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A B S T R A C T

With the need of more responsive and resilient manufacturing processes for high value, customised products,
Flexible Manufacturing Systems (FMS) remain a very relevant manufacturing approach. Due to their complex-
ity, quality monitoring in these types of systems can be very difficult, particularly in those scenarios where the
monitoring cannot be fully automated due to functional, safety and legal characteristics. In these scenarios,
quality practitioners concentrate on monitoring the most critical processes and leaving out the inspection of
those that are still meeting quality requirements but showing signs of future failure. In this paper we introduce
a methodology based on data analytics that simplifies the monitoring process for the operator, allowing the
practitioner to concentrate on the relevant issues, anticipate out of control processes and take action. By
identifying a reference model or best performing machine, and the occurring patterns in the quality data, the
presented approach identifies the adjustable processes that are still in control, allowing the practitioner to
decide if any changes in the machine’s settings are needed (tool replacement, repositioning the axis, etc.). An
initial deployment of the tool at BMW Plant Hams Hall to monitor a focussed set of part types and features
has shown a reduction in scrap of 97% throughout 2020 in relation to the monitored features compared to the
previous year. This in the long run will reduce reaction time in following quality control procedure, reduce
significant scrap costs and ultimately reduce the need for measurements and enable more output in terms of
volume capacity.
. Introduction

Flexibility in manufacturing systems is becoming more and more
ecessary as domestic and global markets rapidly change, technology
volves and demand towards more customisable products increases.
lexibility in manufacturing allows companies to be able to deal with
ast changing product types, production volumes, assembly variation
nd process sequence while keeping production processes time and cost
ffective [1,2]. FMS achieve these goals with programmable automa-
ion through the use of a number of systems such as CNC machine tools,
nterconnected by automated material handling and storage systems,
nspection stations and gauging systems [3].

The reliability of the automated equipment in FMS is a critical
ontributor to system performance, and so the capability of performing
orrect and rapid fault diagnosis and process variation identification
hrough Statistical Process Control (SPC) is essential [4]. SPC and the
se of control charts can detect process variations and identify possible
achine breakdowns and out-of-control processes that can affect the
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availability of resources. However, it has been found that traditional
SPC approaches are usually not appropriate for production paradigms
such as flexible and re-configurable systems, where the production is
small or there is a high variety of mixed products. Short production runs
pose several challenges. First, the lack of available data to estimate reli-
able process parameters due to smaller production runs. This is a typical
scenario in Just-in-time (JIT) systems, where low levels of inventory are
kept, and during start-up of a process or initiation of a new process,
where there is an insufficient number of subgroups of measurements
under different conditions available [5]. Second, there is an increasing
risk of false acceptance in SPC because of measurement errors [6].
Several possible sources of error are equipment accuracy, operator
mistakes, environmental factors and random noise. Measurement errors
can lead to unnecessary process adjustments and loss of confidence in
SPC [7]. Third, the production of customised products and services are
characterised by complex designs and processes, requiring more flexible
quality management practices. SPC in flexible environments requires
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more control charts to monitor quality characteristics and product spec-
ifications compared to more static approaches [8]. The data generated
by analysing and monitoring individual process, product family and test
stations can be extremely large and hard to manage [9]. Manufacturing
companies still rely on operator and quality practitioner experience in
manually analysing the information. There are product characteristics
within manufacturing which need particular attention because of their
functional, safety and legal characteristics requirements [10]. These
types of features often carry tight tolerances or parameters which
are particularly sensitive to variation and change in the production
systems. This is why employees who are involved in the collection and
analysis of the data need to understand statistical concepts and how
they can be interpreted to process control [11].

In a flexible manufacturing system, where the number of machines,
component variants and product characteristics to control is so high,
traditional control charts used for quality control are not effective
anymore due to ‘‘curse of dimensionality’’ [12]. The operator will
prioritise the analysis and reaction method of those processes which
tolerance limits are breached, disregarding other processes that might
not be running at the expected standards. Here is where data an-
alytics and Machine Learning (ML) based frameworks implementing
self-awareness, self-diagnosis, self-prognosis and self-healing promise
to be beneficial. By having a system that can continuously monitor its
state and provide any relevant change to the practitioner at the time
needed, will allow the expert to concentrate in more relevant tasks,
even if the system is not completely automated in the healing aspect.
However, despite the development of new process control methods
based on technologies such as ML, these normally solve some but not
all the issues [8]. With the overwhelming number of machine learning
and data analytics techniques available to the practitioner and the lack
of experience to determine the necessary pre-processing steps for these
to work effectively, new methods turn out very difficult to implement
by the non-expert, and so there is very little evidence of these new
techniques being successful in industry.

This paper takes a different angle from state-of-the art approaches.
Due to the varying availability of measurements across different key
characteristics, part types and machines, which makes most ML meth-
ods unsuitable, this paper proposes to semi-automate and support
manual process control through the use of existing SPC practices that
ensure quality standards are met (e.g. IATF16949), but simplifying and
prioritising the decisions the operator needs to make and ensuring focus
is paid to characteristics that are showing early signs of problems. This
is achieved through a methodology based on identifying the best per-
forming machine and the set of adjustable machines, using the former
as a reference to adjust other machines. The proposed methodology
uses classical SPC together with advanced data analytics algorithms to
automate the analysis of quality data in near real-time, allowing the
practitioner to anticipate problems before processes go out of control.
The approach is used and evaluated in a flexible manufacturing envi-
ronment at BMW, where the number of machines, component variants
and features per component are high, demonstrating the benefit of
the tool compared to the typical monitoring methods used in such
environment. By combining the use of traditional SPC with state-of-
the art non-parametric techniques, current challenges of traditional
SPC methods which are still widely used in manufacturing environ-
ments, are addressed and demonstrated. The paper makes the following
contributions:

• It deals with errors in measurements (outliers), which have a ma-
jor impact in statistical features used in typical SPC approaches.
It is typically down to the expertise of the quality practitioner to
identify these measurements and leave them out of the analysis.

