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• We investigated the prevalence of Toxo-
plasma gondii in marine animals from
coastal waters in eastern China.

• Higher prevalence was detected in terres-
trial runoff samples compared with those
from non-terrestrial runoff.

• Prevalence ofT. gondiiwas correlatedwith
temperature.

• Oysters can serve as bioindicators of
T. gondii contamination of marine envi-
ronments.
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There is a growing concern regarding the potential adverse impact of Toxoplasma gondii contamination of the marine
environment onmarine wildlife and public health. Terrestrial runoff is a significant route for dissemination of T. gondii
oocysts from land to sea. Yet, the influence of terrestrial runoff on T. gondii prevalence in marine animals in China is
largely unknown. To address this concern, we examined the presence of T. gondii in marine oysters Crassostrea spp.,
rockfish Sebastes schlegelii (S. schlegelii), fat greenlingfishHexagrammos otakii (H. otakii), and Asian paddle crabCharyb-
dis japonica (C. japonica) using a PCR assay targeting T. gondii B1 gene. A total of 1920 samples were randomly col-
lected, in Jan-Dec 2020, from terrestrial runoff areas (TRA, TRB, and TRC) and non-terrestrial runoff area (Grape
bay) in Weihai, China. T. gondii prevalence in TRB and TRC was 6.04 % and 5.83 %, respectively, which was higher
than 2.29 % detected in the non-terrestrial runoff area. The highest prevalence was detected in Crassostrea spp., and
a correlation was observed between T. gondii prevalence and weight of Crassostrea spp. The temperature, but not pre-
cipitation, significantly correlated with T. gondii prevalence. Understanding the fate of T. gondii delivered to oceans by
terrestrial runoff is critical for predicting future disease risks for marine wildlife and humans.
. Elsheikha), messicw@163.com

July 2022; Accepted 16 August 20

B.V. This is an open access article u
1. Introduction

The anthropogenic impact on marine environment has been progres-
sively increasing and the levels of pollutants entering the seas have caused
adverse consequences on the marine ecosystems and the public health
(Li et al., 2014; O'Hara et al., 2021; Trathan et al., 2015). Zoonotic
22
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protozoan parasites carried by surface runoff are emerging pollutants for
estuarine and coastal marine environments (Liu et al., 2019; McCallum
et al., 2004). The protist Toxoplasma gondii, which infects humans and a
broad range of animals (Dubey, 2010), has been detected inmarine habitats
andmarine organismsworldwide (Dubey et al., 2020; Li et al., 2022; van de
Velde et al., 2016). Felines, the only known definitive host, can produce
and excrete environmentally resistant T. gondii oocysts, which are highly
infectious to humans and many animals (Elsheikha et al., 2020; Frenkel
et al., 1975). These oocysts can mature and remain infective in seawater
for months (Lindsay and Dubey, 2009; Lindsay et al., 2003).

Fecal materials from humans, pets and livestock are directly discharged
into surface water after simple or no treatment, contaminating the terres-
trial runoff and inevitably the coastal waters (Fayer et al., 2004; Liu et al.,
2019; Shuval, 2003). The flux of organic materials, including pathogens,
from land through coastal watersheds facilitates the transport of terrestrial
pathogens into the marine ecosystems and therefore increasing the risk of
contamination of beaches, seawater, and seafloors with zoonotic patho-
gens. Waterborne infections by T. gondii have been reported in many coun-
tries with significant socioeconomic impacts (Blaizot et al., 2020; Ma et al.,
2022; Minuzzi et al., 2021; Shuval, 2003).

Several studies have examined the transport process of T. gondii oocysts
from land to sea, however the results are inconsistent and sometimes
contradictory due to differences in the geographical conditions and
environmental factors. For example, one study showed that runoff caused
by rainfall increases the number of oocysts transported to the ocean
(VanWormer et al., 2016). Another study found no significant correlation
between the time of the death of sea otters caused by T. gondii and land
runoff indicators (Shapiro et al., 2012).

