaller cationic radii arisefollowing the traversing of the period,
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which leads to orbital contraction. The ability for the RG atom to approach M* closely drives the
lowering of energy via the -a/2R* ion/induced-dipole term.

In addition, part of the explanation for the covalency lies with the closer energetic proximity of the
outermost M* ns orbitals to the coulombically-lowered outermost p orbitals on RG. We have just noted
that the sd hybridization that arises for Group 2 Ca™—Ra" occurs from the low-lying unoccupied d
orbitals (see Table 4), so that the energetic cost of hybridization is small. Thisis not possible for the
other species owing to the much higher-lying unoccupied d orbitals. In such cases, sp hybridization is
a possibility, but the unoccupied (n+1)p orbitals (Table 4) are relatively high in energy. Indeed, the
outermost np orbitals for Group 12 are significantly higher than both the lowest unoccupied nd and
(n+1)p orbitals for Group 2, perhaps explaining why the amount of hybridization is small in these
species: i.e. even therise in the attractive terms from the smaller ionic radii (and so smaller R values)

of these species cannot overcome the high energetic cost of hybridization.

We also notethat in Hg*-Ar and Hg*-X e there are small amounts of 5d,,z, 5dx. and 5dy, character mixing
with the RG np orbitals; this likely arises from the presence of the excited 5d°6s’ state (see Table 4),
and causes a loss in degeneracy of the 5d orbitals. The high energy of the excited ...5d°6s°6d* states
(see Table 4) means that sd hybridization is unlikely.

We finish by noting that although the Group 2 cations are larger than their neighbouring Group 1
species,% actually the corresponding Re values for M*-RG involving the Group 2 cations and RG = Ne—
Rn are smaller than those involving Group 1234® demonstrating the significant distortions that occur
in the former; this aso leads to the De values from the Group 2 species being the larger. In contrast, the
R ordering isreversed in the cases of RG = He, demonstrating that deriving R. values from the M*-He

complexes demonstrate a more intuitive set of ionic radii.®
E. Partial Atomic Charge Analyses

Partial atomic charges for the M*-RG complexes have been calculated using Mulliken, NPA and AIM
analyses, and the results are collected in Tables 5 and 6 for the Group 2 and Group 12 complexes,

respectively. Weinitially consider the Group 12 species and then move onto Group 2.
Group 12

There is good agreement between al three methodologies for M™ = Zn*—Hg". This is somewhat
surprising since Mulliken charges are very frequently unreliable. Importantly, all sets of results givethe

same trend of increasing partial charge on the rare gas atom with its increasing atomic number.

Calculated charges show there is some slight migration of charge taking place in the Ar complexes, in

line with the delocalization of orbital density (via covalency) in the ¢z and @10 Orbital contours (see
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Figure 10). The amount increases asthe RG atomic number increases, but the transfer is dightly smaller
for Cd* than it is for Zn* and Hg*; for the species containing the lighter RG atoms the values for the
latter two metals are very similar, but for RG = Xe and Rn, the amount of charge transfer is dightly
larger for Hg* (~0.3€) than for Zn* (~0.2¢€). All of the latter are in line with the atomic radii discussed
above. These amounts of charge transfer are quite significant and suggest chemical interactions, in line
with the contour plots, the loss in degeneracy of the RG np orbitals and the rise in energy of the M™ ns
orbital. The trend also follows the energy of the singly-occupied ns orbital (which is energetically the
lowest for Hg" compared to the other Group 12 M~ ions).

Group 2

Although in agreement for the lightest two RG atoms, the results from the different methods of charge
analysisfor Group 2 are in poor agreement with each other and are the most divergent when the atomic
numbers of M* and RG differ the most, being the poorest for Be*-Xe and Be*-Rn. These are the cases
when RG is closest to the M* centre, and hence it becomes more difficult to decide on which centre the
electron dengity is located. Qualitatively, it seems NPA does the best when compared to the contour
plots. For example, the contours for Be™-Xe suggest a reasonable amount of charge transfer, while for
Mg*-Xe, very little. This seems to correspond best to the NPA charges, since AIM suggests very little
transfer, particularly for Mg*-Xe. Clearly the very large amounts of transfer suggested by the Mulliken
analysis are far from reasonabl e, particularly for Be*-Rn where the transfer isimplied to be > 0.5e —we

experienced similar issuesin recent work on C*-RG.%

Thus, it seems that describing the partial atomic charges for the Group 2 M*-RG complexes is rather
more challenging than for the Group 12 ones, especially so for the Be"™-RG and Mg*™-RG complexes

involving the heavier rare gases.
F. Model Potential

In Ref. 18 amodel potential was set up and used to investigate chemical versus physical interactionsin
M*-RG, mostly based on available experimental data. The model potential employed el ectrostatic terms
up to /R and a two-parameter Born-Mayer potential, and is given in Eq. 2 This idea was extended in
Refs. 1 and 6 to include the effect of damping factors,®” which are given in Eq. 3, which model the
attenuation of the different interaction terms at short R as a result of overlapping electron densities.
Separate damping factors are applied to each 1/R" term in the model, calculated for that value of n; note
that it isassumed that the b parameter in the damping factorsisthe same asthe Born-Mayer b parameter.
Equations involving the model potentia are solved, using values for Re, De and we (See Refs. 1, 6 and
18). This yields the two Born-Mayer potential parameters, A and b as well as the effective charge on
the metal cation, Z. The latter is the charge required for the model potential to fit the Re, De and we

values; in the case of the physical model being a good description, Z should come out to be 1.00. For
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the Group 1 M*-RG complexes studied in Refs. 1 and 6, very little difference between the damped and
undamped val ues were seen, suggesting that there is little interpenetration of the M* and RG electron

clouds in these species, and so physical interactions dominate.

