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Probabilistic cellular automata provide a simple framework for exploring classical nonequilibrium
processes. Recently, quantum cellular automata have been proposed that rely on the propagation
of a one-dimensional quantum state along a fictitious discrete time dimension via the sequential
application of quantum gates. The resulting (1 + 1)-dimensional space-time structure makes these
automata special cases of recurrent quantum neural networks which can implement broad classes of
classical nonequilibrium processes. Here, we present a general prescription by which these models
can be extended into genuinely quantum non-equilibrium models via the systematic inclusion of
asynchronism. This is illustrated for the classical contact process, where the resulting model is
closely linked to the quantum contact process (QCP), developed in the framework of open quantum
systems. Studying the mean-field behaviour of the model, we find evidence of an “asynchronism
transition”, i.e. a sudden qualitative change in the phase transition behavior once a certain degree
of asynchronicity is surpassed, a phenomenom we link to observations in the QCP.

Nonequilibrium processes can display collective effects
and critical behavior. In the vicinity of nonequilibrium
phase transitions (NEPTs), the resulting phenomenology
can show macroscopic features that are shared by differ-
ent models. This so-called universality allows for diverse
systems to be gathered into few classes, enabling the in-
vestigation of emergent phenomena through the analysis
of minimal models within a class [1, 2]. For classical
systems, a paradigmatic setting for exploring nonequilib-
rium universality is that of (1 + 1)D cellular automata
(CA). These consist of 2D models realising an effective
1D system discrete-time dynamics, as shown in Fig. 1(a).
The propagation of the 1D state from time t to t + 1
occurs through the sequential application of local gates
(or rules) operating on the (target) row t+ 1, controlled
by the state of row t, see Fig. 1(a). Such classical dy-
namics can either be deterministic, usually implemented
through unitary gates, or probabilistic, with non-unitary
local updates. In the latter case, by suitably choosing
the gates, these automata provide discrete-time versions
of continuous-time dynamics [1]. Owing to their simple
structure, this has allowed for a deep understanding of
several classical nonequilibrium processes [1–7].

Recently, quantum versions of these automata have
been introduced and dubbed (1 + 1)D quantum cellular
automata (QCA) [8–10]. These models are particularly
appealing for at least two reasons. Firstly, they can be re-
alized on current quantum simulators [11–14]. Secondly,
while closely linked to unitary 1D QCA [15–19], (1+1)D
QCA are equivalent to quantum neural networks (QNNs)
applied in quantum machine learning (QML) [20]. In the
language of QNNs, the first and last rows of the QCA
correspond to input and output layers respectively, while
the intermediate rows are the hidden layers [cf. Fig. 1(a)].

The local gate of the QCA is then a N -input, one-output
quantum perceptron, and a quantum evolution proceeds
by applying the gate layer by layer, just as in QNNs.
Since every perceptron is identical, QCA are in fact recur-
rent QNNs. With regards to the study of nonequilibrium
processes, (1 + 1)D QCA are also particularly effective
as they include their classical counterparts as a limiting
case, requiring only synchronous updates –i.e. commut-
ing gates. For instance, probabilistic cellular automata
(PCA) can be reproduced through commuting unitary
quantum gates. The QCA state displays non-classical
properties [8, 21], but nonetheless captures the classical
model, with diagonal elements coinciding with the prob-
abilities of the associated PCA.

In this paper, we present a prescription for extending a
given classical model into a genuinely quantum model via
the systematic inclusion of asynchronism in the (1+ 1)D
QCA framework [cf. Fig. 1(b)]. Asynchronism alone is
not necessarily a quantum feature [22–24]. However, in
QCA, asynchronous — non-commuting — gates can gen-
erate a dependence between diagonal observables of one
time slice and coherence in the previous one [Fig. 1(c)].
After presenting the general prescription, we analyze the
case of the classical contact process (CCP). Remarkably,
we find that the QCA resulting from the introduction
of asynchronism is closely connected to the continuous-
time quantum contact process (QCP) [25–30]. To make
the link precise, we compare the mean-field equations of
the QCP and of the asynchronous QCA. We find that the
quantum Hamiltonian contribution in the QCP is anal-
ogous to the one due to asynchronism in the QCA. We
further investigate the QCA mean-field phase diagram.
While for low asynchronism it displays a second-order
NEPT in the directed percolation (DP) universality class,
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FIG. 1. Asynchronism in classical CA and (1 + 1)D
QCA: (a) A CA consists of a 2D lattice of two-level sys-
tems, which can either be in an occupied or empty state. The
vertical dimension of the lattice provides an effective discrete-
time dimension and propagation along the time direction is
achieved through the sequential application of local gates.
These perform operations on a target site at row t + 1 and
in position k according to the state of three control sites (at
position k − 1, k, k + 1) in the previous row. After the row
t + 1 has been completely updated, its state represents the
state of an effective 1D system at time t + 1. (b) During a
single time update, if the local gates do not modify the control
sites, the order of their application is irrelevant (synchronous
dynamics). If local gates change the control sites, the order
of their application is relevant and can produce different final
states (asynchronous dynamics). (c) While in a classical CA,
the occupation of a target site solely depends on occupation
probabilities of control sites, asynchronism in a QCA is linked
to quantum coherent processes. In the panel, it is shown how
an asynchronous gate can generate, in addition to classical
asynchronous terms, a coupling between the occupation in
the target site and coherence in the control sites.

as expected from the corresponding PCA [3], there exists
a critical value of asynchronism above which the NEPT
qualitatively changes and becomes first-order. We thus
term this an “asynchronism transition”. We compare this
with the phase diagram estimated using tensor-network
techniques, and with similar behavior in the QCP.

