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ABSTRACT: The olive-knot disease (Olea europea L.) is caused by the bacterium 29 

Pseudomonas savastanoi pv. savastanoi (PSV). PSV in the olive-knot undergoes 30 

interspecies interactions with the harmless endophyte Erwina toletana (ET); PSV and ET 31 

co-localize and form a stable community resulting in a more aggressive disease. PSV and 32 

ET produce the same type of the N-acylhomoserine lactone (AHL) quorum sensing (QS) 33 

signal and they share AHLs in planta. In this work we have further studied the AHL QS 34 

systems of PSV and ET in order to determine possible molecular mechanism(s) involved 35 

in this bacterial inter-species interaction/cooperation. The AHL QS regulons of PSV and 36 

ET were determined allowing the identification of several QS-regulated genes. 37 

Surprisingly, the PSV QS regulon consisted of only a few loci whereas in ET many 38 

putative metabolic genes were regulated by QS among which several involved in 39 

carbohydrate metabolism. One of these loci was the aldolase-encoding gene garL, which 40 

resulted to be essential for both co-localization of PSV and ET cells inside olive knots as 41 

well as knot development. This study further highlighted that pathogens can cooperate 42 

with commensal members of the plant microbiome. 43 

SIGNIFICANCE OF THIS STUDY: This is a report on studies of the quorum sensing 44 

(QS) systems of olive knot pathogen Pseudomonas savastanoi pv. savastanoi and olive-45 

knot cooperator Erwinia toletana. These two bacterial species form a stable community 46 

in the olive knot, share QS signals and cooperate resulting in a more aggressive disease. 47 

In this work we further studied the QS systems by determining their regulons as well 48 

studying QS-regulated genes which might play a role in this cooperation. This represents 49 

a unique in vivo interspecies bacterial virulence model and highlights the importance of 50 

bacterial interspecies interaction in disease. 51 

52 
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INTRODUCTION 53 

The recent dramatic increase of microbiome studies has further evidenced what 54 

microbiologists have postulated for many years, that most commonly, microorganisms in 55 

nature live as members of complex multispecies communities (1, 2). This has 56 

demonstrated that many different microbes live in close proximity to each other; however, 57 

aspects of microbe-microbe interactions have thus far been significantly understudied. In 58 

addition, multispecies microbial communities existing in association with plants could be 59 

influenced by the plant and/or could have consequences on plant health; again very few 60 

studies have investigated this likely scenario. 61 

Many bacterial species have been studied for their intraspecies signaling system which is 62 

known as quorum sensing (QS) (3). QS involves the production and detection of signal 63 

molecules which results in the regulation of gene expression in response to bacterial cell 64 

number/density (4). Gram-negative bacteria most commonly use N-acylhomoserine 65 

lactones (AHLs) as QS signals and in proteobacterial phytopathogens it is involved in the 66 

regulation of expression of virulence associated factors in the plant (5-9). An archetypical 67 

AHL QS system consists of a LuxI-family AHL synthase and a LuxR-family 68 

transcription factor which affects target gene expression upon interaction with the 69 

cognate AHL at quorum concentrations (10). AHLs vary in their structure having 70 

different acyl chain lengths (from 4 to 20 carbons) and display differences in their 71 

oxidation state at position C3. AHL signals can also be involved in interspecies signaling 72 

in a community since they are freely diffusible and can thus be detected by different 73 

bacterial neighbors. In bacterial pathogenesis, especially in human hosts, it is now 74 
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becoming recognized that many pathogens interact with other microorganisms which 75 

may influence the disease process (11-13). 76 

Plant microbial diseases are however still very much considered as being caused by 77 

single pure pathogens; nevertheless evidence is also beginning to grow that there can be 78 

synergisms between different microorganisms. Recently, a clear example of such 79 

synergism has been reported in the olive-knot disease of olive trees (Olea europea L.) 80 

caused by the bacterium Pseudomonas savastanoi pv. savastanoi (PSV) (14, 15). PSV 81 

possesses a typical LuxI/R AHL QS system and it is involved in virulence since mutants 82 

in this system result in significantly smaller knots (15). The bacterial load of the knots 83 

(also called tumors) is 50% composed of PSV but also contain a significant proportion of 84 

an apparently harmless commensal multispecies bacterial community (16) and some 85 

members have been shown to cooperate with PSV resulting in an increase of disease 86 

severity (15). More precisely, an Erwinia toletana (ET) strain (harmless to the olive 87 

plant) isolated from the olive knot increased disease severity (larger olive-knot) when co-88 

inoculated with PSV. In addition, it was demonstrated that ET, Pantoea agglomerans and 89 

PSV form stable multispecies communities and that they share and communicate via 90 

AHLs. Interestingly, ET and PSV synthesize structurally identical AHLs and co-91 

inoculation experiments have evidenced that E. toletana can rescue AHL negative 92 

mutants of PSV and restore virulence (15). Microscopy studies have also revealed that 93 

ET and PSV co-localize in the olive-knot further indicating that the two species are 94 

sharing the same niche both benefiting from this stable interaction. In addition, in silico 95 

recreation of the biochemical metabolic pathways encoded by PSV and ET genomes 96 

suggested that metabolic complementarity and/or sharing of metabolites could be 97 

 on A
ugust 22, 2018 by guest

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


 5 

involved in the beneficial interaction established between these two bacterial species (16). 98 

In this work we have further studied the AHL QS systems of PSV and ET, both in vitro 99 

and in planta, in order to identify specific molecular determinants involved in this 100 

interspecies bacterial interaction. Determination of the PSV and ET QS regulon allowed 101 

the identification of several QS-regulated genes putatively involved in numerous 102 

metabolic pathways, including the ET aldolase-encoding gene garL, which resulted to be 103 

essential for both co-localization of PSV and ET cells inside olive knots and full knot 104 

development. 105 

 106 

 107 

108 
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RESULTS 109 

The luxI/R quorum sensing genes in Pseudomonas savastanoi pv. savastanoi NCPPB 110 

3335 and Erwinia toletana DAPP-PG 735 111 

The olive knot pathogen Pseudomonas savastanoi pv. savastanoi (PSV) NCPPB 3335 112 

(17, 18) was the first PSV genome sequenced and has been used in several studies of  113 

virulence mechanisms (19). This genome harbors a canonical luxI/luxR pair identical to 114 

the previously reported pssI/R QS system of PSV DAPP-PG 722 [hereafter named 115 

pssI/pssR; (15)] and two luxR solos which do not have a cognate luxI partner (Figure 1A). 116 

From the primary structure of the two LuxR solos, one likely responds to plant signals 117 

(designated as LuxR2) and the other most likely to AHLs (designated as LuxR3) (20, 21). 118 

Interestingly, this content of LuxI/R QS elements is conserved in all P. savastanoi strains 119 

infecting woody plants whose genomes have been sequenced (22-25). 120 

With respect to the olive knot resident and PSV cooperator E. toletana (ET), we 121 

previously reported that ET DAPP-PG 735 was able to synthesize AHLs via the EtoI/R 122 

QS system. The etoI mutant, hereafter ETETOI, resulted in no AHL production hence it 123 

was concluded that ET possessed one AHL QS system (15). Sequencing of the ET 124 

genome (26) and its analysis performed here, surprisingly revealed that ET possessed a 125 

second complete canonical AHL QS system. The AHL-responsive transcriptional 126 

regulator gene was designated as tolR and the autoinducer synthase as tolI (Figure 1B).  127 

AHL production by Pseudomonas savastanoi pv. savastanoi NCPPB 3335 and 128 

Erwinia toletana DAPP-PG 735  129 

QS and AHL production by PSV NCPPB 3335 has not been addressed so far, thus a pssI 130 

mutant and its complemented strain, expressing the pssI gene from a plasmid, were 131 
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constructed. PSV NCPPB 3335, the pssI mutant and its complemented strain were grown 132 

overnight in LB broth and AHLs were extracted from spent supernatants as described in 133 

the materials and methods section. C6-AHL production was observed and determined for 134 

PSV NCPPB 3335, whereas no AHL production was detected for the ΔpssI mutant strain 135 

(Table 4 and S1). Interestingly, four types of AHLs (C6-, C8-, 3-oxo-C6- and 3-oxo-C8-136 

AHLs) were identified in the supernatant of the ΔpssI complemented strain, indicating 137 

that overexpression of pssI leads to the production of some types of AHLs not detected in 138 

the wild type. 139 

We also analyzed AHL production by the EtoI/EtoR and TolI/TolR ET DAPP-PG 735 140 

QS systems. Production of six types of AHL was detected for the wild type ET DAPPG-141 

PG 735: 3-oxo-C6-, 3-oxo-C8-, 3-oxo-C10-, C6-, C8- and 3-OH-C6-AHLs (Table 4 and 142 

S1). We previously reported that this ET strain produced 3-oxo-C6- and 3-oxo-C8-AHLs 143 

[15], thus this analytical chemical analysis revealed a wider spectrum of AHL production. 144 

As expected, the ETETOI mutant was unable to produce any type of AHL, while the 145 

ETETOI complemented strain restored the biosynthesis of all types of AHLs (Table 4 146 

and S1). The ETTOLI showed a defect in the biosynthesis of 3-oxo-C10-AHL and 147 

unexpectedly it was not restored via the expression of tolI in trans. The summary of the 148 

complete AHL analysis in relation to the peak areas of the detected chromatographic 149 

peaks are provided in Table S1 and Figure S3.  150 

Transcriptional analysis of quorum sensing genes in PSV NCPPB 3335 and ET 151 

DAPP-PG 735 152 

We previously observed that a pssR mutant of PSV DAPP-PG 722 produced an amount 153 

of AHLs similar to the wild type strain, suggesting that the positive feedback loop typical 154 
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of AHL QS systems does not occur in PSV. To address this possibility in PSV NCPPB 155 

