
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Pure Functional Epidemics
An Agent-Based Approach

Jonathan Thaler
Thorsten Altenkirch
Peer-Olaf Siebers

jonathan.thaler@nottingham.ac.uk
thorsten.altenkirch@nottingham.ac.uk
peer-olaf.siebers@nottingham.ac.uk

University of Nottingham
Nottingham, United Kingdom

ABSTRACT
Agent-Based Simulation (ABS) is a methodology in which a system
is simulated in a bottom-up approach by modelling the micro in-
teractions of its constituting parts, called agents, out of which the
global system behaviour emerges.

So far mainly object-oriented techniques and languages have
been used in ABS. Using the SIR model of epidemiology, which sim-
ulates the spreading of an infectious disease through a population,
we demonstrate how to use pure Functional Reactive Program-
ming to implement ABS. With our approach we can guarantee
the reproducibility of the simulation at compile time and rule out
specific classes of run-time bugs, something that is not possible
with traditional object-oriented languages. Also, we found that the
representation in a purely functional format is conceptually quite
elegant and opens the way to formally reason about ABS.

KEYWORDS
Functional Reactive Programming,Monadic Stream Functions, Agent-
Based Simulation

ACM Reference Format:
Jonathan Thaler, Thorsten Altenkirch, and Peer-Olaf Siebers. 2019. Pure
Functional Epidemics: An Agent-Based Approach. In Proceedings of In-
ternational Symposium on Implementation and Application of Functional
Languages (IFL’18). ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The traditional approach to Agent-Based Simulation (ABS) has so
far always been object-oriented techniques, due to the influence
of the seminal work of Epstein et al [17] in which the authors
claim "[..] object-oriented programming to be a particularly natural
development environment for Sugarscape specifically and artificial
societies generally [..]" (p. 179). This work established the metaphor
in the ABS community, that agents map naturally to objects [33]
which still holds up today.

In this paper we challenge this metaphor and explore ways of
approaching ABS in a pure (lack of implicit side-effects) functional
way using Haskell. By doing this we expect to leverage the benefits
of pure functional programming [23]: higher expressivity through

IFL’18, August 2019, Lowell, MA, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

declarative code, being polymorph and explicit about side-effects
through monads, more robust and less susceptible to bugs due to
explicit data flow and lack of implicit side-effects.

As use case we introduce the SIR model of epidemiology with
which one can simulate epidemics, that is the spreading of an in-
fectious disease through a population, in a realistic way.

Over the course of three steps, we derive all necessary concepts
required for a full agent-based implementation. We start with a
Functional Reactive Programming (FRP) [49] solution using Yampa
[22] to introduce most of the general concepts and then make the
transition to Monadic Stream Functions (MSF) [37] which allow us
to add more advanced concepts of ABS to pure functional program-
ming.

The aim of this paper is to show how ABS can be implemented
in pure Haskell and what the benefits and drawbacks are. By doing
this we give the reader a good understanding of what ABS is, what
the challenges are when implementing it and how we solve these
in our approach.

The contributions of this paper are:

• We present an approach to ABS using declarative analysis
with FRP in which we systematically introduce the concepts
of ABS to pure functional programming in a step-by-step
approach. Also this work presents a new field of application
to FRP as to the best of our knowledge the application of
FRP to ABS (on a technical level) has not been addressed
before. The result of using FRP allows expressing continuous
time-semantics in a very clear, compositional and declarative
way, abstracting away the low-level details of time-stepping
and progress of time within an agent.

• Our approach can guarantee reproducibility already at com-
pile time, which means that repeated runs of the simulation
with the same initial conditions will always result in the
same dynamics, something highly desirable in simulation
in general. This can only be achieved through purity, which
guarantees the absence of implicit side-effects, which allows
to rule out non-deterministic influences at compile time
through the strong static type system, something not pos-
sible with traditional object-oriented approaches. Further,
through purity and the strong static type system, we can
rule out important classes of run-time bugs e.g. related to
dynamic typing, and the lack of implicit data-dependencies

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

IFL’18, August 2019, Lowell, MA, USA Jonathan Thaler, Thorsten Altenkirch, and Peer-Olaf Siebers

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

which are common in traditional imperative object-oriented
approaches.

In Section 2 we define Agent-Based Simulation, introduce Func-
tional Reactive Programming, Arrowized programming andMonadic
Stream Functions, because our approach builds heavily on these
concepts. In Section 3 we introduce the SIR model of epidemiology
as an example model to explain the concepts of ABS. The heart of
the paper is Section 4 in which we derive the concepts of a pure
functional approach to ABS in three steps, using the SIR model.
Section 5 discusses related work. Finally, we draw conclusions and
discuss issues in Section 6 and point to further research in Section
7.

2 BACKGROUND
2.1 Agent-Based Simulation
Agent-Based Simulation is a methodology to model and simulate
a system where the global behaviour may be unknown but the
behaviour and interactions of the parts making up the system is
known. Those parts, called agents, are modelled and simulated, out
of which then the aggregate global behaviour of the whole system
emerges.

So, the central aspect of ABS is the concept of an agent which
can be understood as a metaphor for a pro-active unit, situated in
an environment, able to spawn new agents and interacting with
other agents in some neighbourhood by exchange of messages.

We informally assume the following about our agents [28, 42, 50]:

• They are uniquely addressable entities with some internal
state over which they have full, exclusive control.

• They are pro-active which means they can initiate actions
on their own e.g. change their internal state, send messages,
create new agents, terminate themselves.

• They are situated in an environment and can interact with
it.

• They can interact with other agents situated in the same
environment by means of messaging.

Epstein [16] identifies ABS to be especially applicable for analysing
"spatially distributed systems of heterogeneous autonomous actors
with bounded information and computing capacity". They exhibit
the following properties:

• Linearity & Non-Linearity - actions of agents can lead to
non-linear behaviour of the system.

• Time - agents act over time which is also the source of their
pro-activity.

• States - agents encapsulate some state which can be accessed
and changed during the simulation.

• Feedback-Loops - because agents act continuously and their
actions influence each other and themselves in subsequent
time-steps, feedback-loops are the norm in ABS.

• Heterogeneity - although agents can have same properties
like height, sex,... the actual values can vary arbitrarily be-
tween agents.

• Interactions - agents can be modelled after interactions with
an environment or other agents.

• Spatiality & Networks - agents can be situated within e.g. a
spatial (discrete 2D, continuous 3D,...) or complex network
environment.

2.2 Functional Reactive Programming
Functional Reactive Programming is a way to implement systems
with continuous and discrete time-semantics in pure functional lan-
guages. There are many different approaches and implementations
but in our approach we use Arrowized FRP [24, 25] as implemented
in the library Yampa [11, 22, 31].

The central concept in Arrowized FRP is the Signal Function
(SF) which can be understood as a process over time which maps an
input- to an output-signal. A signal can be understood as a value
which varies over time. Thus, signal functions have an awareness
of the passing of time by having access to ∆t which are positive
time-steps with which the system is sampled.

Siдnal α ≈ Time → α

SF α β ≈ Siдnal α → Siдnal β

Yampa provides a number of combinators for expressing time-
semantics, events and state-changes of the system. They allow to
change system behaviour in case of events, run signal functions and
generate stochastic events and random-number streams. We shortly
discuss the relevant combinators and concepts we use throughout
the paper. For a more in-depth discussion we refer to [11, 22, 31].

Event. An event in FRP is an occurrence at a specific point in time
which has no duration e.g. the recovery of an infected agent. Yampa
represents events through the Event typewhich is programmatically
equivalent to the Maybe type.

Dynamic behaviour. To change the behaviour of a signal function
at an occurrence of an event during run-time, the combinator switch
:: SF a (b, Event c) → (c → SF a b) → SF a b is provided. It takes
a signal function which is run until it generates an event. When
this event occurs, the function in the second argument is evaluated,
which receives the data of the event and has to return the new
signal function which will then replace the previous one.

Randomness. In ABS, often one needs to generate stochastic
events which occur based on e.g. an exponential distribution. Yampa
provides the combinator occasionally :: RandomGen g ⇒ g → Time
→ b→ SF a (Event b) for this. It takes a random-number generator,
a rate and a value the stochastic event will carry. It generates events
on average with the given rate. Note that at most one event will be
generated and no ’backlog’ is kept. This means that when this func-
tion is not sampled with a sufficiently high frequency, depending
on the rate, it will lose events.