• Proposes a reference model and alert level methodology based on
well known quality standards, which provides an effective auto-
mated characterisation of the performance of a machine when
dealing with a large number of features but low volumes of

data. This data challenge is nowadays more common with the
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production of more customised, high value products and batch-of-
one demands and poses challenges to advanced machine learning
models that depend on large amounts of data being available.

• It takes advantage of the lead model to perform not only process
improvement in a single machine, but across multiple machines,
implementing a group awareness figure which will be essential in
future process improvement solutions.

• It demonstrates in a real industrial scenario a successful im-
plementation of a human in the loop monitoring–diagnosis–
prognosis framework using the proposed methodology.

The rest of the paper is organised as follows: Section 2 presents work
related to recent developments of SPC techniques particularly for FMS.
The methodology is then presented in Section 3, followed by a detailed
description of the case study at BMW and a discussion of results in
Section 4. Finally, Section 5 presents the conclusions and future work.

2. Related work

Although flexible manufacturing is not a new paradigm, there has
been growing interest in recent years due to factors including the
growing demand for customised products, shorter product life cycles
and environmental impact [13,14]. Compared to traditional transfer
lines that enable high volume but less flexibility in their design, FMS
allow for reaction to volume fluctuations, mixed batch production and
multiple product types within the same product family [15]. This flexi-
bility involves having machine capabilities that are themselves flexible
(such as CNC machines) and hence can produce multiple product
variants, but at the cost of making production lines more complex and
difficult to monitor. Like in any manufacturing paradigm, SPC plays an
important part in FMS to ensure that manufacturing processes operate
in their in-control state. However, it has been found that traditional
SPC methods are not appropriate for situations of small lots or where
a high variety of products exist [5]. Although flexible production
systems may manufacture large volumes, the production in these types
of environments is intermittent because the change to other product
variants is easy. This intermittent aspect makes traditional SPC methods
particularly unsuitable. In addition, whilst being highly automated, the
balance required between quality control interruption and intelligence
driven solutions needs to be addressed. A typical process within a
production line in an FMS would require the inspection of tens of
thousands of control charts, making it possible for the operator to miss
processes or features which have been affected or shifted but still fall
within acceptable limits.

2.1. SPC control charts

Traditional control charts such as Shewhart, Cumulative Sum
(CUSUM) and Exponentially Weighted Moving Average (EWMA) as-
sume that the values of a Process Mean and Variance are known a priori
at the start of the process monitoring or that the data for estimating
the process parameters is available during a production run [16].
Traditional SPC is based on the assumption that the data is Independent
and Identically Normally Distributed (IIND). However, in environments
such as an FMS where there is a variety of mixed products processed
in the same production line, these fundamental assumptions are not
met. As different measured part features may have different means and
variances, the IIND condition is not satisfied.

There are many methods that have been developed to address
the limitations of classical SPC methods in FMS. Hillier developed
methods to adjust control limits used in X-bar and R control charts [17].
Quesenberry proposed Q charts, which can detect changes in the mean
and variance in short production runs [18]. These charts have been
further studied and enhanced in other works [19,20], as it has been
found that the method is sensitive to early shifts of the mean, or when
the variance is unknown. T-charts are other new type of control charts

based on the calculation of the T-statistic and were first proposed by
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Zhang et al. [21]. A T-chart does not require a preliminary estimation
of the in-control process Standard Deviation (SD), making it useful
when monitoring at the startup of a process. However, T-charts rely
on setting up the control mean at the beginning of the production run.
Further developments of T-charts have been done by [22,23]. Many
other approaches have dealt with the normality and non independent
assumption validations as well as the small sample size such the ARMA
chart [24], ML-chart [25], ACUSUM charts [26].

2.2. Change-point SPC

In general, control charts allow to determine if a process is in
or out of control. However, in some circumstances, by the time the
process has reached the control limit and an alert has been raised, it
might be already too late to avoid or fix the related issue. An early
detection of a trend or pattern in the measurements before reaching
the control limit might allow the operator to identify and react on time
to a possible future issue. To complement charts, methods to detect
shifts in short-run situations such as the change-point method have
been proposed [27]. The basic change-point approach, as introduced
by Hawkins, is based on the assumption that process readings can be
modelled by two normal distributions. Process readings follow an initial
distribution until certain point 𝜏, the change-point, at which point they
switch to another normal distribution, differing in the mean, variance
or both [28]. Methods to monitor the process mean and process vari-
ance in univariate and multivariate applications using the change-point
method have been proposed in [29,30]. In short-run environments
where data is scarce, outliers can have a big impact on detecting true
change-points. Methods with particular focus on outliers have also been
proposed [31,32]. To deal with data that is not normally distributed,
non-parametric solutions have been proposed as well [33,34]. Although
a considerable amount of work has been done on these methods, there
is still work to be done, particularly in non-parametric techniques [35].
Jones-Farmer et al. particularly stress that for more quality-control
practitioners to use these methods on real scenarios, there needs to
be more development of easy-to-use computer software that can make
these complex methods accessible to them [35].