3335, the pssI promoter region was cloned in a promoter probe vector (pMP220) 156 

upstream a promoterless lacZ gene and β-galactosidase activity was measured in PSV 157 

NCPPB 3335 and its derivative pssI and pssR mutants during their growth. As shown in 158 

Figure 2A, the activity of pssI promoter was significantly increased in the stationary 159 

phase (10 hours incubation) compared to the exponential phase (4 hours incubation) in all 160 

three PSV genetic backgrounds. Moreover, no differences in β-galactosidase activity was 161 

observed among the three strains in neither log phase nor stationary phase, thus 162 

confirming that the typical AHL QS positive feedback loop does not occur in PSV 163 

NCPPB 3335. 164 

It was also of interest to study the expression of the ET QS systems; gene promoters of 165 

etoI, etoR, tolI and tolR were fused to a promoterless gfp to perform a comparative in 166 

vitro transcriptional analysis of both systems in ET, ETETOI and ETTOLI genetic 167 

backgrounds. Results showed that tolI and tolR genes had considerably lower promoters 168 

activities in ET compared to the etoI and etoR promoters (Figure 2B). Additionally, 169 

transcription of etoR in ETTOLI was enhanced compared to ET and ETETOI, suggesting 170 

that the TolI/TolR system might repress etoR transcription. Taking into account the low 171 

activity of tolI/tolR promoters under the in vitro conditions used, we questioned if this 172 

system was activated in planta. To examine this possibility, co-inoculation of PSV with 173 

ET wild type harboring tolI promoter fused to GFP were carried out in micropropagated 174 

olive plants. No GFP fluorescence was detected for tolI promoter, whereas it was 175 

observed in the etoI promoter fusion, thus demonstrating that tolI gene expression was 176 

very low also in planta. We then decided to perform a comparative analysis by RT-qPCR 177 
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of the transcription of tolI and tolR genes in two different media: the King’s B rich 178 

medium and the Hrp-inducing medium which mimics the plant apoplast (27). Results of 179 

this experiment revealed a repression of both genes in the Hrp-inducing medium 180 

compared to King’s B (Figure S1), which suggests that the environment of the plant 181 

might repress tolI and tolR transcription. It was therefore concluded that the TolI/R 182 

system was functional however it was repressed and/or not activated in ET under 183 

laboratory and in planta conditions that we have used. It cannot also be excluded that this 184 

AHL QS system is functional at very low AHL concentrations. 185 

Identification of the PSV NCPPB 3335 quorum sensing regulon 186 

It was of interest to establish the loci regulated by the PssI/R system thus a whole-187 

genome transcriptional RNAseq comparative analysis of wild type PSV NCPPB 3335 188 

and its derivative pssI mutant was performed. RNA was extracted from these strains 189 

grown in biological triplicates in LB broth to late-log phase and then sequenced as 190 

described in Material and Methods section. The results yielded a surprisingly small 191 

number of differentially expressed genes (DEGs) between the two strains (Table 5). To 192 

evaluate the reliability of the RNAseq results, the expression of these genes was analysed 193 

by RT-qPCR. Significant upregulation in the ΔpssI mutant was found only for three 194 

genes which encoded for PssR (PSA3335_1621), a pyruvate dehydrogenase E1 195 

component beta subunit (PSA3335_1622, pdhT) and a pyruvate dehydrogenase E1 196 

component (PSA3335_1624, pdhQ) (Table 5). On the other hand, downregulation of any 197 

of the genes identified by RNAseq analysis was not observed by RT-qPCR (Table 5). In 198 

conclusion, after combination of the results obtained by RNAseq and RT-qPCR, the pssI 199 

regulon of PSV NCPPB 3335 was restricted to only three genes (pssR, pdhT and pdhQ) 200 
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under the conditions tested. The pdhT and pdhQ genes were also reported to be under the 201 

control of the pssR homolog in P. syringae pv. syringae (PSS) strain B728a (28). 202 

Interestingly, in PSS, a regulon study also resulted in very small number of genes 203 

regulated by AHL QS which are the same loci also determined to be regulated in PSV in 204 

this study (28). 205 

Identification of the ET DAPP-PG 735 quorum sensing regulon 206 

It was also of interest to determine the AHL QS regulon in ET therefore transcriptional 207 

profiling was also performed via RNAseq comparing the wild type against the ETETOI 208 

mutant as described in the Materials and Methods section. DEGs of significance (p ≤ 209 

0.05) were selected and listed in Table S2. In total, 308 DEGs were identified in the AHL 210 

synthase mutant ETETOI mutant, among which 162 loci were down-regulated and 146 211 

up-regulated.  212 

Interestingly, 19% of DEGs (59 genes) were classified as carbohydrate metabolism 213 

(Table 6) and, among them, 18 loci of inositol catabolism, which were negatively 214 

regulated by EtoI/R. On the other hand, DEGs involved in D-galactarate, D-glucarate and 215 

D-glycerate catabolism as well as maltose and maltodextrin utilization were positively 216 

regulated by the EtoI/R system. Besides carbohydrate metabolism, EtoI/R regulated 217 

genes mostly involved in the metabolism of amino acids, loci involved in membrane 218 

transport and in respiration. Furthermore, it was established that menaquinone and 219 

phylloquinone biosynthesis, glycerolipid and glycerophospholipid metabolism were 220 

influenced by EtoI/R. In addition, 9 transcriptional regulators belonging to the DeoR, 221 

IclR, LacI and TetR families were regulated by EtoI/R QS system.  222 
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In order to corroborate RNAseq results, nine QS-regulated genes were randomly selected 223 

and RT-qPCR was carried out with gene-specific primers (Table 3). RNA samples 224 

extracted from three biological replicate sets were used as templates for RT-qPCR. 225 

Expression patterns determined from RT-qPCR were in good accordance with the 226 

expression levels obtained by RNAseq (Figure 3). 227 

Role of PssI/R of PSV NCPPB 3335 in planta 228 

In order to determine the role of the AHL QS system of PSV NCPPB 335 in virulence, 229 

the ΔpssI and ΔpssR mutants and their respective complemented strains were inoculated 230 

in micropropagated and in woody olive plants. In our conditions, no significant 231 

differences in knot development among the strains tested were found either in non-woody 232 

(micropropagated) or woody olive plants (Figure 3). Additionally, all bacteria reached a 233 

similar final population within the knots. It was concluded that PSV NCPPB 3335 AHL 234 

QS did not play a significant role in virulence under the conditions tested. 235 

In planta role of QS regulated loci of ET 236 

In order to study the possible role of some ET AHL QS regulated loci in the cooperative 237 

interaction with PSV, knock-out mutants in iolD, iotS, garL, malK, gldA and hslV genes 238 

were generated by insertion mutagenesis and co-inoculated with PSV in olive plants. 239 

Four of these DEGs (iolD, iotS, garL and malK) are involved in carbohydrate metabolism, 240 

which is the most representative category regulated by AHL QS in ET (see above). The 241 

gldA and hslV, on the other hand, encode for a glycerol dehydrogenase and ATP-242 

dependent protease.  243 

As previously established, co-inoculation of PSV with ET significantly increased the size 244 

of the olive knot (15, 16). When ET mutants, ETIOTS, ETMALK, ETGLDA and 245 
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ETHSLV were co-inoculated with PSV, olive knot size did not show any significant size 246 

alteration when compared when co-inoculated with ET wildtype (Figure 4A). Co-247 

inoculation of PSV with ETGARL and ETIOLD, on the other hand, had a significant 248 

effect on the olive knot size with approximately a 50% reduction for ETGARL and 249 

approximately 20% increase for ETIOLD (Figure 4A). When co-inoculated with 250 

ETGARL, the colony forming units (CFU) of PSV in the knot were significantly reduced 251 

and resulted in 20% the amount of cells when co-inoculation was performed with the 252 

wildtype ET (Figure 4B). A significant reduction in the CFUs of PSV was also observed 253 

when co-inoculated with ETIOTS, ETGLDA and ETHSLV regardless that olive-knot 254 

size was not significantly affected. In order to further determine the putative role of GarL 255 

in PSV-ET interaction, we co-inoculated GFP-labeled PSV with ET wild type or the garL 256 

mutant constitutively expressing RFP. At 30 dpi knots were visualized in a stereoscopic 257 

microscope using GFP and RFP filters (Figure 5A, 5B) and pictures were taken and 258 

processed as described in Materials and Methods. Results show that the percentage of 259 

PSV population co-localization with ET wild type is under 5%, whereas over 75% of ET 260 

co-localize with PSV (Figure 5C). On the other hand, mutation in the ET garL gene 261 

resulted in a drastic reduction of ET association with PSV, with only 6.6% of the total ET 262 

population overlapping PSV. This result, together with the reduced knot size in PSV-263 

ETGARL co-inoculation, indicated that GarL plays a major role in PSV-ET interaction.264 
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DISCUSSION 265 

There is a growing need to study interspecies bacterial interactions since it is now 266 

becoming evident that most bacteria in the wild live as part of complex communities. 267 

