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ABSTRACT
Agent-Based Simulation (ABS) is a methodology in which a system
is simulated in a bottom-up approach by modelling the micro in-
teractions of its constituting parts, called agents, out of which the
global system behaviour emerges.

So far mainly object-oriented techniques and languages have
been used in ABS. Using the SIR model of epidemiology, which sim-
ulates the spreading of an infectious disease through a population,
we demonstrate how to use pure Functional Reactive Program-
ming to implement ABS. With our approach we can guarantee
the reproducibility of the simulation at compile time and rule out
specific classes of run-time bugs, something that is not possible
with traditional object-oriented languages. Also, we found that the
representation in a purely functional format is conceptually quite
elegant and opens the way to formally reason about ABS.
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1 INTRODUCTION
The traditional approach to Agent-Based Simulation (ABS) has so
far always been object-oriented techniques, due to the influence
of the seminal work of Epstein et al [17] in which the authors
claim "[..] object-oriented programming to be a particularly natural
development environment for Sugarscape specifically and artificial
societies generally [..]" (p. 179). This work established the metaphor
in the ABS community, that agents map naturally to objects [33]
which still holds up today.

In this paper we challenge this metaphor and explore ways of
approaching ABS in a pure (lack of implicit side-effects) functional
way using Haskell. By doing this we expect to leverage the benefits
of pure functional programming [23]: higher expressivity through

IFL’18, August 2019, Lowell, MA, USA
2019. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

declarative code, being polymorph and explicit about side-effects
through monads, more robust and less susceptible to bugs due to
explicit data flow and lack of implicit side-effects.

As use case we introduce the SIR model of epidemiology with
which one can simulate epidemics, that is the spreading of an in-
fectious disease through a population, in a realistic way.

Over the course of three steps, we derive all necessary concepts
required for a full agent-based implementation. We start with a
Functional Reactive Programming (FRP) [49] solution using Yampa
[22] to introduce most of the general concepts and then make the
transition to Monadic Stream Functions (MSF) [37] which allow us
to add more advanced concepts of ABS to pure functional program-
ming.

The aim of this paper is to show how ABS can be implemented
in pure Haskell and what the benefits and drawbacks are. By doing
this we give the reader a good understanding of what ABS is, what
the challenges are when implementing it and how we solve these
in our approach.

The contributions of this paper are:

• We present an approach to ABS using declarative analysis
with FRP in which we systematically introduce the concepts
of ABS to pure functional programming in a step-by-step
approach. Also this work presents a new field of application
to FRP as to the best of our knowledge the application of
FRP to ABS (on a technical level) has not been addressed
before. The result of using FRP allows expressing continuous
time-semantics in a very clear, compositional and declarative
way, abstracting away the low-level details of time-stepping
and progress of time within an agent.

• Our approach can guarantee reproducibility already at com-
pile time, which means that repeated runs of the simulation
with the same initial conditions will always result in the
same dynamics, something highly desirable in simulation
in general. This can only be achieved through purity, which
guarantees the absence of implicit side-effects, which allows
to rule out non-deterministic influences at compile time
through the strong static type system, something not pos-
sible with traditional object-oriented approaches. Further,
through purity and the strong static type system, we can
rule out important classes of run-time bugs e.g. related to
dynamic typing, and the lack of implicit data-dependencies

1
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which are common in traditional imperative object-oriented
approaches.

In Section 2 we define Agent-Based Simulation, introduce Func-
tional Reactive Programming, Arrowized programming andMonadic
Stream Functions, because our approach builds heavily on these
concepts. In Section 3 we introduce the SIR model of epidemiology
as an example model to explain the concepts of ABS. The heart of
the paper is Section 4 in which we derive the concepts of a pure
functional approach to ABS in three steps, using the SIR model.
Section 5 discusses related work. Finally, we draw conclusions and
discuss issues in Section 6 and point to further research in Section
7.

2 BACKGROUND
2.1 Agent-Based Simulation
Agent-Based Simulation is a methodology to model and simulate
a system where the global behaviour may be unknown but the
behaviour and interactions of the parts making up the system is
known. Those parts, called agents, are modelled and simulated, out
of which then the aggregate global behaviour of the whole system
emerges.

So, the central aspect of ABS is the concept of an agent which
can be understood as a metaphor for a pro-active unit, situated in
an environment, able to spawn new agents and interacting with
other agents in some neighbourhood by exchange of messages.

We informally assume the following about our agents [28, 42, 50]:

• They are uniquely addressable entities with some internal
state over which they have full, exclusive control.

• They are pro-active which means they can initiate actions
on their own e.g. change their internal state, send messages,
create new agents, terminate themselves.

• They are situated in an environment and can interact with
it.

• They can interact with other agents situated in the same
environment by means of messaging.

Epstein [16] identifies ABS to be especially applicable for analysing
"spatially distributed systems of heterogeneous autonomous actors
with bounded information and computing capacity". They exhibit
the following properties:

• Linearity & Non-Linearity - actions of agents can lead to
non-linear behaviour of the system.

• Time - agents act over time which is also the source of their
pro-activity.

• States - agents encapsulate some state which can be accessed
and changed during the simulation.

• Feedback-Loops - because agents act continuously and their
actions influence each other and themselves in subsequent
time-steps, feedback-loops are the norm in ABS.

• Heterogeneity - although agents can have same properties
like height, sex,... the actual values can vary arbitrarily be-
tween agents.

• Interactions - agents can be modelled after interactions with
an environment or other agents.

• Spatiality & Networks - agents can be situated within e.g. a
spatial (discrete 2D, continuous 3D,...) or complex network
environment.

2.2 Functional Reactive Programming
Functional Reactive Programming is a way to implement systems
with continuous and discrete time-semantics in pure functional lan-
guages. There are many different approaches and implementations
but in our approach we use Arrowized FRP [24, 25] as implemented
in the library Yampa [11, 22, 31].

The central concept in Arrowized FRP is the Signal Function
(SF) which can be understood as a process over time which maps an
input- to an output-signal. A signal can be understood as a value
which varies over time. Thus, signal functions have an awareness
of the passing of time by having access to ∆t which are positive
time-steps with which the system is sampled.

Siдnal α ≈ Time → α

SF α β ≈ Siдnal α → Siдnal β

Yampa provides a number of combinators for expressing time-
semantics, events and state-changes of the system. They allow to
change system behaviour in case of events, run signal functions and
generate stochastic events and random-number streams. We shortly
discuss the relevant combinators and concepts we use throughout
the paper. For a more in-depth discussion we refer to [11, 22, 31].

