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Abstract 5 

Bridge scour is the number one cause of failure in bridges located over waterways. Scour 6 

leads to rapid losses in foundation stiffness and can cause sudden collapse. Previous research 7 

on bridge health monitoring has used changes in natural frequency to identify damage in 8 

bridge beams. The possibility of using a similar approach to identify scour is investigated in 9 

this paper. To assess if this approach is feasible, it is necessary to establish how scour affects 10 

the natural frequency of a bridge and is it possible to measure changes in frequency using the 11 

bridge dynamic response to a passing vehicle. To address these questions, a novel Vehicle-12 

Bridge-Soil Interaction (VBSI) model is developed. By carrying out a modal study in this 13 

model, it is shown that for a wide range of possible soil states, there is a clear reduction in the 14 

natural frequency of the first mode of the bridge with scour. Moreover, it is shown that the 15 

response signals on the bridge from vehicular loading are sufficient to allow these changes in 16 

frequency to be detected. 17 
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Introduction 19 

Bridge scour 20 

Bridge scour is the term given to the excavation and removal of material from the bed and 21 

banks of rivers as a result of the erosive action of flowing water (Hamill 1999). Scouring of 22 

bridge foundations is the primary cause of failure of bridges in the United States (Briaud et 23 

al. 2001, 2005; Melville and Coleman 2000). One study of over 500 bridge failures which 24 

occurred between 1989 and 2000 in the US deemed flooding and scour to be the primary 25 

cause of 53% of failures (Wardhana and Hadipriono 2003). Another review claims that over 26 

the past 30 years, 600 bridges in the US have failed due to scour problems (Briaud et al. 27 

1999; Shirole and Holt 1991). As well as the risk to human life, these failures cause major 28 

disruption and economic losses (De Falco and Mele 2002). Lagasse et al. (1995) estimate that 29 

the average cost for flood damage repair of bridges in the United States is approximately $50 30 

million per annum. Scour is relatively difficult to predict and poses serious risks to the 31 

stability of vulnerable structures. It typically results in a loss in foundation stiffness that can 32 

compromise structural safety. With regard to scour, visual inspections involve the use of 33 

divers to inspect the condition of foundation elements (Avent and Alawady 2005). These 34 

types of inspections can be expensive and can have limited effectiveness as inspecting the 35 

condition of the foundation can be dangerous in times of flooding, when the risk of scour is 36 

highest. Due to the re-filling of scour holes as flood waters subside, visual inspections 37 

undertaken after a flood event may fail to detect the loss in stiffness resulting from scour as 38 

the backfilled material may be loose and therefore have significantly reduced strength and 39 

stiffness properties. Many mechanical and electrical instruments have been developed that 40 

aim to remotely detect the presence of scour. These include systems such as magnetic sliding 41 

collars, float-out systems (Briaud et al. 2011), radar systems (Anderson et al. 2007; Forde et 42 

al. 1999), vibration-based systems (Fisher et al. 2013; Zarafshan et al. 2012) and time-domain 43 
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reflectometry (Yankielun and Zabilansky 1999; Yu 2009) among others. A comprehensive 44 

overview of the instrumentation available is given in Prendergast and Gavin (2014). The 45 

primary drawback of both visual inspections and the use of mechanical scour depth 46 

measuring instrumentation is that these typically cannot detect the distress experienced by a 47 

structure due to the development of a scour hole around the foundation. Monitoring changes 48 

in the modal properties of a structure can potentially provide insight into a structure’s distress 49 

due to a scour hole. Some background on previous research into this is provided in the next 50 

section.  51 

 52 

Scour monitoring using structural dynamics 53 

The overall stiffness of a bridge is comprised of a combination of the mechanical properties 54 

of the structural elements (e.g. deck, piers, abutments) and the properties of the foundation 55 

soil. Detecting damage in a bridge superstructure by looking for changes in the dynamic 56 

response has received much attention in the literature (Abdel Wahab and De Roeck 1999; 57 

Doebling and Farrar 1996; Sampaio et al. 1999). Whilst scour will result in changes in the 58 

stiffness and therefore the dynamic response of a structure, research on detecting scour using 59 

vibration-based methods is relatively limited. In previous studies, properties such as natural 60 

frequency, mode shapes, mode shape curvature, covariance of acceleration signals and 61 

changes in the Root Mean Square (RMS) of acceleration signals have all been examined as 62 

possible indicators of scour (Briaud et al. 2011; Chen et al. 2014; Elsaid and Seracino 2014; 63 

Klinga and Alipour 2015).  64 

Foti and Sabia (2011) describe a full-scale investigation undertaken on a five-span bridge 65 

where one pier was adversely affected by scour during a major flood in 2000. The modal 66 

parameters of the bridge deck spans (namely natural frequencies and mode shapes), were 67 

identified from traffic-induced vibrations before and after replacement of the pier. Most of 68 
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the spans did not show a significant change. However, the span supported by the scoured pier 69 

did exhibit a lower frequency than the others. The pier itself was analysed in a different 70 

manner. It was recognised that scour affecting one side of the pier would result in asymmetric 71 

dynamic behaviour, therefore to detect this behaviour an array of accelerometers was placed 72 

along the foundation in the direction of flow. The method used to analyse the signals was the 73 

creation of a covariance matrix of the signals, whereby the diagonal terms of this covariance 74 

matrix coincide with the variances of single signals. The difference in magnitude of the 75 

variance along the foundation showed that scour could be detected using this methodology. 76 