Moreover in relation to diseases, reports are beginning to demonstrate that pathogens 268 

undergo interactions and communicate with non-pathogenic commensal/resident host 269 

microbial flora (11, 29). We have previously reported that the olive knot disease is a 270 

model to study interspecies communication and cooperation between a bacterial pathogen 271 

and commensal bacteria in a plant disease (14, 15). This cross-communication occurs via 272 

cross-feeding/sharing of AHL QS signals whereas the mechanism(s) of cooperation 273 

leading to a more aggressive disease is currently not understood and could be due to 274 

metabolite(s) sharing and/or metabolic complementarity. In this study, we determined the 275 

QS regulons of PSV and ET in order to begin to shed some light in this cooperative 276 

interspecies interaction in a plant disease.  277 

Results presented here reveal that all P. savastanoi isolates infecting woody plants 278 

sequenced so far, harbor an identical content of AHL QS-related genes which consist of 279 

an archetypical AHL QS pair designated as pssI/pssR, and two luxR solos. The PssI/R 280 

system was firstly reported in strain DAPP-PG 722 (15) and displays 100% identity with 281 

PssI/R of strain NCPPB 3335 (studied here). At transcriptional level there is no QS 282 

positive feedback loop regulating the AHL synthase gene in PSV NCPPB 3335 (Figure 283 

2A), which is contrast with what occurs in P. syringae pv syringae (PSS) B728a [50], a 284 

strain closely related with PSV from a phylogenetic point of view. It cannot be excluded 285 

that one of the two LuxR solos present in PSV genomes might be involved in pssI 286 

regulation. Moreover, AefR (AHL epiphytic fitness Regulator) positively regulates the 287 
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pssI homolog ahlI, in P. syringae pv phaseolicola NPS3121 (30) and PSS B728a (31); a 288 

homolog of AefR is present in PSV genomes and could therefore have a similar function 289 

in regulating pssI in PSV. 290 

In planta infection studies revealed that in PSV NCPPB 3335 neither pssI nor pssR are 291 

involved in virulence in the olive plant. It cannot be excluded however that AHL QS in 292 

PSV might plays a role in the epiphytic fitness/lifestyle in planta; QS has been shown to 293 

play a role in epiphytic fitness in PSS as well as other plant-associated bacteria (28, 31-294 

33). 295 

We found that wild type PSV NCPPB 3335 produces exclusively C6-AHL, whereas PSV 296 

DAPP-PG 722 synthesizes 3-oxo-C6- and 3-oxo-C8-AHLs (15) regardless that the luxI 297 

homologs are 100% identical; some other factor(s) might be responsible for the 298 

generation of different signal molecules. Overexpression of pssI in PSV NCPPB 3335 299 

yielded 3-oxo-C6- and 3-oxo-C8-HSLs in addition to C6-AHL (Table 2), suggesting that 300 

different expression levels between these two strains might explain differences in AHL 301 

production. AHLs are synthesized by LuxI using S-adenosylmethionine and an acyl 302 

group which is provided by an acyl-carrier protein (ACP) (34). We have identified an 303 

ACP-encoding gene in the genome of PSV DAPP-PG 722 (locus tag GS14_RS0122650) 304 

which is not present in the PSV NCBBP 3335 genome; this locus might be involved in 305 

AHL synthesis and consequently lead to a dissimilar AHL profile synthesis between 306 

these two PSV strains. We previously reported 3-oxo-C6- and 3-oxo-C8-AHL production 307 

by ET DAPP-PG 735 (15) and here we demonstrated the production of four additional 308 

types of AHL (C6-, C8-, 3-oxo-C10- and 3-OH-C6-AHLs) using a more sensitive 309 

technique. The ability to produce more AHL types by ET increases its ability to cross-310 
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talk with bacterial neighbours. The PSV NCPPB 3335 can synthesize three out of the six 311 

types of AHL produced by ET indicating possible eavesdropping between PSV and ET 312 

via these AHLs. This is in line with our previous study which demonstrated rescue of the 313 

PSV QS response of a pssI mutant by co-inoculation with ET wild type (15). 314 

This study reports the genetic loci regulated by AHL QS in a woody host pathogen of the 315 

P. syringae complex. Previous reports involve the two P. syringae herbaceous pathogens 316 

P. syringae pv syringae (PSS) and P. syringae pv. tabaci (PST).  PSV NCPPB 3335 317 

AHL QS regulon consists of only three genetically close loci, namely pdhT, pdhQ and 318 

pssR. In PSS strain B728a AHL QS regulates the transcription of only a 9 gene cluster 319 

located adjacent to the ahlR-ahlI locus which also contains the pdhT and pdhQ loci (28), 320 

whereas in PST  strain 11528 over 300 genes were found to be regulated by QS, 321 

including phdT, pdhQ and the pssR homologs (35).  Despite such a difference in AHL QS 322 

regulons among these strains, the transcription of pdhT, pdhQ and pssR (ahlR) is 323 

common in all P. syringae species and their role in P. syringae deserves further attention. 324 

(36).  325 

QS in Erwinia species plays important roles in virulence determinants and secondary 326 

metabolite production (37). E. toletana is a harmless epiphyte and endophyte and was 327 

first isolated from olive knots caused by PSV, and is now a model to study multispecies 328 

interactions with PSV (14). ET DAPP-PG 735 possesses two canonical AHL QS systems, 329 

designated as EtoI/R and TolI/R. Prior to the availability of the genome sequence, AHL 330 

QS signals produced by ET were initially only attributed to EtoI (15). Here we report that 331 

promoter activities of tolI/R in ET, ETTOLI and ETETOI were very low and were barely 332 

detectable in planta and were found to be repressed by the plant apoplast mimic medium, 333 
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suggesting that tolI/R is stringently regulated and might need a yet unidentified stimulus 334 

to be expressed. It is common that two or more AHL QS systems coexist in one 335 

bacterium and many of these are interconnected in their regulation (38-43). The 336 

uniqueness in E. toletana is that one system is stringently regulated probably requiring, in 337 

addition to cell-density, an environmental stimulus in order to be activated and/or de-338 

repressed. 339 

In ET, 308 genes were found to be regulated by EtoI/R controlling diverse functions such 340 

as membrane transport, protein metabolism, respiration, stress response, cell division and 341 

cell cycle. Interestingly, 59 loci were involved in metabolism of carbohydrates including 342 

inositol, D-galactarate, D-glucarate, maltose and maltodextrin indicating that it plays an 343 

important role in carbon resource acquisition. It was therefore of interest to study whether 344 

any of these carbohydrate metabolic pathways play a role in interspecies interactions and 345 

cooperation with PSV. As shown in Figure 4, when co-inoculated with several ET 346 

mutants in these pathways, PSV reached lower population densities, indicating that iotS, 347 

garL, gldA and gslV ET genes play a role in PSV-ET cross-communication. IN addition, 348 

co-inoculation of the ET garL mutant with PSV resulted in a significantly smaller olive 349 

knot. The alpha-dehydro-beta-deoxy-D-glucarate aldolase GarL catalyzes the cleavage of 350 

both 5-keto-4-deoxy-D-glucarate and 2-keto-3-deoxy-D-glucarate to pyruvate and 351 

tartronic semialdehyde (44). GarL is involved in D-galactarate, D-glucarate and D-352 

glycerate catabolism synthesizing D-glycerate from galactarate. This demonstrates that 353 

ET-PSV cross-communication also occurs through some reactions of primary metabolism 354 

that not only affect the growth of PSV in planta, but also its virulence. 355 

 on A
ugust 22, 2018 by guest

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/


 17 

In summary, this work further demonstrated the role of AHL QS in the olive knot as well 356 

as metabolic interaction. This therefore further highlights the olive knot as a good model 357 

to study bacterial interspecies interactions in planta of a plant disease. 358 

359 
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MATERIALS AND METHODS 360 

Bacterial strains, media, growth conditions and recombinant DNA techniques 361 

Bacterial strains used in this study are listed in Table 1. PSV and ET were grown at 28 °C 362 

and Escherichia coli was grown at 37 °C in Luria-Bertani (LB) medium (45) and Super 363 

Optimal Broth (SOB) (46). Solid and liquid media were amended when required with the 364 

appropriate antibiotic. Antibiotic concentration used were: kanamycin (Km) 10 µg ml-1 365 

for PSV and 50 µg ml-1 for E. coli, gentamycin (Gm) 10 µg ml-1, ampicillin (Ap) 400 µg 366 

ml-1 for PSV and 100 µg ml-1 for E. coli; and tetracycline 10 µg ml-1. 367 

All recombinant DNA techniques including restriction digestion, and agarose gel 368 

electrophoresis, purification of DNA fragments and ligations with T4 DNA ligase were 369 

performed as previously described (47). Plasmids were purified by using EuroGold 370 

columns (EuroClone, Italy) and were sequenced by Macrogen Europe (Amsterdam, NL) 371 

when necessary. 372 

Construction of bacterial strains  373 

Plasmids and oligonucleotides used in this study are listed in Tables 2 and 3, respectively. 374 

PSV NCPPB 3335 pssI (PSA3335_1620) and pssR (PSA3335_1621) mutants were 375 

generated by allelic interchange. DNA fragments of approximately 1 kb corresponding to 376 

the upstream and downstream flanking regions of the gene to be deleted were amplified 377 

in three rounds of polymerase chain reaction (PCR) using Expand High Fidelity 378 

polymerase (Roche Applied Science, Mannheim, Germany). Restriction sites for HindIII 379 

were included in the primers as previously described (48). The resulting products, 380 

consisting on upstream and downstream flanking regions separated by the HindIII 381 

restriction site, were cloned into pGEMT-Easy (Promega, Madison, WI, U.S.A.) and 382 
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sequenced to discard mutations. Next, the kanamycin resistance gene nptII was extracted 383 

by enzyme restriction from pGEMT-KmFRT- HindIII (49) and cloned in the plasmids 384 

mentioned above to generate pECP10-Km and pECP11-Km (Table 2). All the plasmids 385 

generated for the construction of PSV NCPPB 3335 mutants were suicide vectors in PSV. 386 