2.3. Control chart pattern recognition

In addition to change-point based strategies, there are other meth-
ods based on ML that have been applied for detecting patterns in
process quality data. Different detected patterns may be an indication
of different problems. While trend patterns may indicate a slow change,
cyclic patterns might be related to periodic variation in the process such
as power supply [36]. In the early application of control charts, it was
necessary to manually determine whether or not there was an abnor-
mality, this being more difficult when the process was still in control.
To this, many pattern detection methods based on supplementary rules
where proposed [37,38]. Wang et al. defined 30 possible control chart
patterns, categorised as 8 basic patterns and 22 combinations of the
basic ones [37]. However, dealing with a large number of rules may be
difficult when doing real-time monitoring. To address this, recent work
in applying ML for pattern recognition has been done with the aim to
automate this process [36,39]. An exhaustive review of techniques can
be found in [40].

Control chart pattern recognition methods have been incorporated
with other SPC methods in an attempt to provide more complete
process monitoring tools (i.e. online monitoring, diagnosis and pre-
scription) that could support the quality practitioner to take action
in real time. Guh developed an on-line SPC system that incorporates
an Artificial Neural Network (ANN) to perform pattern recognition
together with an expert system that can interpret or relate the patterns
recognised with possible issues and propose solutions to the qual-
ity practitioner [41]. Other online process monitoring and diagnosis
approaches that combine ML techniques have been reported [42,43].
3

Root cause analysis and diagnosis has been a main focus of the
research in process monitoring in recent years. However, there is
another dimension to process monitoring that is still to be reached:
Prognosis i.e. determining the likely development and change of a
problem. Current trends in industrial process monitoring are moving
towards this direction [44,45]. Despite the amount of work published
in ML-based monitoring and diagnostic methods, most of these are
tested in a simulated scenario, only a few industrial case studies for
these tools have been reported [46]. In addition, more flexibility is still
needed so that these types of approaches can be used by practitioners.
Most ML applications are still inaccessible to most practitioners due to
their complexity and required sills needed for their implementation and
continued use.

2.4. Computerised tools in real industry scenarios

Along with the development of new methods for improving process
control, there have been efforts for implementing these in real sce-
narios which involve the development of computational tools for SPC
implementation and data visualisation. Azadeh and Zeynali developed
a framework of integrated quality control that features a Quality Infor-
mation System, Statistical Quality Control, and SPC. The system was
tested for a 5-year period in a large industrial machinery manufacturer,
demonstrating the benefits of the computerised system [47]. Huang
et al. performed a case study in a Taiwanese LCD manufacturer where
they study the key factors that can make an SPC system successful
by developing an effective performance evaluation model. The authors
claim that despite the success of large automotive companies imple-
menting the SPC manual in QS-9000 (quality standard which has been
around since 1994), most organisations are still learning about the most
effective ways to introduce, develop and implement SPC. One of the key
factors that influenced the success of the implementation of SPC in a
business was adequate training and support for the users of the system
through either internal education or external experts and advisors [48].
Guerra et al. developed an SPC software tool that was used to automate
the quality control in the final inspection process of a production line
in an automotive company. The authors stressed the lack to published
work related to case studies in industry and how industry is dealing
with the implementation of computerised SPC systems [49]. Liang
et al. propose a fog and deep learning-based prognosis system which
is validated in a UK machining company. The authors stressed the
fact that most cloud and deep learning based approaches for prognosis
are ineffective to meet the requirements of practical manufacturing
processes [46]. More recently, Schmitt et al. developed a predictive
model-based quality inspection using ML and edge cloud computing
which was validated with an industrial case study [50]. However, the
development of such ML solution requires of complex steps such as
data processing, model selection and training, which makes it still
inaccessible to most practitioners [51].

2.5. Big data analytics and frameworks for Industry 4.0

With the advances in Information Technology (IT) and increased
computing power, data analytics at both small and large scales are
now possible. There is a vast amount of work done in the development
and implementation of advanced data analytics methods for condi-
tion monitoring [52], fault diagnosis [53], anomaly detection [54]
among other process industry applications; and these developments
are often considered part of Industry 4.0. In fact, these monitoring
and diagnosis abilities incorporated into the production system itself
and/or its machines, referred in the literature as self-awareness and
self-diagnosis, and the recognition the state of other systems (group
awareness) is expected to be a key characteristic of Industry 4.0 [55],
where the human expert will still play a key role in the continuous
process improvement loop as proposed in the framework by Cohen and
Singer [56]. However, despite the vast amount of research on Industry
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4.0 architecture technologies and applications, industries are still not
confident enough on the implementation of these technologies due to
the unclear benefits as well as the lack of implementation details and
the investment needed [57]. The challenges that still remain in industry
are:

• Process complexity - monitoring a large amount of process param-
eters/quality features to identify issues as they rely heavily on the
quality practitioner’s expertise.

• Data size - Large data volumes in terms of number of process
variations/parameters but lack of measurements of one specific
process variation in a FMS environment.

• Technical expertise - there is still scepticism from industry in
regards to ML applications, and a lack of practitioners with the
necessary skills.

This work attempts to address these challenges through the devel-
opment and implementation of a process monitoring methodology and
visualisation tool. The methodology allows to identify normal and out-
of-control process behaviour and goes a bit further by allowing the
practitioner to anticipate potential issues.

3. Methodology

By exploiting the current advances in data analytics, this work
presents a methodology that incorporates classic and advanced SPC
methods together with data analytics algorithms to perform the iden-
tification of potential problems in processes before these reach the
specified control limits. This is performed by identifying, -in an online
manner-, the best performing process (e.g. machine) with as few as 5
measurements and using this to identify other processes that can be
potentially improved as their performance moves away from the best
case. As it is shown in Fig. 1, there are four major steps performed in the
aforementioned methodology: data pre-processing, reference model iden-
tification, machine characterisation and visualisation. These are described
n more detail in the following subsections.