Event. An event in FRP is an occurrence at a specific point in time
which has no duration e.g. the recovery of an infected agent. Yampa
represents events through the Event typewhich is programmatically
equivalent to the Maybe type.

Dynamic behaviour. To change the behaviour of a signal function
at an occurrence of an event during run-time, the combinator switch
:: SF a (b, Event c) → (c → SF a b) → SF a b is provided. It takes
a signal function which is run until it generates an event. When
this event occurs, the function in the second argument is evaluated,
which receives the data of the event and has to return the new
signal function which will then replace the previous one.

Randomness. In ABS, often one needs to generate stochastic
events which occur based on e.g. an exponential distribution. Yampa
provides the combinator occasionally :: RandomGen g ⇒ g → Time
→ b→ SF a (Event b) for this. It takes a random-number generator,
a rate and a value the stochastic event will carry. It generates events
on average with the given rate. Note that at most one event will be
generated and no ’backlog’ is kept. This means that when this func-
tion is not sampled with a sufficiently high frequency, depending
on the rate, it will lose events.

Yampa also provides the combinator noise :: (RandomGen g, Ran-
dom b)⇒ g→ SF a bwhich generates a stream of noise by returning
a random number in the default range for the type b.

Running signal functions. To purely run a signal function Yampa
provides the function embed :: SF a b → (a, [(DTime, Maybe a)]) →
[b] which allows to run an SF for a given number of steps where in
each step one provides the ∆t and an input a. The function then
returns the output of the signal function for each step. Note that the

2
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input is optional, indicated by Maybe. In the first step at t = 0, the
initial a is applied and whenever the input is Nothing in subsequent
steps, the last a which was not Nothing is re-used.

2.3 Arrowized programming
Yampa’s signal functions are arrows, requiring us to program with
arrows. Arrows are a generalisation of monads which, in addition
to the already familiar parameterisation over the output type, allow
parameterisation over their input type as well [24, 25].

In general, arrows can be understood to be computations that
represent processes, which have an input of a specific type, process
it and output a new type. This is the reason why Yampa is using
arrows to represent their signal functions: the concept of processes,
which signal functions are, maps naturally to arrows.

There exists a number of arrow combinators which allow ar-
rowized programing in a point-free style but due to lack of space
we will not discuss them here. Instead we make use of Paterson’s
do-notation for arrows [34] which makes code more readable as it
allows us to program with points.

To show how arrowized programming works, we implement a
simple signal function, which calculates the acceleration of a falling
mass on its vertical axis as an example [38].
fallingMass :: Double -> Double -> SF () Double
fallingMass p0 v0 = proc _ -> do

v <- arr (+v0) <<< integral -< (-9.8)
p <- arr (+p0) <<< integral -< v
returnA -< p

To create an arrow, the proc keyword is used, which binds a vari-
able after which the do of Patersons do-notation [34] follows. Using
the signal function integral :: SF v v of Yampa which integrates the
input value over time using the rectangle rule, we calculate the
current velocity and the position based on the initial position p0
and velocity v0. The <<< is one of the arrow combinators which
composes two arrow computations and arr simply lifts a pure func-
tion into an arrow. To pass an input to an arrow, -< is used and <-
to bind the result of an arrow computation to a variable. Finally to
return a value from an arrow, returnA is used.

2.4 Monadic Stream Functions
Monadic Stream Functions (MSF) are a generalisation of Yampa’s
signal functions with additional combinators to control and stack
side effects. An MSF is a polymorphic type and an evaluation func-
tion, which applies an MSF to an input and returns an output and a
continuation, both in a monadic context [36, 37]:
newtype MSF m a b =

MSF { unMSF :: MSF m a b -> a -> m (b, MSF m a b) }

MSFs are also arrows, which means we can apply arrowized
programming with Patersons do-notation as well. MSFs are im-
plemented in Dunai, which is available on Hackage. Dunai allows
us to apply monadic transformations to every sample by means
of combinators like arrM :: Monad m ⇒ (a → m b) → MSF m a b
and arrM_ :: Monad m⇒ m b→ MSF m a b. A part of the library
Dunai is BearRiver, a wrapper which re-implements Yampa on top
of Dunai, which enables one to run arbitrary monadic computations
in a signal function. BearRiver simply adds a monadic parameter m
to each SF which indicates the monadic context this signal function
runs in.

To show how arrowized programming with MSFs works we
extend the falling mass example from above to incorporate monads.
In this example we assume that in each step we want to accelerate
our velocity v not by the gravity constant anymore but by a random
number in the range of 0 to 9.81. Further we want to count the
number of steps it takes us to hit the floor, that is when position p
is less than 0. Also when hitting the floor we want to print a debug
message to the console with the velocity by which the mass has hit
the floor and how many steps it took.

We define a corresponding monad stack with IO as the innermost
Monad, followed by a RandT transformer for drawing random-
numbers and finally a StateT transformer to count the number of
steps we compute. We can access the monadic functions using arrM
in case we need to pass an argument and _arrM in case no argument
to the monadic function is needed:

type FallingMassStack g = StateT Int (RandT g IO)
type FallingMassMSF g = SF (FallingMassStack g) () Double

fallingMassMSF :: RandomGen g => Double -> Double -> FallingMassMSF g
fallingMassMSF v0 p0 = proc _ -> do
-- drawing random number for our gravity range
r <- arrM_ (lift $ lift $ getRandomR (0, 9.81)) -< ()

v <- arr (+v0) <<< integral -< (-r)
p <- arr (+p0) <<< integral -< v

-- count steps
arrM_ (lift (modify (+1))) -< ()

if p > 0
then returnA -< p
-- we have hit the floor
else do
-- get number of steps
s <- arrM_ (lift get) -< ()
-- write to console
arrM (liftIO . putStrLn) -< "hit floor with v " ++ show v ++

" after " ++ show s ++ " steps"
returnA -< p

To run the fallingMassMSF function until it hits the floor we
proceed as follows:

runMSF :: RandomGen g => g -> Int -> FallingMassMSF g -> IO ()
runMSF g s msf = do
let msfReaderT = unMSF msf ()

msfStateT = runReaderT msfReaderT 0.1
msfRand = runStateT msfStateT s
msfIO = runRandT msfRand g

(((p, msf'), s'), g') <- msfIO

when (p > 0) (runMSF g' s' msf')

Dunai does not know about time in MSFs, which is exactly what
BearRiver builds on top of MSFs. It does so by adding a ReaderT
Double which carries the ∆t . This is the reason why we need one
extra lift for accessing StateT and RandT. Thus unMSF returns a
computation in the ReaderT Double Monad which we need to peel
away using runReaderT. This then results in a StateT Int computation
which we evaluate by using runStateT and the current number of
steps as state. This then results in another monadic computation
of RandT Monad which we evaluate using runRandT. This finally
returns an IO computation which we simply evaluate to arrive at
the final result.