Plasmids were transferred to NCPPB 3335 by electroporation (17) and transformants 387 

were selected in LB-Km plates. To select the allelic interchange (double recombination 388 

event) and discard plasmid integration (single recombination event), individual colonies 389 

were replicated into LB-Ap plates and ApR colonies were discarded. Southern blot 390 

analyses were carried out to confirm single integration in the correct position in PSV 391 

genome. 392 

Mutation of selected genes in ET was performed via a single homologous recombination 393 

event with the use of pKNOCK-Km suicide delivery system as previously described (50) 394 

generating mutants of ETIOLD, ETIOTS, ETGARL, ETMALK, ETGLDA, ETHSLV, 395 

ETTOLI and ETTOLR. Briefly, internal fragments from iolD (G200_RS0103425), iotS 396 

(G200_RS0119945), garL (G200_RS0124305), malK (G200_RS0114460), gldA 397 

(G200_RS0114990), hslV (G200_RS0113655), tolI (G200_RS0118785) and tolR 398 

(G200_RS0118780) of ET were amplified using the primers listed in Table 3 and cloned 399 

in conjugative suicide vector pKNOCK-Km. The generated plasmids having internal 400 

fragments from selected genes were transformed into E. coli S17-1 λpir and delivered to 401 

ET for its homologous recombination. KmR colonies were verified by PCR analysis 402 

followed by sequencing of the targeted gene to confirm the generation of ET mutants. 403 

AHL extraction and characterization 404 
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Bacterial strains were grown overnight in LB broth (final volume 100 ml); cells were 405 

then removed by centrifugation and the supernatant was used to purify AHLs. Spent 406 

supernatants were filtered (pore diameter 0.45 µm), mixed with one volume of 0.1% 407 

acetic acid (v/v) in ethyl acetate and incubated under shaking conditions for 30 minutes. 408 

The organic phases were dried at room temperature. The AHLs produced by each strain 409 

were identified from the organic extracts of spent supernatants by liquid chromatography-410 

electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) as we described 411 

previously (51). As an example of this analysis, the ion chromatograms of an AHL 412 

standard and the E. toletana wild type sample is provided in Figure S3. 413 

Construction of plasmids and reporter assays 414 

For the complementation of PSV ΔpssI and ΔpssR mutant strains, the entire open reading 415 

frames of each gene and their corresponding promoter and transcriptional terminator 416 

regions were amplified by PCR using Expand High Fidelity polymerase (Roche Applied 417 

Science, Mannheim, Germany) and cloned into pGEMT-Easy (Promega, Madison, WI, 418 

USA). After sequencing to discard mutations, the fragments were directionally subcloned 419 

into pBBR:MCS5 yielding pBBR:pssI and pBBR:pssR.  420 

DNA fragments of 338 and 352 bp containing pssI and pssR promoter regions, 421 

respectively, were amplified by PCR using oligonucleotides listed in Table 3 and cloned 422 

into pMP220 (52). The resulting plasmid lacZ transcriptional fusions were transferred to 423 

PSV by electroporation and β-galactosidase activity was measured as described 424 

previously (45). Bacteria were grown in LB broth amended with 10 µg ml-1 tetracycline 425 

at an initial OD600nm of 0.3 and β-galactosidase activity was measured throughout the 426 

growth curve.  427 
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Promoter regions of etoI, etoR, tolI and tolR ET genes were amplified by PCR using the 428 

oligonucleotides listed in Table 3 and cloned in the vector pBBR:GFP (53) in order to be 429 

transcriptionally fused to a promoterless gfp gene. The resulting plasmids were 430 

transformed by electroporation into ET strains (54) and gene promoter activity was 431 

determined as the amount of GFP fluorescence measured in the late log phase at 510nm 432 

on a microplate reader (Perkin Elmer EnVision 2104). The expression of tolI and tolR 433 

was also analyzed by RT-qPCR in King’s B and Hrp-inducing medium as reported 434 

previously (48). The etoI and tolI promoter activities were measured in vivo in mixed 435 

PSV-ET infections. Ten plants were inoculated with each of the three combinations: PSV 436 

and ET expressing a promoterless GFP (negative control), PSV and ET-pBBR:PetoI-GFP, 437 

and PSV and ET-pBBR:PtolI-GFP. The presence/absence of fluorescence was verified 438 

using a stereoscopic microscope (Leica MZ FLIII; Leica Microsystems, Wetzlar, 439 

Germany). 440 

RNA extraction, RNAseq and analysis 441 

Ribopure bacteria RNA isolation kit (Ambion Inc., Austin, TX, U.S.A.) was used for 442 

total RNA extraction from three biological replications. Bacteria were grown in LB until 443 

the onset of stationary phase and about 2 x 109 cells were collected for RNA extraction 444 

following the manufacturer’s instructions. Library preparation and transcriptome 445 

sequencing were performed by IGA Technology Services Srl (Udine, Italy). Briefly, 446 

libraries were constructed with TruSeq Stranded mRNA Sample Prep kit (Illumina, San 447 

Diego, CA) and single-end sequencing was carried out on HiSeq2500 (Illumina, San 448 

Diego, CA). Illumina adapters, lower quality bases and poly-A tails were removed using 449 

ERNE (55). Software and tools for de novo assembly and comparisons were performed as 450 
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previously described (56-58). The false discovery rate (FDR) with a significance level of 451 

≤0.05 and with a minimum fold change set as the threshold were used to judge the 452 

significance of gene expression difference. Reads obtained from adapter removal were 453 

aligned against GCA_000336255.1 and GCA_000164015.2 reference genome assemblies. 454 

Features counts produced by RNA-seq were normalized and analyzed with DeSeq2 455 

software (http://dx.doi.org/10.1186/s13059-014-0550-8) to calculate differential 456 

expression values (log2 of the fold change LFC) and raw p-values. To select differentially 457 

expressed genes, genes raw p-values were corrected for multiple testing using with the 458 

false discovery rate (FDR) method (59). Final selection was based on genes with FDR 459 

≤0.05. The original RNAseq data has been submitted in the Sequence Read Archive 460 

(SRA) as submission number SUB3743389 461 

Validation of RNAseq data using qRT-PCR 462 

Quantitative real-time PCR was performed on CFX96 Touch qPCR system (Bio-Rad, 463 

Hercules, CA, USA) to validate expression patterns from transcriptome analysis. cDNA 464 

was generated following the manufacturer’s protocol of Reverse Transcription system kit 465 

(Promega, Madison, WI, USA) starting with 1-2 µg of purified RNA as input. Diluted 466 

with RNase-free water, the synthesized cDNA samples were adjusted to 25 ng·μL-1 and 467 

were measured by Nano Drop 2000 (Thermo scientific, Wilmington, DA, USA). In each 468 

reaction, 2 µL of cDNA template was mixed with GoTaq qPCR Master Mix kit (Promega, 469 

Madison, WI, USA) and specific primers (Table 3) to a final volume of 12 µl. qPCR 470 

primer designing was performed with free online software following the instructions of 471 

Brenda Thornton and Chandak Basu (60). Each reaction was carried out initially with 2 472 

min at 95 °C, followed by 45 cycles of PCR (95 °C, 15 s; 60 °C, 30 s). The relative 473 
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transcript abundance was calculated using the cycle threshold (ΔΔCt) method (61). 474 

Transcriptional data were normalized to the gyrA (for PSV) or recA (for ET) 475 

housekeeping genes. 476 

In planta experiments 477 

Olive plants were micropropagated and inoculated as detailed previously (62). Briefly, 478 

micropropagated olive plants were wounded by excision of an intermediate leaf and 479 

infected in the stem wound with a bacterial suspension under sterile conditions. For this 480 

purpose, bacterial lawns were grown for 48h on LB plates, washed twice with 10 mM 481 

MgCl2 and resuspended in 10 mM MgCl2 to an approximate concentration of 108 482 

CFU·mL-1. Suspension of PSV alone or mixed with ETIOLD, ETIOTS, ETGARL, 483 

ETMALK, ETGLDA and ETHSLV respectively in 1:1 (vol:vol) ratio were prepared. 484 

Plants were inoculated with approximately 5x103 total CFU and kept in a growth chamber 485 

for 30 days, as previously described (62). The morphology of the knots was observed 486 

with a stereoscopic microscope 30 days post-inoculation (dpi) (Leica MZ FLIII; Leica 487 

Microsystems, Wetzlar, Germany), also equipped with a 100 W mercury lamp, a GFP2 488 

filter (excitation 480/40 nm; emission 510LP nm) and a red fluorescent protein (RFP) 489 

filter (excitation 546/10 nm; emission 570LP nm). For the quantification of green (GFP-490 

tagged PSV) and red (RFP-tagged ET and ETGARL strains) pixels, two pictures per knot 491 

(corresponding to the front and back sides of the tumour) were taken with each the GFP2 492 

and RFP filters. Pictures were transformed to 8-bits images and overlapped with Fiji 493 

ImageJ (https://imagej.net/Fiji) using the Image correlator plugin. The number of green 494 

pixels overlapping red pixels, indicating the population of PSV that co-localize with 495 

ET/ETGARL, was determined for both the front and the back sides of each knot and an 496 
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average per knot was calculated. An identical procedure was used to determine the 497 

percentage of ET or ETGARL population that co-localize with PSV. Bacteria were 498 

recovered from the knots using a mortar and pestle containing sterile MgCl2 10 mM. 499 