OCRGdZZ C6 aRGqZZ BRGZ3 Cg aRGOZ3 ]/Z4
2R* R® 2R® 2R7 RS 2R8 24R8

)

- [bR]*
FulR) = 1 - exp(-bR) D 20
k=0

3)

In Equation (2) and Table 7, the « terms, denoted in an obvious way, are the dipolar, quadrupolar and
octupolar polarizabilities of the RG atoms, Cs and Cs are the usual dispersion coefficients (calculated
from the polarizabilities of RG and M* using the Slater-Kirkwood® and Koutselos and Mason®®
approximations), N is the effective number of “oscillator” electrons used to calculate Csand Cs® B is
the dipolar-quadrupolar polarizability of RG, and y is the hyperpolarizability of RG; A and b are the
Born-Mayer parameters. In Table 7 we present the values for these quantities used in the present work,
many of which are well-established, or have been calculated or estimated — see Ref. 18. We have
employed the values from that work, with the following exceptions. The aq valuesfor Sr*, Ba" and Ra’
were taken from Ref. 70, while oq for Sr* was taken from Ref. 71 (the same source for this quantity as
the other Group 2 cations up to Ba"), and aq for Ra" was taken from Ref. 72. Values of N for Sr*, Ra"
and Rn were estimated in the present work. For Rn, values of aq and y were taken from Ref. 73, while
valuesfor ag, oo and B were estimated herein. In the top part of Table 8 we show the cal cul ated charges
for the Group 2 M*-RG complexes. It is notable that, except for the cases of Be*-RG, for al complexes
involving RG = He and Ne, the calculated charges are between 0.97 and 1.25, either damped or
undamped. We also note that in most cases damping leads only to the expected small increase in the
calculated effective charge. For Be™-RG, the damped effective charge is calculated to be significantly
larger, and in the notable case of Be*-Ne, the damped value is 1.43, while the undamped one is 0.97.
This may be indicative of significant penetration of the electron clouds, but the MO plotsin Figure 9
suggest otherwise; more likely isthat thisis caused by the simplicity of the model potential, and hence
spurious values of Z arise when the potential is not working well. In the above, we have noted the high
degree of covalency in the Be™-RG complexes, and the unusual reduced potential plots for the Group 2

M~*-Ne complexes; later we shall emphasise that Be*-Neisavery unusua case.

We see that the charges for the M*-Ar complexes have surprisingly low calculated Z values, as does

Ba'-Kr. Peculiarly, athough solutions to the undamped model potential equations were obtained for
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Ba'-Ar in Ref. 18, no solutions were possible here, either damped or undamped, using the calculated
Re, De and we values for this species. Again, this points to the interactions being somewhat unusual for
this complex. Solution to the model potential equations makes use of two parameters that are
representative of the minimum (R. and we), aswell as De; furthermore, it is assumed that the electrostatic
and Born-Mayer parameters are applicable to the whole potential — indeed, in Ref. 6 we were able to
show that the model potential with the obtained Z, A and b parameters fitted the whole calculated
potential very well for the lightest, Li*-He, and the heaviest, Cs"™-Xe, Group 1 complexes considered.
In those cases, Z had a value very close to 1.00, demonstrating that the interactions in those species
were largely physical in nature. The suggestion from the valuesin Table 8 isthat thisis not the case for

many of these species.

In summary, when significant amounts of R-dependent changes in the amount of hybridization occur,
such as in the Group 2 M*-RG complexes, then trying to model the interaction with a simple model
potential such as Eq. 2 becomesfutile. It is notable that the model potential fails completely for Ba*-Ar

in that no solution for Z could be found.

For the Group 12 species, whose calculated Z values are presented in the bottom part of Table 8, we
find largely that the model potential solutions give rise to Z values in the range 0.95-1.15 for most of
the species, with generally a small increase when damping is included, and hence it appears to be
working well. That dlightly larger values are calculated for the heaviest Hg*-RG complexes, suggests
that those values may be fortuitously “sensible’ and that in fact the model potential is not appropriate.
Thiswould bein linewith the significant amounts of covalency observed in the contour plots, discussed

above, which would also be R dependent.
G. Birge-Sponer Plots

In general, close to Re, one would expect a diatomic species to be described well by a linear Birge-
Sponer plot and then at long-range this would transfer over into Leroy-Bernstein behaviour.” "7 For
asuitably high number of bound levels, thislong-range behaviour is expected to follow a (AGy+12)>™?
dependence, where n is that of the R" dependence of the potential at long range. For an atomic
cation/rare gas interaction, an R* dependence is expected, and so we expect a (AGy+1,2)** dependence
at long range. Hence, we expect the Birge-Sponer plots for the M*-RG complexes to be approximately
linear, but then to deviate, exhibiting a (AGy:12)*® dependence for high v, i.e. close to the dissociation

limit.

In Figures 13-16 we present plots of AGy+12 vs. (v+1) for the Group 2 and Group 12 M*-RG complexes
where v is the value for the lower of a pair of consecutive vibrationa levels; athough not strictly a
Birge-Sponer plot (where the abscissawould be v+1/2), we use the term here for convenience. On each

graph, the red points correspond to the calculated spacings between adjacent calculated vibrational
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levels, while the solid black “Morse ling” corresponds to “Morse spacings’ calculated from the
vibrational constants we and weXe presented in Tables 1 and 2; as noted above, derivation of the constants
we and weXe relies on only the lowest two vibrational levels together with the De value. Hence, the
correspondence between the red points and the black line gives an indication of how consistent the
curvature close to Re iswith regard to the shape of therest of the IEC. We seethat these plots give much
more information than simply the values of DMo/De presented in Tables 1 and 2; in particular, in many
cases they exhibit evidence for changes in the curvature of the IEC from Re to the dissociation
asymptote. So, for example, De¥/D. for Mg*-Neis 1.05 and it might be expected that the Morse line
would largely agree with the Birge-Sponer one for thiscomplex; however, the plot showsthat the Birge-
Sponer plot isin fact curved with some vibrationa levels falling below the Morse line while otherslie
above. Overall these deviations largely cancel out across the whole of the plot, so that the DeVo/De
value hides the fact that these variationsin the shape of the IEC are occurring. It is clear, therefore, that
caution is merited in deducing too much from the DMO/De ratios in Tables 1 and 2. However, it is
clear that when values are far from 1.00, either below or above, then it is likely that the BS plot will

show non-standard behaviour.

If we examine the BS plots for Be™-RG in Figure 13, we see that for RG = Ar and Kr, the behaviour is
much as expected, with the linear region at low v following the Morse line closely, and the LeRoy-
Bernstein deviation for the higher values. However, for RG = Xe and Rn the BS plot has dipped under
the Morse line for intermediate values of v; we interpret this in terms of a change in the interaction
terms at long- versus short-R. As covalency and small amounts of sp hybridization occur, the attractive
and repulsive parts of the potential will change, leading to curvature in the BS plot. The effect is most
stark inthe case of Be*-Ne, wherethe BS pointsliefar under the Morseline, indicating that the curvature
of the IEC closeto Reisvery different from that at even moderate R values. One can visualize this most
easily by considering the Be* and Ne atoms approaching each other from long range, as Ne gets closer,
attracted by the positive charge, its electrons start to interact with the Be™ 2s one and this bringsin a
repulsive term. This softens the potential at moderate R values (being the sum of the attractive and
repulsive terms), and so causes the decrease in slope of the BS plot for low v. (Recall that the Be™-Ne
reduced potentia plot in Figure 3 showed the starkest deviation from the behaviour of the other Be*-RG
species, indicating a greater role of the repulsive potential.) It may thus be seen that Be*-Ar and Be*-Kr
are intermediate cases where the sum of the attractive and repulsive terms gives approximately linear
BS plots and Morse-like behaviour. (Note that little can be said regarding the plot for Be*-He, since
there are so few bound levels.) A very similar picture can be seen for the Mg*-RG complexes, although
Mg*-Ne does not show the stark deviation from the Morse line seen for Be™-Ne (again in line with the
reduced potential plotsin Figure 3). Werationalize thisby the fact that Mg* islarger than Be" owing to
the better shielding in the former, this leads to less overlap of the Ne and Mg* 3s orbitals than the

