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Abstract

This paper considers the problem of testing for an explosive bubble in financial data

in the presence of time-varying volatility. We propose a weighted least squares-

based variant of the Phillips, Wu and Yu (2011) test for explosive autoregressive

behaviour. We find that such an approach has appealing asymptotic power proper-

ties, with the potential to deliver substantially greater power than the established

OLS-based approach for many volatility and bubble settings. Given that the OLS-

based test can outperform the weighted least squares-based test for other volatility

and bubble specifications, we also suggested a union of rejections procedure that

succeeds in capturing the better power available from the two constituent tests for

a given alternative. Our approach involves a nonparametric kernel-based volatility

function estimator for computation of the weighted least squares-based statistic,

together with the use of a wild bootstrap procedure applied jointly to both individ-

ual tests, delivering a powerful testing procedure that is asymptotically size-robust

to a wide range of time-varying volatility specifications.
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1 Introduction

Empirical identification of explosive behaviour in financial asset price series is closely re-

lated to the study of rational bubbles, with a rational bubble deemed to have occurred if

explosive characteristics are manifest in the time path of prices, but not for the dividends.

Consequently, methods for testing for explosive time series behaviour have been a focus of

much recent research. In a now seminal paper, Phillips et al. (2011) [PWY] model poten-

tial bubble behaviour using an explosive autoregressive specification, and suggest testing

for such a property using the supremum of a sequence of forward recursive right-tailed

Dickey-Fuller unit root tests. The test has been widely applied, and has also prompted

the development of related test procedures, such as those of Homm and Breitung (2012)

who consider a supremum of backward recursive Chow-type Dickey-Fuller statistics, and

Phillips et al. (2015) who consider a double supremum of forward and backward recursive

statistics.

While these original papers assumed constant unconditional volatility in the under-

lying error process, in practice time-varying, typically nonstationary, volatility is a well-

known stylised fact observed in empirical financial data. Harvey et al. (2016) [HLST]

demonstrate that the asymptotic null distribution of the PWY test depends on the nature

of the volatility, and if the test is implemented using critical values derived under a ho-

moskedastic error assumption, size is not controlled for nonstationary volatility patterns.

This raises the possibility of misleading inference when using the standard PWY test in

the presence of time-varying volatility, with the potential for spurious identification of a

bubble. HLST propose a wild bootstrap implementation of the PWY test, which ensures

correct asymptotic size in the presence of time-varying volatility. This procedure also

retains the same local asymptotic power as the original PWY test, if the latter were to

be infeasibly size-corrected to account for the volatility pattern.

The PWY test and its related variants discussed above are all fundamentally based on

OLS estimation of the underlying autoregression. In the context of time-varying volatility

in the model errors, it is natural to consider whether a GLS-type transformation can

deliver a more powerful testing approach. In this paper, we focus on this possibility,

developing tests based on Dickey-Fuller unit root statistics derived from a weighted least

squares [WLS] transformation of the model, along the lines of the approach considered

by Boswijk and Zu (2015) in the context of full-sample testing for a unit root against

a left-tailed stationary alternative.1 Specifically, we propose a PWY-type test, based on

the supremum of a sequence of forward recursive statistics, but where the OLS-based

Dickey-Fuller statistic is replaced by a WLS-based equivalent.

We begin by treating the volatility path as known, and demonstrate that our WLS-

1See also Xu and Phillips (2008) and Xu and Yang (2015) for using similar kernel-type GLS corrections
for nonstationary volatility in time series models.
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based test can offer substantially greater local asymptotic power than the PWY procedure

for many volatility patterns and bubble specifications. This positive result suggests that

the WLS-based approach merits development, offering the potential to improve our ca-

pacity to detect explosive autoregressive behaviour. Despite these potential large gains in

local asymptotic power, we find that for certain volatility and bubble settings, the power

rankings of the tests can be reversed, hence the PWY test can still offer a valuable role in

bubble detection. In order to capture the relative power advantages of both tests across

different volatility patterns, we then proceed to consider a union of rejections approach

(cf. Harvey et al. (2009)), whereby the null is rejected in favour of explosive behaviour

if either the WLS-based test or the PWY test rejects, subject to a scaling applied to the

asymptotic critical values to ensure correct size of the composite procedure. We find that

the union of rejections testing strategy performs very well across the range of volatility

and bubble specifications that we consider.