3
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Figure 1: States and transitions in the SIR compartment
model.

Figure 2: Dynamics of the SIR compartmentmodel using the
System Dynamics approach. Population Size N = 1,000, con-
tact rate β = 1

5 , infection probability γ = 0.05, illness dura-
tion δ = 15 with initially 1 infected agent. Simulation run
for 150 time-steps.

3 THE SIR MODEL
To explain the concepts of ABS and of our pure functional approach
to it, we introduce the SIR model as a motivating example and
use-case for our implementation. It is a very well studied and un-
derstood compartment model from epidemiology [27] which allows
to simulate the dynamics of an infectious disease like influenza,
tuberculosis, chicken pox, rubella and measles spreading through a
population [15].

In this model, people in a population of size N can be in either
one of three states Susceptible, Infected or Recovered at a particular
time, where it is assumed that initially there is at least one infected
person in the population. People interact with each other on aver-
age with a given rate of β per time-unit and become infected with
a given probability γ when interacting with an infected person.
When infected, a person recovers on average after δ time-units
and is then immune to further infections. An interaction between
infected persons does not lead to re-infection, thus these interac-
tions are ignored in this model. This definition gives rise to three
compartments with the transitions seen in Figure 1.

Thismodel was also formalized using SystemDynamics (SD) [39].
In SD one models a system through differential equations, allowing
to conveniently express continuous systems which change over
time, solving them by numerically integrating over time which
gives then rise to the dynamics. We won’t go into detail here and
provide the dynamics of such a solution for reference purposes,
shown in Figure 2.

An Agent-Based approach
The approach of mapping the SIR model to an ABS is to discretize
the population and model each person in the population as an indi-
vidual agent. The transitions between the states are happening due
to discrete events caused both by interactions amongst the agents
and time-outs. The major advantage of ABS is that it allows to incor-
porate spatiality as shown in Section 4.3 and simulate heterogenity
of population e.g. different sex, age. This is not possible with other
simulation methods e.g. SD or Discrete Event Simulation [51].

According to the model, every agent makes on average contact
with β random other agents per time unit. In ABS we can only
contact discrete agents thus we model this by generating a random
event on average every 1

β time units. We need to sample from an
exponential distribution because the rate is proportional to the
size of the population [5]. Note that an agent does not know the
other agents’ state when making contact with it, thus we need a
mechanism in which agents reveal their state in which they are in
at the moment of making contact. This mechanism is an implemen-
tation detail, which we will derive in our implementation steps. For
now we only assume that agents can make contact with each other
somehow.

4 DERIVING A PURE FUNCTIONAL
APPROACH

We presented a high-level agent-based approach to the SIR model
in the previous section, which focused only on the states and the
transitions, but we haven’t talked about technical implementation.

In [45] two fundamental problems of implementing an agent-
based simulation from a programming-language agnostic point
of view is discussed. The first problem is how agents can be pro-
active and the second how interactions and communication be-
tween agents can happen. For agents to be pro-active, they must
be able to perceive the passing of time, which means there must
be a concept of an agent-process which executes over time. Inter-
actions between agents can be reduced to the problem of how an
agent can expose information about its internal state which can
be perceived by other agents. Further the authors have shown the
influence of different deterministic and non-deterministic elements
in agent-based simulation on the dynamics and how the influence
of non-determinism can completely break them down or result in
different dynamics despite same initial conditions. This means that
we want to rule out any potential source of non-determinism.

In this section we will derive a pure functional approach for an
agent-based simulation of the SIR model in which we will pose
solutions to the previously mentioned problems. We will start out
with a straight forward approach in Yampa and show its limitations.
Then in further steps wewill addmore concepts and generalisations,
ending up at the final approach which utilises Monadic Stream
Functions, a generalisation of FRP.

Of paramount importance is to keep our implementations pure
which rules out the use of the IO Monad and thus any potential
source of non-determinism under all circumstances because we
would loose all compile time guarantees about reproducibility. Still
we will make use of the Random and State Monad which indeed

4
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allow side-effects but the crucial point here is that we restrict side-
effects only to these types in a controlled way without allowing
general unrestricted effects 1.

4.1 Functional Reactive Programming
As described in the Section 2.2, Arrowized FRP [24] is a way to
implement systems with continuous and discrete time-semantics
where the central concept is the Signal Function, which can be
understood as a process over time, mapping an input- to an output-
signal. Technically speaking, a signal function is a continuation
which allows to capture state using closures and hides away the ∆t ,
which means that it is never exposed explicitly to the programmer,
meaning it cannot be messed with.

The concept of processes over time is an ideal match for our
agents and our system as a whole, thus we will implement them
and the whole system as signal functions.

4.1.1 Implementation. We start by defining the SIR states as
ADT and our agents as signal function (SF) which receives the SIR
states of all agents as input and outputs the current SIR state of the
agent:
data SIRState = Susceptible | Infected | Recovered

type SIRAgent = SF [SIRState] SIRState

Now we can define the behaviour of an agent to be the following:
sirAgent :: RandomGen g => g -> SIRState -> SIRAgent
sirAgent g Susceptible = susceptibleAgent g
sirAgent g Infected = infectedAgent g
sirAgent _ Recovered = recoveredAgent

Depending on the initial state we return the corresponding be-
haviour. Note that we are passing a random-number generator
instead of running in the Random Monad because signal functions
as implemented in Yampa are not capable of being monadic.