Our results present a framework to study the role of
quantum effects in nonequilibrium collective behavior.
Given that non-commuting gates are required for univer-
sal computation on QNNs [20], our work hints at further
interesting links between asynchronism, quantum many-
body dynamics and quantum machine learning.

Synchronous (1+ 1)D QCA. In the 2D lattice of the
QCA, sites can be in the empty |◦⟩ or occupied |•⟩ state,
see Fig. 1(a). The lattice initial state, |ψ0⟩, is chosen

as a product state, where row t = 0 contains the initial
1D configuration, while the other sites are initialized in
|◦⟩. The 2D lattice evolves iteratively as |ψt+1⟩ = Gt |ψt⟩,
where Gt acts on rows t and t + 1. This global update
is made of the product of local gates Gt,k, updating the
target site at (t + 1, k). For example, a given ordering
could be Gt = . . . Gt,k . . . Gt,2Gt,1. The time-evolved 1D
system state is ρt = Tr′ (|ψt⟩⟨ψt|), with the trace taken
over all sites except those in row t [cf. Fig.1(a)]. See Refs.
[9, 10, 21] for further details on (1 + 1)D QCA.
The simplest local unitary gate is of the form

Gt,k =
∑
N
PN ⊗ UN . (1)

Here, N labels the basis states of the “control” sites in
the neighbourhood of site k on row t. For example, a
three-site neighbourhood has 8 basis states, N = (◦◦◦, ◦◦
•, ..., •••). The unitary operator UN “rotates” the target
(on row t+1 and in position k) conditioned on the state
of the control sites. This is enforced by the projector
PN = |N ⟩⟨N | acting on them. We will use the symbol ⊗
to separate control sites (to the left) and target sites (to
the right). Since in Eq. (1) only orthogonal projectors act
on control sites, gates Gt,k acting on different target sites
commute and the dynamics is synchronous, i.e., target
sites can be updated simultaneously [see Fig. 1(b)].
To illustrate that such synchronous (1 + 1)D QCA

allows for the implementation of a range of canonical
nonequilibrium models [4, 5, 31, 32] we consider the re-
alization of the so-called contact process [3, 6]. The con-
tact process features three elementary ingredients: de-
cay, i.e. the transition of a site from occupied to empty
(• ⇝ ◦); coagulation, which is also the transition of a
site from full to empty but facilitated (conditioned) by
one of its neighbors (•• ⇝ •◦); and branching, which is
facilitated excitation of the form •◦⇝ ••. Note that the
contact process possesses the absorbing state ... ◦◦◦ ...
from which no escape is possible. Whether this state is
reached at stationarity depends on the rates (or proba-
bilities) of the elementary processes. An instance of the
contact process on a (1+1)D QCA is realized by the gate

Gt,k = Πknk ⊗ U◦•◦ +Πknk ⊗ 1

+Π̄knk ⊗ U• + Π̄knk ⊗ U◦, (2)

which has the form of Eq. (1). Here nk = |•⟩⟨•|k and
nk = |◦⟩⟨◦|k = 1 − nk project onto the occupied and
empty state of site k, respectively. Furthermore, we have
defined the projectors Πk = n̄k−1n̄k+1 and their com-
plements Π̄k = 1 − Πk. The unitaries Uα, with labels
α = (◦•◦, •, ◦), perform a (coherent) flip of the target
site, which is conditioned on the state of the controls.
Note that the first unitary considers the case of empty
left/right control sites, while the latter two unitaries act
on the target only if at least one of the left/right con-
trol sites is occupied. They are parametrized as U◦•◦ =
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√
p◦•◦ 1−i

√
q◦•◦ σ

x and U◦/• =
√
q◦/• 1−i

√
p◦/• σ

x with
σx = |•⟩⟨◦|+|◦⟩⟨•|. The parameters q◦•◦ and p◦/• ∈ [0, 1]
are the flipping probabilities, and qα = 1− pα.