.1. Data pre-processing

FMS are characterised for the complexity and variation of its pro-
esses. The methodology described in this work is intended for FMS en-
ironments, where the number of process variations and features within
ne process variation is large. Particularly, this work is applied in an
utomotive industrial environment with the following characteristics:

• There is a number of component variations (i.e. part types) de-
pending on demand

• Each part type has hundreds of product characteristics (i.e. fea-
tures) to monitor across multiple machines.

• One machine is capable of producing the same features of multi-
ple components variants to achieve high volume production.

These system factors determine the data complexity. The number
f features (e.g. geometrical features measured with a CMM) for each
art type variant can be very large, but at the same time, the number
f continuous measurements for each machine for a particular fea-
ure/part variant can be small. Data pre-processing must occur due
o the sensitivity of the measurement devices, machining and mea-
urement processes and subsequent data outputs. Data from industrial
ultimode processes with different operating conditions and transitions

re affected by noise, outliers and missing data that affect the precision
f classic monitoring approaches [58]. This requires engineers within
he business to have a level of proficiency in data pre-processing by
dapting their skills around query languages and rule-based method-
logy. The benefits of approaching these automated cleaning steps
implify the process [9] and put the focus back to the engineering deci-

ions which need to be made. Before performing any statistical analysis
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related to the performance of a machine using product features, the
data is pre-processed by eliminating any duplicate measurements and
outliers that can be related to errors in the CMM measurements. As
mentioned previously, outliers can have a large effect on the estimation
of process control statistics, particularly when data is scarce. Most
common outlier detection methods are based on the SD over the mean.
However, this is fundamentally problematic, as the indicator itself
is altered by the presence of outliers. The absolute deviation from
the Median Absolute Deviation (MAD), on the other hand, while still
being a measure of central tendency, is insensitive to the presence of
outliers and immune to sample size, making it a better indicator [59].
Calculating the MAD involves finding the median of absolute deviations
from the median. It is defined as follows:

𝑀𝐴𝐷 = 𝑏𝑀𝑖(|𝑥𝑖 −𝑀𝑗 (𝑥𝑗 )|) (1)

where the 𝑥𝑗 is the 𝑛 original observations, 𝑀𝑖 is the median of the
series and b is a constant, usually 𝑏 = 1.4826, linked to the assumption
of normality of the data. The constant b ensures that for large samples,
the MAD remains a consistent estimator of the SD of the population.
The decision criteria is then defined as:

𝑀 − 𝑡 ∗ 𝑀𝐴𝐷 < 𝑥𝑖 < 𝑀 + 𝑡 ∗ 𝑀𝐴𝐷 (2)

where 𝑡 is the threshold selected [60]. In this methodology, MAD is
applied on all quality measurements per machine and per feature, and
across multiple part types on a given time frame. An example of outliers
detected for a feature F in a set of machines can be seen in Fig. 2.

3.2. Statistical analysis to determine reference model and adjustable ma-
chines

During monitoring, reference models can be an effective way to
detect process deviations [61]. However, generating these reference
models requires of expert-knowledge or relies on large amounts of data
being available [58]. In this work, a reference model or best machine
is proposed as a first step to start characterising the performance of
machines, however, it does not rely solely on this concept to identify
issues, as it will be explained in the next subsections. The best perform-
ing machine in a particular period of time (determined by the user but
at least 5 measurements required) is identified by calculating for each
feature measurement its deviation from the nominal or target value,
this could be the real deviation or the percentage. The deviation of a
measurement 𝑚 is calculated as follows:

First, the nominal value related to each measurement is determined.
This value is zero in the case of unilateral tolerances, otherwise the
nominal value is:

𝑛𝑜𝑚𝑖𝑛𝑎𝑙𝑉 𝑎𝑙𝑢𝑒 = 𝑢𝐶𝐿 − 𝑙𝐶𝐿 (3)

where uCL stands for upper control limit and lCL for lower control
limit. From this nominal value, then a deviation from target can be
calculated:

𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑚 = |𝑛𝑜𝑚𝑖𝑛𝑎𝑙𝑉 𝑎𝑙𝑢𝑒 − 𝑚| (4)

For the percentage deviation, if it is the case of an unilateral
olerance then:

𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑚 = 𝑚
𝑢𝐶𝐿

× 100 (5)

If the lower control limit of the feature is different from zero:

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑚 =
𝑡𝑎𝑟𝑔𝑒𝑡𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑚
𝑛𝑜𝑚𝑖𝑛𝑎𝑙𝑉 𝑎𝑙𝑢𝑒 × 1

2

× 100 (6)

The percentage deviation is useful when using multiple features
for the best machine calculation when these might have different
tolerances. In a second step, the target deviation is used to calculate
a set of statistical features per feature and machine. These include:

• Mean, SD and Variance of the feature measurement 𝑚.
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Fig. 1. Methodology used to automatically identify in and out-of-control processes as well as anticipate potential problems occurring at different machines in a flexible manufacturing
line.
Fig. 2. Outliers (red dots) identified on CMM measurements of a particular feature 𝐹
corresponding to 5 machines. Although the algorithm picks up an outlier in machine
A_7_1, this measurement is not considered an outlier in this particular case as the target
value for this feature is zero. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

• Minimum and maximum measurement.
• Mean and SD of the deviation of the measurement from the target

value.
• Minimum and maximum deviation from target.
• Number of measurements out of threshold

These statistical features will be used for the best machine esti-
mation as well as for constructing the visualisation dashboard which
provides not only an estimated best machine but also statistical infor-
mation on other machines that could be performing similarly.
5

The best machine is then defined, in a first instance, as the machine
that, for a feature or set of features, has at least five measurements for
the time period currently being looked at, does not have any of those
measurements out of threshold and has the smallest Mean deviation. In
the same way, the worst machine is a machine with at least five available
measurements which has the highest Mean deviation. From here, a set
of adjustable machines are defined as those machines that have a higher
Mean deviation compared to the best machine but their measurements
fall within 3 SDs and within the upper and lower control limits. This
does not include those machines that have a lower Mean deviation com-
pared to the best machine but less than five measurements available.
Fig. 3 shows an example of the best machine found for a feature 𝐹 as
well as one of the identified adjustable machines. The blue doted lines
show the 3SD of the machine identified as the best one. As it can be
observed, machine A_3_2 is just slightly worse than A_4_1.

