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Abstract: The enantioselective synthesis of highly functional-
ized chiral cyclopent-2-enones by the reaction of alkynyl
malonate esters with arylboronic acids is described. These
desymmetrizing arylative cyclizations are catalyzed by a chiral
phosphinooxazoline/nickel complex, and cyclization is ena-
bled by the reversible E/Z isomerization of alkenylnickel
species. The general methodology is also applicable to the
synthesis of 1,6-dihydropyridin-3(2H)-ones.

Chiral cyclopent-2-enones are versatile building blocks for
synthesis[1] and are present in many biologically active natural
products[1] such as (++)-achalensolide,[2] phorbol,[3] and (@)-
kjellmanianone[4] (Figure 1). In view of their broad signifi-

cance, various methods have been developed for the de novo
construction of enantiomerically enriched chiral cyclopent-2-
enones,[1, 5–7] such as Pauson–Khand reactions,[5] Nazarov
cyclizations,[6] and several other approaches.[7] However,
given the wide structural diversity of chiral cyclopent-2-
enones in target compounds, the development of new
strategies to these structures continues to be highly valuable.

We envisaged that chiral cyclopent-2-enones might be
prepared by the enantioselective nickel-catalyzed reaction of

alkynyl malonate esters (1) with arylboronic acids
(Scheme 1). Specifically, nickel-catalyzed syn addition of an
arylboronic acid to the alkyne of 1 would give the alkenyl-
nickel species (Z)-2, which possesses the incorrect stereo-
chemistry for cyclization onto one of the esters. However,
reversible E/Z isomerization[8, 9] of (Z)-2 would give the
alkenylnickel species (E)-2, which could now attack an ester
in an enantioselective desymmetrization[10] to give 2,3-diaryl
cyclopent-2-enones (3).[11] The 2,3-diaryl cyclopent-2-enone
scaffold is present in the highly potent COX-2 inhibitor 4,[12a]

as well as in the combretocyclopentenones 5[12b] and related
compounds,[12c] which exhibit antitumor activity. Moreover,
there are few asymmetric methods for the de novo construc-
tion of cyclopent-2-enones with a quaternary stereocenter at
the 5-position (as in 3).[5k, 6g] Although our previous work on
enantioselective nickel-catalyzed arylative cyclizations of
alkynyl electrophiles showed that ketones[8a] and activated
alkenes[8a,b] are competent reaction partners for alkenylnickel
species, the ability of less electrophilic esters to undergo
analogous cyclizations was less certain. Herein, we report the
successful implementation of this strategy. Not only can this
methodology produce highly functionalized, enantiomerically
enriched chiral cyclopent-2-enones, but 1,6-dihydropyridin-
3(2H)-ones are also accessible.

Our initial experiments revealed that the substrates 1,
containing ethyl esters, are insufficiently reactive under
a range of reaction conditions that are effective in our
nickel-catalyzed anti-carbometallative cyclizations described
previously.[8] However, the more electrophilic bis(2,2,2-tri-
fluoroethyl) malonate 1a reacted successfully with PhB(OH)2

(2.0 equiv) in the presence of 10 mol% each of Ni-
(OAc)2·4 H2O and various chiral P,N-ligands (L1–L5) in
2,2,2-trifluoroethanol (TFE) to give the cyclopent-2-enone

Figure 1. Natural products containing cyclopent-2-enones.

Scheme 1. Proposed synthesis of chiral cyclopent-2-enones.
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3aa (Table 1). At 100 88C, (R)-Ph-PHOX (L1) gave 3aa in
98% yield (by 1H NMR analysis) and 91 % ee (entry 1).[13]

Reducing the temperature to 80 88C improved the enantiose-
lectivity to 94% ee with no loss of yield (entry 2). Other
phosphinooxazolines, L2–L5, are effective at 80 88C (entries 3–
5), but with the exception of L3 (entry 4), the yields and
enantioselectivities are appreciably lower than with L1.

The scope of this process with respect to the alkynyl
bis(2,2,2-trifluoroethyl) malonate was then explored using L1
as the chiral ligand in reactions with PhB(OH)2, which gave
cyclopent-2-enones (3aa–pa) in 46–98% yield and 77–94% ee
(Scheme 2). As well as a 2-thienyl group (3aa, 3 ia, and 3ja),
the substituent at the 2-position of 1 can be changed to
a phenyl group (3ba), mono- and disubstituted benzenes with
electron-donating or electron-withdrawing substituents (3ca–
ga, 3ka, and 3 la), and a 2-naphthyl group (3ha). Ethoxy
(3ma), benzyloxy (3na), 3-thienylmethoxy (3oa), and anilino
groups (3pa) at this position are also tolerated. The reaction is

compatible with various other (hetero)aryl groups at the
alkyne, such as 4-methoxyphenyl (3 ia), 3-methylphenyl (3ja),
4-chlorophenyl (3 ka), and 2-thienyl (3 la). In a few cases,
reaction at 100 88C (3ca, 3ka, and 3 la) or use of a 20 mol%
catalyst loading (3ma and 3oa) were required for complete
consumption of the starting material.