Yampa also provides the combinator noise :: (RandomGen g, Ran-
dom b)⇒ g→ SF a bwhich generates a stream of noise by returning
a random number in the default range for the type b.

Running signal functions. To purely run a signal function Yampa
provides the function embed :: SF a b → (a, [(DTime, Maybe a)]) →
[b] which allows to run an SF for a given number of steps where in
each step one provides the ∆t and an input a. The function then
returns the output of the signal function for each step. Note that the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Pure Functional Epidemics IFL’18, August 2019, Lowell, MA, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

input is optional, indicated by Maybe. In the first step at t = 0, the
initial a is applied and whenever the input is Nothing in subsequent
steps, the last a which was not Nothing is re-used.

2.3 Arrowized programming
Yampa’s signal functions are arrows, requiring us to program with
arrows. Arrows are a generalisation of monads which, in addition
to the already familiar parameterisation over the output type, allow
parameterisation over their input type as well [24, 25].

In general, arrows can be understood to be computations that
represent processes, which have an input of a specific type, process
it and output a new type. This is the reason why Yampa is using
arrows to represent their signal functions: the concept of processes,
which signal functions are, maps naturally to arrows.

There exists a number of arrow combinators which allow ar-
rowized programing in a point-free style but due to lack of space
we will not discuss them here. Instead we make use of Paterson’s
do-notation for arrows [34] which makes code more readable as it
allows us to program with points.

To show how arrowized programming works, we implement a
simple signal function, which calculates the acceleration of a falling
mass on its vertical axis as an example [38].
fallingMass :: Double -> Double -> SF () Double
fallingMass p0 v0 = proc _ -> do

v <- arr (+v0) <<< integral -< (-9.8)
p <- arr (+p0) <<< integral -< v
returnA -< p

To create an arrow, the proc keyword is used, which binds a vari-
able after which the do of Patersons do-notation [34] follows. Using
the signal function integral :: SF v v of Yampa which integrates the
input value over time using the rectangle rule, we calculate the
current velocity and the position based on the initial position p0
and velocity v0. The <<< is one of the arrow combinators which
composes two arrow computations and arr simply lifts a pure func-
tion into an arrow. To pass an input to an arrow, -< is used and <-
to bind the result of an arrow computation to a variable. Finally to
return a value from an arrow, returnA is used.

2.4 Monadic Stream Functions
Monadic Stream Functions (MSF) are a generalisation of Yampa’s
signal functions with additional combinators to control and stack
side effects. An MSF is a polymorphic type and an evaluation func-
tion, which applies an MSF to an input and returns an output and a
continuation, both in a monadic context [36, 37]:
newtype MSF m a b =

MSF { unMSF :: MSF m a b -> a -> m (b, MSF m a b) }

MSFs are also arrows, which means we can apply arrowized
programming with Patersons do-notation as well. MSFs are im-
plemented in Dunai, which is available on Hackage. Dunai allows
us to apply monadic transformations to every sample by means
of combinators like arrM :: Monad m ⇒ (a → m b) → MSF m a b
and arrM_ :: Monad m⇒ m b→ MSF m a b. A part of the library
Dunai is BearRiver, a wrapper which re-implements Yampa on top
of Dunai, which enables one to run arbitrary monadic computations
in a signal function. BearRiver simply adds a monadic parameter m
to each SF which indicates the monadic context this signal function
runs in.

To show how arrowized programming with MSFs works we
extend the falling mass example from above to incorporate monads.
In this example we assume that in each step we want to accelerate
our velocity v not by the gravity constant anymore but by a random
number in the range of 0 to 9.81. Further we want to count the
number of steps it takes us to hit the floor, that is when position p
is less than 0. Also when hitting the floor we want to print a debug
message to the console with the velocity by which the mass has hit
the floor and how many steps it took.

We define a corresponding monad stack with IO as the innermost
Monad, followed by a RandT transformer for drawing random-
numbers and finally a StateT transformer to count the number of
steps we compute. We can access the monadic functions using arrM
in case we need to pass an argument and _arrM in case no argument
to the monadic function is needed:

type FallingMassStack g = StateT Int (RandT g IO)
type FallingMassMSF g = SF (FallingMassStack g) () Double

fallingMassMSF :: RandomGen g => Double -> Double -> FallingMassMSF g
fallingMassMSF v0 p0 = proc _ -> do
-- drawing random number for our gravity range
r <- arrM_ (lift $ lift $ getRandomR (0, 9.81)) -< ()

v <- arr (+v0) <<< integral -< (-r)
p <- arr (+p0) <<< integral -< v

-- count steps
arrM_ (lift (modify (+1))) -< ()

if p > 0
then returnA -< p
-- we have hit the floor
else do
-- get number of steps
s <- arrM_ (lift get) -< ()
-- write to console
arrM (liftIO . putStrLn) -< "hit floor with v " ++ show v ++

" after " ++ show s ++ " steps"
returnA -< p

To run the fallingMassMSF function until it hits the floor we
proceed as follows:

runMSF :: RandomGen g => g -> Int -> FallingMassMSF g -> IO ()
runMSF g s msf = do
let msfReaderT = unMSF msf ()

msfStateT = runReaderT msfReaderT 0.1
msfRand = runStateT msfStateT s
msfIO = runRandT msfRand g

(((p, msf'), s'), g') <- msfIO

when (p > 0) (runMSF g' s' msf')

Dunai does not know about time in MSFs, which is exactly what
BearRiver builds on top of MSFs. It does so by adding a ReaderT
Double which carries the ∆t . This is the reason why we need one
extra lift for accessing StateT and RandT. Thus unMSF returns a
computation in the ReaderT Double Monad which we need to peel
away using runReaderT. This then results in a StateT Int computation
which we evaluate by using runStateT and the current number of
steps as state. This then results in another monadic computation
of RandT Monad which we evaluate using runRandT. This finally
returns an IO computation which we simply evaluate to arrive at
the final result.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

IFL’18, August 2019, Lowell, MA, USA Jonathan Thaler, Thorsten Altenkirch, and Peer-Olaf Siebers

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 1: States and transitions in the SIR compartment
model.

Figure 2: Dynamics of the SIR compartmentmodel using the
System Dynamics approach. Population Size N = 1,000, con-
tact rate β = 1

5 , infection probability γ = 0.05, illness dura-
tion δ = 15 with initially 1 infected agent. Simulation run
for 150 time-steps.

3 THE SIR MODEL
To explain the concepts of ABS and of our pure functional approach
to it, we introduce the SIR model as a motivating example and
use-case for our implementation. It is a very well studied and un-
derstood compartment model from epidemiology [27] which allows
to simulate the dynamics of an infectious disease like influenza,
tuberculosis, chicken pox, rubella and measles spreading through a
population [15].

In this model, people in a population of size N can be in either
one of three states Susceptible, Infected or Recovered at a particular
time, where it is assumed that initially there is at least one infected
person in the population. People interact with each other on aver-
age with a given rate of β per time-unit and become infected with
a given probability γ when interacting with an infected person.
When infected, a person recovers on average after δ time-units
and is then immune to further infections. An interaction between
infected persons does not lead to re-infection, thus these interac-
tions are ignored in this model. This definition gives rise to three
compartments with the transitions seen in Figure 1.

Thismodel was also formalized using SystemDynamics (SD) [39].
In SD one models a system through differential equations, allowing
to conveniently express continuous systems which change over
time, solving them by numerically integrating over time which
gives then rise to the dynamics. We won’t go into detail here and
provide the dynamics of such a solution for reference purposes,
shown in Figure 2.

An Agent-Based approach
The approach of mapping the SIR model to an ABS is to discretize
the population and model each person in the population as an indi-
vidual agent. The transitions between the states are happening due
to discrete events caused both by interactions amongst the agents
and time-outs. The major advantage of ABS is that it allows to incor-
porate spatiality as shown in Section 4.3 and simulate heterogenity
of population e.g. different sex, age. This is not possible with other
simulation methods e.g. SD or Discrete Event Simulation [51].

According to the model, every agent makes on average contact
with β random other agents per time unit. In ABS we can only
contact discrete agents thus we model this by generating a random
event on average every 1

β time units. We need to sample from an
exponential distribution because the rate is proportional to the
size of the population [5]. Note that an agent does not know the
other agents’ state when making contact with it, thus we need a
mechanism in which agents reveal their state in which they are in
at the moment of making contact. This mechanism is an implemen-
tation detail, which we will derive in our implementation steps. For
now we only assume that agents can make contact with each other
somehow.