Calculation of the WLS-based test statistic requires the volatility at each point in

time, which is of course unknown in practice. To render the statistic feasible, we employ

a nonparametric kernel-based volatility function estimator, and we show that substitution

of this estimator in place of the true volatility path results in a statistic with the same

limiting null and local alternative distributions as for the infeasible statistic. In common

with the PWY statistic, our feasible WLS-based statistic has a limiting null distribution

that depends on the volatility path. Following HLST, we suggest a wild bootstrap im-

plementation of the test to achieve an asymptotically size-controlled procedure. For the

union of rejections procedure, we then apply both the wild bootstrap HLST variant of

PWY, and the wild bootstrap version of our WLS-based test. In order to ensure that the

bootstrap-based union of rejections procedure is asymptotically correctly sized, we im-

plement the wild bootstrap procedure to the two statistics jointly, and also calculate the

required critical value scaling constant from the wild bootstrap algorithm. We demon-

strate the asymptotic validity of the joint procedure, showing that the local asymptotic

power profiles coincide with those for the infeasible case where the volatility is treated

as known. Note that while we concentrate on introducing the techniques of this paper in

the context of the PWY test, which is the prototype for the recent literature on recursive

testing for bubbles, it should be noted that the methods we develop in principle apply

more widely, e.g. to the double supremum extension by Phillips et al. (2015). We discuss

this issue briefly in the final section of the paper.

The rest of the paper is organised as follows. Section 2 outlines the model and

introduces the WLS-based approach. Here we establish its limit behaviour in the known

volatility case, and compare its local asymptotic power to the PWY test. This section

also introduces the union of rejections testing strategy and evaluates its large sample

power behaviour. Nonparametric volatility function estimation and a feasible WLS-based

statistic are discussed in section 3, while the wild bootstrap algorithm is developed in
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section 4, and its asymptotic properties established. Finite sample properties of the tests

are explored by Monte Carlo simulation in section 5, and an empirical example is provided

in section 6 using FTSE and S&P 500 data. Section 7 discusses possible extensions of

the current methodology and concludes the paper. Proofs of the results are given in the

Appendix.

2 The bubble model and tests

2.1 The model

We will consider the following model with time-varying volatility for a time series {yt},
t = 1, ..., T :

yt = µ+ xt (1)

xt = (1 + ρt)xt−1 + ut, t = 2, ..., T (2)

ut = σtεt (3)

with x1 = Op(1). We make the following assumptions regarding the error εt in (3) and

the error standard deviation at time t, σt:

A1 E(εt|Ft−1) = 0, E(ε2
t |Ft−1) = 1 with Ft the natural filtration generated by {us}s≥1,

and E(ε4
t ) <∞.

A2 σt = σ(t/T ), where σ(.) is a strictly positive function with σ(.) ∈ D[0, 1], the space

of right continuous with left limit (càdlàg) processes on [0, 1].

Under Assumption A1, εt is a martingale difference sequence, and is hence condition-

ally first order uncorrelated, cf. Xu and Phillips (2008). Note that for empirical financial

data, such an assumption is standard, where any admitted dependence is typically in the

second moment (i.e. in the volatility). Assumption A2 implies that the innovation vari-

ance is non-stochastic, bounded and displays a countable number of jumps, cf. Cavaliere

and Taylor (2007), allowing for a very wide range of volatility dynamics.

For the time-varying autoregressive parameter (1 + ρt) in (2) we adopt the following

specification:

ρt =

{
0 t = 2, . . . , [τ ∗T ]

c/T t = [τ ∗T ] + 1, . . . , T

where [.] denotes the integer part of its argument. When c > 0, yt follows a unit root

process up to time [τ ∗T ], after which point it displays locally explosive autoregressive

behaviour over the remaining sample period t = [τ ∗T ] + 1, ..., T . In the context of

asset price behaviour, this setup models the case where prices follow the usual market

3



behaviour with unit root dynamics up to a particular point in the sample, after which

a bubble originates and explosive behaviour is manifest. Extensions to the case where

the bubble terminates in-sample (with or without some form of collapse) could easily be

entertained; see, for example, Harvey et al. (2017).