Elsaid and Seracino (2014)  describe a study undertaken into the effect of scour on the 77 

dynamic response of a scaled model of a coastal bridge supported by piles. Both laboratory 78 

testing and finite element modelling were undertaken. Horizontally displaced mode shapes 79 

showed significant sensitivity to scour progression due to the reduction in the flexural rigidity 80 

of the piles. Other indicators namely; mode shape curvature, flexibility-based deflection and 81 

curvature were also investigated. It was concluded that these methods each showed promise 82 

at detecting the location and extent of scour to varying degrees of accuracy. No soil-structure 83 

interaction was considered in the study by Elsaid and Seracino (2014). Briaud et al. (2011) 84 

describe a laboratory study into the effect of scour on the dynamic response of a model scale 85 

bridge with a span of 2.06 m and a deck width of 0.53 m. Both shallow and deep foundations 86 

were tested in a large hydraulic flume. Fast Fourier transforms were used to obtain the 87 

frequency content of the acceleration signals measured in three directions for both foundation 88 

types, namely the flow direction, the traffic direction and the vertical direction. The ratio of 89 

Root-Mean Square (RMS) values of accelerations measured in two different directions 90 

(traffic/vertical, flow/traffic or flow/vertical) was also calculated to ascertain if it could be 91 

used as a scour indicator. The frequency response in the flow direction as well as the ratio of 92 

RMS values for flow/traffic showed the highest sensitivity to scour. A full-scale deployment 93 
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of the methods by Briaud et al. (2011) on a real bridge proved unsuccessful due to a failure of 94 

the logging system and the high energy required to store and transmit acceleration data. It 95 

was concluded that accelerometers showed potential for detecting and monitoring scour but 96 

would require significant further research. Ju (2013) investigated the effect of soil-fluid-97 

structure interaction using finite-element modelling in calculating scoured bridge natural 98 

frequencies. A full-scale field experiment was undertaken to validate the numerical model 99 

and it was concluded that frequency reduces with scour but the trend is non-linear due to non-100 

uniform foundation sections and layered soils. It was also concluded that although the 101 

presence of fluid lowers the frequency value obtained, the fluid-structure effect is not obvious 102 

and therefore it may be neglected in the bridge natural frequency analysis. 103 

 104 

Development of Vehicle Bridge Soil Interaction (VBSI) model 105 

Background 106 

This paper builds on work presented by Prendergast et al. (2013) in which a numerical soil-107 

structure dynamic interaction model was developed to describe the change in natural 108 

frequency of a pile foundation subjected to scour. The model was shown to be capable of 109 

tracking the change in the natural frequency of a single pile affected by scour using input 110 

parameters which included the structural properties of the pile and the small strain stiffness of 111 

the soil. Experimental validation of the numerical model was undertaken both in a laboratory 112 

model scale and full-scale field test on a 8.76 m long pile embedded in dense sand. The pile 113 

geometry was typical of those used to support road and rail bridges. This validated numerical 114 

model is represented by the pile/spring system shown boxed in Fig. 1(a). 115 

Extended Model 116 

The work described by Prendergast et al. (2013) was validated for the case of a stand-alone 117 

pile foundation with forced vibration being imposed through the use of a modal hammer. In 118 
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reality, pile foundations are used to provide vertical and/or lateral support for a structure (in 119 

this case a bridge) the presence of which will have a significant effect on the natural 120 

frequency response of the pile-soil interaction problem. In this paper, the previously 121 

developed model is extended to consider the effect of a bridge superstructure. The structure 122 

considered is an integral bridge, comprised of two abutments, and a central pier supported on 123 

pile foundations. The purpose of extending the model to include a bridge superstructure is to 124 

ascertain if it is possible to detect changes in the structure’s natural frequency due to scour of 125 

the foundation and moreover to investigate if it is practicable to detect these changes by 126 

analysing the acceleration signals caused by traffic loading (i.e. when a truck crosses the 127 

bridge). Figs. 1(a) and (b) show a schematic of the un-scoured and scoured situations 128 

respectively. To make the simulated acceleration signals as realistic as possible, interaction 129 

effects between the vehicle and the bridge are considered and external noise is added to the 130 

signals.  In this work, the change in natural frequency due to scour around the central pier 131 

foundation is modelled, see Fig. 1(b). The possibility of detecting these changes by analysing 132 

the acceleration response signals from vehicular loading is considered. Details of the model 133 

are given below. 134 
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 135 

Fig. 1. Schematic of model. (a) un-scoured, (b) post scour. 136 
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Bridge structure to be modelled  138 

The bridge modelled is a two-span concrete integral bridge. A Young’s modulus of E = 139 

3.5x1010 N m-2 and a material density of r = 2400 kg m-3 are assumed for all bridge elements. 140 