4 DERIVING A PURE FUNCTIONAL
APPROACH

We presented a high-level agent-based approach to the SIR model
in the previous section, which focused only on the states and the
transitions, but we haven’t talked about technical implementation.

In [45] two fundamental problems of implementing an agent-
based simulation from a programming-language agnostic point
of view is discussed. The first problem is how agents can be pro-
active and the second how interactions and communication be-
tween agents can happen. For agents to be pro-active, they must
be able to perceive the passing of time, which means there must
be a concept of an agent-process which executes over time. Inter-
actions between agents can be reduced to the problem of how an
agent can expose information about its internal state which can
be perceived by other agents. Further the authors have shown the
influence of different deterministic and non-deterministic elements
in agent-based simulation on the dynamics and how the influence
of non-determinism can completely break them down or result in
different dynamics despite same initial conditions. This means that
we want to rule out any potential source of non-determinism.

In this section we will derive a pure functional approach for an
agent-based simulation of the SIR model in which we will pose
solutions to the previously mentioned problems. We will start out
with a straight forward approach in Yampa and show its limitations.
Then in further steps wewill addmore concepts and generalisations,
ending up at the final approach which utilises Monadic Stream
Functions, a generalisation of FRP.

Of paramount importance is to keep our implementations pure
which rules out the use of the IO Monad and thus any potential
source of non-determinism under all circumstances because we
would loose all compile time guarantees about reproducibility. Still
we will make use of the Random and State Monad which indeed

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Pure Functional Epidemics IFL’18, August 2019, Lowell, MA, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

allow side-effects but the crucial point here is that we restrict side-
effects only to these types in a controlled way without allowing
general unrestricted effects 1.

4.1 Functional Reactive Programming
As described in the Section 2.2, Arrowized FRP [24] is a way to
implement systems with continuous and discrete time-semantics
where the central concept is the Signal Function, which can be
understood as a process over time, mapping an input- to an output-
signal. Technically speaking, a signal function is a continuation
which allows to capture state using closures and hides away the ∆t ,
which means that it is never exposed explicitly to the programmer,
meaning it cannot be messed with.

The concept of processes over time is an ideal match for our
agents and our system as a whole, thus we will implement them
and the whole system as signal functions.

4.1.1 Implementation. We start by defining the SIR states as
ADT and our agents as signal function (SF) which receives the SIR
states of all agents as input and outputs the current SIR state of the
agent:
data SIRState = Susceptible | Infected | Recovered

type SIRAgent = SF [SIRState] SIRState

Now we can define the behaviour of an agent to be the following:
sirAgent :: RandomGen g => g -> SIRState -> SIRAgent
sirAgent g Susceptible = susceptibleAgent g
sirAgent g Infected = infectedAgent g
sirAgent _ Recovered = recoveredAgent

Depending on the initial state we return the corresponding be-
haviour. Note that we are passing a random-number generator
instead of running in the Random Monad because signal functions
as implemented in Yampa are not capable of being monadic.

We see that the recovered agent ignores the random-number
generator because a recovered agent does nothing, stays immune
forever and can not get infected again in this model. Thus a recov-
ered agent is a consuming state from which there is no escape, it
simply acts as a sink which returns constantly Recovered:
recoveredAgent :: SIRAgent
recoveredAgent = arr (const Recovered)

Lets look how we can implement the behaviour of a susceptible
agent. It makes contact on average with β other random agents. For
every infected agent it gets into contact with, it becomes infected
with a probability of γ . If an infection happens, it makes the transi-
tion to the Infected state. To make contact, it gets fed the states of
all agents in the system from the previous time-step, so it can draw
random contacts - this is one, very naive way of implementing the
interactions between agents.

Thus a susceptible agent behaves as susceptible until it becomes
infected. Upon infection an Event is returned which results in
switching into the infectedAgent SF, which causes the agent to
behave as an infected agent from that moment on. When an infec-
tion event occurs we change the behaviour of an agent using the
Yampa combinator switch, which is quite elegant and expressive
as it makes the change of behaviour at the occurrence of an event

1The code of all steps can be accessed freely through the following URL: https://github.
com/thalerjonathan/phd/tree/master/public/purefunctionalepidemics/code

explicit. Note that to make contact on average, we use Yampas oc-
casionally function which requires us to carefully select the right
∆t for sampling the system as will be shown in results.
susceptibleAgent :: RandomGen g => g -> SIRAgent
susceptibleAgent g =

switch (susceptible g) (const (infectedAgent g))
where
susceptible :: RandomGen g
=> g -> SF [SIRState] (SIRState, Event ())

susceptible g = proc as -> do
makeContact <- occasionally g (1 / contactRate) () -< ()
if isEvent makeContact
then (do
-- draw random element from the list
a <- drawRandomElemSF g -< as
case a of
Infected -> do
-- returns True with given probability
i <- randomBoolSF g infectivity -< ()
if i
then returnA -< (Infected, Event ())
else returnA -< (Susceptible, NoEvent)

_ -> returnA -< (Susceptible, NoEvent))
else returnA -< (Susceptible, NoEvent)

To deal with randomness in an FRP way we implemented ad-
ditional signal functions built on the noiseR function provided by
Yampa. This is an example for the stream character and statefulness
of a signal function as it allows to keep track of the changed random-
number generator internally through the use of continuations and
closures. Here we provide the implementation of randomBoolSF.
drawRandomElemSF works similar but takes a list as input and
returns a randomly chosen element from it:
randomBoolSF :: RandomGen g => g -> Double -> SF () Bool
randomBoolSF g p = proc _ -> do
r <- noiseR ((0, 1) :: (Double, Double)) g -< ()
returnA -< (r <= p)

An infected agent recovers on average after δ time units. This is
implemented by drawing the duration from an exponential distri-
bution [5] with λ = 1

δ and making the transition to the Recovered
state after this duration. Thus the infected agent behaves as infected
until it recovers, on average after the illness duration, after which it
behaves as a recovered agent by switching into recoveredAgent. As
in the case of the susceptible agent, we use the occasionally func-
tion to generate the event when the agent recovers. Note that the
infected agent ignores the states of the other agents as its behaviour
is completely independent of them.
infectedAgent :: RandomGen g => g -> SIRAgent
infectedAgent g = switch infected (const recoveredAgent)
where
infected :: SF [SIRState] (SIRState, Event ())
infected = proc _ -> do
recEvt <- occasionally g illnessDuration () -< ()
let a = event Infected (const Recovered) recEvt
returnA -< (a, recEvt)

For running the simulation we use Yampas function embed:
runSimulation :: RandomGen g
=> g -> Time -> DTime -> [SIRState] -> [[SIRState]]

runSimulation g t dt as
= embed (stepSimulation sfs as) ((), dts)

where
steps = floor (t / dt)
dts = replicate steps (dt, Nothing)
n = length as
(rngs, _) = rngSplits g n [] -- unique rngs for each agent
sfs = zipWith sirAgent rngs as

What we need to implement next is a closed feedback-loop -
the heart of every agent-based simulation. Fortunately, [11, 31]

5

https://github.com/thalerjonathan/phd/tree/master/public/purefunctionalepidemics/code
https://github.com/thalerjonathan/phd/tree/master/public/purefunctionalepidemics/code

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

IFL’18, August 2019, Lowell, MA, USA Jonathan Thaler, Thorsten Altenkirch, and Peer-Olaf Siebers

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

discusses implementing this in Yampa. The function stepSimulation
is an implementation of such a closed feedback-loop. It takes the
current signal functions and states of all agents, runs them all
in parallel and returns this step’s new agent states. Note the use
of notYet which is required because in Yampa switching occurs
immediately at t = 0. If we don’t delay the switching at t = 0 until
the next step, we would enter an infinite switching loop - notYet
simply delays the first switching until the next time-step.
stepSimulation :: [SIRAgent] -> [SIRState] -> SF () [SIRState]
stepSimulation sfs as =

dpSwitch
-- feeding the agent states to each SF
(_ sfs' -> (map (\sf -> (as, sf)) sfs'))
-- the signal functions
sfs
-- switching event, ignored at t = 0
(switchingEvt >>> notYet)
-- recursively switch back into stepSimulation
stepSimulation

where
switchingEvt :: SF ((), [SIRState]) (Event [SIRState])
switchingEvt = arr (\ (_, newAs) -> Event newAs)

Yampa provides the dpSwitch combinator for running signal
functions in parallel, which has the following type-signature:
dpSwitch :: Functor col

-- routing function
=> (forall sf. a -> col sf -> col (b, sf))
-- SF collection
-> col (SF b c)
-- SF generating switching event
-> SF (a, col c) (Event d)
-- continuation to invoke upon event
-> (col (SF b c) -> d -> SF a (col c))
-> SF a (col c)

Its first argument is the pairing-function, which pairs up the
input to the signal functions - it has to preserve the structure of the
signal function collection. The second argument is the collection
of signal functions to run. The third argument is a signal function
generating the switching event. The last argument is a function,
which generates the continuation after the switching event has
occurred. dpSwitch returns a new signal function, which runs all
the signal functions in parallel and switches into the continuation
when the switching event occurs. The d in dpSwitch stands for
decoupled which guarantees that it delays the switching until the
next time-step: the function into which we switch is only applied
in the next step, which prevents an infinite loop if we switch into a
recursive continuation.