Monitoring the level of T. gondii oocysts in a huge volume of seawater
can be challenging (Karanis et al., 2013). Some marine animals including
shellfish, fish or marine mammals can act as bioindicators of T. gondii
contamination of marine environment (Hamza-Chaffai, 2014; Zuykov
et al., 2013). Because of their ability to filter and retain microorganisms
or organic particles from large volumes of water, marine filter-feeders can
be used as sentinels to investigate the contamination of aquatic environ-
ments with T. gondii (Géba et al., 2020; Moratal et al., 2020; Palos
Ladeiro et al., 2014; Staggs et al., 2015).

In the present study, we have used four common marine animal species
as biological indicators to investigate the impact of terrestrial runoff on the
abundance of T. gondii in the coastal marine environment inWeihai, China.
Specifically, we determined T. gondii prevalence in marine animals
collected from three terrestrial runoff areas versus one non-terrestrial
runoff area. The prevalence datawas correlatedwith environmental param-
eters – temperature and precipitation – in an effort to identify those factors
that may increase the risk of marine animals for T. gondii infection.

2. Materials and methods

2.1. The study areas

The present study was carried out in Weihai city (36°41′ ~ 37°35′ N,
121°11′~122°42′ E), located in Shandong province, eastern China. Weihai
includes over 20 islands and has a coastline of 95 km. Besides being a
touristic destination, Weihai is a significant base for fishery and marine
aquaculture. In this study, terrestrial runoffs were selected from three
areas in Weihai, including terrestrial runoff A (TRA), terrestrial runoff B
(TRB) and terrestrial runoff C (TRC) (Fig. 1). These runoffs flow through
urban residential and commercial areas, and eventually into the Yellow
Sea of China. Additionally, a bay known as Grape bay (GB) without nearby
terrestrial runoff was included as a control (Fig. 1).

2.2. Sample collection and meteorological parameters

From January to December 2020, four common marine animal species
were collected from coastal areas of the Yellow Sea of China. These
included oysters Crassostrea spp., rockfish Sebastes schlegelii (S. schlegelii),
2

fat greenling fish Hexagrammos otakii (H. otakii), and Asian paddle crab
Charybdis japonica (C. japonica). The samples of TRA, TRB and TRC were
collected at the interface between terrestrial runoff and ocean to ensure
that their habitats are directly affected by the runoffs. Local fishermen
were contracted to catch the marine animals used in this study. Every
month, 10 specimens were randomly selected from the harvest of each of
the 4 marine animal species and from each of the 4 sampling areas (i.e.
10 × 4 × 4 = 160 samples/month). This sampling strategy resulted in a
total of 1920 samples collected over 12 months. These included 480
samples from each sampling area, including 120 samples from each of the
four marine animal species. All 1920 samples were quickly placed in
separate bags, rinsed with sterile water and transported to the laboratory
in ice box for processing. Meteorological information about the studied
areas, such as monthly temperature (°C) and precipitation (mm) was
gathered from Weihai Statistical Yearbook 2021.

2.3. Sample processing

The body weight of each sample was determined to the nearest 0.01 g
using a digital balance. The length of S. schlegelii and H. otakii was
determined to the nearest mm using a caliper. Then, the hemolymph,
gills, hepatopancreas, stomach and gonads of each specimen were blended
to obtain a mixed tissue homogenate from each sample. The samples were
kept in cryogenic vials at −80 °C until analysis.

2.4. DNA extraction and detection of T. gondii

Each pooled sample (~5 g) was subjected to freezing in liquid nitrogen
(5 min) followed by thawing at 80 °C (5 min), for five cycles and centri-
fuged at 9750g for 2 min. Total genomic DNA isolation was performed
using E.Z.N.A.® Stool DNA Kit (Omega Biotek Inc., Norcross, GA, USA) as
per the manufacturer's recommendations. T. gondii DNA was detected by
using a nested PCR assay that targets the parasite B1 gene as previously
described (Monteiro et al., 2019; Yai et al., 2003).

2.5. Data analysis

All statistical analyses were performed using the SPSS 26.0 software
(IBM, Armonk, NY, USA) and R-based software v3.6.3. The differences in
T. gondii prevalence between marine animal species collected from terres-
trial runoff and non-terrestrial runoff areas were detected using the chi-
square test. Pearson's correlation test was used to examine the association
between T. gondii prevalence in marine animal and epidemiological
(temperature and precipitation) and biological variables (body length of
S. schlegelii and H. otakii, and body weight of all four marine species). P-
values <0.05 were considered statistically significant.