For this type of bridge the abutment is formed using a series of vertical concrete columns and 141 

reinforced earth. The columns support the deck and the reinforced earth retains the 142 

embankment fill, see Fig. 2. The bridge is not intended to represent any particular real-life 143 

structure. However, the properties were chosen to be representative of bridges of this type. 144 

The bridge deck is comprised of nine U10 concrete bridge beams (Concast 2014). Each beam 145 

supports a 200 mm deep deck slab giving a total combined moment of inertia of I = 2.9487 146 

m4 and a cross-sectional area of A = 9.516 m2 for the bridge deck, which are typical values 147 

for this type of bridge. The abutment consists of nine concrete columns supporting the bridge 148 

deck, each column is 500 mm in diameter and the columns are at 1900 mm centres, see Fig. 149 

2(c). This results in a total moment of inertia of I = 0.0276 m4 and a cross-sectional area of A 150 

= 1.7671 m2 for the abutment elements. This type of bridge does not have a conventional 151 

expansion joint so the thermal movements of the deck have to be accommodated by lateral 152 

movements of the abutment columns. To facilitate this movement, the abutment columns are 153 

cast in vertical sleeves so that there is a gap of 50 to 100 mm on all sides, i.e. the reinforced 154 

earth provides no lateral restraint to the columns.  These abutment columns are therefore 155 

assumed free to move laterally. Two large concrete piers support the bridge at the centre and 156 

have plan dimensions of 1375 mm x 2625 mm. This results in a total combined moment of 157 

inertia of I = 1.137 m4 and a cross-sectional area of A = 7.22 m2 for the combined bridge pier 158 

element. The piers are large stiff elements and they provide lateral restraint to the bridge 159 

deck.  160 

The abutment columns each rest on a pilecap, under which ten 15 m long concrete bored piles 161 

are used as the foundation system, see Fig. 2. The pier columns each rest on a pilecap 162 
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supported by four piles. The scour action is assumed to be uniform along the transverse 163 

length of a given support, so for modelling purposes, the structure shown in Fig. 2 is idealised 164 

as the 2D frame shown in Fig. 3. (Note: scour is assumed to be equal on both sides of the 165 

pier). The properties of each of the elements of the model in Fig. 3 are calculated by 166 

summing the properties of the individual components shown in Fig. 2.  For example, the 167 

moment of inertia of the left abutment column shown in Fig. 3 is calculated by summing the 168 

moment of inertia of the nine abutment columns shown in Fig. 2. Similarly the stiffness of the 169 

two leaves of the pier shown in Section A-A of Fig. 2 is attributed to the central pier element 170 

of Fig. 3. When apportioning stiffness to the pile elements shown in Fig. 3, a similar 171 

philosophy was adopted. The abutment piles modelled have a combined cross-sectional area 172 

of A = 2.827 m2 and a moment of inertia of I = 0.0636 m4 whereas the central pier piles have 173 

A = 3.534 m2 and I = 0.1243 m4. Details on the spring stiffness coefficients used to model the 174 

soil are given below and are summarised in Fig. 4. 175 
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 176 

Fig. 2. Bridge layout with all dimensions shown in mm (a) elevation; (b) section A-A; (c) 177 

section B-B 178 

 179 

Numerical modelling approach 180 

The specific technical details of the model used in this paper have been published in 181 

Prendergast et al. (2016b), therefore this section does not provide too much detail on the 182 

model. However an overview of the modelling approach is provided, in particular the 183 

philosophy for modelling the bridge, the vehicle, and the soil is briefly discussed. The model 184 

is developed using MATLAB.  185 
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 186 

Bridge model 187 

The elements used in the bridge model are 6 degree-of-freedom (DOF) Euler-Bernoulli frame 188 

elements (Kwon and Bang 2000). Each frame element has two nodes and each node has an 189 

axial, transverse and a rotational degree of freedom as shown in the insert in Fig. 3.  190 

The global mass and stiffness matrices for the model are assembled together according to the 191 

procedure outlined in Kwon and Bang (2000). Damping is modelled using a Rayleigh 192 

damping approach, with a damping ratio of 2% being assumed for all simulations in this 193 

paper. The dynamic response of the bridge is obtained by solving the second order matrix 194 

differential equation shown in Eq. (1). 195 

       tttt FKxxCxM                                                     (1) 196 

where M, C and K are the (nDOF × nDOF) global consistent mass, damping and stiffness 197 

matrices respectively, and nDOF is the total number of degrees of freedom in the system. The 198 

vector   tx  describes the displacement of every degree of freedom for a given time step in 199 

the analysis. Similarly, the vectors  tx  and  tx  describe the velocity and acceleration of 200 

every degree of freedom in the model for the same time step. The vector   tF  describes the 201 

external forces acting on each degree of freedom for a given time step in the analysis. Eq. (1) 202 

is solved using a numerical integration scheme, the Wilson-theta method (Dukkipati 2009).  203 

Mode shapes and natural frequencies were extracted from the model by performing an 204 

eigenvalue analysis on the system. In order to verify that the model was operating correctly, 205 

the static displacements, mode shapes and natural frequencies predicted by the model were 206 

verified against those calculated by a commercially available finite-element package. Good 207 

agreement was observed between the model and the commercial software. 208 

 209 
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Vehicle model 210 

The vehicle model, used in this work is similar to the model described in Hester and 211 