In the gate in Eq. (2), the control sites have been sep-
arated by singling out the central one, so that we can as-
sociate to the target site [in position (t+ 1, k)] a specific
control site [the one in position (t, k)], which we regard as
its “past”. This allows for the mean occupation number,
⟨nk⟩t+1, of the target to be calculated iteratively as,

⟨nk⟩t+1 = q◦•◦⟨Πknk⟩t + p•⟨Π̄knk⟩t + p◦⟨Π̄kn̄k⟩t (3)

≈ q◦•◦⟨Πk⟩t⟨nk⟩t + p•⟨Π̄k⟩t⟨nk⟩t + p◦⟨Π̄k⟩t⟨n̄k⟩t,

where we performed a mean-field decoupling in the sec-
ond line [33]. This form makes the interpretation of the
probabilities entering the unitaries Uα rather transpar-
ent: q◦•◦ is the probability that the target site k gets
occupied given that the control site k is occupied while
its neighbors are empty. Since the occupation number
can only decrease under this process this effectively im-
plements • ⇝ ◦. The probability p• is the probabil-
ity of having an occupied target when there is at least
one of the external controls and the central one occu-
pied. This also describes a decay process, but here
in combination with the so-called coagulation process,
i.e. the annihilation of two adjacent occupied sites, e.g.
•• ⇝ •◦. Finally, the probability p◦ parametrizes the
strength of a branching process (•◦ ⇝ ••). All these
ingredients yield the contact process [6]. Finally, by tak-
ing the continuous-time limit of Eq. (3), i.e. expanding
⟨nk⟩t+1 ≈ ⟨nk⟩t + ∆t d

dt ⟨nk⟩t, with small time step ∆t,
one obtains a continuous-time contact process [6] with
coagulation rate κc = (q◦•◦ − p•)/∆t, branching rate
κb = p◦/∆t and decay rate γ = p◦•◦/∆t [33].
Asynchronous (1+ 1)D QCA. The dynamics in
Eq. (3) is classical as it only connects diagonal observ-
ables. A natural question is: what is a minimal modifi-
cation to the gate Gt,k which makes diagonal observables
at time t+ 1 depend on coherence at the previous time?
We achieve this through asynchronism [cf. Fig. 1(b-c)].

To break the commutativity of the gates, we consider
terms modifying control sites along with the target one,
see Fig. 1(b), via the gates,

Gt,k =
∑
N
PN ⊗ UN +

∑
N ̸=N ′

|N ⟩⟨N ′| ⊗ON ,N ′ , (4)

where unitarity of Gt,k constrains the operators ON ,N ′ .
The minimal modification beyond Eq. (1) affects a single
control site, i.e. |N ⟩⟨N ′| = |N ⟩⟨N |σ±

k , where σ
+ = |•⟩⟨◦|

and σ− = |◦⟩⟨•|, such that,

Gt,k =
∑
N
PN ⊗ UN +

∑
N ,±

PNσ
±
c ⊗ON ,±. (5)

Here σ±
c acts on a chosen site, labelled c. This equa-

tion constitutes a prescription for extending any classi-
cal model into a quantum one by choosing the operators

ON ,±, subject to the constraints of unitarity and any de-
sired physics of the original model. In fact, these require-
ments can be very restrictive, producing an essentially
unique mapping from a classical to a quantum system.
As an example, we consider the CCP in Eq. (2). In

this case, the additional constraints are the presence of
the absorbing state and that the update depends only on
whether there are any particles present, but not on their
quantity or position. Applying the prescription gives

Gt,k = Πknk ⊗ U◦•◦ +Πknk ⊗ 1

+
√
1− λ

[
Π̄knk ⊗ U• + Π̄knk ⊗ U◦

]
+
√
λ Π̄k

[
σ+
k ⊗ U•U+ − σ−

k ⊗ U◦U
†
+

]
. (6)

This gate contains just one additional unitary beyond the
synchronous model, U+ = i

√
q 1 − √

p σx, and features
two additional parameters, p and λ, with λ ∈ [0, 1] con-
trolling the strength of the asynchronism. When λ = 0
we recover Eq. (2). As λ is increased, gates acting on
adjacent target sites do not commute, with the norm of
the commutator increasing with λ. Considering the ana-
logue of Eq. (3) for the gate in Eq. (6), we find after a
mean-field decoupling [33],

⟨n⟩t+1 = r◦•◦⟨Πk⟩t⟨nk⟩t + r•⟨Π̄k⟩t⟨nk⟩t + r◦⟨Π̄k⟩t⟨n̄k⟩t
+r∗⟨Π̄k⟩t ⟨σy

k⟩t , (7)

with σy = −i |•⟩⟨◦|+ i |◦⟩⟨•|. The coefficients are

r◦•◦ = q◦•◦,

r• = (1− λ)p• + λ (
√
p◦
√
q +

√
p
√
q◦)

2
,

r◦ = (1− λ)p◦ + λ(
√
p•
√
q −√

p
√
q•)

2,

r∗ =
√
λ
√
1− λ[

√
q (p• + p◦)

+
√
p (

√
p◦
√
q◦ −

√
p•
√
q•)]. (8)