Serial dilutions were plated on LB plates supplemented with the corresponding antibiotic 500 

when required. Knots were 3D scanned and the knot size determined using the Neftabb 501 

Basic 5.2 software.  502 

The virulence of PSV and its derived mutants and complemented strains was also 503 

analysed on 1-year old olive plants on 1-year old olive plants (Olea europaea) derived 504 

from a seed originally collected from a cv. Arbequina plant as detailed before (17, 63, 64). 505 

Morphological changes scored at 90 dpi were captured with a high-resolution camera 506 

Canon D6200 (Canon Corporation, Tokyo, Japan). The knot volume was calculated from 507 

a minimum of three representative knots as described previously (15, 65). 508 
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Figure Legends 515 

Figure 1. Gene arrangement of quorum sensing system elements in the genomes of PSV 516 

NCPPB 3335 and ET DAPP-PG 735. (A) pssI and pssR represent a canonical luxI/luxR 517 

gene pair, whereas luxR2 and luxR3 correspond to orphan luxR homologs in PSV NCPPB 518 

3335. (B) etoI/etoR and tolI/tolR represent two canonical luxI/luxR gene pairs of ET 519 

DAPP-PG 735. Codes above arrows correspond to locus tags 520 

Figure 2. Promoter activities of PSV and ET quorum sensing genes. (A) β-galactosidase 521 

activity of pssI promoter fusion to lacZ measured in PSV NCPPB 3335, ΔpssI and ΔpssR 522 

at log (4 hours incubation) and stationary phase (10 hours incubation). PSV harboring a 523 

promoterless lacZ (empty pMP220 plasmid) was included as a control. Asterisks indicate 524 

a significant difference (student’s t test, P < 0.05) in promoter activity in stationary phase 525 

compared to log phase (B) GFP fluorescence of etoI, etoR tolI and tolR fusions to gfp 526 

measured in ET, ETTOLI and ETETOI backgrounds. GFP fluorescence was normalized 527 

to OD600. Bars represent the average of three independent replications ± the standard 528 

deviation 529 

Figure 3. Evaluation of RNAseq-based expression patterns of ET using RT-qPCR. The 530 

expression patterns of randomly selected genes were analyzed by RT-qPCR to validate 531 

RNAseq results. The values of fold difference were average of three biological replicates 532 

which were calculated by using comparative quantification method. Log2 ratio of 533 

obtained values was compared with log2 ratio of (ETETOI/ET) FPKM values. 534 

Figure 4. Role of ET AHL QS loci in the PSV-ET cooperation in planta. (A) Size of the 535 

knots induced in micropropagated olive plants at 30 dpi by PSV in combination with ET 536 
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strains. (B) CFU of PSV and (C) CFU of ET recovered from knots. Bars indicate the 537 

average of, at least, three knots ± standard deviation. 538 

Figure 5. Knots developed at 30 dpi in micropropagated olive plants after co-inoculation 539 

of GFP-labelled PSV with RFP-labelled ET or ETGARL. (A) Co-inoculation using GFP-540 

labelled PSV and RFP-labelled ET. (B) Co-inoculation using GFP-labelled PSV and 541 

RFP-labelled ETGARL. (C) Percentage of the PSV and ET/ETGARL populations co-542 

localization within the knot. Bars represent the average of six independent knots ± 543 

standard deviation. 544 

 545 

 546 
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Table 1. Bacterial strains used in this study 553 
 554 
Bacterial Strains Relevant characteristics Source 
Escherichia coli   
DH5α F– Φ80lacZΔM15 Δ(lacZYA-argF) U169 

recA1 endA1 hsdR17 (rK–, mK+) phoA 
supE44 λ– thi-1 gyrA96 relA1 

Invitrogen-LifeTechnologies  
 

S17-1λpir KmR, recA, pro, hsdR, RP4-Tc::Mu-Km::Tn7, 
pir 

(66) 

Erwinia toletana   
DAPP-PG 735 Wild type (15) 
ETETOI Deletion etoI mutant of ET DAPP-PG735 (15) 
ETETOR Deletion etoR mutant of ET DAPP-PG735 (15) 
ETTOLI Deletion tolI mutant of ET DAPP-PG735 This study 
ETTOLR Deletion tolR mutant of ET DAPP-PG735 This study 
ETIOLD Deletion iolD mutant of ET DAPP-PG735 This study 
ETIOTS Deletion iotS mutant of ET DAPP-PG735 This study 
ETGARL Deletion garL mutant of ET DAPP-PG735 This study 
ETMALK Deletion malK mutant of ET DAPP-PG735 This study 
ETGLDA Deletion gldA mutant of ET DAPP-PG735 This study 
ETHSLV Deletion hslV mutant of ET DAPP-PG735 This study 
ETETOI-
pBBR:etoI 

ETETOI complemented with pBBR:etoI This study 

ETTOLI-pBBR:tolI ETTOLI complemented with pBBR:tolI This study 
Pseudomonas 
savastanoi pv. 
savastanoi  

  

NCPPB 3335 Wild type (17) 
ΔpssI Deletion pssI mutant of NCPPB 3335 (KmR) This study 
ΔpssR Deletion pssR mutant of NCPPB 3335 (KmR) This study 
ΔpssI-pBBR:pssI ΔpssI complemented with pBBR:pssI This study 
ΔpssR-pBBR:pssR ΔpssR complemented with pBBR:pssR This study 

555 
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Table 2 Plasmids used in this study 556 
 557 
pGEM-T Easy Cloning vector; AmpR  Promega  
pKNOCK-Km  Conjugative suicide vector; KmR (50) 
pKNOCK- IOLD Internal PCR iolD fragment of ET DAPP-PG 

735 cloned in pKNOCK-Km; KmR 
This study 

pKNOCK- IOTS Internal PCR iotS fragment of ET DAPP-PG 
735 cloned in pKNOCK-Km; KmR 

This study 

pKNOCK- GARL Internal PCR garL fragment of ET DAPP-PG 
735 cloned in pKNOCK-Km; KmR 

This study 

pKNOCK- MALK Internal PCR malK fragment of ET DAPP-PG 
735 cloned in pKNOCK-Km; KmR 

This study 

pKNOCK- GLDA Internal PCR gldA fragment of ET DAPP-PG 
735 cloned in pKNOCK-Km; KmR 

This study 

pKNOCK- HSLV Internal PCR hslV fragment of ET DAPP-PG 
735 cloned in pKNOCK-Km; KmR 

This study 

pECP10-Km pGEM-T Easy derivative containing 1kb on 
each side of the pssI (PSA3335_1621) gene 
from NCPPB 3335 interrupted by the 
kanamycin resistance gene nptII (ApR, KmR) 

This study 

pECP11-Km pGEM-T Easy derivative containing 1kb on 
each side of the pssR (PSA3335_1622) gene 
from NCPPB 3335 interrupted by the 
kanamycin resistance gene nptII (ApR, KmR) 

This work 

pGEMT-KmFRT-HindIII Contains KmR from pKD4 and HindIII sites 
(ApR KmR) 

This work 

pBBR:pssI pBBR1MCS-5-derivative containing the PSV 
NCPPB 3335 pssI and its promoter region (352 
bp) flanked by EcoRI and XbaI restriction sites 
(GmR) 

This work 

pBBR:pssR pBBR1MCS-5-derivative containing the PSV 
NCPPB 3335 pssR and its promoter region (435 
bp) flanked by EcoRI and XbaI restriction sites 
(GmR) 

This work 

pMP220  Promoter probe vector, IncP, LacZ; TcR  (52) 
pMP220-PpssI Transcriptional fusion of PSV pssI promoter to 

lacZ 
This work 

pLRM1-GFP Overexpression of GFP from pBBRMCS5 (67) 
pBBR:RFP pBBRMSC5 containing RFP (53) 
pBBR:GFP pBBRMSC5 containing a promoterless GFP (53) 
pBBR:PetoI-GFP Transcriptional fusion of ET etoI promoter to 

GFP 
This work 

pBBR:PetoR-GFP Transcriptional fusion of ET etoR promoter to 
GFP 

This work 

pBBR:PtolI-GFP Transcriptional fusion of ET tolI promoter to 
GFP 

This work 

pBBR:PtolR-GFP Transcriptional fusion of ET tolR promoter to 
GFP 

This work 

pBBR:etoI pBBR1MSC-5 containing etoI, Described as 
pBBRTolI in previous publication 