corresponding situation in Be™-Ne.
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When we examinethe BS plotsfor Ca’-RG — Ra™-RG in Figures 14-16, we see that these show unusual
shapes, most naticeably in the RG = Ar—Xe plots. There is the expected long-range curved region, but
then an approximatedly linear section at mid-v values and then a steepening of the potential at low-v.
This changing slope s likely attributabl e to the sd hybridization (see molecular orbital plots and above
discussion) that will lead to an R-dependent change in the form of the potential as the RG atom
approaches M™, giving rise to very un-Morse-like behaviour as the electron density moves off-axis.
Closeto Re, however, we assume that the amount of € ectron density in the sd hybrid orbitals reaches a
level whereby repulsion effects come into play, and this causes a steepening of the potential in this
region. As with Be*-Ne, this steepening is not seen for RG = Ne, since it is not polarizable enough to

offset the cost of hybridizing enough of the electron density for this to occur.

We now examine the Group 12 M*-RG BS plotsin Figures 14-16. We see that for Zn*-RG, Figure 14,
thereisaclose-to-linear region for low v, but some bowing occursfor Zn*-X e and thisismore noticeable
for Zn*-Rn. Matching thiswith the MO diagramsin Figure 10, we can see that there isaminor amount
of elongation of the Zn* 4sorbital on the side opposite to the incoming RG atom, and thisisin line with
only minimal sp hybridization because of the high 4p < 4s excitation energy (Table 4). Instead, energy
is gained by some covalency with electron density transferred into the outermost np orbital on the RG
atom. However, in the high-v region, far from Re, a significant amount of repulsion occurs as the
incoming RG atom gets cushioned by the 4s eectron density, causing an overall softening of the
potential, such as in Zn*-Xe, and hence the curvature of the BS plot into a lower-gradient region;
however, for the low-v region, close to Re, the curve steepens again to the “ standard” behaviour. Note
that it is difficult to discern these effects in either the IECs or reduced potential plotsin Figures 2 and
4. A similar picture appears to hold for the Cd*-RG BS plots, Figure 15, but with the bowing being
dightly less pronounced, likely caused by the dightly larger Cd* ion; this is also consistent with the
smaller amount of outermost np contribution to the MOs in the plots — see Figure 11. When we move
on to examining the BS plotsfor Hg*-RG in Figure 16, however, it may be seen that thereis significant
departure from the Morse line, and significant bowing of the BS plot from mid- to low-v. Again, by
examining the MO contour plots in Figure 12, the amount of sp hybridization appears to be small, as
no elongation of the Hg* 6s orbital is noticeable; however, there is prominent mixing of the Hg* 6s and
outermost np, RG orbitals at Re. Furthermore, athough there are small contributions in the cases of
Zn*-RG and Cd*-RG, in Hg™-RG a sizeable mixing between the npxy RG orbitals and the dy, and d,
orbitalsisevident. The MO contour plotsin Figure 12 suggests that these d orbitals are (n-1)d orbitals,
and thereis adigtinct break in the degeneracy in the five 5d orbitalsin the Hg*-Ar and Hg*-Xe plotsin
Figure 12. It is interesting to note the contrast between the MO contour plots of Ba™-RG and Hg™-RG
in Figure 12 (and, to a lesser extent the corresponding comparisons in Figures 10 and 11). The sd
hybridization dominates in the case of the Group 2 species (Ca"™-RG — Ra™-RG), but thisis minimal for

the corresponding Group 12 species because the available d orbitals for hybridization are so much
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higher in energy (Table 4). In the case of Hg*-RG, where the 5d°6s* “d-hole” state is relatively low in
energy (but still far higher than the nd* states for Group 2), hybridization does not occur to any great
extent since this would lead to higher eectron density in the Hg* 6s orbital, enhancing rather than
aleviating the electron repulsion. In addition, the np orbitals are also significantly higher in energy for
the Group 12 species, and this means that sp hybridization is too costly to contribute much to the

stabilization of these species. Hence, the only route open is small amounts of covalency/charge transfer.
H. H(R) values

In Table 9 we present the values of the H(R) parameter from the AIM analysis. It has been argued that
arobust criterion for determining covalency is that the total local electronic energy density, H(R), has
anegative value.”” The values of the H(R) parameter imply that there is a small amount of covalency
for dl of the Be"™-RG complexes except for RG = He, and that the amount of covalency increases with
the atomic number of RG. For Mg*-RG there are only small indications of covalency for the heavier
species. Overall, this appears to be in line with the MO contour plots in Figure 9, with the cova ency
enhanced for Be*-RG because of the smaller size of Be*, allowing the RG atoms to approach more
closely. Of the series that exhibit covalency, the Mg™-RG complexes are the most weakly bound. This
can be attributed to the larger size of the Mg* ion coupled with its 3s orbital being furthest from the
outermost RG np orbitals energetically. When we then look at the H(R) values for the other Group 2
M*-RG complexesfor M* = Ca'—Ra’, we see that these values are all positive indicating essentially no
covalency; theimplication is that the observed sd hybridization on the metal centre occurs as aresult of
the incoming RG atom, but the effects are all atom-centred and lead to minimal sharing of electron

density between M* and RG — see MO diagrams, contour plots and above discussion.

For the Group 12 species, there is no covalency for the species with RG = He and Ne. However, all of
the other M*-RG complexes have H(R) < 0 (except for Cd*-Ar), and the magnitude increases with the
atomic number of RG. The Cd*-RG series has the smallest covalency, which is again in line with the
larger size of Cd*. These covalency effects are reflected in the equilibrium dissociation energies of the
Group 12 complexes, which are much higher than for the corresponding M = Ca—Ba complexes with
the heavier rare gases, and more in line with the M = Be and Mg complexes. The Be*-RG seriesisthe
most strongly bound out of both Groups 2 and 12, owing to the small size of Be* and itslow number of

electrons. These comments arein line with the MO diagrams, contour plots and above discussion.
4. CONCLUSIONS

In the present work we have reported high-quality 1ECs for M*-RG complexes for RG = He-Rn and
M* = Be—Ra" and Zn*—Hg". These were calculated at the RCCSD(T) level of theory, and were basis
set extrapolated from quadruple- and quintuple-§ basis sets. From these IECs we have calculated Re

values and spectroscopic constants, which are in excellent agreement with the small number of
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experimental values available. Further, trends in some of the key constants have been examined, which

indicated that the interactions across these species were different.