Conceptually, dpSwitch allows us to recursively switch back into
the stepSimulation with the continuations and new states of all the
agents after they were run in parallel.

4.1.2 Results. The dynamics generated by this step can be seen
in Figure 3.

By following the FRP approach we assume a continuous flow of
time, which means that we need to select a correct ∆t otherwise
we would end up with wrong dynamics. The selection of a correct
∆t depends in our case on occasionally in the susceptible behaviour,
which randomly generates an event on average with contact rate
following the exponential distribution. To arrive at the correct
dynamics, this requires us to sample occasionally, and thus the
whole system, with small enough ∆t which matches the frequency
of events generated by contact rate. If we choose a too large ∆t , we
loose events, which will result in wrong dynamics as can be seen in

(a) ∆t = 0.1 (b) ∆t = 0.01

Figure 3: FRP simulation of agent-based SIR showing the in-
fluence of different ∆t . Population size of 1,000 with contact
rate β = 1

5 , infection probability γ = 0.05, illness duration
δ = 15with initially 1 infected agent. Simulation run for 150
time-steps with respective ∆t .

(a) Under-sampling

(b) Super-sampling

Figure 4: A visual explanation of under-sampling and super-
sampling. The black dots represent the time-steps of the sim-
ulation. The red dots represent virtual events which occur
at specific points in continuous time. In the case of under-
sampling, 3 events occur in between the two time steps but
occasionally only captures the first one. By increasing the
sampling frequency either through a smaller ∆t or super-
sampling all 3 events can be captured.

Figure 3a. This issue is known as under-sampling and is described
in Figure 4.

For tackling this issue we have two options. The first one is to use
a smaller ∆t as can be seen 3b, which results in the whole system
being sampled more often, thus reducing performance. The other
option is to implement super-sampling and apply it to occasionally,
which would allow us to run the whole simulation with ∆t = 1.0
and only sample the occasionally function with a much higher
frequency.

An approach to super-sampling would be to introduce a new
combinator to Yampa which allows us to super-sample other signal
functions.
superSampling :: Int -> SF a b -> SF a [b]

It evaluates the SF argument for n times, each with ∆t = ∆t
n

and the same input argument a for all n evaluations. At time 0
no super-sampling is performed and just a single output of the
SF argument is calculated. A list of b is returned with length of n
containing the result of the n evaluations of the SF argument. If 0 or
less super samples are requested exactly one is calculated. We could
then wrap the occasionally function which would then generate a

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Pure Functional Epidemics IFL’18, August 2019, Lowell, MA, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

list of events. We have investigated super-sampling more in-depth
but have to omit this due to lack of space.

4.1.3 Discussion. We can conclude that our first step already
introduced most of the fundamental concepts of ABS:

• Time - the simulation occurs over virtual time which is mod-
elled explicitly, divided into fixed ∆t , where at each step all
agents are executed.

• Agents - we implement each agent as an individual, with the
behaviour depending on its state.

• Feedback - the output state of the agent in the current time-
step t is the input state for the next time-step t + ∆t .

• Environment - as environment we implicitly assume a fully-
connected network (complete graph) where every agent
’knows’ every other agent, including itself and thus canmake
contact with all of them.

• Stochasticity - it is an inherently stochastic simulation, which
is indicated by the random-number generator and the usage
of occasionally, randomBoolSF and drawRandomElemSF.

• Deterministic - repeated runs with the same initial random-
number generator result in same dynamics. This may not
come as a surprise but in Haskell we can guarantee that
property statically already at compile time because our sim-
ulation runs not in the IO Monad. This guarantees that no
external, uncontrollable sources of non-determinism can
interfere with the simulation.

Using FRP in the instance of Yampa results in a clear, expressive
and robust implementation. State is implicitly encoded, depending
on which signal function is active. By using explicit time-semantics
with occasionally we can achieve extremely fine grained stochastics
by sampling the system with small ∆t : we are treating it as a truly
continuous time-driven agent-based system.

A very severe problem, hard to find with testing but detectable
with in-depth validation analysis, is the fact that in the susceptible
agent the same random-number generator is used in occasionally,
drawRandomElemSF and randomBoolSF. This means that all three
stochastic functions, which should be independent from each other,
are inherently correlated. This is something one wants to prevent
under all circumstances in a simulation, as it can invalidate the
dynamics on a very subtle level, and indeed we have tested the
influence of the correlation in this example and it has an impact.
We left this severe bug in for explanatory reasons, as it shows an
example where functional programming actually encourages very
subtle bugs if one is not careful. A possible solution would be to
simply split the initial random-number generator in sirAgent three
times (using one of the splited generators for the next split) and
pass three random-number generators to susceptible.

So far we have an acceptable implementation of an agent-based
SIR approach. What we are lacking at the moment is a general
treatment of an environment. To conveniently introduce it we want
to make use of monads which is not possible using Yampa. In the
next step we make the transition to Monadic Stream Functions
as introduced in Dunai [37] which allows FRP within a monadic
context.

4.2 Generalising to Monadic Stream Functions
A part of the library Dunai is BearRiver, a wrapper which re-
implements Yampa on top of Dunai, which should allow us to
easily replace Yampa with MSFs. This will enable us to run arbi-
trary monadic computations in a signal function, which we will
need in the next step when adding an environment.

4.2.1 Identity Monad. We start by making the transition to Bear-
River by simply replacing Yampas signal function by BearRivers’
which is the same but takes an additional type parameter m, indi-
cating the monadic context. If we replace this type-parameter with
the Identity Monad, we should be able to keep the code exactly the
same, except from a few type-declarations, because BearRiver re-
implements all necessary functions we are using from Yampa. We
simply re-define our agent signal function, introducing the monad
stack our SIR implementation runs in:
type SIRMonad = Identity
type SIRAgent = SF SIRMonad [SIRState] SIRState

4.2.2 Random Monad. Using the Identity Monad does not gain
us anything but it is a first step towards amore general solution. Our
next step is to replace the Identity Monad by the Random Monad,
which will allow us to get rid of the RandomGen arguments to our
functions and run the whole simulation within the Random Monad
with the full features of FRP. We start by re-defining the SIRMonad
and SIRAgent:
type SIRMonad g = Rand g
type SIRAgent g = SF (SIRMonad g) [SIRState] SIRState

The question is now how to access this Random Monad func-
tionality within the MSF context. For the function occasionally,
there exists a monadic pendant occasionallyM which requires a
MonadRandom type-class. Because we are now running within a
MonadRandom instance we simply replace occasionally with occa-
sionallyM.
occasionallyM :: MonadRandom m => Time -> b -> SF m a (Event b)

4.2.3 Discussion. Running in the Random Monad within FRP is
convenient but is not as compelling, as we could have achieved the
same by passing RandomGen around as we already demonstrated. A
benefit though is that it guarantees us that we won’t have correlated
stochastics as discussed in the previous section. In the next step
we introduce the concept of a read/write environment which we
realise using a StateT monad. This will show the real benefit and
gives a much more compelling example for the transition to MSFs.

4.3 Adding an environment
In this step we will add an environment in which the agents exist
and through which they interact with each other. This is a funda-
mentally different approach to agent interaction but is as valid as
the approach in the previous steps.

In ABS agents are often situated within a discrete 2D environ-
ment [17] which is simply a finite NxM grid with either a Moore or
von Neumann neighbourhood (Figure 5). Agents are either static or
can move freely around with cells allowing either single or multiple
occupants.