González (2012) and González and Hester (2013). The vehicle model has four degrees of 212 

freedom, namely a vertical displacement for each of the two axles (y1 and y2), the body 213 

bounce (yb) and body pitch (φp), see Fig. 3. The body has mass mb and has rotational moment 214 

of inertia Ip (for pitch). The body is supported on a suspension/axle assembly. The mass of 215 

the wheel/axle assembly is mw. The suspension has a stiffness Ks and a damping coefficient 216 

Cs. Finally, the tyre is modelled as a spring with stiffness Kt. Table 1 provides the parameters 217 

of the vehicle (Cantero et al. 2011; El Madany 1988). Using the properties given in Table 1, 218 

stiffness Kv, mass Mv and damping Cv matrices for the vehicle can be populated. The natural 219 

frequencies of the vehicle for bounce, pitch, and front and rear axle hops are 1.43 Hz, 2.07 220 

Hz, 8.860 Hz and 10.22 Hz respectively.  221 

Table 1. Parameters of vehicle model. 222 

Parameter Property Value 

Dimensions (m) Wheel base (S) 5.5 

Dist from centre of mass to front axle (S1) 3.66 

Dist from centre of mass to rear axle (S2) 1.84 

Mass (kg) Front wheel/axle mass (mw1) 700 

Rear wheel/axle mass (mw2) 1,100 

Sprung body mass (mb) 13,300 

Inertia (kg m2) Pitch moment of inertia of truck (Ip) 41,008 

Spring stiffness (kN m-1)  Front axle (Ks1) 400 

Rear axle (Ks2) 1,000 

Damping (kN s m-1) Front axle (Cs1) 10 

Rear axle (Cs2) 10 

Tyre stiffness (kN m-1) Front axle (Kt1) 1,750 

Rear axle (Kt2) 3,500 

 223 

 224 
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Modelling the dynamic behaviour of a vehicle-bridge interaction system is complex as there 225 

are two sub-systems, namely the moving vehicle and the bridge/substructure. These two 226 

systems interact with each other via the contact forces that exist between the vehicle wheels 227 

and the bridge surface, therefore mathematically the problem is coupled and time dependant 228 

(Yang et al. 2004). It is necessary to solve both subsystems while ensuring compatibility at 229 

the contact points (González 2010). In this paper, an iterative approach was employed to 230 

implement the VBI model (Green and Cebon 1997; Yang and Fonder 1996), see Prendergast 231 

et al. (2016b) for more information.  232 

233 
Fig. 3. Schematic of the Vehicle-Bridge-Soil Interaction (VBSI) model. 234 

 235 

Calculating soil spring stiffness 236 

Soil-structure interaction is incorporated into the model by means of the Winkler method. 237 

The soil is modelled as a system of discrete, mutually independent and closely-spaced lateral 238 
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springs (Dutta and Roy 2002; Winkler 1867). The method for developing spring stiffness 239 

values is based on Prendergast et al. (2013) who derived spring stiffness values using the 240 

small-strain shear modulus (G0) profile from their experimental site. Full details on 241 

calculating soil spring stiffness coefficients is available in Prendergast and Gavin (2016a) and 242 

Prendergast et al. (2015). The spring stiffness profiles used in this paper are shown in Fig. 4 243 

for loose, medium-dense and dense sand. The individual spring stiffness moduli are shown by 244 

the data markers on the plot. These profiles are for the central pier foundation piles. 245 

 246 

Fig. 4. Postulated soil spring stiffness profiles for a loose, medium-dense and dense sand 247 

around the central pier piles (N m-1) for the analysis. 248 

 249 

Analysis & results 250 

In the analyses performed using the model described previously, a moving vehicle excites the 251 

bridge. The lateral response of the bridge is excited by the vehicle moving over the bridge, 252 

inducing moments at the head of the abutments and the pier causing lateral sway. Horizontal 253 

vehicle forces that would be induced by vehicle acceleration and braking are not included in 254 

the model. However, these may contribute to the lateral response on a real system. The 255 

vehicle crosses the bridge at typical highway speed and the horizontal acceleration from the 256 
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top of the pier is recorded and analysed. The effect of (initial) soil stiffness on the frequency 257 

changes with scour was examined for the three soil stiffness profiles. To aid in choosing 258 

appropriate locations to place accelerometers on the structure and to ascertain a baseline for 259 

the expected change in natural frequency due to scour, an eigenvalue modal analysis was 260 

conducted in the first instance. 261 

 262 

Eigen frequencies and mode shapes 263 

An eigenvalue analysis was conducted in the model to extract the fundamental frequency of 264 

(lateral) vibration for different depths of scour. A maximum scour depth of 10 m was 265 

considered in the model and the difference in frequency between zero scour and this 266 

maximum value is shown in Table 2. The results indicate that a scour depth of 10 m produced 267 

a change in fundamental frequency of ≈ 40 % for the three soil stiffness profiles considered.  268 