The best machine, worst machine and set of adjustable machines as
defined previously will be the first indicator of performance of the
process for a particular feature or set of features of one or more part
types. If all machines apart from the best machine are adjustable, then
the process is in-control and can be potentially improved according to
the parameters of the best machine. Whilst machine adjustments and
changes happen independently, each machine will behave differently
but still have the same technology and approach to setting. If a par-
ticular machine needs adjusting to the point where the technique is
not completely clear, then a reference model is useful to help guide
the engineers to knowing‘‘what good looks like’’ and using that as a
base guide, by comparing for example tool wear, parameter setting,
spindle vibration, among other data available to the operator. To sup-
port this problem identification process, it is necessary to complement
this information by characterising further through patterns and rules
presented in the following subsections. If no best machine is found, is
either because there are still not enough measurements to determine
the performance or because all machines are showing measurements
out of threshold. In any case, as it will be discussed in the industrial
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Fig. 3. Example where machine A_4_1 is identified as the best machine (closer to the
arget value zero) and A_3_2 is identified as one of the adjustable machines.

ase, through the continuous logging of adjustments as a response
o particular machine performance, it is possible to start building a
nowledge base that facilitates future machine adjustment even when
best model is not identified.

.3. Pattern analysis for the characterisation of machine performance

The way in which each machine is further characterised is through
he automated identification of different patterns and rules. In classical
PC, control chart patterns or behaviours typically relate to different
rocess issues. Based on the basic control chart patterns that have
een defined in the literature [40], in this work trends, shifts and
ules are applied and results integrated to automate the characterisation
f a machine performance. While some patterns may indicate a re-
ccurring problem, some may indicate an improvement. For example,
n increasing/decreasing trend on the measurements approaching the
arget value would indicate an improvement. Each pattern will have
n associated alert or level of severity, either green, yellow, or red,
epending on the nature of the change. Once all machines are checked
or patterns and rules, a summary of alerts is generated. By integrating
he resulting information of all patterns found and relating them to

level of severity, it is possible to identify scenarios where a prob-
em is beginning to develop, particularly when similar patterns are
ound across multiple features. This will be further discussed in the
isualisation section.

.3.1. Increasing/decreasing trends
A trend is present if a sequence of measurements exhibits steady

pward or downward decline over its whole length. To identify a trend,
he Cox-Stuart test is performed. This is a non-parametric sign test for
etecting trends in independent, time-ordered data [62]. Although this
est is not as powerful as the Mann–Kendall test [63], the computational
ffort of this test is lower (increases linearly with the sequence size).
he main steps to perform the Cox-Stuart test are shown in Algorithm
.

Once the trends for each feature/machine are determined, an alert
ssociated with each trend will be recorded. A detected trend that
oves away from the nominal will raise a red alert, whilst a trend

owards the nominal will raise an amber alert.

.3.2. Up/down shifts
Detecting multiple change points in a sequence of values can be

omputationally expensive. A brute force exact approach would take
(𝑄𝑛2) calculations for a sequence of values of size 𝑛, where Q is the
6

input : A set of independent observations of the form
(𝑦1, 𝑦2, ..., 𝑦𝑛) where 𝑦𝑖 ∈ ℜ

output: A p-value to determine the significance of the inc/dec
trend

1 1. Divide the input data into two vectors 𝑓𝑖𝑟𝑠𝑡𝐻𝑎𝑙𝑓 = 𝑦1∶(𝑛+1)∕2
and 𝑠𝑒𝑐𝑜𝑛𝑑𝐻𝑎𝑙𝑓 = 𝑦(𝑛+1)∕2∶𝑛 ;

2 2. Substract value by value the two vectors
𝑑𝑖𝑓 = 𝑓𝑖𝑟𝑠𝑡𝐻𝑎𝑙𝑓 − 𝑠𝑒𝑐𝑜𝑛𝑑𝐻𝑎𝑙𝑓 ;

3 3. For each difference 𝑑𝑖𝑓𝑖 obtain the sign ;
4 4. Calculate the number of positive and negative signs 𝑝𝑜𝑠 and

𝑛𝑒𝑔 ;
5 if 𝑝𝑜𝑠 ≤ 𝑛𝑒𝑔 then
6 5. Calculate the probability to obtain 𝑥 = 𝑝𝑜𝑠 number of

successes on N=n experiments 𝑝𝑟𝑜𝑏 = 𝑝𝑏𝑛𝑜𝑚(𝑝𝑜𝑠, 𝑛, 0.5) ;
7 6. If 𝑝𝑟𝑜𝑏 ≤ 0.05, there is an increasing trend, else there is

no significant trend ;
8 else
9 7. Calculate the probability to obtain 𝑥 = 𝑛𝑒𝑔 number of

successes on N=n experiments : 𝑝𝑟𝑜𝑏 = 𝑝𝑏𝑛𝑜𝑚(𝑛𝑒𝑔, 𝑛, 0.5) ;
10 8. If 𝑝𝑟𝑜𝑏 ≤ 0.05, there is a decreasing trend, else there is no

significant trend ;
11 end

Algorithm 1: COX-Stuart Test algorithm

maximum number of change points. The objective is to find the set of
change points 𝜏 that minimise the equation:
𝑚+1
∑

𝑖=1
[𝐶(𝑦(𝜏𝑖−1+1)∶𝜏𝑖 )] + 𝛽𝑓 (𝑚) (7)

where C is a cost function (typically the negative log-likelihood) for a
segment, 𝑚 is the number of change points (𝑚+1 segments) and 𝛽𝑓 (𝑚) if
a penalty to avoid over fitting. It is still an open question how to define
a maximum number of change points in a sequence whilst avoiding
over fitting.