We hence examined the interactions in the Group 2 and Group 12 M*-RG complexes using a range of
approaches. One of the key indicators was the MO diagrams combined with the MO contour plots.
These indicated that even though both of these series of metals have ...ns! eectronic configurations,
there are three modes of interaction: physical, covalent and sd hybridization, with the latter alleviating
therepulsion that occurs asthe el ectrons on the approaching RG atom start to interact with the outermost
ns orbital on M*. Therole of covalency was confirmed by an examination of the AIM H(R) parameter,
which concurred that this was present for Be™-RG (RG = Ne-Rn), minimally present for Mg*-RG (RG
= Kr-—Rn), and present for all Group 12 M*-RG species for RG = Ar—Rn (except for Cd*-Ar). For
Be*-He, Mg™-RG (Rg = He-Ar), covalency was largely non-existent, and although also absent for the
complexes with M* = Ca’™—Ra" and RG = Ar—Rn, there was significant sd hybridization in those cases

to facilitate the interaction.

Hence for Be™-He, Mg*-RG (RG = He-Ar), the Group 12 M*-RG (RG = He and Ne) and Cd*-Ar
complexes, we conclude that the interactions are “physical”, with no clear evidence of chemical
behaviour. For Be*-RG (RG = Ne-Rn), Mg*-RG (RG = Kr—Rn) and the Group 12 M*-RG complexes
(RG = Ar-Rn, but not Cd*-Ar), we conclude that the interactions have a covalent contribution, which
varies, but ismost prominent for the specieswith the heavier RG atoms. Finaly, for the Group 2 M*-RG
complexes (M* = Cd* — Ra", RG = Ar—Rn), there are no indications of covalency, since H(R) > 0, but
consistent with comments made in some of our earlier work,%° we describe the significant sd
hybridization as chemical as it involves a significant perturbation of electron density that resultsin a
stronger interaction. In contrast to comments made in some of our earlier work, sp hybridization appears

to be minimal and covalency is the main mode of interaction for M* = Be" and Mg* for RG = Ar-Rn.

We believe that sd hybridization (and to a much lesser extent, sp hybridization) causes a breakdown in
the model electrostatic potential (Eq. 2). This occurs since the potential uses fixed values for arange of
electrostatic quantities applicable to a particular electronic state of M*, and so they have no R
dependence; however, the sd hybridization is R dependent and happens to differing extents. Thus, we
see from Table 8 that for the cases where the heavier Group 2 M™ are interacting with the heavier RG,
valuesvery far fromthe* physical” value of 1.00 are observed, with no solution being found for Ba*-Ar.
The failure of the model potential is particularly marked for the Ba*-RG complexes owing to the very
low energy of the unoccupied 5d orbitals; indeed, barium has been suggested as being an honorary
transition metal.”® " In contrast, except for Be*-Ne (see below), we find Z values fairly closeto 1.00 for
the Be*-RG, Mg'-RG and most of the Group 12 M*-RG complexes; however, given the covalency
deduced for these species, these “sensible”’ values may simply be fortuitous, and the extent of covalency

will be R dependent.
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The model potential results for Be"™-RG are unusual. As can be seen from Table 8, for most species,
thereis at most avery small rise in Z when damping isincluded, as expected — thisis even true for the
heavier Group 2 M*-RG complexes, where sd hybridization causes the model to fail. However, for the
Be*-RG complexes, the rises are quite substantial for all except Be*-He, and is particularly marked for
Be*-Ne. We note that the BS plot in Figure 13 for this complex is aso very unusual, and suggests that
repulsionis playing amajor role a Re. Indeed, the value of the derived repulsive potential at Reis5.6 X
103 En for the undamped potential and 1.90 x 107 Ey, for the damped potential. This, and the values for
the other Be™-RG potential's, suggests that the simpl e el ectrostatic model potential with atwo-parameter
Born-Mayer potential is not sufficient to describe apotential where the RG and M* orbitals overlap and

the attractive and repulsive terms are R-dependent.

A number of observationsin the present work suggest that creating a universal diatomic potential would
be extremely difficult, particularly the observation of R-dependent hybridization, covalency and
repulsion. These aso suggest that defining aradius for an atom or atomic cation that is transferable to

awide range of speciesis aso fraught with danger, as the interactions can be so different.
Supporting I nformation

PECs for al of the M*-RG systems discussed in the present work are provided as supplementary
material. The presented PECS are calculated at the RCCSD(T) level and after basis set extrapolation
(see main text for details of the basis sets empl oyed).
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Table 1: Spectroscopic constants for the Group 2 M*-RG series.®®