3. Result and discussion

Terrestrial runoff in coastal cities represents a key mechanism for
contamination of the aquatic habitats and infection of marine organisms
with T. gondii (Conrad et al., 2005; Miller et al., 2002; Miller et al., 2008;
Shapiro et al., 2015;). In the present study, we examined the differences
in T. gondii prevalence between four species of marine organisms collected
from three terrestrial runoff areas versus one non-terrestrial runoff area in
Weihai city in eastern China.

3.1. T. gondii prevalence in terrestrial versus non-terrestrial runoff areas

As shown in Table 1, the highest prevalence was found in samples
collected from terrestrial runoff areas TRB (6.04 %), followed by TRC
(5.83 %), and TRA (3.96 %). T. gondii prevalence at TRB and TRC was
significantly higher compared with that of the non-terrestrial runoff area
(Grape bay; 2.29 %) (p < 0.05). The land to sea discharge of T. gondii
oocysts excreted by felines can be facilitated by runoff contaminated with
untreated sewage or by the scouring effect of rainfall on soil, which lead



Fig. 1.Map of the four sampling sites in Weihai, China, showing the estuaries of three terrestrial runoffs A, B and C, and one non-terrestrial runoff D (Grape bay). The insert
figure shows the overall location of the sampling areas in Weihai, China.
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to contamination of coastal and estuarine areas (Miller et al., 2002; Simon
et al., 2013b; VanWormer et al., 2016). ToxoDB#1 and ToxoDB#9, the
commonest genotypes found in animals and humans in China (Pan et al.,
2017; Rong et al., 2014; Tian et al., 2014), are detected in marine bivalve
shellfish (Cong et al., 2021a; Cong et al., 2021b). The presence of the
same T. gondii genotypes in terrestrial animals and in shellfish further
reiterates the ability of shellfish to concentrate T. gondii oocysts from
marine environments and is consistent with the terrestrial sources of the
fecally transmitted T. gondii oocysts flowing from land to contaminate the
marine ecosystem.

It is intriguing that a higher prevalence of T. gondiiwas detected in TRB
and TRC compared with that of TRA. TRB and TRC are located in the city
center, in densely populated residential and commercial areas, which are
considerably affected by anthropogenic activities, potentially increasing
the level of oocysts' contamination in the environment. This result is consis-
tent with previous studies showing that more T. gondii oocysts can be found
in the environment of areas with a high level of economic growth
(VanWormer et al., 2016) and that coastal development and loss of vegeta-
tion increase land-to-sea transport of oocysts via increasing stormwater
runoff caused by rainfall events (Shapiro et al., 2010).
Table 1
Toxoplasma gondii prevalence in marine animals collected from terrestrial runoff and no

Sampling
sitea

Crassostrea spp. Sebastes schlegelii Hexagram

No. positive
(Prevalence %)

p-Value No. positive
(Prevalence %)

p-Value No. positi
(Prevalen

TRA 10 (8.33) 0.301 4 (3.33) 0.175 4 (3.33)
TRB 14 (11.67) 0.062 4 (3.33) 0.175 6 (5.00)
TRC 13 (10.83) 0.094 4 (3.33) 0.175 8 (6.67)
Grape bay 6 (5.00) Reference 1 (0.83) Reference 1 (0.83)

a Sampling sites TRA, TRB andTRC are located at the estuary of terrestrial runoffs. Sam
were examined from rom each sampling site, including 120 samples from each of the fo
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On the other hand, the low prevalence in TRA is perhaps attributed to the
fact that estuary of TRA is adjacent to Yangting River Wetland Park, which is
sparsely populated and rich in vegetation. The coastal wetlands can remove
protozoa from surface water and the presence of vegetation can reduce
pathogens in wastewater effluent (Daniels et al., 2014; Graham et al., 2021;
Hogan et al., 2013; Shapiro et al., 2010). In addition, TRA is connected to a
bay before it meets the ocean. Bays are at the interface of three different
environments: land, freshwater, and seawater. The interactions occurring at
the freshwater-land-seawater interface are complex (Malham et al., 2014),
and may result in dilution of T. gondii oocysts. The relationship between the
abundance of oocysts in terrestrial runoff and the contamination level of
T. gondii in the marine environment and its spatial distribution in
watershed-estuary-offshore biosphere merit further investigation.