Once the expected shift in frequency due to scour was established, the next step was to 269 

determine the optimum points on the structure to record accelerations to give the best 270 

opportunity to capture the first mode of vibration of the integral bridge. By plotting the first 271 

mode shape of the structure for zero scour and full pier scour, it is possible to obtain a 272 

pictorial view of the locations showing the highest modal displacements for the fundamental 273 

mode.  Fig. 5 shows that the first mode shape for both zero scour and maximum pier scour 274 

(10 m) is a global sway mode. The data shown in Fig. 5 was for the analysis performed in 275 

loose sand. However, the shape was the same for all three soil stiffness profiles considered. 276 

From the figure, it can be seen that the maximum modal amplitude occurs at deck level. In 277 

this study the top of the bridge pier is used as the location to measure acceleration as it assists 278 

in identifying the frequency when using signal processing and also aids with signal to noise 279 

ratio (SNR) issues.   280 
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Table 2. Eigenvalue analysis of the scour effect. 281 

Scour depth (m) Frequency (loose 

sand) (Hz) 

Frequency (medium 

dense sand) (Hz) 

Frequency (dense 

sand) (Hz) 

0 m 1.5643 1.6481 1.7357 

10 m (full) 0.9386 0.9772 1.017 

% Difference -39.99% -40.708% -41.4% 

 282 

 283 

Fig. 5. Fundamental mode shapes in loose sand – global sway. (a) zero scour (b) full scour. 284 

 285 

Response of structure to moving half-car vehicle model 286 

Simulation of noise free pier accelerations due to the passage of a vehicle 287 

From the eigenvalue analysis in the previous section, it was observed that significant 288 

reductions in natural frequency occurred due to scour of the central pile foundation system. 289 

However, the fact that frequency changes will occur is of little use if the relevant mode is not 290 

excited in the structure. The most practical way to excite a rail / highway bridge is to use 291 

ambient traffic (Farrar et al. 1999). Therefore in this section the aim is to ascertain if it is 292 

possible to detect these frequency changes by analysing the bridge acceleration response to a 293 
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moving sprung vehicle. In this analysis, accelerations generated at a lateral degree of freedom 294 

near the top of the bridge pier are analysed using a fast Fourier transform to obtain the 295 

frequency content. The vehicle modelled is a 15 tonne two-axle truck (see Table 1), and to 296 

make the model as realistic as possible interaction between the vehicle and the bridge is 297 

allowed for. The bridge is excited by the sudden arrival of the vehicle on the bridge deck, 298 

which effectively acts as an impulse load. 299 

The vehicle is a four-degree-of-freedom system that moves along the bridge deck. The 300 

vehicle is excited by the presence of a road profile which causes the body to pitch and bounce 301 

and this in turn means that the forces that the vehicle applies to the bridge are not constant. In 302 

the model the vehicle commences movement at an approach distance of 100 m from the start 303 

of the bridge so that the initial vehicle motion conditions (axle displacements and body 304 

displacement / pitch) when the vehicle meets the bridge are more realistic. The road profile 305 

used in the current analysis is a Class ‘A’ profile (well-maintained road surface, see Cebon 306 

(1999)), and the part of the road profile on the bridge is reproduced in Fig. 6. This figure also 307 

shows a Class ‘B’ and a Class ‘C’ road profile, in order of degrading quality. 308 

 309 

Fig. 6. Road profiles on the bridge. 310 

 311 
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The vertical forces generated by the vehicle moving over the Class ‘A’ road profile are 312 

shown in Fig. 7(a) for a vehicle speed of 80 km hr-1, the loose sand soil profile and the case of 313 

zero scour. In Fig. 7(a) it can be seen that the rear axle is significantly heavier than the front 314 

axle and this is typical of a fully loaded 2 axle truck. 315 

Fig. 7(b) shows the lateral acceleration response of the top of the pier when the truck crosses 316 

the bridge (for the loose sand profile). The large peaks in acceleration at 0 seconds and 2.5 317 

seconds correspond to the vehicle entering and leaving the bridge. After the vehicle leaves 318 

the bridge there is a logarithmic decay in the acceleration signal over the following 27.5 319 

seconds. This is to be expected as a damping ratio of 2% is used in the simulations.  320 

321 
Fig. 7. Results for vehicle crossing bridge for zero scour level and loose sand profile (a) axle 322 

contact forces (b) lateral acceleration response at top of pier. 323 

 324 

 325 
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The effect of noise on determining the frequency of the pier vibrations 326 

Real data will contain noise, so in this study, noise was added to the simulated signal. In 327 

order to check if the (scour detection) method was sensitive to the level of noise in the signal, 328 

signals with different levels of noise are analysed. The method used to add noise is based on 329 

the signal-to-noise ratio (SNR), given in Eq. (2) (Lyons 2011). 330 

Power Noise

Power Signal
log10 10SNR                                                                 (2) 331 

where SNR is the ratio of the strength of a signal carrying information equating to that of 332 

unwanted interference. Eq. (2) is rearranged to give Eq. (3). 333 

 










10

10SNR.log
exp

Power Signal
Power  Noise  

e

N                                 (3) 334 

where  N is the noise variance. Using Eq. (3), noise signals with different signal-to-noise 335 

ratios were added to the original clean signal. This process is shown in Eq. (4). 336 