Crucially, we see that this equation connects the density
operator n of the target site with the coherence observ-
able σy for the central control, which, as mentioned be-
fore, we interpret as the “past” of the target. Only when
r∗ = 0, the equation closes on diagonal observables.
Asynchronism transition. To assess the impact of
asynchronism on our (1 + 1)D QCA, we investigate the
mean-field stationary state [33]. For the following analy-
sis we fix q◦•◦ = p• = p = 0.1. As shown in Fig. 2(a), for
any given value of λ the QCA displays an NEPT from the
absorbing state with all empty sites to a state with a finite
density of occupied sites, ⟨n⟩∞ ̸= 0. The critical curve
separating those two phases can be parametrized by the
strength of asynchronism, λ = λc(p◦). For λ = 0 (not
shown) the QCA represents a discrete-time contact pro-
cess and thus shares with it a continuous phase transition
in the DP universality class. This continuous transition
persists when increasing λ. However, beyond λ∗ ≈ 0.92
the phase transition becomes of first-order.
Since this change in the nonequilibrium physics occurs

for increasing λ along the critical curve λc, we call this
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FIG. 2. Nonequilbrium phase transition in (1 + 1)D
QCA: (a) Stationary phase diagram for the model described
by the gate (6). An absorbing state phase transition is dis-
played as a function of the asynchronism parameter λ and the
branching probability p◦. The stationary density is estimated
by performing 1000 iterations of the mean-field equations [33].
For strong asychronicity, i.e. λ ≳ 0.92, the phase transition
changes from continuous (in the directed percolation univer-
sality) to discontinuous. (b) Phase diagram obtained for a
(1 + 1)D QCA using tensor networks [21]. Here, the den-
sity is calculated using bond-dimension χ = 64, lattice size
L = 64, and by iterating over 100 time steps.

an “asynchronism transition”. This mean-field transition
is expected to be strictly observable above the upper-
critical dimension of the model. Instead, to study the
(1+1)D QCA, we resort to tensor network methods [21],
see Fig. 2(b). Here, qualitative agreement with the mean-
field solution is found, although the NEPT appears to
be continuous throughout. Nevertheless, the emergence
of the mean-field phase transition may be signalling a
changing universality class in the (1+1)D QCA [33]. As
we discuss below, this is analogous to the QCP [28–30],
which displays a similar phenomenology.

Relation to the quantum contact process. The
QCP is a continuous-time Markovian open quantum sys-
tem that features the same processes as the CCP, with an
additional coherent term know as “quantum branching”
(•◦ ↔ ••) with rate Ω [25, 26]. This process is imple-
mented by a quantum Hamiltonian, which describes con-
strained (Rabi) oscillations: sites can only change state
when at least one neighbor is occupied. The QCP, as
defined in Refs. [25, 26], displays a phase transition from
an absorbing state to an active phase. At the mean-field
level one finds a change of universal behavior from DP
to a first-order transition at a certain critical ratio g∗ of
quantum and classical branching rates, g = Ω/κb [25–27].
In 1D, numerical simulations show that the phase tran-
sition in fact remains of second-order throughout. How-
ever, there is still a critical value of g above which one
finds deviations from DP universality [28–30]. Thus, the
QCP displays a change in its universal physics, which at
least at a qualitative level is indicated by mean-field.

The close resemblance between the phenomenology of
the QCA (6) and the QCP, suggests that the inclusion
of asynchronism in the QCA introduces a microscopic

FIG. 3. Quantum and classical processes in asyn-
chronous (1 + 1)D QCA: (a) By equating Eqs. (8) and
(9), the relative strength of quantum to classical branch-
ing, g = Ω/κb, can be examined for the gate in Eq. (6).
As can be seen, g (shown as lines of constant value, with
coloured areas indicating regions between these values) in-
creases monotonically with the strength of asynchronism in
the QCA, parametrised by λ. The solid red line indicates the
critical curve of the QCA, estimated by taking the line of con-
stant n = 0.1 in the mean-field phase diagram of Fig. 2(a).
(b) The behaviour of g along the critical line, denoted as gc
here, is shown for λ ∈ [0.5, 1], and displays a rapid increase
with λ. The critical point of the asynchronism transition, λ∗,
can be identified with a critical value of g∗ = 4.05.

process akin to quantum branching [21, 25–30, 34–36]. To
verify this, we consider the Heisenberg equation for n of
the QCP [25, 26, 33]. Upon discretization with time-step
∆t, this is indeed equivalent to Eq. (7) with coefficients,

r◦•◦ = 1− γ∆t , r• = 1− γ∆t− κc∆t ,

r◦ = κb∆t , r∗ = Ω∆t . (9)

Comparing Eq. (9) with Eq. (8), we see that removing
asynchronism (λ→ 0) is equivalent to removing coherent
branching (Ω∆t→ 0) in the QCP.
Finally, we link the asynchronism transition observed

previously with similar behaviour in the QCP, by re-
characterising it in terms of the processes of the QCP.
Equating Eqs. (9) and (8), we define the parameter
g = Ω/κb for our QCA, see Fig. 3(a). Clearly, increasing
the value of λ corresponds to increasing g. The critical
curve, λ = λc(p◦), can then also be parametrised by val-
ues of g, see Fig. 3(b). In terms of g, the critical point of
the asynchronism transition, λ∗, is the point g∗, where
quantum branching is sufficiently stronger than classical
branching, leading to a change of universal physics in
the mean-field phase diagrams and, for 1D QCP, in the
(non-perturbative) universality class also.
Conclusion. Building on the connection between classi-
cal probabilistic CA and continuous-time nonequilibrium
dynamics [3, 6], we have demonstrated how asynchronism
can be leveraged to gradually introduce genuine quantum
effects to an otherwise classical contact process dynamics,
and can lead to quantum models that are closely related
to those studied in other frameworks. Due to the connec-
tion between QCA and QNNs, this analysis might find
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application in quantum machine learning, for instance,
in providing physical insights into the dynamics of in-
formation retrieval and the impact of quantum effects
— e.g. caused by asynchronism — on their capability of
performing computational tasks.
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Supplemental Material