To test for the presence of a bubble, we consider a null hypothesis H0 : c = 0 against

the alternative H1 : c > 0. Under the null and local alternative, we can make use of the

following invariance principle, which holds under Assumptions A1 and A2:

T−1/2

brT c∑
t=2

ut ⇒
∫ r

0

σ(s)dW (s)

where ⇒ denotes weak convergence and W (r) is a standard Brownian motion process.

2.2 A weighted least squares-based test

PWY propose a test for a bubble based on the supremum of recursive right-tailed Dickey-

Fuller tests, based on OLS estimation. In view of the heteroskedasticity present in our

model, it is natural to consider whether a GLS-type transformation can deliver a more

powerful testing approach. Consequently, we now consider Dickey-Fuller t-statistics based

on a WLS transformation of the model, initially for the infeasible case where the σt are

assumed known. Considering first the underlying xt process in (2), the transformed model

can be written as
∆xt
σt

= ρt
xt−1

σt
+ εt, t = 2, . . . , T. (4)

Here, (4) is an infeasible homoskedastic regression model of {∆xt/σt} on {xt−1/σt},
with coeffi cient ρt. Assuming knowledge of xt and σt, a bubble test statistic could be

constructed using a sequence of WLS-based Dickey-Fuller regressions, analogous to the

PWY OLS-based test statistic. In practice we do not observe xt, but yt = µ + xt as in

(1). In order to achieve invariance to µ, we simply replace xt in (4) by ỹt = yt−y1, which

is equivalent to GLS-demeaning of yt in the sense of Elliott et al. (1996) using ᾱ = 1 in

their notation, so that y1 becomes the estimator of µ. Our infeasible test statistic that

assumes knowledge of σt can then be written as

supBZ = sup
τ∈[τ0,1]

BZτ (5)

where BZτ denotes the Dickey-Fuller statistic calculated over the sub-sample {y1, . . . , y[τT ]},
that is

BZτ =

∑[τT ]
t=2 ∆ỹtỹt−1/σ

2
t(∑[τT ]

t=2 ỹ
2
t−1/σ

2
t

)1/2
.
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In (5), the minimum sample length admitted in the sequence of sub-sample regressions is

[τ 0T ]. Note that the full-sample statistic BZ1 coincides with the infeasible test statistic

considered in Boswijk and Zu (2015) in the context of left-tailed unit root testing against

a stationary alternative.

The following theorem gives the limit distribution of supBZ:

Theorem 1. Under H1 and Assumptions A1 and A2,

supBZ⇒ sup
τ∈[τ0,1]

Lc(τ) = MBZ
c

where

Lc(τ) =


∫ τ
0 Vc(r)dW (r)

(
∫ τ
0 Vc(r)

2dr)
1/2 τ 6 τ ∗∫ τ

0 Vc(r)dW (r)+c
∫ τ
τ∗ Vc(r)

2dr

(
∫ τ
0 Vc(r)

2dr)
1/2 τ > τ ∗

with Vc(r) = Uc(r)/σ(r) and

Uc(r) =

{ ∫ r
0
σ(s)dW (s) r 6 τ ∗

ec(r−τ
∗)
∫ τ∗

0
σ(s)dW (s) +

∫ r
τ∗ e

c(r−s)σ(s)dW (s) r > τ ∗
.

Remark 1. The null limit distribution of supBZ is obtained from the result in Theorem

1 simply by setting c = 0, so that supBZ ⇒ MBZ
0 . Of course, the limit distribution

under both the null and local alternative depends on σ(r), hence the critical values and

local asymptotic power function will be contingent on the volatility pattern present in

the innovations.

We now proceed to evaluate the local asymptotic power of the supBZ test, comparing

it to the local power of an infeasibly size-corrected PWY test. The PWY statistic follows

a similar form to supBZ, but is based on the supremum of the t-ratios associated with

β̂τ in the fitted OLS regressions

∆yt = α̂τ + β̂τyt−1 + êt, t = 2, . . . , [τT ]

for τ ∈ [τ 0, 1]. Denoting this statistic by supDF, then under H1 and Assumptions A1

and A2, it can be shown from the results in Harvey et al. (2016) that

supDF⇒ sup
τ∈[τ0,1]

Jc(τ) = MDF
c

where

Jc(τ) =


∫ τ
0 Ũc(r)dUc(r)