(15) 

pBBR:tolI pBBR1MSC-5 containing tolI This work 
 558 

559 
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Table 3 Primers used for cloning purposes 560 
 561 
Primers used for cloning purposes 
Plasmid Primer name Primer sequence 
pKNOCK- IOLD 
 

iolD_pnkFw AGATCTCACCAGATTCCGTTTGCCG 
iolD_pnkRev CTCGAGCTGTTGTAATCCCTGGTGCG 

pKNOCK- IOTS iotS_pnkFw AGATCTGCTGACCGATAAAATGGCGT 
iotS_pnkRev CTCGAGACCAATCGCCATTTCATCGT 

pKNOCK- GARL 
 

garL_pnkFw AGATCTGTCCACCTTGCAACGAACC 
garL_pnkRev CTCGAGGAGCTGGGTTTCGATTTGCA 

pKNOCK- MALK malK_pnkFw AGATCTATTGGTCGCACGCTGGTC 
malK_pnkRev CTCGAGCGATGGCCTTGTTAGTGACC 

pKNOCK- GLDA gldA_pnkFw AGATCTCCGATGAAGGGGTGTTTGAA 
gldA_pnkRev CTCGAGCCAGACCGCCATTCTCAAAG 

pKNOCK- HSLV hslV_pnkFw AGATCTGGTCATCTGGTTAAAGCCGC 
hslV_pnkRev CTCGAGCACCTGAACCGATGGCAATA 

pKNOCK-tolI 
 

muttolIFw GGATCACTGTGCCCTTTA 
muttolIRev TTATCCTCAGAGTGAATCAGCC 

pKNOCK-tolR muttolRFw TACGCGACCTGAGACGCATC 
muttolRRev ATTTTACGATTTCCAGCTCGCG 

pBBR:PtolI-GFP 
 

PtolIFw CAGAGATCTCGCTGATTC 
PtolIRev CGAATTCCGCCAACAACGA 

pBBR:PtolR-GFP PtolRFw AATCGTGGATCCGCGG 
PtolRRev CGAATTCACCACACCAG 

pBBR:PetoI-GFP PetoIFw TTAGATCTAAATCACGTAACAAC 
PetoIRew ATTCGAATTCATATCAAA 

pBBR:PetoR-GFP PetoRFw CAGATCTGCTCTTCCTGTAATGGGA 
PetoIRew CGAATTCACATTTGCCTGACCTCAA 

pBBR:pssI pssI_F-331 TCTAGATCGCTCTGATCCTGATGAGTG 
pssI_R924 GAATTCCTCATCCGCTTCCATGACC 

pBBR:pssR pssR-F-417 TCTAGAAGACGCTCGACGATGTCG 
pssR_R993 GAATTCTTGCAATCGATCATCACGG 

pBBR:tolI tolIFw GTCTCGAGCAAATCTGCTGATGCCGC 
tolIRev GGACTAGTGCCTGGCTGCTGATTACTTT 

pMP220-PpssI pssI_F-279 ACTCATGGAGATCTGGCAGAGATTTCGTGTTGGG 
pssI_R35 ACTCATGGGGTACCGTAACGGGCATCGTCGTG 

pBBR:pssI pssI_F-331 TCTAGATCGCTCTGATCCTGATGAGTG 
pssI_R924 GAATTCCTCATCCGCTTCCATGACC 

pBBR:pssR pssR-F-417 TCTAGAAGACGCTCGACGATGTCG 
pssR_R993 GAATTCTTGCAATCGATCATCACGG 

Primers used for the construction of pssI and pssR mutants 
pssR  PssR_F-1008 CATTCCAGTGCTCCTTGAGC 

TAPssR_R3 AAGCTTGACTCACTATAGGGGCTTTCACGGTACGA
ACCTC 

TDPssR_R739 CCCTATAGTGAGTCAAGCTTCCATCAACATGGGCAT
GG 

PssI_F-332 CCTGATGAGTGTGTGCATCG 
pssI TAPssI_R4 CCCTATAGTGAGTCAAGCTTCATGCATAGCGCTGCC

TG 
PssI_F-983 GATATCGGCGTTGATGTCCTG 
TDPssI_F680 CCCTATAGTGAGTCAAGCTTCATGCATAGCGCTGCC

TG 
PssR_F-280 TGCGCTGTTCATCACTACTCC 

Primers used in the qPCR experiments 
Gene ID Gene function Primer sequence 
E. toletana genes 
G200_RS0108970 PTS lactose transporter subunit IIB F: ACTCTGCGTATGTGGCTG 

R: TCGCTGGCATCTGAGGTT 
G200_RS0124540 Recombinase RecA F: CAGGCGATGCGTAAACTGG 
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R: GGCGAACAGAGGCGTAGA 
G200_RS0112020 Sigma-fimbria uncharacterized 

paralogous subunit 
F: CCTCGGTGTTGCCTCTTC 
R: CCATTGCCTGCTGAACCC 

G200_RS0112675 SulP family transporter F:GTGTATGTGGTGGCGGTG 
R: CACTGAGGTAATCGGCAAGC 

G200_RS0113655 ATP-dependent protease HslV F: GTAGTGATTGGCGGCGATG 
R: CCACAGCGGCTTTAACCAG 

G200_RS0114400 Conjugal transfer protein TraF F: GGCTACACCGATACTTACCAGA 
R: CACGATAACCACCACGCAA 

G200_RS0103275 HlyD family secretion protein F: AAACCCGCATCAACCCAC 
R: ATCACGCTTCACCTCATCCT 

G200_RS0103290 Hemagglutinin F: CCTGTTGCTGGGTTCATTGTT 
R: GTGGTGGTAGCCGAGGTTT 

G200_RS0123635 Transcriptional regulator, TetR family F: GCAGTCACAGGATGCGATTC 
R: TGAGCCATACACCAGCGATAG 

G200_RS0123645 TIM-barrel signal transduction protein F: CGCTGAAACCGCACTGAAA 
R: GCCGTAGAAACCATCGCAAA 

G200_RS0118785 tolI F: TGGAGAAGGCTGGTCTATTC 
R: GCATTAAAGGGCACAGTGAT 

G200_RS0118780 tolR F: TAATGCGTCTGAAACTGGTC 
R: CGACATATTTCTTCTGCCGA 

P. savastanoi pv. savastanoi genes 
PSA3335_1622 Pyruvate dehydrogenase E1 

component, beta subunit 
F: TCAAGGAGCACTGGAATGTCG 
R: TCTTCAAGGGATGGAAACGATT 

PSA3335_1624 Pyruvate dehydrogenase E1 component F: CGATACCGTGCTGTGTGTCT 
R: GATCAGGGTGCGGGTAGTTC 

PSA3335_1621 LuxR transcriptional regulator F: ACTGCCCACCGTTGAAGATAA 
R: CATAAGATTTCAGCCAGGAGTCG 

PSA3335_2315 Putative hydrocarbon oxygenase F: TGCCGTTCTTCCTGGCTTA 
R: ACCCGTCATTCATCCACCG 

PSA3335_4742 Urocanate hydratase F: AGCGGGCATTCCTACCTTC 
R: AGAACAACGGGCGGATGTA 

PSA3335_1620 Homoserine lactone synthase F: CACTGACCGAAATGCTGCTGT 
R: TTGCTGACCACCGTGATGAT 

PSA3335_4623 Copper chaperone F: GACTCAAGCGATCAAGAACGATG 
R: CTGCTCGGGTGACAGACTG 

PSA3335_2048 Hypothetical protein F: AATACCACCGCATCGACGAA 
R: TCACGCCGTTGACCAGAAA 

PSA3335_0454 Malonate decarboxylase delta subunit F: TTCGCCAGGCAAGCTATCAA 
R: TCCTCGAAGCCCTGATCCA  

PSA3335_2054 Hypothetical protein F: TGAGCATCTACAGGCTTCGGA 
R: 
CATGTTGATAAGGAATGAGGTTCG 

PSA3335_4121 Pectin lyase precursor F: CCAAGGTGCAGGACTGTTCA 
R: GATACGGGCGAAGGTGTTGT 

 562 
563 
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 564 
Table 4. Quantification of AHLs produced by PSV NCPPB 3335 and ET DAPP-PG 735a 565 
 566 
 C6-AHL C8-AHL 3-oxo-C6-

AHL 
3-oxo-C8-
AHL 

3-oxo-C10-
AHL 

3-OH-C6-
AHL 

PSV + - - - - - 
ΔpssI - - - - - - 
ΔpssI-
pBBR:pssI 

+++ 
 

+ 
 

+++ 
 

++ 
 

- - 

ET +++ + +++ +++ + ++ 
ETETOI - - - - - - 
ETETOI
- 
pBBR:etoI 

+++ +++ +++ +++ +++ +++ 

ETTOLI +++ + +++ +++ - ++ 
ETTOLI- 
pBBR:tolI 

+++ + +++ +++ - ++ 
 567 
a -, no production; +, relative peak area <100,000; ++, relative peak area between 100,000 and 1,000,000; 568 
+++, relative peak area >1,000,000 569 

570 
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Table 5. Genes regulated by pssI in PSV NCPPB 3335 571 
 572 

 573 
aUpregulated or downregulated genes in the ΔpssI mutant according to RNAseq data. 574 
bUN, unnamed 575 
cThe log2 (fold change) obtained in the RNAseq and RT-qPCR experiments are represented. The fold 576 
change refers to the ratio of the average expression obtained in the ΔpssI mutant versus the wild type strain 577 
in three biological replicates. Genes which QS-dependent expression was corroborated by RT-qPCR are 578 
underlined579 

Locus taga Geneb Gene product RNAseqc RT-qPCRc 

Upregulated 

PSA3335_1622 pdhT Pyruvate dehydrogenase E1 component, 
beta subunit 

3.27 3.6 

PSA3335_1624 pdhQ Pyruvate dehydrogenase E1 component 2.97 2.32 
PSA3335_1621 pssR LuxR transcriptional regulator 1.44 3.95 
     
Downregulated 
PSA3335_4623 UN Copper chaperone -1.07 -0.82 
PSA3335_4121 UN Pectin lyase precursor -0.92 0.52 
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Table 6. Genes regulated by etoI in ET DAPP-PG 735 classified as carbohydrates 580 
metabolism 581 
 582 
 583 
Gene ID log2(ETEOI/ET) FDR Gene product 

Inositol catabolism 

G200_RS0101695 2.56366058 1.13E-09 Major myo-inositol transporter IolT 

G200_RS0103410 2.81622077 3.38E-45 Inosose dehydratase IolE 

G200_RS0103415 3.051765216 2.74E-47 Glyceraldehyde-3-phosphate ketol-isomerase IolH 