We see that the recovered agent ignores the random-number
generator because a recovered agent does nothing, stays immune
forever and can not get infected again in this model. Thus a recov-
ered agent is a consuming state from which there is no escape, it
simply acts as a sink which returns constantly Recovered:
recoveredAgent :: SIRAgent
recoveredAgent = arr (const Recovered)

Lets look how we can implement the behaviour of a susceptible
agent. It makes contact on average with β other random agents. For
every infected agent it gets into contact with, it becomes infected
with a probability of γ . If an infection happens, it makes the transi-
tion to the Infected state. To make contact, it gets fed the states of
all agents in the system from the previous time-step, so it can draw
random contacts - this is one, very naive way of implementing the
interactions between agents.

Thus a susceptible agent behaves as susceptible until it becomes
infected. Upon infection an Event is returned which results in
switching into the infectedAgent SF, which causes the agent to
behave as an infected agent from that moment on. When an infec-
tion event occurs we change the behaviour of an agent using the
Yampa combinator switch, which is quite elegant and expressive
as it makes the change of behaviour at the occurrence of an event

1The code of all steps can be accessed freely through the following URL: https://github.
com/thalerjonathan/phd/tree/master/public/purefunctionalepidemics/code

explicit. Note that to make contact on average, we use Yampas oc-
casionally function which requires us to carefully select the right
∆t for sampling the system as will be shown in results.
susceptibleAgent :: RandomGen g => g -> SIRAgent
susceptibleAgent g =

switch (susceptible g) (const (infectedAgent g))
where
susceptible :: RandomGen g
=> g -> SF [SIRState] (SIRState, Event ())

susceptible g = proc as -> do
makeContact <- occasionally g (1 / contactRate) () -< ()
if isEvent makeContact
then (do
-- draw random element from the list
a <- drawRandomElemSF g -< as
case a of
Infected -> do
-- returns True with given probability
i <- randomBoolSF g infectivity -< ()
if i
then returnA -< (Infected, Event ())
else returnA -< (Susceptible, NoEvent)

_ -> returnA -< (Susceptible, NoEvent))
else returnA -< (Susceptible, NoEvent)

To deal with randomness in an FRP way we implemented ad-
ditional signal functions built on the noiseR function provided by
Yampa. This is an example for the stream character and statefulness
of a signal function as it allows to keep track of the changed random-
number generator internally through the use of continuations and
closures. Here we provide the implementation of randomBoolSF.
drawRandomElemSF works similar but takes a list as input and
returns a randomly chosen element from it:
randomBoolSF :: RandomGen g => g -> Double -> SF () Bool
randomBoolSF g p = proc _ -> do
r <- noiseR ((0, 1) :: (Double, Double)) g -< ()
returnA -< (r <= p)

An infected agent recovers on average after δ time units. This is
implemented by drawing the duration from an exponential distri-
bution [5] with λ = 1

δ and making the transition to the Recovered
state after this duration. Thus the infected agent behaves as infected
until it recovers, on average after the illness duration, after which it
behaves as a recovered agent by switching into recoveredAgent. As
in the case of the susceptible agent, we use the occasionally func-
tion to generate the event when the agent recovers. Note that the
infected agent ignores the states of the other agents as its behaviour
is completely independent of them.
infectedAgent :: RandomGen g => g -> SIRAgent
infectedAgent g = switch infected (const recoveredAgent)
where
infected :: SF [SIRState] (SIRState, Event ())
infected = proc _ -> do
recEvt <- occasionally g illnessDuration () -< ()
let a = event Infected (const Recovered) recEvt
returnA -< (a, recEvt)

For running the simulation we use Yampas function embed:
runSimulation :: RandomGen g
=> g -> Time -> DTime -> [SIRState] -> [[SIRState]]

runSimulation g t dt as
= embed (stepSimulation sfs as) ((), dts)

where
steps = floor (t / dt)
dts = replicate steps (dt, Nothing)
n = length as
(rngs, _) = rngSplits g n [] -- unique rngs for each agent
sfs = zipWith sirAgent rngs as

What we need to implement next is a closed feedback-loop -
the heart of every agent-based simulation. Fortunately, [11, 31]

5
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discusses implementing this in Yampa. The function stepSimulation
is an implementation of such a closed feedback-loop. It takes the
current signal functions and states of all agents, runs them all
in parallel and returns this step’s new agent states. Note the use
of notYet which is required because in Yampa switching occurs
immediately at t = 0. If we don’t delay the switching at t = 0 until
the next step, we would enter an infinite switching loop - notYet
simply delays the first switching until the next time-step.
stepSimulation :: [SIRAgent] -> [SIRState] -> SF () [SIRState]
stepSimulation sfs as =

dpSwitch
-- feeding the agent states to each SF
(\_ sfs' -> (map (\sf -> (as, sf)) sfs'))
-- the signal functions
sfs
-- switching event, ignored at t = 0
(switchingEvt >>> notYet)
-- recursively switch back into stepSimulation
stepSimulation

where
switchingEvt :: SF ((), [SIRState]) (Event [SIRState])
switchingEvt = arr (\ (_, newAs) -> Event newAs)

Yampa provides the dpSwitch combinator for running signal
functions in parallel, which has the following type-signature:
dpSwitch :: Functor col

-- routing function
=> (forall sf. a -> col sf -> col (b, sf))
-- SF collection
-> col (SF b c)
-- SF generating switching event
-> SF (a, col c) (Event d)
-- continuation to invoke upon event
-> (col (SF b c) -> d -> SF a (col c))
-> SF a (col c)

Its first argument is the pairing-function, which pairs up the
input to the signal functions - it has to preserve the structure of the
signal function collection. The second argument is the collection
of signal functions to run. The third argument is a signal function
generating the switching event. The last argument is a function,
which generates the continuation after the switching event has
occurred. dpSwitch returns a new signal function, which runs all
the signal functions in parallel and switches into the continuation
when the switching event occurs. The d in dpSwitch stands for
decoupled which guarantees that it delays the switching until the
next time-step: the function into which we switch is only applied
in the next step, which prevents an infinite loop if we switch into a
recursive continuation.

Conceptually, dpSwitch allows us to recursively switch back into
the stepSimulation with the continuations and new states of all the
agents after they were run in parallel.

4.1.2 Results. The dynamics generated by this step can be seen
in Figure 3.

By following the FRP approach we assume a continuous flow of
time, which means that we need to select a correct ∆t otherwise
we would end up with wrong dynamics. The selection of a correct
∆t depends in our case on occasionally in the susceptible behaviour,
which randomly generates an event on average with contact rate
following the exponential distribution. To arrive at the correct
dynamics, this requires us to sample occasionally, and thus the
whole system, with small enough ∆t which matches the frequency
of events generated by contact rate. If we choose a too large ∆t , we
loose events, which will result in wrong dynamics as can be seen in

(a) ∆t = 0.1 (b) ∆t = 0.01

Figure 3: FRP simulation of agent-based SIR showing the in-
fluence of different ∆t . Population size of 1,000 with contact
rate β = 1

5 , infection probability γ = 0.05, illness duration
δ = 15with initially 1 infected agent. Simulation run for 150
time-steps with respective ∆t .