  CLEANNOISE SigSig  randN                                                        (4) 337 

In this study, three noise levels were examined, namely SNRs of 20, 10 and 5. Figs. 8(a-c) 338 

show the result of adding noise to the signal shown in Fig. 7(b). Fig. 8(d) shows the 339 

frequency content of the signals in Fig. 8(a-c). It can be seen in the figure that for all levels of 340 

noise the frequency plot is practically identical which proves that the method will not be 341 

particularly sensitive to noise. For the purpose of completeness, the figure has an insert which 342 

shows a zoomed in view of the frequency peak. In the insert it can be seen that that there are 343 

small differences in the frequency peak for the different levels of noise. However, in relative 344 

terms these differences are insignificant. Since noise does not impede the ability of the 345 

method to detect the frequency accurately, all analysis from this point will contain a SNR = 346 

20 as it is easier for the reader to interpret the remaining time domain plots for lower values 347 

of noise. 348 
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 349 

Fig. 8. Sensitivity of frequency content to noise. (a) signal from bridge pier with SNR = 20, 350 

(b) signal with SNR = 10, (c) signal with SNR = 5, (d) frequency content of signals shown in 351 

Figs. 8(a)-(c). 352 

 353 

Effect of vehicle properties, driving speed and road profile on detecting the frequency of the pier 354 

vibrations 355 

In the previous section, it was established that artificially added noise does not significantly 356 

impede the method of detecting the first natural frequency of the structure (global sway) from 357 

the pier accelerations due to a passing vehicle. However, the analysis in the previous section 358 

only considers one set of vehicle properties, one driving speed and a Class ‘A’ road profile. 359 

In this section, the effect of varying the driving speed, vehicle properties and road roughness 360 

condition on the resilience of the method is investigated. Fig. 9 shows the effect of varying 361 

the vehicle driving speed on the detected first natural frequency of the bridge. In this figure, 362 

the vehicle traverses the bridge at 50, 80 and 100 km hr-1 and the lateral acceleration signal 363 
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generated at the pier head is analysed for its frequency content. The vehicle traverses a Class 364 

‘A’ road profile and the soil is assumed as loose sand with zero scour affecting the structure. 365 

Fig. 9(a) shows the lateral acceleration of the pier head generated due to a vehicle passing at 366 

50 km hr-1. Similarly, Figs. 9(b) and (c) show the lateral acceleration of the pier head 367 

generated due to a vehicle passing at 80 km hr-1 and 100 km hr-1 respectively. All signals 368 

contain a SNR = 20. Fig. 9(d) shows the frequency content of the signals in Figs. 9(a-c). As is 369 

evident, the frequency of the three signals is broadly in agreement (with minute differences 370 

arising due to frequency resolution issues due to different signal lengths). The magnitude of 371 

the frequency response differs between the three signals. This is as a result of interaction 372 

effects between the vehicle travelling speed and the bridge’s own dynamic motion. In short, 373 

the rate at which the vehicle traverses the two-span bridge can either magnify or diminish the 374 

bridge response depending on where the vehicle is on the bridge relative to the oscillation 375 

cycle of the bridge itself, more information on this phenomenon is available in Prendergast et 376 

al. (2016b). Overall, the frequency detection method is not particularly sensitive to vehicle 377 

travelling velocity; therefore all further analyses in this paper are undertaken for a highway 378 

speed of 80 km hr-1.  379 
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 380 

Fig. 9. Sensitivity of frequency content to vehicle speed. (a) signal from bridge pier with 381 

vehicle speed = 50 km hr-1, (b) signal with vehicle speed = 80 km hr-1, (c) signal with vehicle 382 

speed = 100 km hr-1, (d) frequency content of signals shown in Figs. 9(a)-(c). 383 

 384 

The vehicle modelled in the simulations undertaken previously is a two axle truck, the 385 

properties of which are shown in Table 1. In order to assess if the vehicle properties have any 386 

noticeable effect on the ability of the method to detect the bridge’s first frequency from 387 

vehicle induced lateral motion, a brief analysis is conducted herein. For this analysis, the 388 

vehicle whose properties are outlined in Table 1 (Veh 1) is run across the bridge and 389 

compared to a modified vehicle (Veh 2), which includes an altered front axle stiffness and 390 

gross body mass. The relevant properties of both vehicles are outlined in Table 3. 391 

 392 

 393 

 394 
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Table 3. Veh 1 and Veh 2 properties for sensitivity analysis. 395 

 Veh 1 Veh 2 

Gross body mass (kg) 13,300 9,000 

Front axle stiffness (kN m-1) 400 600 

Body bounce frequency (Hz) 1.43 1.84 

 396 

The result of running both vehicles over the bridge is shown in Fig. 10. Both vehicles traverse 397 

at 80 km hr-1 over a bridge with zero scour, a loose sand profile and a Class ‘A’ road surface. 398 