To check for sudden shifts on the measurements, the Pruned Exact
Linear Time (PELT) change point algorithm is used here, as it uses a
non-parametric cost function based on the empirical distribution [64].
The PELT algorithm is an exact algorithm which is computationally less
expensive compared to algorithms such as Binary Segmentation (linear
in the best case scenario) by using dynamic programming and pruning.
The PELT algorithm is based on the idea that the optimal number of
change points of a segment 𝑦1∶𝑠 (𝐹 (𝑠)) can be expressed in terms of the
optimal number of change points for 𝑦1∶𝑡 where 𝑡 < 𝑠. This allows to
define the optimal number of change points for 𝑦1∶𝑠 recursively in terms
of the minimal cost for 𝑦1∶𝑡. To maintain a linear execution time on 𝑛,
this algorithm applies pruning by removing those values of 𝜏 that can
never be minima from the minimisation performed at every iteration.
The main assumption of the PELT algorithm is that the number of
change points increases linearly as the data set grows, in other words,
the change points are spread through the data rather than confined
to one portion. The steps of this method are presented in Algorithm
2. Fig. 4 shows the detected shifts on a subset of measurements for a
feature and machine. The change points (vertical lines) allow to identify
state borders; this means points in times that indicate the end of a
particular distribution before changing to a new distribution.

Once all change points are found, for each change point detected
in a set of measurements if it represents an increase or decrease in
25% of the tolerance from its previous change point, it is highlighted
with a red alert. In addition, for any change point detected in the last 5
observations of a set of measurements, a green alert is raised for those
approaching the target value and a red one for those moving away from
the target.
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input : A set of data of the form (𝑦1, 𝑦2, ..., 𝑦𝑛)
where 𝑦𝑖 ∈ ℜ
A measure of fit 𝐶(.) dependant on the data
A penalty constant 𝛽 which does not depend
on the number or location of the change points
A constant 𝐾 that satisfies
𝐶(𝑦(𝑡+1)∶𝑠) + 𝐶(𝑦(𝑠+1)∶𝑇 ) +𝐾 ≤ 𝐶(𝑦(𝑡+1)∶𝑇 )

output: The change points recorded in 𝑐𝑝(𝑛)
1 Initialise: let 𝑛 = length of data and set 𝐹 (0) = −𝛽, 𝑐𝑝(0) = 𝑁𝑈𝐿𝐿, 𝑅1 = 0 ;
2 for 𝜏∗ = 1...𝑛 do
3 1. Calculate 𝐹 (𝜏∗) = min𝜏∈𝑅𝜏∗

[𝐹 (𝜏) + 𝐶(𝑦(𝜏+1)∶𝜏∗ ) + 𝛽] ;
4 2. Let 𝜏1 = 𝑎𝑟𝑔

{

min𝜏∈𝑅𝜏∗
[𝐹 (𝜏) + 𝐶(𝑦(𝜏+1)∶𝜏∗ ) + 𝛽]

}

;
5 3. Set 𝑐𝑝(𝜏∗) = [𝑐𝑝(𝜏1), 𝜏1] ;
6 4. Set 𝑅𝜏∗+1 =

{

𝜏∗ ∩
{

𝜏 ∈ 𝑅𝜏∗ ∶ 𝐹 (𝜏) + 𝐶(𝑦(𝜏+1)∶𝜏∗ ) +𝐾 < 𝐹 (𝜏∗)
}}

;
7 end

Algorithm 2: PELT Method
Fig. 4. Detected shifts on a subset of measurements of a sample feature and machine.
Each vertical line indicates the point in time where the change is detected. Two
moments are identified here, one where there is a tendency towards the target value,
which is zero, and one where the measurements start to move away.

3.3.3. SPC rules
Standard SPC rules which include increasing/decreasing patterns

and saw tooth patterns alternating below and above the target value,
have been used to further characterise the machine behaviour. Amber
and red alerts are associated with measurements or sets of measure-
ments that meet the criteria of an SPC rule depending on where in
time the rule is triggered. Specifically, the following rules have been
implemented:

1. One point outside 3 SDs. Any measurement within 3 SDs from
the best machine mean would raise an amber alert, while any
measurement outside 3 SDs would raise a red alert.

2. Two out of three points in succession out of 3 SD of the best
machine mean. Using a rolling window, any 3 consecutive ob-
servations of a set of measurements is tested for this rule. A red
alert is raised if the rule is triggered by the any of the 3 most
recent measurements, or an amber alert is raised if triggered by
any of the other observations in the set. This allows to identify
the cases where the rule has been triggered recently or if it has
been triggered at all.

3. Four out of five points in succession out of 3SD of the best
machine mean. Similar to the rule 2 out of 3, any 4 points in
5 consecutive observations would raise a red alert if triggered
on the last three measurements or an amber alert if triggered
before.
7

4. Six points in succession rising or falling. If the last observation
is part of an increasing or decreasing trend that is moving away
from the nominal, then a red alert will be raised. For any other
triggers, an amber alert will be raised.