(a) Under-sampling

(b) Super-sampling

Figure 4: A visual explanation of under-sampling and super-
sampling. The black dots represent the time-steps of the sim-
ulation. The red dots represent virtual events which occur
at specific points in continuous time. In the case of under-
sampling, 3 events occur in between the two time steps but
occasionally only captures the first one. By increasing the
sampling frequency either through a smaller ∆t or super-
sampling all 3 events can be captured.

Figure 3a. This issue is known as under-sampling and is described
in Figure 4.

For tackling this issue we have two options. The first one is to use
a smaller ∆t as can be seen 3b, which results in the whole system
being sampled more often, thus reducing performance. The other
option is to implement super-sampling and apply it to occasionally,
which would allow us to run the whole simulation with ∆t = 1.0
and only sample the occasionally function with a much higher
frequency.

An approach to super-sampling would be to introduce a new
combinator to Yampa which allows us to super-sample other signal
functions.
superSampling :: Int -> SF a b -> SF a [b]

It evaluates the SF argument for n times, each with ∆t = ∆t
n

and the same input argument a for all n evaluations. At time 0
no super-sampling is performed and just a single output of the
SF argument is calculated. A list of b is returned with length of n
containing the result of the n evaluations of the SF argument. If 0 or
less super samples are requested exactly one is calculated. We could
then wrap the occasionally function which would then generate a
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list of events. We have investigated super-sampling more in-depth
but have to omit this due to lack of space.

4.1.3 Discussion. We can conclude that our first step already
introduced most of the fundamental concepts of ABS:

• Time - the simulation occurs over virtual time which is mod-
elled explicitly, divided into fixed ∆t , where at each step all
agents are executed.

• Agents - we implement each agent as an individual, with the
behaviour depending on its state.

• Feedback - the output state of the agent in the current time-
step t is the input state for the next time-step t + ∆t .

• Environment - as environment we implicitly assume a fully-
connected network (complete graph) where every agent
’knows’ every other agent, including itself and thus canmake
contact with all of them.

• Stochasticity - it is an inherently stochastic simulation, which
is indicated by the random-number generator and the usage
of occasionally, randomBoolSF and drawRandomElemSF.

• Deterministic - repeated runs with the same initial random-
number generator result in same dynamics. This may not
come as a surprise but in Haskell we can guarantee that
property statically already at compile time because our sim-
ulation runs not in the IO Monad. This guarantees that no
external, uncontrollable sources of non-determinism can
interfere with the simulation.

Using FRP in the instance of Yampa results in a clear, expressive
and robust implementation. State is implicitly encoded, depending
on which signal function is active. By using explicit time-semantics
with occasionally we can achieve extremely fine grained stochastics
by sampling the system with small ∆t : we are treating it as a truly
continuous time-driven agent-based system.

A very severe problem, hard to find with testing but detectable
with in-depth validation analysis, is the fact that in the susceptible
agent the same random-number generator is used in occasionally,
drawRandomElemSF and randomBoolSF. This means that all three
stochastic functions, which should be independent from each other,
are inherently correlated. This is something one wants to prevent
under all circumstances in a simulation, as it can invalidate the
dynamics on a very subtle level, and indeed we have tested the
influence of the correlation in this example and it has an impact.
We left this severe bug in for explanatory reasons, as it shows an
example where functional programming actually encourages very
subtle bugs if one is not careful. A possible solution would be to
simply split the initial random-number generator in sirAgent three
times (using one of the splited generators for the next split) and
pass three random-number generators to susceptible.

So far we have an acceptable implementation of an agent-based
SIR approach. What we are lacking at the moment is a general
treatment of an environment. To conveniently introduce it we want
to make use of monads which is not possible using Yampa. In the
next step we make the transition to Monadic Stream Functions
as introduced in Dunai [37] which allows FRP within a monadic
context.

4.2 Generalising to Monadic Stream Functions
A part of the library Dunai is BearRiver, a wrapper which re-
implements Yampa on top of Dunai, which should allow us to
easily replace Yampa with MSFs. This will enable us to run arbi-
trary monadic computations in a signal function, which we will
need in the next step when adding an environment.

4.2.1 Identity Monad. We start by making the transition to Bear-
River by simply replacing Yampas signal function by BearRivers’
which is the same but takes an additional type parameter m, indi-
cating the monadic context. If we replace this type-parameter with
the Identity Monad, we should be able to keep the code exactly the
same, except from a few type-declarations, because BearRiver re-
implements all necessary functions we are using from Yampa. We
simply re-define our agent signal function, introducing the monad
stack our SIR implementation runs in:
type SIRMonad = Identity
type SIRAgent = SF SIRMonad [SIRState] SIRState

4.2.2 Random Monad. Using the Identity Monad does not gain
us anything but it is a first step towards amore general solution. Our
next step is to replace the Identity Monad by the Random Monad,
which will allow us to get rid of the RandomGen arguments to our
functions and run the whole simulation within the Random Monad
with the full features of FRP. We start by re-defining the SIRMonad
and SIRAgent:
type SIRMonad g = Rand g
type SIRAgent g = SF (SIRMonad g) [SIRState] SIRState

The question is now how to access this Random Monad func-
tionality within the MSF context. For the function occasionally,
there exists a monadic pendant occasionallyM which requires a
MonadRandom type-class. Because we are now running within a
MonadRandom instance we simply replace occasionally with occa-
sionallyM.
occasionallyM :: MonadRandom m => Time -> b -> SF m a (Event b)

4.2.3 Discussion. Running in the Random Monad within FRP is
convenient but is not as compelling, as we could have achieved the
same by passing RandomGen around as we already demonstrated. A
benefit though is that it guarantees us that we won’t have correlated
stochastics as discussed in the previous section. In the next step
we introduce the concept of a read/write environment which we
realise using a StateT monad. This will show the real benefit and
gives a much more compelling example for the transition to MSFs.