Signals contain a SNR = 20. Fig. 10(a) shows the lateral pier head acceleration due to the 399 

passage of the original vehicle (Veh 1). Fig. 10(b) shows the lateral pier head acceleration 400 

due to the passage of the modified vehicle (Veh 2). Fig. 10(c) shows the frequency content of 401 

the signals in (a) and (b). As is evident, altering the vehicle properties does not significantly 402 

affect the frequency detection method, as the frequency is identical with only a minor change 403 

in magnitude. The analysis conducted here only considers a two-axle truck, however, so the 404 

effect for other vehicle types is not considered. 405 

 406 

Fig. 10. Sensitivity of frequency content to vehicle mass and axle stiffness. (a) signal from 407 

bridge pier with original vehicle properties, (b) signal with modified vehicle properties (c) 408 

frequency content of signals shown in Figs. 10(a) and (b). 409 
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 410 

Finally, it is of interest to assess if a degrading road surface will impede the ability for the 411 

first natural sway frequency of the bridge to be detected from vehicle induced vibrations. For 412 

this analysis, the original vehicle (Veh 1) traverses the bridge over a Class ‘A’, ‘B’ and ‘C’ 413 

profile at 80 km hr-1 for the case of zero scour (see Fig. 6 for road profiles). All signals 414 

contain a SNR = 20. The results are shown in Fig. 11. Fig. 11(a) shows the lateral pier head 415 

acceleration due to the vehicle traversing a Class ‘A’ road profile. Similarly, Figs. 11(b) and 416 

(c) show the lateral pier head accelerations measured due to a vehicle traversing Class ‘B’ 417 

and ‘C’ profiles respectively. Fig. 11(d) shows the frequency content of the signals presented 418 

in parts (a) to (c) of the figure. The frequency peak corresponding to the first natural 419 

frequency of the bridge is clearly detected in all three signals, with differences in magnitude 420 

occurring for each road roughness profile. From this figure, it is clear that the presence of a 421 

road roughness profile up to Class ‘C’ does not significantly impede the ability for the bridge 422 

frequency peak to be detected (only very minor differences in frequency are detected due to 423 

resolution of frequency bins).  As a result, all analyses from here will utilise a Class ‘A’ 424 

profile, equivalent to a well-maintained highway surface. In the next section, the detection of 425 

scour from pier head lateral accelerations is investigated.  426 
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 427 

Fig. 11. Sensitivity of frequency detection to road profile. (a) signal from bridge pier with 428 

Class ‘A’ road surface, (b) signal from bridge pier with Class ‘B’ road surface, (c) signal 429 

from bridge pier with Class ‘C’ road surface, (d) frequency content of signals in (a) to (c). 430 

 431 

 432 

Identifying the presence of scour by analysing pier acceleration signals 433 

Fig. 12(a) shows the acceleration signal measured at the top of the bridge pier due to the 434 

passing vehicle for the three soil stiffness profiles considered for the case of zero scour. The 435 

vehicle traverses at 80 km hr-1 over a Class ‘A’ road surface and the signals contain a SNR = 436 

20. The three signals in Fig. 12(a) are difficult to distinguish so Fig. 12(b) shows only the 437 

first 10 seconds of data. Fig. 12(c) shows the frequency content of the signals shown in Fig. 438 

12(a). From this figure, it is clear that it is possible to detect the first natural frequency of the 439 

bridge (which is lateral sway) for each of the soil stiffness profiles modelled. The difference 440 

in magnitude between each frequency peak is due to the relative stiffness of the soil impeding 441 

the lateral sway motion. The loose sand profile allows more movement than the dense sand 442 
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profile (due to the difference in spring stiffness); hence a higher peak was observed for the 443 

loose sand. 444 

 445 

Fig. 12. Bridge response due to passing vehicle and subsequent free vibration. (a) 446 

acceleration response from bridge pier for loose, medium-dense and dense sand profiles with 447 

40 seconds of free vibration; (b) acceleration response from bridge pier for loose, medium-448 

dense and dense sand profiles with 7.5 seconds of free vibration; (c) frequency response of 449 

signals shown in (a). 450 

 451 

Fig. 12 demonstrates that the natural frequency of mode 1 can be accurately determined by 452 

analysing the acceleration response of the pier with a Fourier transform for all three soil 453 
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densities. The next step is to induce scour in the analysis and observe the change in 454 

frequency. An example of this analysis is shown in Fig. 13. The analysis involved running the 455 

vehicle over the bridge to generate an acceleration signal at the top of the bridge pier and 456 

adding noise. This signal was then analysed with a fast Fourier transform to determine the 457 

frequency content of the signal. A scour depth of 10 m is induced by removing springs from 458 

around the central pier foundation and the process is repeated to generate a scoured signal. 459 

The solid and dashed plots in Fig. 13(a) shows the acceleration signals generated at the top of 460 

the bridge pier for the case of zero scour and the 10 m scour depth respectively, (for a loose 461 

sand profile). For ease of visualising the signals, Fig. 13(b) shows just the first 10 seconds of 462 

the pier acceleration responses. On the left hand side of this plot, a total of four impulses in 463 

the acceleration signals (between t = 0 and t = 2.5 s) are visible. This corresponds to the front 464 

and rear axles entering and leaving the bridge. The front axle enters the bridge at t = 0 s and 465 

the rear axle leaves the bridge at t = 2.5 s. Fig. 13(c) shows the frequency content of the 466 

signals shown in Fig. 13(a). It can be seen in Fig. 13(c) that the natural frequency for zero 467 

scour was 1.556 Hz. It can also be seen in Fig. 13(c) that the natural frequency at the 468 

maximum scour depth of 10 m was 0.9308 Hz. Therefore, a significant and measureable 469 

reduction in natural frequency was observed.  470 
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 471 