MEAN-FIELD EQUATIONS FOR THE (1 + 1)D QCA IN THE MAIN TEXT

In this section we give details on our mean-field analysis for the QCA model discussed in the main text. We directly
present results for the asynchronous gate, since the synchronous discrete-time evolution can be obtained by setting
the asynchronicity parameter to zero.

In our mean-field analysis, we assume that the reduced state of single rows of the lattice is a product state at
any time. This amounts to neglecting correlations within single rows. We furthermore assume that this reduced
state is homogeneous, i.e. local single-site properties are equal for all sites belonging to a same row. Because of this
assumption, we can drop the index k in the notation of this section. In particular, single-site properties of the reduced
state of the QCA at time t are described by the density matrix

ρt =

(
⟨n⟩t xt−iyt

2
xt+iyt

2 ⟨n̄⟩t

)
,

where xt = ⟨σx⟩t and yt = ⟨σy⟩t.
The task is then to find a discrete-time equation for updating such a single-site density matrix. Here, we define the

update by considering how a single gate application modifies the target site. Due to our assumptions, control sites
are in a product state with same single-site density matrix, while the target site before the update is in the empty
state. We thus write the state of the three control sites and of the target one, before the update, as

ρ̃t = ρt ⊗ ρt ⊗ ρt ⊗ n̄. (S1)

For later convenience, in the above expression the first two entries of the tensor product represent the two controls
on the side of the target site, while the third entry represents the central control which is exactly above the target
site [see also Fig. 1(a) in the main text]. The last entry, here consisting of a projector on the empty state, is instead
the state of the target site. Exploiting the state ρ̃t and considering a single gate application, we can define, within
our mean-field analysis, the single-site state of the row at time t+ 1 as

ρt+1 = Tr123
(
Gρ̃tG

†) . (S2)

In the above equation, Tr123 denotes the trace over the first three entries of the tensor product in Eq. (S1). The gate
G is the four-body gate implementing the local update rules considered in the main text. Here, we rewrite it as

G = Π⊗A+ Π̄⊗D , where D =
√
1− λB +

√
λC

and

A = n⊗ U◦•◦ + n̄⊗ 1 , B = n⊗ U• + n̄⊗ U◦ , C = σ+ ⊗ U•U+ − σ− ⊗ U◦U
†
+ . (S3)

The unitary operators appearing in the above equations are the same reported in the main text. Moreover, we recall
here that, in the notation of this section, Π = n̄⊗ n̄ acts only on the external control sites, and n̄ = |◦⟩⟨◦|. The other
projector is instead Π̄ = 1⊗ 1−Π and also acts solely on the above mentioned control sites.
With the form of the gate and of the state ρ̃t, we can proceed to evaluate the trace operation in Eq. (S2). We do

this in two steps. First, we take the trace with respect to the external control sites, which are described by the first
two entries of the tensor products. Defining ρ12t = ρt ⊗ ρt and ρ

34
t = ρt ⊗ n̄, so that ρ̃t = ρ12 ⊗ ρ34, we find

Tr12
(
Gρ̃tG

†) = ⟨Π⟩12t Aρ34t A† + ⟨Π̄⟩12t Dρ34t D† , (S4)

where ⟨·⟩12 denotes expectation value with respect to the state ρ12.
Then, we can take the trace with respect to the central control site, which was represented by the third entry of

the tensor product in Eq. (S1). We do this considering the two different terms of the above equation separately. We
start with

Tr3
(
Aρ34t A

†) = ⟨n⟩3tU◦•◦n̄U
†
◦•◦ + ⟨n̄⟩3t n̄ ,
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where ⟨·⟩3t denotes expectation value with respect to the state of the central control site, which is — as for the other
control sites — ρt. The second term on the right-hand-side of Eq. (S4) is slightly more involved since D is made of
two terms. Indeed, we have