4.3 Adding an environment
In this step we will add an environment in which the agents exist
and through which they interact with each other. This is a funda-
mentally different approach to agent interaction but is as valid as
the approach in the previous steps.

In ABS agents are often situated within a discrete 2D environ-
ment [17] which is simply a finite NxM grid with either a Moore or
von Neumann neighbourhood (Figure 5). Agents are either static or
can move freely around with cells allowing either single or multiple
occupants.

We can directly map the SIR model to a discrete 2D environment
by placing the agents on a corresponding 2D grid with an unre-
stricted neighbourhood. The behaviour of the agents is the same but

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

IFL’18, August 2019, Lowell, MA, USA Jonathan Thaler, Thorsten Altenkirch, and Peer-Olaf Siebers

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) von Neumann (b) Moore

Figure 5: Common neighbourhoods in discrete 2D environ-
ments of Agent-Based Simulation.

they select their interactions directly from the environment. Also
instead of feeding back the states of all agents as inputs, agents now
communicate through the environment by revealing their current
state to their neighbours by placing it on their cell. Agents can read
the states of all their neighbours which tells them if a neighbour is
infected or not. For purposes of a more interesting approach, we
restrict the neighbourhood to Moore (Figure 5b).

We also implemented this spatial approach in Java using the
well known ABS library RePast [32], to have a comparison with a
state of the art approach and came to the same results as shown
in Figure 6. This supports that our pure functional approach can
produce such results as well and compares positively to the state
of the art in the ABS field.

4.3.1 Implementation. We start by defining our discrete 2D en-
vironment for which we use an indexed two dimensional array. In
each cell the agents will store their current state, thus we use the
SIRState as type for our array data:
type Disc2dCoord = (Int, Int)
type SIREnv = Array Disc2dCoord SIRState

Next we redefine our monad stack and agent signal function. We
use a StateT transformer on top of our Random Monad from the
previous step with SIREnv as type for the state. Our agent signal
function now has unit input and output type, which indicates that
the actions of the agents are only visible through side-effects in the
monad stack they are running in.
type SIRMonad g = StateT SIREnv (Rand g)
type SIRAgent g = SF (SIRMonad g) () ()

The implementation of a susceptible agent is now a bit different.
The agent directly queries the environment for its neighbours and
randomly selects one of them. The remaining behaviour is similar:
susceptibleAgent :: RandomGen g => Disc2dCoord -> SIRAgent g
susceptibleAgent coord

= switch susceptible (const (infectedAgent coord))
where
susceptible :: RandomGen g

=> SF (SIRMonad g) () ((), Event ())
susceptible = proc _ -> do
makeContact <- occasionallyM (1 / contactRate) () -< ()
if not (isEvent makeContact)
then returnA -< ((), NoEvent)
else (do
env <- arrM_ (lift get) -< ()
let ns = neighbours env coord agentGridSize moore
s <- drawRandomElemS -< ns
case s of
Infected -> do
infected <- arrM_

(lift $ lift $ randomBoolM infectivity) -< ()
if infected
then (do
arrM (put . changeCell coord Infected) -< env

returnA -< ((), Event ()))
else returnA -< ((), NoEvent)

_ -> returnA -< ((), NoEvent))

neighbours :: SIREnv -> Disc2dCoord -> Disc2dCoord
-> [Disc2dCoord] -> [SIRState]

moore :: [Disc2dCoord]
moore = [ topLeftDelta, topDelta, topRightDelta,

leftDelta, rightDelta,
bottomLeftDelta, bottomDelta, bottomRightDelta ]

topLeftDelta :: Disc2dCoord
topLeftDelta = (-1, -1)
topDelta :: Disc2dCoord
topDelta = ( 0, -1)
...

Querying the neighbourhood is done using the neighbours function.
It takes the environment, the coordinate for which to query the
neighbours for, the dimensions of the 2D grid and the neighbour-
hood information and returns the data of all neighbours it could
find. Note that on the edge of the environment, it could be the
case that fewer neighbours than provided in the neighbourhood
information will be found due to clipping.

The behaviour of an infected agent is similar to in the previous
step, with the difference that upon recovery the infected agent
updates its state in the environment from Infected to Recovered.

For running the simulation with MSFs we use the function em-
bed which is not provided by BearRiver but by Dunai which has
important implications. As already explained in the background
Section 2.4, Dunai does not know about time in MSFs, which is
what BearRiver builds on top of MSFs. Thus, when running our
simulation using embed we get the ReaderT in addition to the other
Monad Transformers, which we need to run using runReaderT. Note
that instead of returning agent states we simply return a list of envi-
ronments, one for each step. The agent states can then be extracted
from each environment.
runSimulation :: RandomGen g => g -> Time -> DTime
-> SIREnv -> [(Disc2dCoord, SIRState)] -> [SIREnv]

runSimulation g t dt env as = evalRand esRand g
where
steps = floor (t / dt)
dts = replicate steps ()
-- initial SFs of all agents
sfs = map (uncurry sirAgent) as
-- running the simulation
esReader = embed (stepSimulation sfs) dts
esState = runReaderT esReader dt
esRand = evalStateT esState env

Due to the different approach of returning the SIREnv in every
step, we implemented our own MSF:
stepSimulation :: RandomGen g
=> [SIRAgent g] -> SF (SIRMonad g) () SIREnv

stepSimulation sfs = MSF (\_ -> do
-- running all SFs with unit input
res <- mapM (`unMSF` ()) sfs
-- extracting continuations, ignore output
let sfs' = fmap snd res
-- getting environment of current step
env <- get
-- recursive continuation
let ct = stepSimulation sfs'
return (env, ct))

4.3.2 Results. We implemented rendering of the environments
using the gloss library which allows us to cycle arbitrarily through
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(a) t = 100 (b) Dynamics over time

Figure 6: Simulating the agent-based SIR model on a 21x21
2D grid with Moore neighbourhood (Figure 5b), a single in-
fected agent at the center and same SIR parameters as in
Figure 2. Simulation run until t = 200 with fixed ∆t = 0.1.
Last infected agent recovers shortly after t = 160. The sus-
ceptible agents are rendered as blue hollow circles for better
contrast.

the steps and inspect the spreading of the disease over time visually
as seen in Figure 6.

Note that the dynamics of the spatial SIR simulation which are
seen in Figure 6b look quite different from the reference dynamics
of Figure 2. This is due to a much more restricted neighbourhood
which results in far fewer infected agents at a time and a lower
number of recovered agents at the end of the epidemic, meaning
that fewer agents got infected overall.