Morse
Re/A De/cm?® | Do/cm? | we/cm? Cgenfi/ Be/cm? | ofcm? Nkanl DeDe /
Bet-He 2.922 133 98 76.8 11.8 0.724 0.1420 0.96 0.94
2.924 133 98 76.3 11.7 0.723 0.142 0.950 | 0.94
2437 424 391 67.4 1.16 0.463 0.0055 1.66 231
Be'Ne | 2492 407 375 64.5 1.06 0.456 0.0064 | 152 | 242
2.454 407 375 65.2 147 0.456 0.00607 | 1.56 1.78
(2462) | (404) (372) 656) | (163 | (0.453)
2.086 4405 4226 363.0 9.02 0.527 0.0148 |57.11| 083
B A | 2086 4401 4221 3631 | 9.03 0527 | 00148 |57.13| 0.83
2.084 4428 4248 364.1 8.94 0.528 0.0147 57.4 0.84
2.0855(6)° 3933(200)° | 362.7(1)¢ | 8.92(5) |0.5271(3)¢| 0.0145(3)c
2217 6072 5891 366.0 5.90 0.421 0.0082 | 6425 | 094
Be*-Kr 2.221 6053 5872 365.5 5.82 0.420 0.00816 | 64.0 0.95
2.2201 367.14¢ 6.21¢ 0.42030% | 0.00821¢
2.403 8273 8087 373.7 4.10 0.346 0.0049 | 69.42| 103
Be*-Xe 2407 8239 8054 372.8 4.04 0.345 0.00486 | 69.0 1.04
~367°¢ ~3.7¢
Bet-Rn 2482 9485 9300 371.7 343 0.316 0.0038 70.5 1.06
2.486 9491 9306 371.0 3.32 0.315 0.00381 | 70.1 1.10
Mg'-He 3481 73 51 47.4 8.50 0.413 0.0909 0.45 0.91
3.482 73 52 45.8 7.68 0.412 0.0900 | 0424 | 0.95
3.119 206 185 43.5 2.39 0.159 0.0103 1.22 0.96
Mg*-Ne 3.147 203 182 42.7 2.28 0.156 0.0098 | 117 | 0.99
3.145 203 182 43.1 244 0.157 0.00987 | 1.19 0.94
3.17(5) 96(50) 411
2.825 1291 1240 104.5 2.70 0.141 0.0041 9.65 0.78
MgAr| 282 1290 1238 1047 | 268 0141 | 00041 | 9.69 | 0.79
2.822 1299 1247 104.8 253 0.141 0.00407 | 9.711 0.84
2.825(7)8 1210(165)9 | 969
2.875 2001 1942 119.6 214 0.109 0.0021 15.7 0.84
Mg*-Kr 2.884 1978 1919 118.4 2.08 0.109 0.00213 | 154 0.85
1800(600)° | 1129
3.010 3012 2944 135.9 157 0.092 0.0012 22.1 0.98
Mg*-Xe 3.018 2973 2906 134.8 1.66 0.0912 0.00123 | 21.7 0.92
3300(1700)°
Mg'-Rn 3.057 3666 3595 142.1 141 0.083 0.0009 25.7 0.97
3.064 3639 3569 141.1 141 0.0830 | 0.000919 | 254 0.97
Cat-He 4.240 37 24 28.8 6.16 0.264 0.0698 0.18 0.91
4.259 36 23 25.6 4.88 0.264 0.00730 | 0.141 | 0.93
3.744 111 100 232 1.10 0.091 0.0050 0.42 1.10
Ca'™-Ne 3.760 109 97 248 1.50 0.0889 0.00591 | 0484 | 0.94
370(5) | 115(5) | 1035 | 26(2)
3.108 877 841 725 243 0.087 0.0029 6.19 0.62
Ca"-Ar 3.256 742 712 60.6 1.59 0.0795 0.00255 | 4.33 0.78
3.20(0.15)¢| 810(60)* 69(2)¢
3.174 1376 1336 79.6 1.70 0.062 0.0013 | 10.12 | 0.68
Ca"-Kr 3.305 1200 1160 69.7 131 0.0570 0.00116 | 7.76 0.78
3.30(0.15) | 1280(80) 77(2)
Cat-Xe 3.330 2034 1991 87.1 117 0.050 0.0007 | 13.72| 0.80
3.457 1780 1740 78.2 1.03 0.0460 0.00064 | 11.1 0.83
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3.45(0.15)" | 1850(100)" | 1811(80)" | 84(2)"
carn| 3378 2493 2448 89.9 0.96 0044 | 00005 | 161 | 085
3.487 2190 2150 81.9 088 | 00410 | 000046 | 134 | 0.87
SHe | 452 30 19 24.4 5.49 0221 | 00609 | 013 | 090
4547 29 19 21.1 4.12 0220 | 00652 | 0.10 | 094
3.979 93 84 18.0 0.73 0066 | 00032 | 031 | 1.20
S*-Ne |  4.005 o1 82 195 111 | 00650 | 0.00398 | 0.37 | 0094
77 67/85" |19.5(1.5)"| 1.12(0.5)"
3.327 712 685 54.3 1.89 0056 | 0.0017 | 477 | 055
S*-Ar | 3385 646 623 47.3 121 | 00535 | 0.00162 | 3.63 | 0.72
830(240)° | 800(240)° | 495° | 0.75°
3.385 1120 1092 55.1 1.03 0034 | 0.0006 | 7.67 | 066
Sr*-Kr | 3.433 1050 1030 51.1 085 | 0.0333 | 0000578 | 6.62 | 0.73
1231° | 1200(580)° | 52(1)° 0.6°
3535 1660 1631 58.3 0.62 0026 | 0.003 |1056| 0.83
S*-Xe | 3591 1560 1530 54.7 060 | 00248 | 0000278 | 9.32 | 0.80
1970(440)° 54,69 0.38¢
SRy | 3576 2052 2023 58.4 0.48 0021 | 00002 |12.65| 086
3.617 1910 1910 55.4 047 | 00205 | 0000177 | 114 | 0.84
4912 23 14 196 4.65 0185 | 0.0545 | 0.09 | 091
Ba-He| 4950 22 13 16.7 3.39 0183 | 0.0555 |0.064| 095
[4.921]" [22]" [14]" [17.0]" | [3.45]
{4917} | {23} {14y | {17.2}" | {3.99}"
4.249 76 69 14.6 0.64 0054 | 00018 | 022 | 110
BaNe| 4291 73 65 15.1 082 | 00529 | 000291 | 0.24 | 0.95
[4.267]" [75]" [68]" [15.4]" | [0.92]
{4246} | {77} {69y | {15.6}" | {0.90}"
3.319 811 778 67.8 2.24 0049 | 00013 | 838 | 063
3.385 693 664 58.6 219 | 00476 | 000147 | 6.27 | 057
e | 3364 680° 61.7(L5)°| 2.3(0.2)° 0.00125'
347! ~800"
[3.339]" | [766]" [734]" [65.6]" | [2.80]"
{3348} | {752} {720}" | {63.9}" | {2.72}
3415 1215 1186 59.3 0.97 0028 | 00004 |1083| 0.75
BaKr | 3479 1093 1066 53.9 1.02 | 00267 | 0.000428 | 892 | 065
[3438]" | [1175] | [1147] | [57.8]" | [1.14]
{3446} | {1164}" | {1136}" | {56.9}" | {1.12}"
3581 1731 1703 56.2 0.18 0020 | 00002 |1252| 257
Baxo| 3653 1569 1543 52.3 061 | 00187 |0.000192 | 10.87 | 0.71
[3.612] | [1672] | [1645]" | [55.3]" | [0.65]"
{3.621}" | {1663}" | [1636] | [54.6]' | {0.63}
BaRn| 363 2100 2073 535 0.45 0015 | 0.0001 |14.36| 0.76
3.709 1916 1892 495 041 | 00144 | 000011 |12.31| 0.79
ReHe| 4871 24 15 203 4.79 0.186 | 0.0536 | 0.10 | 0.90
4.885 23 15 17.6 3.55 086 | 0.0553 | 0.07 | 094
RaNe| 4268 79 71 16.2 0.73 0050 | 00027 | 028 | 112
4.276 77 69 163 092 | 00504 | 000311 | 0.29 | 095
RaAr | 3704 526 507 375 114 0036 | 00010 | 282 | 059
3.759 486 469 343 078 | 00351 |0.000949 | 2.36 | 0.78
Rk | 3735 831 813 36.8 0.64 0020 | 00003 | 487 | 064
3.775 793 775 34.9 052 | 00193 | 0.000294 | 440 | 0.74
Raxe| 3871 1235 1216 376 0.42 0014 | 00001 | 693 | 068
3.917 1170 1160 35.9 035 | 00132 | 0000127 | 633 | 0.78
Re-Rn | 3897 1546 1528 3538 0.15 0010 | 00001 | 848 | 1.34
3.944 1470 1450 34.6 0.25 | 0.00967 | 0.000069 | 7.89 | 0.82