Fig. 13. Effect of 10 m of scour on the pier acceleration response for loose sand profile. (a) 472 

acceleration response (laterally) at top of bridge pier for zero and 10 m scour due to passage 473 

of vehicle, including 40 seconds of free vibration; (b)acceleration response of bridge pier 474 

with 7.5 seconds of free vibration; (c) frequency content of signals shown in (a). 475 

 476 

By repeating the analysis for scour depths ranging from 0.5 m to 10 m, the natural frequency 477 

for each scour depth was determined. Scour was induced around the central pier piled 478 

foundation by removing springs iteratively from the model, this corresponds to an increase in 479 

scour depth and a loss of associated soil stiffness. A spring is removed and the vehicle is re-480 

run across the bridge to generate a new acceleration signal, which is analysed for its 481 

frequency content. The variation in natural frequency with scour depth for the ‘loose sand’ is 482 
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shown by the solid plot with circular data markers in Fig. 14.  Fig. 14 also shows the change 483 

in the natural frequency plotted against the depth of scour for the ‘medium-dense sand’ and 484 

‘dense sand’ stiffness profiles. It is clear from this figure that for the three soil stiffness 485 

profiles simulated, it was possible to detect a change in the natural frequency of the bridge 486 

due to scour using vehicle induced vibrations. It is worth noting that the method was not 487 

sensitive to soil stiffness (loose, medium-dense or dense) i.e. for all soil densities considered, 488 

there is a clear reduction in natural frequency with increasing scour. Not surprisingly, the 489 

magnitude of the frequency for a given scour depth varies with the soil stiffness. However, 490 

the variation with soil stiffness is significantly less than the variation with scour depth. This 491 

basically implies that the increase in effective length resulting from scour had a much larger 492 

effect on the frequency response of the structure than changes in the stiffness of the soil 493 

supporting the foundation. 494 

 495 

Fig. 14. Frequency change with scour for all three soil stiffness profiles. 496 

 497 

 498 
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Conclusion 499 

A field-validated model developed by the authors which is capable of tracking the change in 500 

the natural frequency of a single pile affected by scour was extended in this paper to consider 501 

the case of a full bridge subjected to traffic loading. A novel Vehicle-Bridge-Soil Interaction 502 

(VBSI) model was developed to explore the potential frequency changes due to scour of an 503 

integral bridge structure for a range of soil stiffnesses typically found in the field.  504 

In the first instance, it was necessary to establish how scour affects the natural frequency of 505 

the bridge and if the changes in frequency would be sufficiently large to warrant further 506 

exploration of this method as a potential scour monitoring tool. A numerical modal study was 507 

conducted to address this question. The aim of this study was to assess the magnitude of 508 

frequency changes that can be expected for a typical bridge structure subjected to scour of the 509 

central piles. From this study, the expected magnitude of the frequency shift was established 510 

and deemed sufficiently large (≈ 40%) to warrant an investigation into the feasibility of 511 

detecting scour by analysing the bridge’s response to a moving vehicle. The VBSI model was 512 

used to generate realistic acceleration signals from the structure due to a two-axle truck 513 

passing at typical highway speeds (80 km hr-1). The lateral acceleration response at the top of 514 

the bridge pier was analysed. Results indicate that for all three soil stiffness profiles modelled 515 

(loose, medium-dense and dense sand) the response signals generated from this vehicular 516 

loading are sufficient to allow the changes in natural frequency caused by scour to be 517 

detected. Moreover, the shape of the scour depth vs frequency plot was the same for all three 518 

soil stiffness profiles which shows that the method is not sensitive to soil stiffness. 519 

Limitations in the analysis include the fact that only one type of vehicle was modelled, 520 

namely a two-axle truck. Therefore the conclusions of the present study may only be relevant 521 

for this vehicle type. Also, since the method relies on frequency changes of the bridge being 522 

detected to infer the presence of scour, this method would be sensitive to other forms of 523 
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damage to the superstructure such as crack formation, thermal effects etc. Establishing the 524 

exact mechanism causing the changes in frequency requires further study, and is not 525 

addressed in this paper. The current paper serves as a feasibility study to detect the presence 526 

of scour from vehicle-induced vibrations.  527 

The method developed in this paper shows promise in terms of use as part of an infrastructure 528 

management framework incorporating real-time low maintenance scour monitoring. The 529 

advantage of the method is that it does not require complex underwater installations and 530 

negates the requirement for dangerous diving inspections to monitor scour. The results 531 

indicate that accelerometers fixed to the structure above the waterline may possibly be used 532 

as a continuous scour monitoring solution. Real-time analysis of signals from a structure of 533 

interest could be monitored for frequency changes or signals could be analysed before and 534 

after major flood events to attempt to detect losses of stiffness caused by scour. Whilst this 535 

appears promising, a full-scale application of the method on a real bridge is recommended as 536 

future work.  537 
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