(τ−1
∫ τ
0 σ(r)2dr

∫ τ
0 Ũc(r)

2dr)
1/2 τ 6 τ ∗∫ τ

0 Ũc(r)dUc(r)+c
∫ τ
τ∗ Ũc(r)

2dr

(τ−1
∫ τ
0 σ(r)2dr

∫ τ
0 Ũc(r)

2dr)
1/2 τ > τ ∗
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with Ũc(r) = Uc(r)− 1
τ

∫ τ
0
Uc(s)ds, and where Uc(r) is as defined in Theorem 1. The null

limit distribution for supDF is obtained on setting c = 0, so that supDF ⇒ MDF
0 . As

with the result for supBZ, the limit distribution under both the null and local alternative

depends on σ(r). For the purposes of comparing local power with supBZ, we treat the

volatility path as known, and compute infeasibly size-adjusted local asymptotic powers

for a given σ(r).

For the local power simulations, we consider the following volatility specifications for

σ(r), where I(.) denotes the indicator function:

(a) Constant volatility: σ(r) = 1 ∀r.

(b) Early upward shift: σ(r) = 1 + 5I(r ≥ 0.3).

(c) Late upward shift: σ(r) = 1 + 5I(r ≥ 0.8).

(d) Early downward shift: σ(r) = 1 + 5I(r < 0.3).

(e) Late downward shift: σ(r) = 1 + 5I(r < 0.8).

(f) Upward trend: σ(r) = 1 + 5r.

(g) Downward trend: σ(r) = 6− 5r.

(h) Double shift: σ(r) = 1 + 5I(0.4 < r 6 0.6).

Here, (a) is the benchmark homoskedastic case, while (b)-(e) specify one-off variance

shifts, (h) a double shift, and (f)-(g) linearly trending variances.

In Figures 1-2, we plot the asymptotic local power functions of supBZ and supDF,

simulating the limit distributions MBZ
c and MDF

c using 10,000 Monte Carlo replications,

and approximating the Brownian motion processes in the limiting functionals using

NIID(0, 1) random variates, with the integrals approximated by normalized sums of

1,000 steps. Here and throughout the paper, we set τ 0 = 0.1, as in PWY. Figures 1 and

2 report results for the bubble timings τ ∗ = 0.6 and τ ∗ = 0.8, respectively, under each

volatility pattern, using a grid of c values from 0-8 in Figure 1 and 0-20 in Figure 2. For

each test, power is evaluated using the 0.05-level null critical value appropriate for each

volatility specification (i.e. from MBZ
0 or MDF

0 ), and therefore is infeasibly size-corrected.

Examining first Figure 1 (τ ∗ = 0.6), we observe that in the homoskedastic case (a),

there is relatively little difference in the local power profiles of supBZ and supDF. How-

ever, for most time-varying volatility specifications, supBZ demonstrates higher power

across c than supDF, with the gains appearing particularly substantial for volatility

specifications that incorporate a decrease in variance, i.e. (d), (e), (g) and (h). Large

gains are also observed for an early upward shift in volatility (b), while gains are more

modest for the late upward shift (c). For the upward trend (f), supBZ is slightly less
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powerful than supDF. Turning to the later bubble timing of Figure 2 (τ ∗ = 0.8), the

power gains for supBZ over supDF remain evident in most cases, with the gains again

being substantial in cases (b), (d), (e), (g) and (h). As in Figure 1, the tests have broadly

similar power levels under homoskedasticity, while for an upward trend (f) and now also

a late upward shift (c), we see that supDF outperforms supBZ, albeit to a lesser degree

than in the cases where supBZ outperforms supDF.

2.3 A union of rejections testing procedure

As neither test is dominant across all volatility specifications, we can consider employing a

union of rejections strategy along the lines of Harvey et al. (2009). These authors suggest

such an approach in the context of combining inference from two unit root tests, one of

which permits a linear trend in its deterministic specification, the other of which excludes

the trend, the idea being to harness the better power of the two when the presence of a

trend is uncertain. The same principle can be used here, combining inference from supBZ

and supDF in the presence of uncertainty over the volatility specification, in an attempt

to capitalize on the relative power advantages of each across different volatility patterns.