We can directly map the SIR model to a discrete 2D environment
by placing the agents on a corresponding 2D grid with an unre-
stricted neighbourhood. The behaviour of the agents is the same but

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

IFL’18, August 2019, Lowell, MA, USA Jonathan Thaler, Thorsten Altenkirch, and Peer-Olaf Siebers

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) von Neumann (b) Moore

Figure 5: Common neighbourhoods in discrete 2D environ-
ments of Agent-Based Simulation.

they select their interactions directly from the environment. Also
instead of feeding back the states of all agents as inputs, agents now
communicate through the environment by revealing their current
state to their neighbours by placing it on their cell. Agents can read
the states of all their neighbours which tells them if a neighbour is
infected or not. For purposes of a more interesting approach, we
restrict the neighbourhood to Moore (Figure 5b).

We also implemented this spatial approach in Java using the
well known ABS library RePast [32], to have a comparison with a
state of the art approach and came to the same results as shown
in Figure 6. This supports that our pure functional approach can
produce such results as well and compares positively to the state
of the art in the ABS field.

4.3.1 Implementation. We start by defining our discrete 2D en-
vironment for which we use an indexed two dimensional array. In
each cell the agents will store their current state, thus we use the
SIRState as type for our array data:
type Disc2dCoord = (Int, Int)
type SIREnv = Array Disc2dCoord SIRState

Next we redefine our monad stack and agent signal function. We
use a StateT transformer on top of our Random Monad from the
previous step with SIREnv as type for the state. Our agent signal
function now has unit input and output type, which indicates that
the actions of the agents are only visible through side-effects in the
monad stack they are running in.
type SIRMonad g = StateT SIREnv (Rand g)
type SIRAgent g = SF (SIRMonad g) () ()

The implementation of a susceptible agent is now a bit different.
The agent directly queries the environment for its neighbours and
randomly selects one of them. The remaining behaviour is similar:
susceptibleAgent :: RandomGen g => Disc2dCoord -> SIRAgent g
susceptibleAgent coord

= switch susceptible (const (infectedAgent coord))
where
susceptible :: RandomGen g

=> SF (SIRMonad g) () ((), Event ())
susceptible = proc _ -> do
makeContact <- occasionallyM (1 / contactRate) () -< ()
if not (isEvent makeContact)
then returnA -< ((), NoEvent)
else (do
env <- arrM_ (lift get) -< ()
let ns = neighbours env coord agentGridSize moore
s <- drawRandomElemS -< ns
case s of
Infected -> do
infected <- arrM_

(lift $ lift $ randomBoolM infectivity) -< ()
if infected
then (do
arrM (put . changeCell coord Infected) -< env

returnA -< ((), Event ()))
else returnA -< ((), NoEvent)

_ -> returnA -< ((), NoEvent))

neighbours :: SIREnv -> Disc2dCoord -> Disc2dCoord
-> [Disc2dCoord] -> [SIRState]

moore :: [Disc2dCoord]
moore = [topLeftDelta, topDelta, topRightDelta,

leftDelta, rightDelta,
bottomLeftDelta, bottomDelta, bottomRightDelta]

topLeftDelta :: Disc2dCoord
topLeftDelta = (-1, -1)
topDelta :: Disc2dCoord
topDelta = (0, -1)
...

Querying the neighbourhood is done using the neighbours function.
It takes the environment, the coordinate for which to query the
neighbours for, the dimensions of the 2D grid and the neighbour-
hood information and returns the data of all neighbours it could
find. Note that on the edge of the environment, it could be the
case that fewer neighbours than provided in the neighbourhood
information will be found due to clipping.

The behaviour of an infected agent is similar to in the previous
step, with the difference that upon recovery the infected agent
updates its state in the environment from Infected to Recovered.

For running the simulation with MSFs we use the function em-
bed which is not provided by BearRiver but by Dunai which has
important implications. As already explained in the background
Section 2.4, Dunai does not know about time in MSFs, which is
what BearRiver builds on top of MSFs. Thus, when running our
simulation using embed we get the ReaderT in addition to the other
Monad Transformers, which we need to run using runReaderT. Note
that instead of returning agent states we simply return a list of envi-
ronments, one for each step. The agent states can then be extracted
from each environment.
runSimulation :: RandomGen g => g -> Time -> DTime
-> SIREnv -> [(Disc2dCoord, SIRState)] -> [SIREnv]

runSimulation g t dt env as = evalRand esRand g
where
steps = floor (t / dt)
dts = replicate steps ()
-- initial SFs of all agents
sfs = map (uncurry sirAgent) as
-- running the simulation
esReader = embed (stepSimulation sfs) dts
esState = runReaderT esReader dt
esRand = evalStateT esState env

Due to the different approach of returning the SIREnv in every
step, we implemented our own MSF:
stepSimulation :: RandomGen g
=> [SIRAgent g] -> SF (SIRMonad g) () SIREnv

stepSimulation sfs = MSF (_ -> do
-- running all SFs with unit input
res <- mapM (`unMSF` ()) sfs
-- extracting continuations, ignore output
let sfs' = fmap snd res
-- getting environment of current step
env <- get
-- recursive continuation
let ct = stepSimulation sfs'
return (env, ct))

4.3.2 Results. We implemented rendering of the environments
using the gloss library which allows us to cycle arbitrarily through

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Pure Functional Epidemics IFL’18, August 2019, Lowell, MA, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

(a) t = 100 (b) Dynamics over time

Figure 6: Simulating the agent-based SIR model on a 21x21
2D grid with Moore neighbourhood (Figure 5b), a single in-
fected agent at the center and same SIR parameters as in
Figure 2. Simulation run until t = 200 with fixed ∆t = 0.1.
Last infected agent recovers shortly after t = 160. The sus-
ceptible agents are rendered as blue hollow circles for better
contrast.

the steps and inspect the spreading of the disease over time visually
as seen in Figure 6.

Note that the dynamics of the spatial SIR simulation which are
seen in Figure 6b look quite different from the reference dynamics
of Figure 2. This is due to a much more restricted neighbourhood
which results in far fewer infected agents at a time and a lower
number of recovered agents at the end of the epidemic, meaning
that fewer agents got infected overall.

4.3.3 Discussion. At first the environment approachmight seem
a bit overcomplicated and one might ask what we have gained by
using an unrestricted neighbourhood where all agents can contact
all others. The real advantage is that we can introduce arbitrary
restrictions on the neighbourhood as shown with the Moore neigh-
bourhood.

Of course an environment is not restricted to be a discrete 2D
grid and can be anything from a continuous N-dimensional space
to a complex network - one only needs to change the type of the
StateT monad and provide corresponding neighbourhood querying
functions. The ability to place the heterogeneous agents in a generic
environment is also the fundamental advantage of an agent-based
over other simulation approaches and allows us to simulate much
more realistic scenarios.

4.4 Additional Steps
ABS involves a few more advanced concepts which we don’t fully
explore in this paper due to lack of space. Instead we give a short
overview and discuss them without presenting code or going into
technical details.

4.4.1 Agent-Transactions. Agent-transactions are necessarywhen
an arbitrary number of interactions between two agents need to
happen instantaneously without time-lag. The use-case for this
are price negotiations between multiple agents where each pair of
agents needs to come to an agreement in the same time-step [17].

In object-oriented programming, the concept of synchronous com-
munication between agents is implemented directly with method
calls.

We have implemented synchronous interactions, whichwe termed
agent-transactions in an additional step. We solved it pure function-
ally by running the signal functions of the transacting agent pair
as often as their protocol requires but with ∆t = 0, which indicates
the instantaneous character of agent-transactions.

4.4.2 Event Scheduling. Our approach is inherently time-driven
where the system is sampled with fixed ∆t . The other fundamental
way to implement an ABS in general, is to follow an event-driven
approach [30], which is based on the theory of Discrete Event
Simulation [51]. In such an approach the system is not sampled
in fixed ∆t but advanced as events occur where the system stays
constant in between. Depending on the model, in an event-driven
approach it may be more natural to express the requirements of
the model.

In an additional step we have implemented a rudimentary event-
driven approach, which allows the scheduling of events but had to
omit it due to lack of space. Using the flexibility of MSFs we added
a State transformer to the monad stack, which allows queuing of
events into a priority queue. The simulation is advanced by process-
ing the next event at the top of the queue, which means running
the MSF of the agent which receives the event. The simulation
terminates if there are either no more events in the queue or after
a given number of events, or if the simulation time has advanced
to some limit. Having made the transition to MSFs, implementing
this feature was quite straight forward, which shows the power
and strength of the generalised approach to FRP using MSFs.