G200_RS0103420 3.612129551 3.41E-57 Myo-inositol 2-dehydrogenase 1 IolG 

G200_RS0103425 3.034782963 1.24E-11 Epi-inositol hydrolase IolD 

G200_RS0103430 2.455264684 4.22E-08 5-keto-2-deoxygluconokinase IolC 

G200_RS0103435 1.82595615 7.10E-18 Transcriptional regulator of the myo-inositol catabolic 
operon IolR 

G200_RS0103440 2.322930823 6.16E-29 5-deoxy-glucuronate isomerase IolB 

G200_RS0103445 2.343048715 1.92E-08 Methylmalonate-semialdehyde dehydrogenase IolA 

G200_RS0103450 2.393433177 3.58E-08 Inosose isomerase IolI 

G200_RS0103485 2.265947451 7.57E-22 Inosose dehydratase 

G200_RS0103490 1.606575527 5.42E-13 Myo-inositol 2-dehydrogenase 

G200_RS0109945 2.054104613 1.56E-06 Myo-inositol 2-dehydrogenase 

G200_RS0111735 2.826752946 1.30E-21 Major myo-inositol transporter IolT 

G200_RS0119935 2.36064358 6.17E-31 Inositol transport system permease protein 

G200_RS0119940 2.922693363 5.94E-43 Inositol transport system ATP-binding protein 

G200_RS0119945 2.723773939 6.09E-34 Inositol transport system sugar-binding protein 

G200_RS0120045 2.507147476 1.44E-09 Myo-inositol 2-dehydrogenase 2 

D-galactarate, D-glucarate and D-glycerate catabolism 

G200_RS0114355 -1.471923639 1.25E-06 MFS transporter 

G200_RS0124280 -2.146858379 7.57E-39 D-galactarate dehydratase GarD 

G200_RS0124290 -2.155286292 3.22E-65 D-glucarate permease 

G200_RS0124295 -1.762097381 2.90E-22 Glucarate dehydratase GudD 

G200_RS0124300 -1.801096855 3.95E-16 Glucarate dehydratase GudD 

G200_RS0124305 -1.841655614 7.57E-39 2-dehydro-3-deoxyglucarate aldolase GarL 

G200_RS0124320 -1.921850417 2.06E-49 Glycerate kinase 

G200_RS25820 -2.073060541 9.97E-53 3-hydroxyisobutyrate dehydrogenase GarR 

Maltose and Maltodextrin catabolism 

G200_RS0105520 -1.474187006 1.51E-22 PTS system, maltose and glucose-specific IIABC 
component 

G200_RS0114455 -2.146215061 6.10E-08 Maltose/maltodextrin high-affinity receptor LamB 

G200_RS0114460 -3.460976388 1.17E-46 Maltose/maltodextrin transport ATP-binding protein 
MalK 
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G200_RS0114465 -3.432632153 3.66E-74 Maltose/maltodextrin ABC transporter, substrate binding 
periplasmic protein MalE 

G200_RS0114470 -1.356395147 1.92E-06 Maltose ABC transporter permease MalF 

Other carbohydrates metabolism 

G200_RS0102345 -1.326068817 1.39E-19 6-phospho-beta-glucosidase 

G200_RS0120860 -1.385897754 2.78E-07 PTS beta-glucoside transporter subunit EIIBCA 

G200_RS0109880 1.195365256 3.02E-14 Beta-glucuronidase 

G200_RS0108005 1.553737025 2.47E-29 Alcohol dehydrogenase 

G200_RS0118365 1.430810069 6.79E-14 Pyruvate formate-lyase 

G200_RS0108900 1.148093171 1.24E-10 Deoxyribose-phosphate aldolase 

G200_RS0116155 1.055489576 4.73E-12 Ribokinase 

G200_RS0109855 1.1278524 1.96E-13 Mannonate dehydratase 

G200_RS0102390 2.327906926 3.00E-11 Gluconate 2-dehydrogenase, membrane-bound, 
flavoprotein 

G200_RS0102395 2.004607764 1.22E-17 Gluconate 2-dehydrogenase, membrane-bound, gamma 
subunit 

G200_RS0119505 1.507781586 2.74E-15 Ribose ABC transport system, periplasmic ribose-binding 
protein RbsB 

G200_RS0118360 1.344548034 3.43E-28 Pyruvate formate lyase 1-activating protein PflA 

G200_RS0121040 1.68097694 2.43E-04 Aerobic glycerol-3-phosphate dehydrogenase GlpD 
G200_RS0121025 -1.369452767 7.02E-22 Glucose-1-phosphate adenylyltransferase GlgC 

G200_RS0121030 -1.413808857 4.42E-26 Glycogen synthase GlgA 

G200_RS0108965 1.651181716 2.59E-16 6-phosphofructokinase 

G200_RS0105430 -1.010271981 3.98E-16 Aconitate hydratase AcnA 

G200_RS0114595 -1.302381077 1.85E-17 Malate synthase 

G200_RS0101545 -2.502124169 2.13E-42 L-lactate dehydrogenase 

G200_RS0109845 1.012221802 6.78E-09 MFS transporter LacY 

G200_RS0118000 1.499549769 9.33E-05 6-phosphogluconolactonase 

G200_RS0100900 -1.050323621 2.49E-14 DUF485 domain-containing protein 

G200_RS0100905 -1.143638292 2.68E-11 Cation/acetate symporter ActP 

G200_RS0121020 -1.529478972 2.20E-39 Glycogen debranching enzyme 

G200_RS0113990 1.292475653 5.30E-11 PTS sugar transporter subunit IIB 

G200_RS0113995 1.209666009 1.43E-15 Putative carbohydrate PTS system, IIA component 

G200_RS0114000 1.458640254 1.69E-13 Putative transcriptional regulator of unknown 
carbohydrate utilization cluster, GntR family 

G200_RS0104280 -1.044495518 3.39E-06 Alpha/beta hydrolase 

Gene ID log2(ETEOI/ET
) 

FDR Gene product 

Inositol catabolism 

G200_RS010169
5 

2.56366058 1.13E-09 Major myo-inositol transporter IolT 

G200_RS010341
0 

2.81622077 3.38E-45 Inosose dehydratase IolE 
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G200_RS010341
5 

3.051765216 2.74E-47 Glyceraldehyde-3-phosphate ketol-isomerase IolH 

G200_RS010342
0 

3.612129551 3.41E-57 Myo-inositol 2-dehydrogenase 1 IolG 

G200_RS010342
5 

3.034782963 1.24E-11 Epi-inositol hydrolase IolD 

G200_RS010343
0 

2.455264684 4.22E-08 5-keto-2-deoxygluconokinase IolC 

G200_RS010343
5 

1.82595615 7.10E-18 Transcriptional regulator of the myo-inositol catabolic 
operon IolR 

G200_RS010344
0 

2.322930823 6.16E-29 5-deoxy-glucuronate isomerase IolB 

G200_RS010344
5 

2.343048715 1.92E-08 Methylmalonate-semialdehyde dehydrogenase IolA 

G200_RS010345
0 

2.393433177 3.58E-08 Inosose isomerase IolI 

G200_RS010348
5 

2.265947451 7.57E-22 Inosose dehydratase 

G200_RS010349
0 

1.606575527 5.42E-13 Myo-inositol 2-dehydrogenase 

G200_RS010994
5 

2.054104613 1.56E-06 Myo-inositol 2-dehydrogenase 

G200_RS011173
5 

2.826752946 1.30E-21 Major myo-inositol transporter IolT 

G200_RS011993
5 

2.36064358 6.17E-31 Inositol transport system permease protein 

G200_RS011994
0 

2.922693363 5.94E-43 Inositol transport system ATP-binding protein 

G200_RS011994
5 

2.723773939 6.09E-34 Inositol transport system sugar-binding protein 

G200_RS012004
5 

2.507147476 1.44E-09 Myo-inositol 2-dehydrogenase 2 

D-galactarate, D-glucarate and D-glycerate catabolism 

G200_RS011435
5 

-1.471923639 1.25E-06 MFS transporter 

G200_RS012428
0 

-2.146858379 7.57E-39 D-galactarate dehydratase GarD 

G200_RS012429
0 

-2.155286292 3.22E-65 D-glucarate permease 

G200_RS012429
5 

-1.762097381 2.90E-22 Glucarate dehydratase GudD 

G200_RS012430
0 

-1.801096855 3.95E-16 Glucarate dehydratase GudD 

G200_RS012430
5 

-1.841655614 7.57E-39 2-dehydro-3-deoxyglucarate aldolase GarL 

G200_RS012432
0 

-1.921850417 2.06E-49 Glycerate kinase 

G200_RS25820 -2.073060541 9.97E-53 3-hydroxyisobutyrate dehydrogenase GarR 

Maltose and Maltodextrin catabolism 

G200_RS010552
0 

-1.474187006 1.51E-22 PTS system, maltose and glucose-specific IIABC 
component 

G200_RS011445
5 

-2.146215061 6.10E-08 Maltose/maltodextrin high-affinity receptor LamB 

G200_RS011446
0 

-3.460976388 1.17E-46 Maltose/maltodextrin transport ATP-binding protein MalK 

G200_RS011446
5 

-3.432632153 3.66E-74 Maltose/maltodextrin ABC transporter, substrate binding 
periplasmic protein MalE 

G200_RS011447
0 

-1.356395147 1.92E-06 Maltose ABC transporter permease MalF 
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Other carbohydrates metabolism 