Tr3
(
Dρ34t D

†) = (1− λ) Tr3
(
Bρ34t B

†)+ λTr3
(
Cρ34t C

†)+√
λ
√
1− λ

[
Tr3

(
Bρ34t C

†)+Tr3
(
Cρ34t B

†)] .
A straightforward calculation gives

Tr3
(
Bρ34t B

†) = ⟨n⟩3tU•n̄U
†
• + ⟨n̄⟩3tU◦n̄U

†
◦ ,

Tr3
(
Cρ34t C

†) = ⟨n⟩3tU◦U
†
+n̄U+U

†
◦ + ⟨n̄⟩3tU•U+n̄U

†
+U

†
• ,

Tr3
(
Bρ34t C

†) = ⟨σ−⟩3tU•n̄U
†
+U

†
• − ⟨σ+⟩3tU◦n̄U+U

†
◦

as well as Tr3
(
Cρ34t B

†) = Tr3
(
Bρ34t C

†)†. Putting everything together, we arrive at

ρt+1 =⟨Π⟩t
(
⟨n⟩tU◦•◦n̄U

†
◦•◦ + ⟨n̄⟩tn̄

)
+

+ (1− λ)⟨Π⟩t
(
⟨n⟩tU•n̄U

†
• + ⟨n̄⟩tU◦n̄U

†
◦
)
+

+ λ⟨Π⟩t
(
⟨n⟩tU◦U

†
+n̄U+U

†
◦ + ⟨n̄⟩tU•U+n̄U

†
+U

†
•

)
+

+
√
λ
√
1− λ⟨Π⟩t

(
⟨σ−⟩tU•n̄U

†
+U

†
• − ⟨σ+⟩tU◦n̄U+U

†
◦ + h.c.

)
.

(S5)

This iterative equation allows one to study the dynamics of the QCA as well as its stationary state properties within
a mean-field investigation. For instance, to obtain the stationary phase diagram of our QCA reported in the main
text, we have numerically simulated the above equation over a sufficiently large number of discrete time-steps.

Additionally, with this expression, we can also compute iterative equations for the dynamics of expectation values.
For instance, for the projector n we find

⟨n⟩t+1 = Tr (ρt+1n) =⟨Π⟩t⟨n⟩tq◦•◦ + ⟨Π̄⟩t⟨n⟩t
[
(1− λ)p• + λ (

√
p◦
√
q +

√
p
√
q◦)

2
]
+

+ ⟨Π̄⟩t⟨n̄⟩t
[
(1− λ)p◦ + λ(

√
p•
√
q −√

p
√
q•)

2
]
+

+
√
λ
√
1− λ⟨Π̄⟩t⟨σy⟩t [

√
q (p• + p◦) +

√
p (

√
p◦
√
q◦ −

√
p•
√
q•)] .

(S6)

The coefficients in the above equation are reported in the main text. We also note that for the synchronous case
λ = 0, one recovers the equation

⟨n⟩t+1 = ⟨Π⟩t⟨n⟩tq◦•◦ + ⟨Π̄⟩t⟨n⟩tp• + ⟨Π̄⟩t⟨n̄⟩tp◦ , (S7)

which is also reported in the main text.

MEAN-FIELD EQUATIONS FOR CONTINUOUS-TIME QUANTUM AND CLASSICAL CONTACT
PROCESS

In this section, we briefly introduce a quantum contact process model, which, as discussed in the main text, is
connected to the physics displayed by our (1 + 1)D QCA.

The quantum contact process that we consider here consists of a one-dimensional spin-1/2 system which undergoes
a continuous-time Markovian dynamics. In particular, the dynamics of any operator X of the system obeys the
so-called Heisenberg equation [25]

Ẋt =i[H,Xt] + γ
∑
k

(
σ+
k Xtσ

−
k − 1

2
{nk, Xt}

)
+ κc

∑
k

(
Π̄kσ

+
k Xtσ

−
k Π̄k − 1

2

{
nkΠ̄k, Xt

})
+

+ κb
∑
k

(
Π̄kσ

−
k Xtσ

+
k Π̄k − 1

2

{
n̄kΠ̄k, Xt

})
.

(S8)
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In the above equation, the first term accounts for the coherent dynamical contribution associated with the system
Hamiltonian. On the other hand, the remaining terms describe incoherent probabilistic processes, which are in fact
exactly those of the (classical) contact process. Indeed, the term proportional to γ implements the decay process
•⇝ ◦, the term proportional to κc is instead the coagulation process (••⇝ •◦), while the one proportional to κb is
the branching process (◦• ⇝ ••). Note that, due to the presence of the projector Π̄k these two latter processes can
occur at site k only if at least an occupation is present in the neighboring sites of k.

The Hamiltonian of the quantum contact process is the following

H = Ω
∑
k

Π̄kσ
x
k .

This Hamiltonian implements both a branching and a coagulation process at the same coherent rate, Ω, via constrained
Rabi oscillations at site k that can only occur if the neighbors of k are not simultaneously in the empty state.

We now want to obtain mean-field dynamical equations of motion for the above system. To this end, we consider
single-site operators, compute their time derivative according to the action of the generator in Eq. (S11), and make
the assumption of uncorrelated state for the system. Following closely the calculations reported in Ref. [26], the
mean-field equations of motion for the number operator n (also assuming a homogeneous state) for the quantum
contact process is given by

∂t ⟨n⟩t = −γ ⟨n⟩t +Ω ⟨Π̄⟩t ⟨σ
y⟩t + ⟨Π̄⟩t [κb − (κb + κc) ⟨n⟩t] . (S9)

We note that the projector used in our model here is slightly different from the one considered Ref. [26], where
Π̄k = nk−1 + nk+1. This minor difference is not expected to modify the nonequilibrium behavior of the model.