The process is not limited to aryl groups at the alkyne, as
shown by the reaction of the 1,3-enyne 6 to give the cyclopent-
2-enone 7 in 76% yield and 80% ee [Eq. (1)]. (R)-Ph-PHOX
(L1) is less effective for substrates with alkyl groups at the
2-position. For example, the cyclization of 1q and 1r (see
[Eqs. (2) and (3) for the structures] gave cyclopent-2-enones
in 29 and 0 % ee, respectively, with L1 as the ligand. However,
somewhat improved results were obtained with (S)-t-Bu-
NeoPHOX (L5),[14] which gave ent-3qa and ent-3ra in 59 and
54% ee, respectively [Eqs. (2) and (3)].

Table 1: Evaluation of reaction conditions.[a]

Entry Ligand T [88C] Yield [%][b] ee [%][c]

1 L1 100 98 91
2 L1 80 99 94
3 L2 80 94 @81[d]

4 L3 80 84 @94[d]

5 L4 80 49 88
6 L5 80 61 @78[d]

[a] Reactions were conducted with 0.05 mmol of 1a in TFE (0.5 mL).
[b] Determined by 1H NMR analysis using 1,4-dimethoxybenzene as an
internal standard. [c] Determined by HPLC analysis on a chiral stationary
phase. [d] These reactions gave ent-3aa as the major enantiomer.

Scheme 2. Scope with respect to the alkynyl bis(2,2,2-trifluoroethyl)
malonate. Reactions were conducted with 0.30 mmol of 1a–p in TFE
(3 mL). Yields are those of the isolated products. Enantiomeric
excesses were determined by HPLC analysis on a chiral stationary
phase. [a] Conducted at 100 88C. [b] Conducted with 20 mol% each of
Ni(OAc)2·4H2O and L1.
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The reactions of a range of (hetero)arylboronic acids with
representative substrates, 1a, 1 c, 1 i, and 1n, are presented in
Scheme 3. Pleasingly, these reactions gave cyclopent-2-
enones in generally good yields (73–92 %) and enantioselec-
tivities (80–94 % ee). The process is compatible with arylbor-
onic acids containing halide (3ab, 3cg, 3 ij, 3 ik, and 3nm),
methyl (3ac, 3ch and 3nm), carboethoxy (3ad), or alkoxy

(3cf, 3 ij, and 3nl) substituents. 2-Naphthylboronic acid (3 ii)
and 3-thienylboronic acid (3ae) are also effective.

The process also works well for gram-scale reactions. For
example, the reaction of 1b (1.38 g, 3.00 mmol) with PhB-
(OH)2 gave 1.10 grams of 3 ba (84 % yield) in 80 % ee
[Eq. (4)]. Importantly, by conducting this reaction a higher

concentration of 0.4m, rather than at 0.1m used in the
experiments shown in Scheme 2 and Scheme 3, the catalyst
loading was lowered to 3 mol %.

To demonstrate the synthetic utility of the products,
further transformations of a representative cyclopent-2-enone

were conducted. Trifluoroethyl esters are moderately active
acylating agents[15] and could therefore serve as useful func-
tional handles. Indeed, heating 3 ik with benzylamine
(1.5 equiv) in THF at 90 88C smoothly gave the amide 8 in
84% yield without affecting the enone (Scheme 4). A Luche
reduction of 8 then gave allylic alcohol 9 as a single
observable diastereomer in 83 % yield.

Finally, although chiral cyclopent-2-enones were the
primary targets of this study, the general methodology can
be applied to the synthesis of other products. For example,
reaction of the alkynyl phenyl ester 10 with PhB(OH)2 using
(S)-i-Pr-NeoPHOX (L6)[14] as the ligand gave a 27:1 mixture
of the 1,6-dihydropyridin-3(2H)-one 11 together with a minor
product (12) in 68% yield [Eq. (5)].[16] Other P,N-ligands
resulted in lower yields and less favorable ratios of 11:12.

In conclusion, we have reported the enantioselective
synthesis of chiral cyclopent-2-enones by the nickel-catalyzed
desymmetrizing arylative cyclization of alkynyl bis(2,2,2-
trifluoroethyl) malonates with arylboronic acids. The reac-
tions proceed in good yields and generally high enantiose-
lectivities to give cyclopent-2-enones containing a fully sub-
stituted alkene and a quaternary stereocenter at the
5-position. This work further demonstrates the utility of
reversible E/Z isomerization of alkenylnickel species in
promoting new domino addition/cyclizations of alkynyl
electrophiles, reactions that would otherwise be impossi-
ble.[8, 9d,e] Investigation of this reactivity in other contexts is
ongoing and will be reported in due course.
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