3.2. Climatic factors influence T. gondii prevalence in marine animals

We examined the correlation between T. gondii prevalence in marine
animals and climatic factors, such as temperature and precipitation. As
shown in Fig. 2, prevalence of T. gondii in samples collected from TRB and
the total number of samples was correlated with temperature (p < 0.05),
n-terrestrial runoff areas in Weihai, China.

mos otakii Charybdis japonica Total

ve
ce %)

p-Value No. positive
(Prevalence %)

p-Value No. positive
(Prevalence %)

p-Value

0.175 1 (0.83) 0.313 19 (3.96) 0.138
0.055 5 (4.17) 0.472 29 (6.04) 0.004
0.017 3 (2.50) 1 28 (5.83) 0.005
Reference 3 (2.50) Reference 11 (2.29) Reference

pling site Grape bay represents the non-terrestrial runoff area. A total of 480 samples
ur marine animal species.



Fig. 2. Correlation between T. gondii prevalence inmarine animals collected from different study areas and the temperature inWeihai, China. A-E represent terrestrial runoff
A, terrestrial runoff B, terrestrial runoff C, Grape bay, and total, respectively.
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however no correlation was detected between prevalence and precipitation
at any sampling area (Fig. 3). Temperature increases the survival andmatura-
tion of oocysts (Kakakhel et al., 2021; Patz et al., 2000; Yan et al., 2016). The
prevalence of T. gondii DNA in soil in China is significantly higher in autumn
and summer than in the other two seasons, further highlighting the effect of
temperature on seasonal occurrence of T. gondii (Cong et al., 2020).

Higher levels of precipitation and weather extremes can increase water
contamination with T. gondii oocysts. Simulation of the transport of oocysts
during snow melting indicates that snowmelt runoff can be a source of
T. gondii infection of marine animals (Simon et al., 2013a; Simon et al.,
Fig. 3. Correlation between T. gondii prevalence in marine animals from different study
restrial runoff B, terrestrial runoff C, Grape bay, and total, respectively.

4

2013b). Toxoplasmosis outbreaks reported in British Columbia in Canada
are linked to heavy rainfall and contamination of the incriminated water
reservoir (Bowie et al., 1997). The scouring effect of rainwater on soil
may increase the level of pathogens in terrestrial runoff (Liu et al., 2019;
VanWormer et al., 2016; Zhu et al., 2021). Freshwater runoff may increase
the risk of infection inmarine animals, such as the southern sea otters along
the coast of California (Miller et al., 2002). Precipitation can have a signif-
icant impact on the occurrence of T. gondii oocysts in marine bivalve shell-
fish (Cong et al., 2021a). In disagreement with previous studies, our results
did not reveal any significant correlation between precipitation and
areas and the precipitation in Weihai, China. A-E represent terrestrial runoff A, ter-
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T. gondii prevalence. Further studies are required to better understand the
effect of heavy rains, as a trigger for freshwater runoff, on the levels of
T. gondii in marine animals.

3.3. T. gondii prevalence is different between animal species

We detected differences in T. gondii prevalence between sampling areas
and between fourmarine species (Crassostrea spp., S. schlegelii,H. otakii, and
C. japonica). A significantly higher prevalence of T. gondii was detected in
TRC (6.67 %) than that detected in Grape bay (0.83 %) in H. otakii (p <
0.05). The highest prevalence of T. gondii in all sampling areas was detected
in Crassostrea spp. (Table 1). This result is consistent with a previous study
in Weihai showing the highest prevalence of T. gondii in Crassostrea spp.
compared to three other bivalve shellfish species (Cong et al., 2021a).
The high prevalence observed in Crassostrea spp. may be attributed to
their water filtering ability and concentration of oocysts. Interestingly, we
observed a correlation between T. gondii prevalence and Crassostrea spp.
weight (Fig. 4). The increase in the filtration rate of filter-feeding shellfish
correlates with the increase in their bodyweight (Guo et al., 2013), suggest-
ing that Crassostrea spp. aremore efficient in accumulating oocysts than the
other studiedmarine species. Given the challenge associatedwith detection
of T. gondii in marine ecosystems (Karanis et al., 2013), the competence of
these filter-feeders to retain T. gondii oocysts and their limited activity
makes benthic shellfish appropriate sentinels for monitoring T. gondii con-
tamination in coastal waters (Fung et al., 2021; Robertson, 2007; Staggs
et al., 2015).