Discretising the above differential equation, and using that 1 = Π+ Π̄ and 1 = n+ n, we find the equation

⟨n⟩t+1 = (1− γ∆t) ⟨Π⟩t ⟨n⟩t + (1− γ∆t− κc∆t) ⟨Π̄⟩t ⟨n⟩t + κb∆t ⟨Π̄⟩t ⟨n̄⟩t +Ω∆t ⟨Π̄⟩t ⟨σ
y⟩t . (S10)

We note that by taking Ω∆t → 0 in Eq. (S12) and in Eq. (S13), one recovers the mean-field equations for the
classical contact process in continuous-time and in a discrete-time approximation, respectively. In particular, we note
that the discrete-time approximation of the dynamical equation of the classical contact process reads

⟨n⟩t+1 = (1− γ∆t) ⟨Π⟩t ⟨n⟩t + (1− γ∆t− κc∆t) ⟨Π̄⟩t ⟨n⟩t + κb∆t ⟨Π̄⟩t ⟨n̄⟩t .

Comparing this equation with Eq. (3) in the main text, we find how the rates of the continuous-time contact process can
be obtained from the probabilities of our synchronous gate. We indeed find the coagulation rate κc = (q◦•◦ − p•)/∆t,
the branching rate κb = p◦/∆t and decay rate γ = p◦•◦/∆t.

MEAN-FIELD EQUATIONS FOR CONTINUOUS-TIME QUANTUM AND CLASSICAL CONTACT
PROCESS

In this section, we briefly introduce a quantum contact process model, which, as discussed in the main text, is
connected to the physics displayed by our (1 + 1)D QCA.

The quantum contact process that we consider here consists of a one-dimensional spin-1/2 system which undergoes
a continuous-time Markovian dynamics. In particular, the dynamics of any operator X of the system obeys the
so-called Heisenberg equation [25]

Ẋt =i[H,Xt] + γ
∑
k

(
σ+
k Xtσ

−
k − 1

2
{nk, Xt}

)
+ κc

∑
k

(
Π̄kσ

+
k Xtσ

−
k Π̄k − 1

2

{
nkΠ̄k, Xt

})
+

+ κb
∑
k

(
Π̄kσ

−
k Xtσ

+
k Π̄k − 1

2

{
n̄kΠ̄k, Xt

})
.

(S11)

In the above equation, the first term accounts for the coherent dynamical contribution associated with the system
Hamiltonian. On the other hand, the remaining terms describe incoherent probabilistic processes, which are in fact
exactly those of the (classical) contact process. Indeed, the term proportional to γ implements the decay process
•⇝ ◦, the term proportional to κc is instead the coagulation process (••⇝ •◦), while the one proportional to κb is
the branching process (◦• ⇝ ••). Note that, due to the presence of the projector Π̄k these two latter processes can
occur at site k only if at least an occupation is present in the neighboring sites of k.
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The Hamiltonian of the quantum contact process is the following

H = Ω
∑
k

Π̄kσ
x
k .

This Hamiltonian implements both a branching and a coagulation process at the same coherent rate, Ω, via constrained
Rabi oscillations at site k that can only occur if the neighbors of k are not simultaneously in the empty state.

We now want to obtain mean-field dynamical equations of motion for the above system. To this end, we consider
single-site operators, compute their time derivative according to the action of the generator in Eq. (S11), and make
the assumption of uncorrelated state for the system. Following closely the calculations reported in Ref. [26], the
mean-field equations of motion for the number operator n (also assuming a homogeneous state) for the quantum
contact process is given by

∂t ⟨n⟩t = −γ ⟨n⟩t +Ω ⟨Π̄⟩t ⟨σ
y⟩t + ⟨Π̄⟩t [κb − (κb + κc) ⟨n⟩t] . (S12)

We note that the projector used in our model here is slightly different from the one considered Ref. [26], where
Π̄k = nk−1 + nk+1. This minor difference is not expected to modify the nonequilibrium behavior of the model.

Discretising the above differential equation, and using that 1 = Π+ Π̄ and 1 = n+ n, we find the equation

⟨n⟩t+1 = (1− γ∆t) ⟨Π⟩t ⟨n⟩t + (1− γ∆t− κc∆t) ⟨Π̄⟩t ⟨n⟩t + κb∆t ⟨Π̄⟩t ⟨n̄⟩t +Ω∆t ⟨Π̄⟩t ⟨σ
y⟩t . (S13)

We note that by taking Ω∆t → 0 in Eq. (S12) and in Eq. (S13), one recovers the mean-field equations for the
classical contact process in continuous-time and in a discrete-time approximation, respectively. In particular, we note
that the discrete-time approximation of the dynamical equation of the classical contact process reads

⟨n⟩t+1 = (1− γ∆t) ⟨Π⟩t ⟨n⟩t + (1− γ∆t− κc∆t) ⟨Π̄⟩t ⟨n⟩t + κb∆t ⟨Π̄⟩t ⟨n̄⟩t .

Comparing this equation with Eq. (3) in the main text, we find how the rates of the continuous-time contact process can
be obtained from the probabilities of our synchronous gate. We indeed find the coagulation rate κc = (q◦•◦ − p•)/∆t,
the branching rate κb = p◦/∆t and decay rate γ = p◦•◦/∆t.