24




2 Re isthe equilibrium bond length, D and Do are the equilibrium and zero point dissociation energies
respectively, we is the harmonic vibrational frequency, wexe is the anharmonicity constant, Be the
rotational constant, « the vibration-rotation constant, k the force constant from Hooke' s law, and
DM js the Morse estimate of the dissociation energy, given by we/4mexe. The most prevalent
naturally-occurring isotope was used in all cases.

® A bold value indicates a value from the present work, with a bold, underlined value indicating a
value obtained with a doubly-augmented basis set from the present work (see text). A normal value
indicates one previoudy published by us (seetext) and avaluein italics indicates an experimenta
value.

¢ Ref. 33. ¢ Ref. 34. ¢ Ref. 35. TRy value, Ref. 36. 9 Ry value, Refs. 37 and 38. " Ref. 38. ' Ref. 38.) Ref.
42. % Refs. 43, 44, 45 and 46. ' Refs. 43, 44 and 45. ™ Refs. 43, 44 and 45. " Ref. 47. ° Ref. 48. P Ref.
49. 9 Ref. 50. " Ref. 56. Vauesin square brackets are the non-small core ECP/CBS results and values
in braces are the non-small core ECP/BF/C5Z results from Ref. 56 (see Table IV in that work). ° Ref.
51. ' Ref. 52.
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Table 2: Spectroscopic constants for the Group 12 M*-RG series.®®

Re/A | De/cm? [Do/cm?| wel cm? |wexe/ cmt|Be/ cmt|a/ cmt|k/ Nmt| DM/ D
Zn*-He 3.014 131 99 68.8 10.01 0.498 | 0.0861| 1.05 0.90
3.03 125.3 94 63.0 8.36 0.487 0.88 0.95
Zn*-Ne 2.807 348 320 58.6 2.84 0.141 | 0.0075| 3.09 0.87
2.86 3254 298 55.5 2.62 0.135 2.76 0.90
Znt-Ar 2.627 2062 2002 119.7 2.04 0.099 | 0.0018| 20.8 0.85
2.64 1977 1918 120.7 2.14 0.098 21.1 0.86
Znt-Kr 2.656 3291 3229 123.6 1.25 0.066 | 0.0007 | 32.7 0.93
2.67 3192 3132 120.3 1.22 0.065 30.9 0.93
Zn*-Xe 2.759 5197 5131 132.3 0.81 0.052 | 0.0004 | 44.4 0.93
2.77 5088 5023 129.9 0.79 0.051 42.8 1.05
Zn*-RnN 2.806 6372 6307 130.9 0.68 0.043 | 0.0002 | 50.1 0.99
2.81 6285 6221 128.6 0.60 0.043 48.4 1.10
Cd*-He 3.204 114 85 63.2 9.88 0.429 |0.0775| 0.91 0.89
3.24 108 59.4 8.85 0.415 0.80 0.92
Cd*-Ne 3.022 297 272 52.1 2.72 0.109 |0.0058 | 2.72 0.84
3.07 276 48.9 2.47 0.105 2.40 0.88
Cd*-Ar 2.914 1497 1452 89.8 1.61 0.067 | 0.0012| 14.0 0.83
2.94 1408 86.5 1.55 0.066 13.0 0.86
Cd*-Kr 2.922 2390 2346 89.2 0.94 0.041 | 0.0004 | 22.6 0.88
2.96 2260 85.6 0.92 0.040 20.9 0.88
Cd*-Xe 2.995 3886 3838 96.3 0.60 0.031 | 0.0002| 334 1.00
3.03 3705 93.2 0.60 0.030 31.3 0.98
3.025 4870 4823 94.3 0.43 0.024 | 0.0001| 394 1.05
Cd*-Rn| 3.06 4763 92.0 0.43 0.024 375 1.03
3.077 149 113 78.7 11.78 0.458 | 0.0761| 1.43 0.88
Hg*-He| 3.12 138 71.9 10.30 0.441 1.20 0.91
3.10 144 74.3 10.55
3.002 351 322 60.3 3.09 0.103 | 0.0050 | 3.90 0.84
Hg*-Ne 3.06 316 54.8 2.77 0.099 3.22 0.86
3.04 334 27.0 2.81
208(3)°| 346° 57.8(1.0)°
2.876 1802 1754 97.4 1.35 0.061 | 0.0009 | 18.7 0.98
291 1650 92.9 1.49 0.060 17.0 0.88
Hg*-Ar| 2.90 1720 95.4 1.50
2.868% | 1630(100)° 99.0 1.5
Hg*-Kr 2.856 3111 3062 97.1 0.85 0.035 | 0.0003| 329 0.89
2.89 3867 92.0 0.80 0.034 29.6 0.68
Hg*-Xe 2.905 5546 5494 104.1 0.42 0.025 | 0.0001| 50.9 1.17
2.95 5237 100.7 0.44 0.024 47.7 1.10
Hg*-Rn 2.938 7140 7091 98.2 0.42 0.019 | 0.0001| 60.1 0.80
2.98 6997 95.2 0.27 0.018 56.5 1.20

2 Re isthe equilibrium bond length, De and Do are the equilibrium and zero point dissociation energies

respectively, we is the harmonic vibrational frequency, weXe is the anharmonicity constant, Be the
rotational constant, o the vibration-rotation constant, k the force constant from Hooke' s law, and

Mo js the Morse estimate of the dissociation energy, given by we?/4wexe. The most prevalent
naturally-occurring isotope was used in al cases.
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® A bold value indicates a value from the present work, with a bold, underlined value indicating a
value obtained with a doubly-augmented basis set from the present work (see text). A normal value
indicates one previoudy published by us (seetext) and avalue in italics indicates an experimental

value.
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Table 3: kvalues (see Eq. 1) for the Group 2 and Group 12 M*-RG Complexes