G200_RS010234
5 

-1.326068817 1.39E-19 6-phospho-beta-glucosidase 

G200_RS012086
0 

-1.385897754 2.78E-07 PTS beta-glucoside transporter subunit EIIBCA 

G200_RS010988
0 

1.195365256 3.02E-14 Beta-glucuronidase 

G200_RS010800
5 

1.553737025 2.47E-29 Alcohol dehydrogenase 

G200_RS011836
5 

1.430810069 6.79E-14 Pyruvate formate-lyase 

G200_RS010890
0 

1.148093171 1.24E-10 Deoxyribose-phosphate aldolase 

G200_RS011615
5 

1.055489576 4.73E-12 Ribokinase 

G200_RS010985
5 

1.1278524 1.96E-13 Mannonate dehydratase 

G200_RS010239
0 

2.327906926 3.00E-11 Gluconate 2-dehydrogenase, membrane-bound, 
flavoprotein 

G200_RS010239
5 

2.004607764 1.22E-17 Gluconate 2-dehydrogenase, membrane-bound, gamma 
subunit 

G200_RS011950
5 

1.507781586 2.74E-15 Ribose ABC transport system, periplasmic ribose-binding 
protein RbsB 

G200_RS011836
0 

1.344548034 3.43E-28 Pyruvate formate lyase 1-activating protein PflA 

G200_RS012104
0 

1.68097694 2.43E-04 Aerobic glycerol-3-phosphate dehydrogenase GlpD 

G200_RS012102
5 

-1.369452767 7.02E-22 Glucose-1-phosphate adenylyltransferase GlgC 

G200_RS012103
0 

-1.413808857 4.42E-26 Glycogen synthase GlgA 

G200_RS010896
5 

1.651181716 2.59E-16 6-phosphofructokinase 

G200_RS010543
0 

-1.010271981 3.98E-16 Aconitate hydratase AcnA 

G200_RS011459
5 

-1.302381077 1.85E-17 Malate synthase 

G200_RS010154
5 

-2.502124169 2.13E-42 L-lactate dehydrogenase 

G200_RS010984
5 

1.012221802 6.78E-09 MFS transporter LacY 

G200_RS011800
0 

1.499549769 9.33E-05 6-phosphogluconolactonase 

G200_RS010090
0 

-1.050323621 2.49E-14 DUF485 domain-containing protein 

G200_RS010090
5 

-1.143638292 2.68E-11 Cation/acetate symporter ActP 

G200_RS012102
0 

-1.529478972 2.20E-39 Glycogen debranching enzyme 

G200_RS011399
0 

1.292475653 5.30E-11 PTS sugar transporter subunit IIB 

G200_RS011399
5 

1.209666009 1.43E-15 Putative carbohydrate PTS system, IIA component 

G200_RS011400
0 

1.458640254 1.69E-13 Putative transcriptional regulator of unknown 
carbohydrate utilization cluster, GntR family 

G200_RS010428
0 

-1.044495518 3.39E-06 Alpha/beta hydrolase 

Gene ID log2(ETEOI/ET
) 

FDR Gene product 
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Inositol catabolism 

G200_RS010169
5 

2.56366058 1.13E-09 Major myo-inositol transporter IolT 

G200_RS010341
0 

2.81622077 3.38E-45 Inosose dehydratase IolE 

G200_RS010341
5 

3.051765216 2.74E-47 Glyceraldehyde-3-phosphate ketol-isomerase IolH 

G200_RS010342
0 

3.612129551 3.41E-57 Myo-inositol 2-dehydrogenase 1 IolG 

G200_RS010342
5 

3.034782963 1.24E-11 Epi-inositol hydrolase IolD 

G200_RS010343
0 

2.455264684 4.22E-08 5-keto-2-deoxygluconokinase IolC 

G200_RS010343
5 

1.82595615 7.10E-18 Transcriptional regulator of the myo-inositol catabolic 
operon IolR 

G200_RS010344
0 

2.322930823 6.16E-29 5-deoxy-glucuronate isomerase IolB 

G200_RS010344
5 

2.343048715 1.92E-08 Methylmalonate-semialdehyde dehydrogenase IolA 

G200_RS010345
0 

2.393433177 3.58E-08 Inosose isomerase IolI 

G200_RS010348
5 

2.265947451 7.57E-22 Inosose dehydratase 

G200_RS010349
0 

1.606575527 5.42E-13 Myo-inositol 2-dehydrogenase 

G200_RS010994
5 

2.054104613 1.56E-06 Myo-inositol 2-dehydrogenase 

G200_RS011173
5 

2.826752946 1.30E-21 Major myo-inositol transporter IolT 

G200_RS011993
5 

2.36064358 6.17E-31 Inositol transport system permease protein 

G200_RS011994
0 

2.922693363 5.94E-43 Inositol transport system ATP-binding protein 

G200_RS011994
5 

2.723773939 6.09E-34 Inositol transport system sugar-binding protein 

G200_RS012004
5 

2.507147476 1.44E-09 Myo-inositol 2-dehydrogenase 2 

D-galactarate, D-glucarate and D-glycerate catabolism 

G200_RS011435
5 

-1.471923639 1.25E-06 MFS transporter 

G200_RS012428
0 

-2.146858379 7.57E-39 D-galactarate dehydratase GarD 

G200_RS012429
0 

-2.155286292 3.22E-65 D-glucarate permease 

G200_RS012429
5 

-1.762097381 2.90E-22 Glucarate dehydratase GudD 

G200_RS012430
0 

-1.801096855 3.95E-16 Glucarate dehydratase GudD 

G200_RS012430
5 

-1.841655614 7.57E-39 2-dehydro-3-deoxyglucarate aldolase GarL 

G200_RS012432
0 

-1.921850417 2.06E-49 Glycerate kinase 

G200_RS25820 -2.073060541 9.97E-53 3-hydroxyisobutyrate dehydrogenase GarR 

Maltose and Maltodextrin catabolism 

G200_RS010552
0 

-1.474187006 1.51E-22 PTS system, maltose and glucose-specific IIABC 
component 

G200_RS011445
5 

-2.146215061 6.10E-08 Maltose/maltodextrin high-affinity receptor LamB 
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G200_RS011446
0 

-3.460976388 1.17E-46 Maltose/maltodextrin transport ATP-binding protein MalK 

G200_RS011446
5 

-3.432632153 3.66E-74 Maltose/maltodextrin ABC transporter, substrate binding 
periplasmic protein MalE 

G200_RS011447
0 

-1.356395147 1.92E-06 Maltose ABC transporter permease MalF 

Other carbohydrates metabolism 

G200_RS010234
5 

-1.326068817 1.39E-19 6-phospho-beta-glucosidase 

G200_RS012086
0 

-1.385897754 2.78E-07 PTS beta-glucoside transporter subunit EIIBCA 

G200_RS010988
0 

1.195365256 3.02E-14 Beta-glucuronidase 

G200_RS010800
5 

1.553737025 2.47E-29 Alcohol dehydrogenase 

G200_RS011836
5 

1.430810069 6.79E-14 Pyruvate formate-lyase 

G200_RS010890
0 

1.148093171 1.24E-10 Deoxyribose-phosphate aldolase 

G200_RS011615
5 

1.055489576 4.73E-12 Ribokinase 

G200_RS010985
5 

1.1278524 1.96E-13 Mannonate dehydratase 

G200_RS010239
0 

2.327906926 3.00E-11 Gluconate 2-dehydrogenase, membrane-bound, 
flavoprotein 

G200_RS010239
5 

2.004607764 1.22E-17 Gluconate 2-dehydrogenase, membrane-bound, gamma 
subunit 

G200_RS011950
5 

1.507781586 2.74E-15 Ribose ABC transport system, periplasmic ribose-binding 
protein RbsB 

G200_RS011836
0 

1.344548034 3.43E-28 Pyruvate formate lyase 1-activating protein PflA 

G200_RS012104
0 

1.68097694 2.43E-04 Aerobic glycerol-3-phosphate dehydrogenase GlpD 

G200_RS012102
5 

-1.369452767 7.02E-22 Glucose-1-phosphate adenylyltransferase GlgC 

G200_RS012103
0 

-1.413808857 4.42E-26 Glycogen synthase GlgA 

G200_RS010896
5 

1.651181716 2.59E-16 6-phosphofructokinase 

G200_RS010543
0 

-1.010271981 3.98E-16 Aconitate hydratase AcnA 

G200_RS011459
5 

-1.302381077 1.85E-17 Malate synthase 

G200_RS010154
5 

-2.502124169 2.13E-42 L-lactate dehydrogenase 

G200_RS010984
5 

1.012221802 6.78E-09 MFS transporter LacY 

G200_RS011800
0 

1.499549769 9.33E-05 6-phosphogluconolactonase 

G200_RS010090
0 

-1.050323621 2.49E-14 DUF485 domain-containing protein 

G200_RS010090
5 

-1.143638292 2.68E-11 Cation/acetate symporter ActP 

G200_RS012102
0 

-1.529478972 2.20E-39 Glycogen debranching enzyme 

G200_RS011399
0 

1.292475653 5.30E-11 PTS sugar transporter subunit IIB 

G200_RS011399
5 

1.209666009 1.43E-15 Putative carbohydrate PTS system, IIA component 
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G200_RS011400
0 

1.458640254 1.69E-13 Putative transcriptional regulator of unknown 
carbohydrate utilization cluster, GntR family 

G200_RS010428
0 

-1.044495518 3.39E-06 Alpha/beta hydrolase 

584 
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