5. Eight points in succession outside of 1 SD. As in previous rules,
any triggers in the last 3 measurements will trigger a red alert,
while other measurements will trigger an amber alert.

6. Nine points in succession on the same side. Any trigger of this
rule will raise a red alert.

7. Fourteen points in succession alternating above and below the
target. As with the previous rule any trigger of this rule will raise
a red alert.

All the alerts raised by patterns, shifts and SPC rules are used to
generate a summary per machine. Results of all machines are then
sorted by severity (red alerts having the highest severity and green the
least), allowing to identify the machines that have multiple severe alerts
Both the summary and results per rule can be visualised through the
visualisation tool for further inspection as it will be shown in the next
section.

3.4. Visualisation tool with R

Visualising the statistical results and SPC rules is crucial for man-
ufacturing practitioners to understand the general behaviour of the
machines in the manufacturing cell and make decisions based on
this [65]. The visualisation dashboard that has been implemented
(Fig. 5) has four main visualisation elements which are explained
below.

3.4.1. Status panel
As the characterisation of machines for a given feature or set of

features is based around the definition of a reference model or best
machine, the dashboard provides a quick way for the operator to
identify the reference model and related information. This is done
through three status boxes at the top of the dashboard (Section A in
Fig. 5); a green box, which indicates the best machine, a red box which
indicates the worst performing machine and an amber box, which
indicates the number of adjustable machines (if any).

3.4.2. Summary statistics tables
To support the results shown in the status panel, the summary

statistic tables present the statistical results (mean, SD, variance, max
and min) that are computed for each machine and are presented in an
ordered manner in section B in Fig. 5), left-hand side table. Details of
the adjustable machines are presented as well (right-hand side table).
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Fig. 5. Visualisation Dashboard consisting of four main visualisations: status panel, statistic tables, alerts summary and control charts.
.4.3. Control chart view
The control chart view (Section C in Fig. 5) allows to visualise the

easurements corresponding to a selected feature and time frame for
ll or sets of machines, highlighting the 3 SD of the best machine (blue
otted line), the outliers (blue dots) and providing the regular elements
f a control chart such as the lower and upper control limits (shown in
ed lines). Data can also be inspected by the CMM machine that per-
ormed the measurements, as sometimes there is a consistent error in
he measurement machine rather than issues with a particular machine
n the manufacturing cell. Finally, it provides a way to visualise change
oints per machine if the quality practitioner requires further details on
he behaviour of a particular machine.

.4.4. Alert summary and details view
The alert summary (Section D in Fig. 5) provides in a first instance

general view of the machines’ performance by displaying in order of
everity the alerts generated per machine. This allows the operator to
dentify the machines that are currently more problematic, displaying

large number of red alerts, but also identify which machines could
e potentially adjusted as they start showing early signs of a change in
he quality of the machined parts. This dashboard feature also allows
o filter the summary per rule, which provides further inspection of all
he alerts raised by a machine for a particular rule.

. Industrial case study

The proposed methodology and visualisation tool was tested in a
eal flexible manufacturing cell at BMW Plant Hams Hall in Birming-
am, UK. The UK is the only place where the BMW Group has its three
rands BMW, MINI and Rolls-Royce Motor Cars represented by manu-
acturing operations. The Hams Hall plant in particular manufactures
he latest generation of BMW TwinPower Turbo petrol engines, the
atest development in the BMW Efficient Dynamics engine family. Every
erivative is produced on the basis of a core engine and a modular kit
nd so there is a high number of parts that are identical across the
amily. This enables the plant to have a highly standardised and flexible
anufacturing network. In this network, core engine components such
8

as crankshafts, cylinder blocks and cylinder heads are machined from
raw castings through turning, milling, drilling, polishing and honing
processes. The quality of the machined components is constantly moni-
tored throughout the production process and finished parts go to either
assembly within the same plant or to other engine manufacturing
plants. For this reason, frequent measurement of parts is central to their
operation. The flexible cell configuration is similar to the one shown in
Fig. 6, where there are between 15 and 20 machines per cell/process, 2
spindles or fixtures per machine and so generally 2 tools per machine.
For 8 product types, for example, there can be around 400 measured
features, which makes an estimated 96,000 control charts to monitor.

During regular operation of the machines, although appropriate
warning limits allow operators to determine the scope of which features
need to be reacted to, processes or features which have been affected
or shifted but still fall within acceptable limits are often missed. This is
directly reflected on the amount of scrap that is produced. Furthermore,
the tolerance bands can vary between features and their significance.
There are some characteristics which have a range of less than 10 μm
and some which are up to 100 μm.

Additional challenges are imposed by the feature measurement
variation. Firstly, measurement duration can take up to 90 min for
particularly complex processes with 400–500 features on CMMs. This is
often why the sampling frequency cannot typically be increased across
the whole process. As a result, the lead or ‘reference’ machine concept
is used. The frequency of measure on a single machine within a process
group (with multiple machines) is increased and the results of the
remaining machines is analysed based on the mean and sparsity of
results. Secondly, there is a limited amount of measurement capacity in
terms of CMMs because of factors such as the process flow of material
through the logistics modules and wash processes. The gauge systems
require stringent cleanliness due to the product tolerances (within
microns) so they often have to go through high pressure wash systems
before measurement (see Fig. 7). This all adds to process time and can
reduce capacity. Finally, technologies of the measurement devices also
vary, not only with their own resolution and measurement accuracy,
but with data accuracy and transfer.
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Fig. 6. Typical layout of a Flexible Manufacturing Line at Hams Hall with 15 to 20
machine centres and 2 fixtures and spindles per machine.

Fig. 7. Selected parts for measurement move through a conveyor system in order to
e high-pressure washed before they go through the measurement process.