4.4.3 Dynamic Agent creation. In the SIR model, the agent pop-
ulation stays constant - agents don’t die and no agents are created
during simulation - but some simulations [17] require dynamic
agent creation and destruction. We can easily add and remove
agents signal functions in the recursive switch after each time-step.
The only problem is that creating new agents requires unique agent
ids but with the transition to MSFs we can add a monadic context,
which allows agents to draw the next unique agent id when they
create a new agent.

5 RELATEDWORK
The amount of research on using pure functional programming
with Haskell in the field of ABS has been moderate so far. Most of
the papers are related to the field of Multi Agent Systems and look
into how agents can be specified using the belief-desire-intention
paradigm [13, 26, 44].

The author of [4] investigated in his master thesis Haskells paral-
lel and concurrency features to implement (amongst others) HLogo,
a Haskell clone of the ABS simulation package NetLogo, where
agents run within the IO Monad and make use of Software Trans-
actional Memory for a limited form of agent-interactions.

A library for DES and SD in Haskell called Aivika 3 is described
in the technical report [43]. It is not pure, as it uses the IO Monad
under the hood and comes only with very basic features for event-
driven ABS, which allows to specify simple state-based agents with
timed transitions.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

IFL’18, August 2019, Lowell, MA, USA Jonathan Thaler, Thorsten Altenkirch, and Peer-Olaf Siebers

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Using functional programming for DES was discussed in [26]
where the authors explicitly mention the paradigm of FRP to be
very suitable to DES.

A domain-specific language for developing functional reactive
agent-based simulations was presented in [48]. This language called
FRABJOUS is human readable and easily understandable by domain-
experts. It is not directly implemented in FRP/Haskell but is com-
piled to Yampa code which they claim is also readable. This supports
that FRP is a suitable approach to implement ABS in Haskell. Unfor-
tunately, the authors do not discuss their mapping of ABS to FRP
on a technical level, which would be of most interest to functional
programmers.

Object-oriented programming and simulation have a long history
together as the former one emereged out of Simula 67 [12] which
was created for simulation purposes. Simula 67 already supported
Discrete Event Simulation and was highly influential for today’s
object-oriented languages. Although the language was important
and influential, in our research we look into different approaches,
orthogonal to the existing object-oriented concepts.

Lustre is a formally defined, declarative and synchronous dataflow
programming language for programming reactive systems [19].
While it has solved some issues related to implementing ABS in
Haskell it still lacks a few important features necessary for ABS.
We don’t see any way of implementing an environment in Lustre as
we do in our approach in Section 4.3. Also the language seems not
to come with stochastic functions, which are but the very building
blocks of ABS. Finally, Lustre does only support static networks,
which is clearly a drawback in ABS in general where agents can be
created and terminated dynamically during simulation.

There exists some research [14, 41, 47] of using the functional
programming language Erlang [3] to implement ABS. The language
is inspired by the actor model [1] and was created in 1986 by Joe
Armstrong for Eriksson for developing distributed high reliability
software in telecommunications. The actor model can be seen as
quite influential to the development of the concept of agents in ABS
which borrowed it from Multi Agent Systems [50]. It emphasises
message-passing concurrency with share-nothing semantics, which
maps nicely to functional programming concepts. The mentioned
papers investigate how the actor model can be used to close the con-
ceptual gap between agent-specifications, which focus on message-
passing and their implementation. Further they also showed that
using this kind of concurrency allows to overcome some problems
of low level concurrent programming as well. Despite the natural
mapping of ABS concepts to such an actor language it leads to
simulations which despite same initial starting conditions might
lead to different results due to concurrency.

6 CONCLUSIONS
Our FRP based approach is different from traditional approaches in
the ABS community. First it builds on the already quite powerful
FRP paradigm. Second, due to our continuous time approach, it
forces one to think properly of time-semantics of the model and
how small ∆t should be. Third it requires one to think about agent
interactions in a new way instead of being just method-calls.

Because no part of the simulation runs in the IO Monad and we
do not use unsafePerformIO we can rule out a serious class of bugs

caused by implicit data-dependencies and side-effects which can
occur in traditional imperative implementations.

Also we can statically guarantee the reproducibility of the simu-
lation, which means that repeated runs with the same initial con-
ditions are guaranteed to result in the same dynamics. Although
we allow side-effects within agents, we restrict them to only the
Random and State Monad in a controlled, deterministic way and
never use the IO Monad which guarantees the absence of non-
deterministic side effects within the agents and other parts of the
simulation.

Determinism is also ensured by fixing the ∆t and not making
it dependent on the performance of e.g. a rendering-loop or other
system-dependent sources of non-determinism as described by
[38]. Also by using FRP we gain all the benefits from it and can use
research on testing, debugging and exploring FRP systems [35, 38].

Issues
Currently, the performance of the system is not comparable to
imperative implementations. We compared the performance of
our pure functional approach as presented in Section 4.3 to an
implementation in Java using the ABS library RePast [32]. We ran
the simulation until t = 100 on a 51x51 (2,601 agents) with ∆t =
0.1 (unknown in RePast) and averaged 8 runs. The performance
results make the lack of speed of our approach quite clear: the
pure functional approach needs 100.3 seconds whereas the Java
RePast version just 10.8 seconds on our machine to arrive at t = 100.
We have already started investigating speeding up performance
through the use of Software Transactional Memory [20, 21] which
is quite straight forward when using MSFs. It shows very good
results but we have to leave the investigation and optimization of
the performance aspect of our approach for further research as it is
out of the scope of this paper.

Despite the strengths and benefits we get by leveraging on FRP,
there are errors that are not raised at compile time, e.g. we can
still have infinite loops and run-time errors. This was for exam-
ple investigated in [40] where the authors use dependent types to
avoid some run-time errors in FRP. We suggest that one could go
further and develop a domain specific type system for FRP that
makes the FRP based ABS more predictable and that would sup-
port further mathematical analysis of its properties. Furthermore,
moving to dependent types would pose a unique benefit over the
traditional object-oriented approach and should allow us to express
and guarantee even more properties at compile time. We leave this
for further research.

In our pure functional approach, agent identity is not as clear
as in traditional object-oriented programming, where an agent can
be hidden behind a polymorphic interface which is much more
abstract than in our approach. Also the identity of an agent is
much clearer in object-oriented programming due to the concept
of object-identity and the encapsulation of data and methods.

We can conclude that the main difficulty of a pure functional
approach evolves around the communication and interaction be-
tween agents, which is a direct consequence of the issue with agent
identity. Agent interaction is straight-forward in object-oriented
programming, where it is achieved using method-calls mutating the
internal state of the agent, but that comes at the cost of a new class

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Pure Functional Epidemics IFL’18, August 2019, Lowell, MA, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

of bugs due to implicit data flow. In pure functional programming
these data flows are explicit but our current approach of feeding
back the states of all agents as inputs is not very general. We have
added further mechanisms of agent interaction which we had to
omit due to lack of space.

7 FURTHER RESEARCH
We see this paper as an intermediary and necessary step towards
dependent types for which we first needed to understand the po-
tential and limitations of a non-dependently typed pure functional
approach in Haskell. Dependent types are extremely promising in
functional programming as they allow us to express stronger guar-
antees about the correctness of programs and go as far as allowing
to formulate programs and types as constructive proofs which must
be total by definition [2, 29, 46].

So far no research using dependent types in agent-based simu-
lation exists at all. In our next paper we want to explore this for
the first time and ask more specifically how we can add dependent
types to our pure functional approach, which conceptual implica-
tions this has for ABS and what we gain from doing so. We plan
on using Idris [6] as the language of choice as it is very close to
Haskell with focus on real-world application and running programs
as opposed to other languages with dependent types e.g. Agda and
Coq which serve primarily as proof assistants.

We hypothesize that dependent types could help ruling out even
more classes of bugs at compile time and encode invariants and
model specifications on the type level, which implies that we don’t
need to test them using e.g. property-testing with QuickCheck. This
would allow the ABS community to reason about a model directly
in code. We think that a promising approach is to follow the work
of [7–10, 18] in which the authors utilize GADTs to implement
an indexed monad which allows to implementation correct-by-
construction software.

• Accessing the environment in section 4.3 involves indexed
array access which is always potentially dangerous as the
indices have to be checked at run-time.
Using dependent types it should be possible to encode the
environment dimensions into the types. In combination with
suitable data types for coordinates one should be able to
ensure already at compile time that access happens only
within the bounds of the environment.