4.3.3 Discussion. At first the environment approachmight seem
a bit overcomplicated and one might ask what we have gained by
using an unrestricted neighbourhood where all agents can contact
all others. The real advantage is that we can introduce arbitrary
restrictions on the neighbourhood as shown with the Moore neigh-
bourhood.

Of course an environment is not restricted to be a discrete 2D
grid and can be anything from a continuous N-dimensional space
to a complex network - one only needs to change the type of the
StateT monad and provide corresponding neighbourhood querying
functions. The ability to place the heterogeneous agents in a generic
environment is also the fundamental advantage of an agent-based
over other simulation approaches and allows us to simulate much
more realistic scenarios.

4.4 Additional Steps
ABS involves a few more advanced concepts which we don’t fully
explore in this paper due to lack of space. Instead we give a short
overview and discuss them without presenting code or going into
technical details.

4.4.1 Agent-Transactions. Agent-transactions are necessarywhen
an arbitrary number of interactions between two agents need to
happen instantaneously without time-lag. The use-case for this
are price negotiations between multiple agents where each pair of
agents needs to come to an agreement in the same time-step [17].

In object-oriented programming, the concept of synchronous com-
munication between agents is implemented directly with method
calls.

We have implemented synchronous interactions, whichwe termed
agent-transactions in an additional step. We solved it pure function-
ally by running the signal functions of the transacting agent pair
as often as their protocol requires but with ∆t = 0, which indicates
the instantaneous character of agent-transactions.

4.4.2 Event Scheduling. Our approach is inherently time-driven
where the system is sampled with fixed ∆t . The other fundamental
way to implement an ABS in general, is to follow an event-driven
approach [30], which is based on the theory of Discrete Event
Simulation [51]. In such an approach the system is not sampled
in fixed ∆t but advanced as events occur where the system stays
constant in between. Depending on the model, in an event-driven
approach it may be more natural to express the requirements of
the model.

In an additional step we have implemented a rudimentary event-
driven approach, which allows the scheduling of events but had to
omit it due to lack of space. Using the flexibility of MSFs we added
a State transformer to the monad stack, which allows queuing of
events into a priority queue. The simulation is advanced by process-
ing the next event at the top of the queue, which means running
the MSF of the agent which receives the event. The simulation
terminates if there are either no more events in the queue or after
a given number of events, or if the simulation time has advanced
to some limit. Having made the transition to MSFs, implementing
this feature was quite straight forward, which shows the power
and strength of the generalised approach to FRP using MSFs.

4.4.3 Dynamic Agent creation. In the SIR model, the agent pop-
ulation stays constant - agents don’t die and no agents are created
during simulation - but some simulations [17] require dynamic
agent creation and destruction. We can easily add and remove
agents signal functions in the recursive switch after each time-step.
The only problem is that creating new agents requires unique agent
ids but with the transition to MSFs we can add a monadic context,
which allows agents to draw the next unique agent id when they
create a new agent.

5 RELATEDWORK
The amount of research on using pure functional programming
with Haskell in the field of ABS has been moderate so far. Most of
the papers are related to the field of Multi Agent Systems and look
into how agents can be specified using the belief-desire-intention
paradigm [13, 26, 44].

The author of [4] investigated in his master thesis Haskells paral-
lel and concurrency features to implement (amongst others) HLogo,
a Haskell clone of the ABS simulation package NetLogo, where
agents run within the IO Monad and make use of Software Trans-
actional Memory for a limited form of agent-interactions.

A library for DES and SD in Haskell called Aivika 3 is described
in the technical report [43]. It is not pure, as it uses the IO Monad
under the hood and comes only with very basic features for event-
driven ABS, which allows to specify simple state-based agents with
timed transitions.
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Using functional programming for DES was discussed in [26]
where the authors explicitly mention the paradigm of FRP to be
very suitable to DES.

A domain-specific language for developing functional reactive
agent-based simulations was presented in [48]. This language called
FRABJOUS is human readable and easily understandable by domain-
experts. It is not directly implemented in FRP/Haskell but is com-
piled to Yampa code which they claim is also readable. This supports
that FRP is a suitable approach to implement ABS in Haskell. Unfor-
tunately, the authors do not discuss their mapping of ABS to FRP
on a technical level, which would be of most interest to functional
programmers.

Object-oriented programming and simulation have a long history
together as the former one emereged out of Simula 67 [12] which
was created for simulation purposes. Simula 67 already supported
Discrete Event Simulation and was highly influential for today’s
object-oriented languages. Although the language was important
and influential, in our research we look into different approaches,
orthogonal to the existing object-oriented concepts.

Lustre is a formally defined, declarative and synchronous dataflow
programming language for programming reactive systems [19].
While it has solved some issues related to implementing ABS in
Haskell it still lacks a few important features necessary for ABS.
We don’t see any way of implementing an environment in Lustre as
we do in our approach in Section 4.3. Also the language seems not
to come with stochastic functions, which are but the very building
blocks of ABS. Finally, Lustre does only support static networks,
which is clearly a drawback in ABS in general where agents can be
created and terminated dynamically during simulation.

There exists some research [14, 41, 47] of using the functional
programming language Erlang [3] to implement ABS. The language
is inspired by the actor model [1] and was created in 1986 by Joe
Armstrong for Eriksson for developing distributed high reliability
software in telecommunications. The actor model can be seen as
quite influential to the development of the concept of agents in ABS
which borrowed it from Multi Agent Systems [50]. It emphasises
message-passing concurrency with share-nothing semantics, which
maps nicely to functional programming concepts. The mentioned
papers investigate how the actor model can be used to close the con-
ceptual gap between agent-specifications, which focus on message-
passing and their implementation. Further they also showed that
using this kind of concurrency allows to overcome some problems
of low level concurrent programming as well. Despite the natural
mapping of ABS concepts to such an actor language it leads to
simulations which despite same initial starting conditions might
lead to different results due to concurrency.

6 CONCLUSIONS
Our FRP based approach is different from traditional approaches in
the ABS community. First it builds on the already quite powerful
FRP paradigm. Second, due to our continuous time approach, it
forces one to think properly of time-semantics of the model and
how small ∆t should be. Third it requires one to think about agent
interactions in a new way instead of being just method-calls.