M | M*-He | M*-Ne | M*-Ar | M*-Kr | M*-Xe | M*-Rn
Group 2
Be | 311 11.7 284 26.2 24.4 231
Mg | 38.0 29.3 30.0 32.7 334 33.0
Ca | 433 26.7 34.3 37.3 37.4 37.1
S 46.0 26.7 37.3 39.5 40.0 39.7
Ba | 471 26.2 57.3 52.3 46.7 45.5
Ra | 480 32.8 37.0 41.2 42.4 41.9
Group 12
Zn | 36.6 35.1 35.0 35.2 32.8 31.2
Cd | 413 41.4 40.1 40.7 38.8 37.3
Hg | 458 50.4 43.1 43.5 39.0 36.6
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Table 4: Energies (cm?) of the excited s°pt, d°s? and s°d! states of the Group 2 and Group 12

cations?

M* | ns’np! | (n-1)d°ns? | nsind!
Group 2

Be' 31933 98055

Mg* 35730 71491

Ca 25340 13687

Srt 24250 14724

Ba* 21389 5354

Ra* 24590 13079
Group 12

n* 49064 64354 96940

Cd* 45791 72640 89782

Hg* 57568 44539 105320

a Datataken from Ref. 65.

b Non-spin-orbit split energies, derived from the energies of the spin-orbit levels, assuming the latter

arelocated at E, = %Q[j(j +1) = I(l+1) —s(s + 1)], where Eq is the non-spin-orbit split energy, ¢

is the spin-orbit coupling constant and j, | and s have their usual meanings.
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Table5: Partia atomic charges for the Group 2 M*-RG complexes, calculated using NPA
and AIM methodologies, in units of elementary charge e.

M Method | Charge | M*-He | M*-Ne | M*-Ar M*-Kr M*-Xe | M*-Rn

Be Qse Mulliken 1.00 0.97 0.82 0.97 0.52 0.42
NPA 1.00 0.99 0.91 0.88 0.82 0.79

AIM 1.00 1.02 1.02 1.00 0.98 0.97

Qrc Mulliken |  0.00 0.03 0.18 0.03 0.48 0.58

NPA 0.00 0.01 0.09 0.12 0.18 0.21

AIM 0.00 -0.02 -0.02 0.00 0.02 0.03

Mg Qwmg Mulliken 1.00 0.98 0.97 0.93 0.83 0.75
NPA 1.00 1.00 0.98 0.97 0.93 0.92

AIM 1.00 1.01 1.02 1.02 1.00 0.99

Qro Mulliken | 0.00 0.02 0.03 0.07 0.17 0.25

NPA 0.00 0.00 0.02 0.03 0.07 0.08

AIM 0.00 -0.01 -0.02 -0.02 0.00 0.01

Ca Qca Mulliken 1.00 0.99 0.96 0.95 0.92 0.88
NPA 1.00 1.00 0.99 0.98 0.97 0.97

AIM 1.00 1.01 1.02 1.02 1.01 1.00

Qrc Mulliken | 0.00 0.01 0.04 0.05 0.08 0.12

NPA 0.00 0.00 0.01 0.02 0.03 0.03

AIM 0.00 -0.01 -0.02 -0.02 -0.01 0.00

S Qs Mulliken 1.00 0.99 0.98 0.99 0.94 0.85
NPA 1.00 1.00 1.00 1.01 0.97 0.92

AIM 1.00 1.01 1.03 1.04 1.00 0.96

Qro Mulliken |  0.00 0.01 0.02 0.01 0.06 0.15

NPA 0.00 0.00 0.00 -0.01 0.03 0.08

AIM 0.00 -0.01 -0.03 -0.04 0.00 0.04

Ba QBa Mulliken 1.00 0.99 0.98 0.98 0.97 0.93
NPA 1.00 1.00 1.00 0.98 0.99 0.98

AIM 1.00 1.01 1.01 1.01 1.02 1.00

Qro Mulliken | 0.00 0.01 0.02 0.02 0.03 0.07

NPA 0.00 0.00 0.00 0.02 0.01 0.02

AIM 0.00 -0.01 -0.01 -0.01 -0.02 0.00

Ra Qra Mulliken 1.00 0.94 0.97 0.96 0.96 0.93
NPA 1.00 0.94 0.99 0.99 0.99 0.98

AIM 1.00 0.96 1.02 1.02 1.01 1.01

Qrc Mulliken |  0.00 0.06 0.03 0.04 0.04 0.07

NPA 0.00 0.06 0.01 0.01 0.01 0.02

AIM 0.00 0.04 -0.02 -0.02 -0.01 -0.01

30



Table 6: Partial atomic charges for the Group 12 M*-RG complexes, calculated using NPA
and AIM methodologies, in units of elementary charge e.

M Charge | Method | M*™-He | M*-Ne | M™-Ar M*-Kr M*-Xe | M*-Rn
Zn Qzn Mulliken 1.00 0.98 0.94 0.90 0.81 0.74
NPA 1.00 0.99 0.94 0.90 0.82 0.77
AIM 1.00 1.01 0.95 0.91 0.83 0.78
Qrc Mulliken | 0.00 0.02 0.06 0.10 0.19 0.26
NPA 0.00 0.01 0.06 0.10 0.18 0.23
AIM 0.00 -0.01 0.05 0.09 0.17 0.22
Cd Qcd Mulliken 1.00 0.99 0.96 0.92 0.87 0.80
NPA 1.00 1.00 0.97 0.93 0.87 0.83
AIM 1.00 1.01 0.97 0.93 0.86 0.82
Qrs Mulliken | 0.00 0.01 0.04 0.08 0.13 0.20
NPA 0.00 0.00 0.03 0.07 0.13 0.17
AIM 0.00 -0.01 0.03 0.07 0.14 0.18
Hg Qng Mulliken 1.00 0.99 0.94 0.89 0.74 0.64
NPA 1.00 1.00 0.95 0.89 0.74 0.70
AIM 1.00 1.00 0.95 0.87 0.74 0.66
Qrc Mulliken | 0.00 0.01 0.06 0.11 0.26 0.36
NPA 0.00 0.00 0.05 0.11 0.26 0.30
AIM 0.00 0.00 0.05 0.13 0.26 0.34
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Table 7: Input Parameters for the electrostatic model potential (Eg. 2)2