Fig. 8. Measurements of a single feature captured for all monitored machines during
he period 2018–2020. For this feature, the upper limit tolerance is indicated with a
orizontal red line, and the target value is zero. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)

To avoid disruption on the production lines, the tool was deployed
rogressively between January and November 2020. The tool, which
as developed using R and shiny libraries, was containerised using
ocker to simplify the deployment across the plant. In a first instance,
9

Table 1
Process capability index (cpk) of three machines before using the
analytics tool (all measurements taken in 2018) and after using the tool
(period of 11 months in 2020).

Machine number Before tool After tool

Machine 1 0.61 2.50
Machine 2 0.43 1.46
Machine 3 0.42 1.54

one installation of the tool was done in January 2020 for the quality
specialists to monitor a focused range of part types and support the
weekly process capability reviews carried out. The usage of the tool
was managed by one of the quality data specialists of the Quality
Department at BMW during these weekly reviews, supporting the other
specialists to familiarise with its usage. Any characteristics or features
which were considered statistically less stable by the tool, were anal-
ysed and focused upon during these weekly reviews in addition to
existing process control methods. Typically, significant amount of time
is spent preparing and performing these reviews to find the right data,
make plots and visualisations and interpreting the machine/part type
influences before even applying SPC techniques in the evaluations. The
tool enabled the team to draw very quick conclusions on where they
need to focus their attention. This allowed the focus discussions to
be around the technical problems with the machines or processes and
encouraging more effective problem resolution activities. After the first
month of usage and once the value of reducing this analytic time was
recognised, the tool was deployed in a wider set of devices so the
team individually began to use the tool more frequently to help steer
daily operations for processes which needed more attention. In doing
so, operators would select a range of features from their operation,
determine the reference machine, and use the ‘‘adjustable machines’’
graphic to help evaluate how they could improve the processes. Once
standard practice of using the tool was established, continuous machine
adjustments were made to help centre the processes. These adjustments
were documented each time and enabled cross shift communication to
recognise the best adjustment techniques on the machines. Adjustments
included the replacement of worn tools and change in the machine
parameters such as offset and thrust. This strengthened the view and
approach to using prescriptive analytics for heavily manufacturing
processes with large amounts of flexibility and design complexity.

By being able to identify promptly relevant patterns in quality data,
processes could be adjusted and centred, keeping part features within
the specification limits, improving significantly the performance of the
monitored machines. Fig. 8 shows all the measurements taken for a
single feature in all machines for a period of two years, from 2018 to
2020. This feature has a unilateral tolerance, where the upper control
limit is 0.5. It can be observed in the figure that CMM measurements
start to reflect a more stable and controlled process as measurements
out of tolerance are less frequent, especially towards the second half
of 2020. Inspecting individual machines as shown in Figs. 9 and 10,
it can be observed that this tendency is true for all the monitored
machines. When comparing the process capability index of machines
corresponding to measurements taken in 2018 to those in 2020, it was
found that there was a significant improvement across all machines,
maintaining a high percentage of produced parts that meet the quality
requirements (see Table 1). Initial usage of the tool demonstrated a
reduction in 97% of scrap produced for a focused process and group
of features within the 11 month period compared the previous year.
With these initial results, it can be estimated that 80% of scrap will be
reduced from dimensional process faults. Furthermore, with wider use
throughout the shop floor, an estimated 500 h of lost process time can
be expected to be gained from reduced validation measurements and
wasted process steps. This is estimated based on a year’s worth of data
from scrap parts with dimensional errors in previous years.
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Fig. 9. Measurements of a single feature captured for Machine 1 (left) and Machine 2 (right) during the period 2018–2020. For both machines, the target value is zero and the
upper limit tolerance is shown with a red horizontal line.
Fig. 10. Thirty two consecutive measurements of a single feature captured for Machine 1 (left) and Machine 2 (right) during the periods 2018 and 2020. As a unilateral tolerance,
the target value in both cases is zero.
5. Conclusion and future work

In this work, a methodology for characterising machine perfor-
mance through part quality data and data analytics is presented. The
methodology, which has been integrated into a visualisation tool, al-
lows the quality practitioner to draw out the key geometrical features
to analyse and to identify the ones that have adjustable capabilities
within their scope. This is crucial, particularly when there is a large
number of features to monitor and the level of sensitivity in error
is high. By using the tool, the amount of time taken to search the
data, inspect control charts and perform the analysis is significantly
reduced. This allowed the tool not only to be used for regular practice
during weekly quality reviews, but to be used by operators on a daily
basis in the shopfloor. The methodology is successful at identifying
existing issues as well as at anticipating potential problems that would
have been missed otherwise. Through the adjustable machines fea-
ture and the documentation of adjustments made by operators, cross
shift communication was enabled, setting the basis for a prescriptive
approach in a highly flexible manufacturing system. Initial usage of
the tool in a flexible manufacturing cell at BMW has demonstrated
a reduction of 97% of scrap for the monitored features compared
to the previous year. This in the long run will reduce reaction time
in following quality control procedures. Furthermore, it will reduce
significant scrap costs and ultimately reduce required measurement
capacity and enable more output in terms of volume capacity. Based
on the scrap produced in 2019 from dimensional process faults, it
is estimated that for 2020, 80% of the scrap for the studied set of
part types will be reduced, which translates into the reduction of
500 h of process time that would have been expected from validation
measurements and wasted process steps. Further work will include the
10
study of a wider use of the tool throughout the shop floor, analysing
the usability from the perspective of the shop-floor workers, as well as
the incorporation of more advanced machine learning algorithms for
pattern recognition. Ultimately prescriptive analytics will be explored
to provide an intelligent recommendation of parameter adaptation.
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