Because no part of the simulation runs in the IO Monad and we
do not use unsafePerformIO we can rule out a serious class of bugs

caused by implicit data-dependencies and side-effects which can
occur in traditional imperative implementations.

Also we can statically guarantee the reproducibility of the simu-
lation, which means that repeated runs with the same initial con-
ditions are guaranteed to result in the same dynamics. Although
we allow side-effects within agents, we restrict them to only the
Random and State Monad in a controlled, deterministic way and
never use the IO Monad which guarantees the absence of non-
deterministic side effects within the agents and other parts of the
simulation.

Determinism is also ensured by fixing the ∆t and not making
it dependent on the performance of e.g. a rendering-loop or other
system-dependent sources of non-determinism as described by
[38]. Also by using FRP we gain all the benefits from it and can use
research on testing, debugging and exploring FRP systems [35, 38].

Issues
Currently, the performance of the system is not comparable to
imperative implementations. We compared the performance of
our pure functional approach as presented in Section 4.3 to an
implementation in Java using the ABS library RePast [32]. We ran
the simulation until t = 100 on a 51x51 (2,601 agents) with ∆t =
0.1 (unknown in RePast) and averaged 8 runs. The performance
results make the lack of speed of our approach quite clear: the
pure functional approach needs 100.3 seconds whereas the Java
RePast version just 10.8 seconds on our machine to arrive at t = 100.
We have already started investigating speeding up performance
through the use of Software Transactional Memory [20, 21] which
is quite straight forward when using MSFs. It shows very good
results but we have to leave the investigation and optimization of
the performance aspect of our approach for further research as it is
out of the scope of this paper.

Despite the strengths and benefits we get by leveraging on FRP,
there are errors that are not raised at compile time, e.g. we can
still have infinite loops and run-time errors. This was for exam-
ple investigated in [40] where the authors use dependent types to
avoid some run-time errors in FRP. We suggest that one could go
further and develop a domain specific type system for FRP that
makes the FRP based ABS more predictable and that would sup-
port further mathematical analysis of its properties. Furthermore,
moving to dependent types would pose a unique benefit over the
traditional object-oriented approach and should allow us to express
and guarantee even more properties at compile time. We leave this
for further research.

In our pure functional approach, agent identity is not as clear
as in traditional object-oriented programming, where an agent can
be hidden behind a polymorphic interface which is much more
abstract than in our approach. Also the identity of an agent is
much clearer in object-oriented programming due to the concept
of object-identity and the encapsulation of data and methods.

We can conclude that the main difficulty of a pure functional
approach evolves around the communication and interaction be-
tween agents, which is a direct consequence of the issue with agent
identity. Agent interaction is straight-forward in object-oriented
programming, where it is achieved using method-calls mutating the
internal state of the agent, but that comes at the cost of a new class
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of bugs due to implicit data flow. In pure functional programming
these data flows are explicit but our current approach of feeding
back the states of all agents as inputs is not very general. We have
added further mechanisms of agent interaction which we had to
omit due to lack of space.

7 FURTHER RESEARCH
We see this paper as an intermediary and necessary step towards
dependent types for which we first needed to understand the po-
tential and limitations of a non-dependently typed pure functional
approach in Haskell. Dependent types are extremely promising in
functional programming as they allow us to express stronger guar-
antees about the correctness of programs and go as far as allowing
to formulate programs and types as constructive proofs which must
be total by definition [2, 29, 46].

So far no research using dependent types in agent-based simu-
lation exists at all. In our next paper we want to explore this for
the first time and ask more specifically how we can add dependent
types to our pure functional approach, which conceptual implica-
tions this has for ABS and what we gain from doing so. We plan
on using Idris [6] as the language of choice as it is very close to
Haskell with focus on real-world application and running programs
as opposed to other languages with dependent types e.g. Agda and
Coq which serve primarily as proof assistants.

We hypothesize that dependent types could help ruling out even
more classes of bugs at compile time and encode invariants and
model specifications on the type level, which implies that we don’t
need to test them using e.g. property-testing with QuickCheck. This
would allow the ABS community to reason about a model directly
in code. We think that a promising approach is to follow the work
of [7–10, 18] in which the authors utilize GADTs to implement
an indexed monad which allows to implementation correct-by-
construction software.

• Accessing the environment in section 4.3 involves indexed
array access which is always potentially dangerous as the
indices have to be checked at run-time.
Using dependent types it should be possible to encode the
environment dimensions into the types. In combination with
suitable data types for coordinates one should be able to
ensure already at compile time that access happens only
within the bounds of the environment.

• In the SIR implementation one could make wrong state-
transitions e.g. when an infected agent should recover, noth-
ing prevents one from making the transition back to suscep-
tible.
Using dependent types it might be possible to encode invari-
ants and state-machines on the type level which can prevent
such invalid transitions already at compile time. This would
be a huge benefit for ABS because many agent-based models
define their agents in terms of state-machines.

• An infected agent recovers after a given time - the transi-
tion of infected to recovered is a timed transition. Nothing
prevents us from never doing the transition at all.
With dependent types wemight be able to encode the passing
of time in the types and guarantee on a type level that an

infected agent has to recover after a finite number of time
steps.

• In more sophisticated models agents interact in more com-
plex ways with each other e.g. through message exchange
using agent IDs to identify target agents. The existence of an
agent is not guaranteed and depends on the simulation time
because agents can be created or terminated at any point
during simulation.
Dependent types could be used to implement agent IDs as
a proof that an agent with the given id exists at the current
time-step. This also implies that such a proof cannot be used
in the future, which is prevented by the type system as it is
not safe to assume that the agent will still exist in the next
step.

• In our implementation, we terminate the SIR model always
after a fixed number of time-steps. We can informally reason
that restricting the simulation to a fixed number of time-
steps is not necessary because the SIR model has to reach a
steady state after a finite number of steps. This means that
at that point the dynamics won’t change any more, thus one
can safely terminate the simulation. Informally speaking,
the reason for that is that eventually the system will run
out of infected agents, which are the drivers of the dynamic.
We know that all infected agents will recover after a finite
number of time-steps and that there is only a finite source
for infected agents which is monotonously decreasing.
Using dependent types it might be possible to encode this
in the types, resulting in a total simulation, creating a corre-
spondence between the equilibrium of a simulation and the
totality of its implementation. Of course this is only possible
for models in which we know about their equilibria a priori
or in which we can reason somehow that an equilibrium
exists.
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