ESTIMATION OF CRITICAL EXPONENTS

In this section, we provide a brief discussion about the estimation of the critical exponent associated with the
decay of the average density of occupied sites, in the example QCA model given by Eq. (6) in the main text. To
illustrate this, we consider two horizontal cuts along the phase diagram shown in Fig. 2(b) of the main text. The
first, shown in Fig. S1(a), is for λ = 0.55 while the second, shown in Fig. S1(b), is for λ = 0.90, thus representing
relatively weak/strong asynchronism respectively. As in the paper, the simulations were performed with tensor-
network methods, for a bond-dimension of χ = 64, up to time T = 100, and two lattice sizes, L = 128 and L = 256,
to demonstrate the finite-size effects in this case.

From the resulting density, n(t), averaged over the entire spatial slice, one can calculate the effective exponent for
the power-law decay at criticality as α(t) = − log2(n(t)/n(t/2)). This will be a constant when the corresponding curve
n(t) displays a power-law, allowing for the estimation of the critical exponent for the decay of the average density.
Away from the critical line, density curves will then either display an exponentially decaying behaviour towards the
absorbing state, or a tendency towards a fixed density. These two behaviours characterise the two phases of the model.
In the effective exponent plots, the exponential decay of the density reveals itself as a diverging effective exponent,
while the tendency to a fixed density manifests as an effective exponent that tends to zero.

We now consider the first plot of the effective exponent, Fig. S1(a), for λ = 0.55. In this figure, L = 128 is shown as
dashed lines, while L = 256 is shown as solid lines. The effective exponent for pn̄ = 0.45 displays behaviour consistent
with the absorbing state, while pn̄ = 0.55, 0.6, 0.65 display behaviour consistent with a tendency to a fixed average
density. Finally, the effective exponent for pn̄ = 0.5 appears to be approaching a value close to 0.16, represented by
the dashed horizontal line. The latter is the critical exponent of 1D directed percolation [1]. While this seems clear
in this case, note that finite size effects systematically push the density into the absorbing state. In fact, for any
finite-size system, eventually all states will fall into the absorbing state. This makes interpretation of such figures,
and estimation of critical exponents challenging.

Turning now to Fig. S1(b), for the case of strong asynchronism λ = 0.9, one can see some of these issues, along with
others unique to the model in hand. Here, once again we can see that the curves for pn̄ = 0.7, 0.75 and 0.8 display a



5

FIG. S1. Effective Exponents: (a) Effective exponents for λ = 0.55. Solid lines are from curves n(t) calculated using
L = 256, while dashed lines use L = 128, see the text for more details. In this plot, the curves can be separated easily into
subcritical (tending to an exponential decay and therefore diverging here), critical (a power-law decay, tending to a constant
here) and super-critical (tending to a constant and therefore vanishing here). The curves closest to constant appear to tend to
a value close to 0.16, which is the critical exponent from the 1D directed percolation universality class. (b) Effective exponents
for λ = 0.9. Here, the relatively small region of super-critical states means that all curves appear either sub-critical or close to
critical. Taking the the two curves closest to constant, pn̄ = 0.85, 0.9, one would estimate a critical exponent close to 0.32 (solid
horizontal line), which is the estimated value for the critical exponent of the QCP. However, the systematic errors occurring
due to finite-size effects make such a conclusion premature, see the text for details.

clear absorbing state behaviour similar to that of Fig. S1(a). Following that, the curves pn̄ = 0.85, 0.9 appear rather
flat on this scale, indicating approximate power-laws. However, following around T = 50, they start to lift again
into the absorbing state. Precisely due to the systematic nature of the finite-size errors, it is hard to say whether
these are genuinely critical curves subject to finite-size errors, or simple absorbing state curves with longer relaxation
time-scales than other curves in the plot. This is exemplified by the final curve pn̄ = 0.95: initially this curve appears
rather flat, up to around T = 30. However, following this it shows behaviour consistent with an exponential decay.
We note that this behaviour is rather different from that displayed by the curves for λ = 0.55, which show no such
initial flattening. Furthermore, we note that while one might naively expect pn̄ = 0.95 to be a fixed density state
[similar to how increasing pn̄ in Fig. S1(a) led from sub-critical to critical to super-critical] in fact it is absorbing.
This is consistent with the increasingly thin region of super-critical states with lambda, as can be seen in Fig. 2 of
the main text. Studying the high asynchronism region effectively would thus require a much finer grid, which in turn
would require much longer simulation times to allow the curves to be distinguished (thus also requiring much larger
system sizes to avoid finite-size effects).

Finally, we note that, in the case that the curves with pn̄ = 0.85, 0.9 are used to estimate the critical exponent for
λ = 0.9, the estimated value lies close to 0.32, represented by the solid horizontal line. This is the value estimated for
the continuous-time quantum contact process [28, 30]. While it is tempting to conclude based on this that there is
indeed a change of universal behaviour in the non-perturbative phase diagram, such a claim requires more extensive
simulations, including both much larger lattice sizes, longer simulation times and finer parameter grids.