• In the SIR implementation one could make wrong state-
transitions e.g. when an infected agent should recover, noth-
ing prevents one from making the transition back to suscep-
tible.
Using dependent types it might be possible to encode invari-
ants and state-machines on the type level which can prevent
such invalid transitions already at compile time. This would
be a huge benefit for ABS because many agent-based models
define their agents in terms of state-machines.

• An infected agent recovers after a given time - the transi-
tion of infected to recovered is a timed transition. Nothing
prevents us from never doing the transition at all.
With dependent types wemight be able to encode the passing
of time in the types and guarantee on a type level that an

infected agent has to recover after a finite number of time
steps.

• In more sophisticated models agents interact in more com-
plex ways with each other e.g. through message exchange
using agent IDs to identify target agents. The existence of an
agent is not guaranteed and depends on the simulation time
because agents can be created or terminated at any point
during simulation.
Dependent types could be used to implement agent IDs as
a proof that an agent with the given id exists at the current
time-step. This also implies that such a proof cannot be used
in the future, which is prevented by the type system as it is
not safe to assume that the agent will still exist in the next
step.

• In our implementation, we terminate the SIR model always
after a fixed number of time-steps. We can informally reason
that restricting the simulation to a fixed number of time-
steps is not necessary because the SIR model has to reach a
steady state after a finite number of steps. This means that
at that point the dynamics won’t change any more, thus one
can safely terminate the simulation. Informally speaking,
the reason for that is that eventually the system will run
out of infected agents, which are the drivers of the dynamic.
We know that all infected agents will recover after a finite
number of time-steps and that there is only a finite source
for infected agents which is monotonously decreasing.
Using dependent types it might be possible to encode this
in the types, resulting in a total simulation, creating a corre-
spondence between the equilibrium of a simulation and the
totality of its implementation. Of course this is only possible
for models in which we know about their equilibria a priori
or in which we can reason somehow that an equilibrium
exists.

ACKNOWLEDGMENTS
The authors would like to thank I. Perez, H. Nilsson, J. Greensmith,
M. Baerenz, H. Vollbrecht, S. Venkatesan and J. Hey for constructive
feedback, comments and valuable discussions.

REFERENCES
[1] Gul Agha. 1986. Actors: A Model of Concurrent Computation in Distributed Systems.

MIT Press, Cambridge, MA, USA.
[2] Thorsten Altenkirch, Nils Anders Danielsson, Andres Loeh, and Nicolas Oury.

2010. Pi Sigma: Dependent Types Without the Sugar. In Proceedings of the 10th In-
ternational Conference on Functional and Logic Programming (FLOPS’10). Springer-
Verlag, Berlin, Heidelberg, 40–55. https://doi.org/10.1007/978-3-642-12251-4_5

[3] Joe Armstrong. 2010. Erlang. Commun. ACM 53, 9 (Sept. 2010), 68–75. https:
//doi.org/10.1145/1810891.1810910

[4] Nikolaos Bezirgiannis. 2013. Improving Performance of Simulation Software Using
Haskells Concurrency & Parallelism. Ph.D. Dissertation. Utrecht University - Dept.
of Information and Computing Sciences.

[5] Andrei Borshchev and Alexei Filippov. 2004. From System Dynamics and Discrete
Event to Practical Agent Based Modeling: Reasons, Techniques, Tools. Oxford.

[6] Edwin Brady. 2013. Idris, a general-purpose dependently typed programming
language: Design and implementation. Journal of Functional Programming 23, 05
(2013), 552–593. https://doi.org/10.1017/S095679681300018X

[7] Edwin Brady. 2013. Programming and Reasoning with Algebraic Effects and
Dependent Types. In Proceedings of the 18th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP ’13). ACM, New York, NY, USA, 133–144.
https://doi.org/10.1145/2500365.2500581

[8] Edwin Brady. 2016. State Machines All The Way Down - An Architecture for
Dependently Typed Applications. Technical Report. https://www.idris-lang.org/

11

https://doi.org/10.1007/978-3-642-12251-4_5
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1145/2500365.2500581
https://www.idris-lang.org/drafts/sms.pdf
https://www.idris-lang.org/drafts/sms.pdf
https://www.idris-lang.org/drafts/sms.pdf

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

IFL’18, August 2019, Lowell, MA, USA Jonathan Thaler, Thorsten Altenkirch, and Peer-Olaf Siebers

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

drafts/sms.pdf
[9] Edwin Brady and Kevin Hammond. 2010. Correct-by-Construction Concurrency:

Using Dependent Types to Verify Implementations of Effectful Resource Usage
Protocols. Fundam. Inf. 102, 2 (April 2010), 145–176. http://dl.acm.org/citation.
cfm?id=1883634.1883636

[10] Edwin C. Brady. 2011. Idris âĂŤ systems programming meets full dependent
types. In In Proc. 5th ACM workshop on Programming languages meets program
verification, PLPV âĂŹ11. ACM, 43–54.

[11] Antony Courtney, Henrik Nilsson, and John Peterson. 2003. The Yampa Arcade.
In Proceedings of the 2003 ACM SIGPLAN Workshop on Haskell (Haskell ’03). ACM,
New York, NY, USA, 7–18. https://doi.org/10.1145/871895.871897

[12] Ole-johan Dahl. 2002. The birth of object orientation: the simula languages. In
Software Pioneers: Contributions to Software Engineering, Programming, Software
Engineering and Operating Systems Series. Springer, 79–90.

[13] Tanja De Jong. 2014. Suitability of Haskell for Multi-Agent Systems. Technical
Report. University of Twente.

[14] Antonella Di Stefano and Corrado Santoro. 2005. Using the Erlang Language
for Multi-Agent Systems Implementation. In Proceedings of the IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT ’05). IEEE Computer
Society, Washington, DC, USA, 679–685. https://doi.org/10.1109/IAT.2005.141

[15] Richard H. Enns. 2010. It’s a Nonlinear World (1st ed.). Springer Publishing
Company, Incorporated.

[16] Joshua M. Epstein. 2012. Generative Social Science: Studies in Agent-Based Compu-
tational Modeling. Princeton University Press. Google-Books-ID: 6jPiuMbKKJ4C.

[17] Joshua M. Epstein and Robert Axtell. 1996. Growing Artificial Societies: Social
Science from the Bottom Up. The Brookings Institution, Washington, DC, USA.

[18] Simon Fowler and Edwin Brady. 2014. Dependent Types for Safe and Secure
Web Programming. In Proceedings of the 25th Symposium on Implementation
and Application of Functional Languages (IFL ’13). ACM, New York, NY, USA,
49:49–49:60. https://doi.org/10.1145/2620678.2620683

[19] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The synchronous data
flow programming language LUSTRE. Proc. IEEE 79, 9 (Sept. 1991), 1305–1320.
https://doi.org/10.1109/5.97300

[20] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. 2005.
Composable Memory Transactions. In Proceedings of the Tenth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP ’05). ACM,
New York, NY, USA, 48–60. https://doi.org/10.1145/1065944.1065952

[21] Tim Harris and Simon Peyton Jones. 2006. Transactional memory with
data invariants. https://www.microsoft.com/en-us/research/publication/
transactional-memory-data-invariants/

[22] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. 2003. Ar-
rows, Robots, and Functional Reactive Programming. In Advanced Functional
Programming, Johan Jeuring and Simon L. Peyton Jones (Eds.). Number 2638
in Lecture Notes in Computer Science. Springer Berlin Heidelberg, 159–187.
https://doi.org/10.1007/978-3-540-44833-4_6

[23] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler. 2007. A
History of Haskell: Being Lazy with Class. In Proceedings of the Third ACM
SIGPLAN Conference on History of Programming Languages (HOPL III). ACM, New
York, NY, USA, 12–1–12–55. https://doi.org/10.1145/1238844.1238856

[24] John Hughes. 2000. Generalising Monads to Arrows. Sci. Comput. Program. 37,
1-3 (May 2000), 67–111. https://doi.org/10.1016/S0167-6423(99)00023-4

[25] John Hughes. 2005. Programming with Arrows. In Proceedings of the 5th Interna-
tional Conference on Advanced Functional Programming (AFP’04). Springer-Verlag,
Berlin, Heidelberg, 73–129. https://doi.org/10.1007/11546382_2

[26] Peter Jankovic and Ondrej Such. 2007. Functional Programming and Discrete
Simulation. Technical Report.