Species | ad A% | af A% | oo A7 | B(€*A%) | y/e2A7| N | massdmy
He | 0205|0101 | 0123 | -0144 | 0501 |1434| 4.00
Ne | 039 | 027 | 0397 | -0.286 1383 | 445 | 202
Ar 164 | 208 | 616 | -3.07 136 | 590 | 39.95
Kr 248 | 397 | 1635 | -6.53 302 | 670 | 838
Xe | 404 | 88 | 427 | -1557 800 | 7.79 | 1313
RN 5.1 20 110 -40 134 9 222
Be' 37 | 220 0.77 | 9.012
Mg 55 | 6.22 098 | 2431
Ca' 11 54 1.05 | 40.08
Sr 131 | 68 11 | 87.82
Ba® | 184 | 200 116 | 137.3
Ra* | 155 | 1057 12 | 226.03
Zn* 2.8 4 6 65.39
Cd* 35 | 45 65 | 11241
Hg" 27 4 7 201.97

@ Seetext for sources of values and definitions of quantities.
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Table 8: Effective charges on M* from the electrostatic model potentia (Eg. 2),2in units of

elementary charge e.

M* | Method | M*-He | M*-Ne | M*-Ar | M*-Kr | M*-Xe | M*-Rn
Group 2
Be* | undamped | 1.03 | 097 | 067 | 088 | 106 | 0.99
damped 1.05 143 0.82 1.02 1.20 1.18
Mg | undamped | 1.05 | 099 | 086 | 0.89 | 097 | 0091
damped 1.05 1.03 0.92 0.93 1.00 0.96
Ca" | undamped | 1.08 | 1.09 | 064 | 071 | 082 | 0.79
damped 1.08 114 0.72 0.76 0.86 0.84
S* | undamped | 1.10 115 0.69 0.75 0.84 0.80
damped 110 | 119 | 074 | 079 | 087 | 084
Ba" | undamped | 1.12 1.19 -b 0.42 0.67 0.65
damped 1.12 1.25 b 046 | 0.71 | 0.69
Ra" | undamped | 1.14 117 0.88 0.87 0.91 0.87
damped 114 117 0.91 0.89 0.93 0.90
Group 12
Zn* | undamped | 1.05 0.97 0.96 1.01 112 1.06
damped 1.06 0.99 0.99 1.04 1.16 1.13
Cd* | undamped | 1.08 101 1.02 1.04 112 1.06
damped 1.09 1.01 1.03 1.05 113 1.10
Hg" | undamped | 1.12 1.06 1.10 1.15 1.29 1.25
damped 112 1.07 111 1.16 1.30 1.29

a See text.

b No solution — see text.
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Table 9: Local energy densities H(R) for the Group 2 and 12 M*-RG complexes.?

He Ne Ar Kr Xe Rn

Group 2

Be" 0.0006 -0.0022 -0.0025 -0.0071 -0.0116 -0.0133

Mg* 0.0002 0.0000 0.0001 -0.0001 -0.0009 -0.0014

Ca’ 0.0001 0.0002 0.0020 0.0017 0.0011 0.0007

S 0.0001 0.0002 0.0016 0.0014 0.00010 0.0007

Ba’ 0.0001 0.0002 0.0021 0.0014 0.0008 0.0006

Ra’ 0.0001 0.0001 0.0011 0.0011 0.0008 0.0006
Group 12

Zn* 0.0008 0.0006 -0.0029 -0.0064 -0.0084 -0.0089

Cd* 0.0008 0.0007 0.0005 -0.0018 -0.0037 -0.0044

Hg" 0.0013 0.0011 -0.0002 -0.0040 -0.0071 -0.0080

2 Calculated at the bond critical points from the AIM analyses.
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Figure Captions

Figure 1: Interaction energy curves for the Group 2 M*-RG complexes.
Figure 2: Interaction energy curves for the Group 12 M*-RG complexes.
Figure 3: Reduced potentials for the Group 2 M*-RG complexes.

Figure 4. Reduced potentials for the Group 12 M*-RG complexes.

Figure 5: Plots of k (see Eq. 1) for Group 2 and Group 12 M*-RG compl exes.
Figure 6: Trendsin Re for the Group 2 and Group 12 M*-RG complexes.
Figure 7: Trends in D¢ for the Group 2 and Group 12 M*-RG complexes.
Figure 8: Trendsin k for the Group 2 and Group 12 M*-RG complexes.

Figure 9: MO diagram and contour plots for the Be"™-RG and Mg*-RG complexes calculated at the
RCCSD(T) Re values obtained at the extrapolated basis set limit. The values of the contours were
sel ected both to show the details clearly for al complexes, and are identical to allow direct comparison

between the plots. The different colours indicate opposite signs of the wavefunction.

Figure 10: MO diagram and contour plots for the Ca™-RG and Zn*-RG complexes calculated at the
RCCSD(T) Re values obtained at the extrapolated basis set limit. The values of the contours were
selected both to show the details clearly for al complexes, and are identical to allow direct comparison

between the plots. The different colours indicate opposite signs of the wavefunction.

Figure 11: MO diagram and contour plots for the Sr*-RG and Cd*-RG complexes calculated at the
RCCSD(T) Re values obtained at the extrapolated basis set limit. The values of the contours were
selected both to show the details clearly for al complexes, and are identical to allow direct comparison

between the plots. The different colours indicate opposite signs of the wavefunction.

Figure 12: MO diagram and contour plots for the Ba™-RG and Hg*-RG complexes calculated at the
RCCSD(T) Re values obtained at the extrapolated basis set limit. The values of the contours were
selected both to show the details clearly for al complexes, and are identical to allow direct comparison

between the plots. The different colours indicate opposite signs of the wavefunction.

Figure 13: Birge-Sponer Plots for Be™-RG and Mg*-RG. The red dots are the calculated spacings
between consecutive vibrational levels, while the line is a Morse line calculated from the we and weXe

valuesgivenin Table 1 (seetext).
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Figure 14: Birge-Sponer Plots for Ca™-RG and Zn*-RG. The red dots are the calculated spacings
between consecutive vibrational levels, while the lineis a Morse line calculated from the we and @eXe

valuesgivenin Tables 1 and 2 (see text).

Figure 15: Birge-Sponer Plotsfor Sr*-RG and Cd*-RG. The red dots are the cal cul ated spacings between
consecutive vibrational levels, while the line is a Morse line calculated from the we and weXe values

givenin Tables 1 and 2 (see text).

Figure 16: Birge-Sponer Plots for Ba'™-RG and Hg*-RG. The red dots are the calculated spacings
between consecutive vibrational levels, while the lineis a Morse line calculated from the we and @eXe

valuesgivenin Tables 1 and 2 (see text).
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