3.4. Limitations

Differences in the prevalence of T. gondii between sampling areas and
marine animal species may be attributed to differences in geographical
and environmental factors. However, it is worth noting that nektons, such
as S. schlegelii and H. otakii, are good swimmers and can travel freely
between the sampling areas. Additionally, ocean currents may influence
the dispersion of T. gondii oocysts in seawater and in turn the contamination
levels of T. gondii in marine environment (Li et al., 2022; Poulle et al.,
2021). Therefore, it is possible that differences in the swimming and travel
Fig. 4. Correlation between T. gondii prevalence, and the body length and weight of the e
Sebastes schlegelii, respectively; (C\\D) Correlation with body length and body weight o
spp.; (F) Correlation with body weight of Charybdis japonica.
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abilities of the examined marine species and in the water currents between
the sampling areas may have confounded the results.

3.5. Implications for public health policies

T. gondii has a worldwide distribution and can reach coastal waters in
contaminated runoffs. The flux of this terrestrial parasite to coastal waters
imposes a health risk tomarine animals and the public who utilize the near-
shore for seafood harvest and recreational activities (Poulle et al., 2021).
Cold-blooded marine organisms can accumulate oocysts through filter-
feeding and hence become a potential source of infection to larger marine
organisms and humans (Moratal et al., 2020). T. gondii oocysts canmaintain
its viability in the digestive tract of migratory filter-feeding fish (Massie
et al., 2010). The consumption of infected marine organisms can have
adverse health effects (Vail et al., 2020) and lead to foodborne outbreaks
(Cruz et al., 2015; Potasman et al., 2002). Given the ubiquitous nature of
T. gondii, the present study corroborates previous studies (Li et al., 2022;
Moratal et al., 2020; Poulle et al., 2021; Tedde et al., 2019) emphasizing
the risk associated with terrestrial runoff into the ocean on marine ecosys-
tems and public health.

Marine organisms, particularly nektons, are not limited by a space or
confined to a certain aquatic niche, and thus conventional approaches
such as vaccines and drugs are not effective in protecting them from
T. gondii infection (Glidden et al., 2022; Liu et al., 2018; Secrieru et al.,
2020). Therefore, efficient measures should be implemented to prevent
the discharge of T. gondii oocysts from the terrestrial environment into
the sea. Coastal areas are strongly affected by fecal contamination from ter-
restrial sources. Therefore, feline fecal pollution should be mitigated with
proper education regarding cat waste disposal. Identifying the sources of
pollution by fecally-transmitted, zoonotic pathogens such as T. gondii in
coastal environments is relevant to public health and marine ecosystem.

4. Conclusions

This study provided novel data on T. gondii prevalence in Crassostrea
spp., S. schlegelii, H. otakii, and C. japonica from eastern China. Out of the
four examined marine species, Crassostrea spp. had the highest prevalence
xamined marine organisms. (A-B) Correlation with body length and body weight of
f Hexagrammos otakii, respectively; (E) Correlation with body weight of Crassostrea
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andmore potential to serve as biosentinels for monitoring T. gondii contam-
ination in coastal waters. The results substantiate the hypothesis that terres-
trial runoff is a significant factor for contamination of the ocean with
T. gondii oocysts. It is hoped that our data inform management measures
for mitigating T. gondii risk inmarine habitats. Future investigations should
explore how spatial–temporal dynamic changes in terrestrial runoff affect
the carriage of oocysts into the ocean, and their prevalence and distribution
in marine environment.
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