[27] W. O. Kermack and A. G. McKendrick. 1927. A Contribution to the Mathematical
Theory of Epidemics. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences 115, 772 (Aug. 1927), 700–721. https://doi.org/
10.1098/rspa.1927.0118

[28] C. M. Macal. 2016. Everything you need to know about agent-based modelling
and simulation. Journal of Simulation 10, 2 (May 2016), 144–156. https://doi.org/
10.1057/jos.2016.7

[29] James McKinna. 2006. Why Dependent Types Matter. In Conference Record of the
33rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’06). ACM, New York, NY, USA, 1–1. https://doi.org/10.1145/1111037.
1111038

[30] Ruth Meyer. 2014. Event-Driven Multi-agent Simulation. In Multi-Agent-Based
Simulation XV (Lecture Notes in Computer Science). Springer, Cham, 3–16. https:
//doi.org/10.1007/978-3-319-14627-0_1

[31] Henrik Nilsson, Antony Courtney, and John Peterson. 2002. Functional Reactive
Programming, Continued. In Proceedings of the 2002 ACM SIGPLAN Workshop on
Haskell (Haskell ’02). ACM, New York, NY, USA, 51–64. https://doi.org/10.1145/
581690.581695

[32] Michael J. North, Nicholson T. Collier, Jonathan Ozik, Eric R. Tatara, Charles M.
Macal, Mark Bragen, and Pam Sydelko. 2013. Complex adaptive systemsmodeling
with Repast Simphony. Complex Adaptive Systems Modeling 1, 1 (March 2013), 3.

https://doi.org/10.1186/2194-3206-1-3
[33] Michael J. North and Charles M. Macal. 2007. Managing Business Complexity:

Discovering Strategic Solutions with Agent-Based Modeling and Simulation. Oxford
University Press, USA. Google-Books-ID: gRATDAAAQBAJ.

[34] Ross Paterson. 2001. A New Notation for Arrows. In Proceedings of the Sixth
ACM SIGPLAN International Conference on Functional Programming (ICFP ’01).
ACM, New York, NY, USA, 229–240. https://doi.org/10.1145/507635.507664

[35] Ivan Perez. 2017. Back to the Future: Time Travel in FRP. In Proceedings of the
10th ACM SIGPLAN International Symposium on Haskell (Haskell 2017). ACM,
New York, NY, USA, 105–116. https://doi.org/10.1145/3122955.3122957

[36] Ivan Perez. 2017. Extensible and Robust Functional Reactive Programming. Doctoral
Thesis. University Of Nottingham, Nottingham.

[37] Ivan Perez, Manuel Baerenz, and Henrik Nilsson. 2016. Functional Reactive
Programming, Refactored. In Proceedings of the 9th International Symposium on
Haskell (Haskell 2016). ACM, New York, NY, USA, 33–44. https://doi.org/10.1145/
2976002.2976010

[38] Ivan Perez and Henrik Nilsson. 2017. Testing and Debugging Functional Reactive
Programming. Proc. ACM Program. Lang. 1, ICFP (Aug. 2017), 2:1–2:27. https:
//doi.org/10.1145/3110246

[39] Donald E. Porter. 1962. Industrial Dynamics. Jay Forrester. M.I.T. Press, Cam-
bridge, Mass.; Wiley, New York, 1961. xv + 464 pp. Illus. $18. Science 135, 3502
(Feb. 1962), 426–427. https://doi.org/10.1126/science.135.3502.426-a

[40] Neil Sculthorpe and Henrik Nilsson. 2009. Safe Functional Reactive Programming
Through Dependent Types. In Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’09). ACM, New York, NY, USA,
23–34. https://doi.org/10.1145/1596550.1596558

[41] Gene I. Sher. 2013. Agent-Based Modeling Using Erlang Eliminating The Conceptual
Gap Between The Programming Language & ABM.

[42] Peer-Olaf Siebers and Uwe Aickelin. 2008. Introduction to Multi-Agent Simula-
tion. arXiv:0803.3905 [cs] (March 2008). http://arxiv.org/abs/0803.3905 arXiv:
0803.3905.

[43] David Sorokin. 2015. Aivika 3: Creating a Simulation Library based on Functional
Programming.

[44] Martin Sulzmann and Edmund Lam. 2007. Specifying and Controlling Agents in
Haskell. Technical Report.

[45] Jonathan Thaler and Peer-Olaf Siebers. 2017. The Art Of Iterating: Update-
Strategies in Agent-Based Simulation. Dublin.

[46] Simon Thompson. 1991. Type Theory and Functional Programming. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.

[47] Carlos Varela, Carlos Abalde, Laura Castro, and Jose GulÃŋas. 2004. OnModelling
Agent Systems with Erlang. In Proceedings of the 2004 ACM SIGPLAN Workshop
on Erlang (ERLANG ’04). ACM, New York, NY, USA, 65–70. https://doi.org/10.
1145/1022471.1022481

[48] Ivan Vendrov, Christopher Dutchyn, and Nathaniel D. Osgood. 2014. Frabjous:
A Declarative Domain-Specific Language for Agent-Based Modeling. In Social
Computing, Behavioral-Cultural Modeling and Prediction, William G. Kennedy,
Nitin Agarwal, and Shanchieh Jay Yang (Eds.). Number 8393 in Lecture Notes in
Computer Science. Springer International Publishing, 385–392. https://doi.org/
10.1007/978-3-319-05579-4_47

[49] Zhanyong Wan and Paul Hudak. 2000. Functional Reactive Programming from
First Principles. In Proceedings of the ACM SIGPLAN 2000 Conference on Program-
ming Language Design and Implementation (PLDI ’00). ACM, New York, NY, USA,
242–252. https://doi.org/10.1145/349299.349331

[50] Michael Wooldridge. 2009. An Introduction to MultiAgent Systems (2nd ed.). Wiley
Publishing.

[51] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. 2000. Theory of Modeling
and Simulation: Integrating Discrete Event and Continuous Complex Dynamic
Systems. Academic Press. Google-Books-ID: REzmYOQmHuQC.

Received May 2018

12

https://www.idris-lang.org/drafts/sms.pdf
https://www.idris-lang.org/drafts/sms.pdf
http://dl.acm.org/citation.cfm?id=1883634.1883636
http://dl.acm.org/citation.cfm?id=1883634.1883636
https://doi.org/10.1145/871895.871897
https://doi.org/10.1109/IAT.2005.141
https://doi.org/10.1145/2620678.2620683
https://doi.org/10.1109/5.97300
https://doi.org/10.1145/1065944.1065952
https://www.microsoft.com/en-us/research/publication/transactional-memory-data-invariants/
https://www.microsoft.com/en-us/research/publication/transactional-memory-data-invariants/
https://doi.org/10.1007/978-3-540-44833-4_6
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1016/S0167-6423(99)00023-4
https://doi.org/10.1007/11546382_2
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1145/1111037.1111038
https://doi.org/10.1145/1111037.1111038
https://doi.org/10.1007/978-3-319-14627-0_1
https://doi.org/10.1007/978-3-319-14627-0_1
https://doi.org/10.1145/581690.581695
https://doi.org/10.1145/581690.581695
https://doi.org/10.1186/2194-3206-1-3
https://doi.org/10.1145/507635.507664
https://doi.org/10.1145/3122955.3122957
https://doi.org/10.1145/2976002.2976010
https://doi.org/10.1145/2976002.2976010
https://doi.org/10.1145/3110246
https://doi.org/10.1145/3110246
https://doi.org/10.1126/science.135.3502.426-a
https://doi.org/10.1145/1596550.1596558
http://arxiv.org/abs/0803.3905
https://doi.org/10.1145/1022471.1022481
https://doi.org/10.1145/1022471.1022481
https://doi.org/10.1007/978-3-319-05579-4_47
https://doi.org/10.1007/978-3-319-05579-4_47
https://doi.org/10.1145/349299.349331

	Abstract
	1 Introduction
	2 Background
	2.1 Agent-Based Simulation
	2.2 Functional Reactive Programming
	2.3 Arrowized programming
	2.4 Monadic Stream Functions

	3 The SIR Model
	4 Deriving a pure functional approach
	4.1 Functional Reactive Programming
	4.2 Generalising to Monadic Stream Functions
	4.3 Adding an environment
	4.4 Additional Steps

	5 Related Work
	6 Conclusions
	7 Further Research
	Acknowledgments
	References