Specifically, denoting the asymptotic ξ level null critical values of supDF and supBZ

(i.e. from MDF
0 and MBZ

0 ) by q
DF
ξ and qBZ

ξ , respectively, a union of rejections strategy can

be written as the decision rule

Reject H0 if {supDF > ψξq
DF
ξ or supBZ > ψξq

BZ
ξ }

where ψξ is a scaling constant chosen so that this decision rule yields an asymptotic size

of ξ under H0. Defining a single statistic U as

U = max

(
supDF,

qDF
ξ

qBZ
ξ

supBZ

)

the decision rule is then equivalent to

Reject H0 if U > ψξq
DF
ξ .

Using the asymptotic results of the previous section, an application of the continuous

mapping theorem (CMT) establishes that

U ⇒ max

(
MDF

c ,
qDF
ξ

qBZ
ξ

MBZ
c

)
.

The scaling constant ψξ can easily be determined from the limit distribution of U with
c = 0, but there is actually no need to calculate it explicitly since, for a given ratio
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qDF
ξ /qBZ

ξ , all we require is the critical value ψξq
DF
ξ , which we denote qUξ . This can be

obtained directly from the null limit distribution of U . Finally, notice that since qDF
ξ and

qBZ
ξ depend on the particular form of volatility specified by σ(r), so too will the critical

value qUξ . At this point therefore, U , along with supDF and supBZ, is an infeasible testing

procedure.

Along with the infeasible size-adjusted local asymptotic powers of supBZ and supDF,

Figures 1 and 2 show the corresponding power of the union of rejections procedure U .
We see throughout that the power profile of U is always very similar to whichever profile
of supDF and supBZ obtains the higher power. There is at worst only a small deficit

compared with the better of the two, suggesting that the union procedure is performing

well here.

Thus far we have considered only the large sample properties of an infeasible variant

of supBZ that is based on knowledge of the volatility function σt. For any practical

implementation, construction of supBZ will require estimation of σt. We address this

issue in the next section.

3 Nonparametric kernel estimation of the volatility

function and the feasible supBZ statistic

For estimation of σ2
t we employ a simple nonparametric kernel smoothing estimator of

the form

σ̂2
t =

∑T
i=2Kh

(
i−t
T

)
(∆yi)

2∑T
i=2 Kh

(
i−t
T

) (6)

where Kh(s) = K(s/h)/h and K(.) is a kernel function with bandwidth parameter h.

Based on σ̂2
t , a feasible version of BZτ is then given by

BZτ =

∑[τT ]
t=2 ∆ỹtỹt−1/σ̂

2
t(∑[τT ]

t=2 ỹ
2
t−1/σ̂

2
t

)1/2

where, to economize on notation, we have redefined BZτ , and we redefine supBZ analo-

gously. To derive the asymptotic distribution of supBZ, in addition to A1 and A2, we

make the following further assumptions:

A3 εt follows a symmetric distribution, and E(ε8
t ) <∞.

A4 σ(.) is a Lipschitz continuous function on [0, 1].

A5 K(.) is a bounded nonnegative function defined on the real line and
∫∞
−∞K(r)dr = 1.

A6 As T →∞, h→ 0 and Th2 →∞.
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The assumption E(ε8
t ) < ∞ in A3 is also used in Xu and Phillips (2008). The

symmetry assumption for εt in A3 is made for technical reasons, and is usually easily

satisfied for the kind of equity or equity index returns considered in this paper. The

continuity assumption in A4 is used for ease of exposition and could be relaxed to allow

for a finite number of discontinuities using the strategy in Xu and Phillips (2008), thereby

incorporating examples of volatility specifications involving jumps, such as the shifts

in volatility cases of section 2.2. From a modelling perspective, large movements in

the volatility can be incorporated in the Lipschitz continuous assumption as well; see

Boswijk and Zu (2015) for related discussions. The assumption on the volatility function

is nonparametric and can allow for a wide range of volatility dynamics such as trending

volatility, (multiple) smooth transition (e.g. logistic) changes in variance, or volatility

with Fourier-form periodicity. Our assumption A5 on the kernel function is more general

than the Xu and Phillips leave-one-out kernel, and is also more general than the truncated

kernel considered in Boswijk and Zu (2015), while the rate condition in A6 coincides with

Xu and Phillips (2008).

The following theorem gives the limit distribution of the feasible version of supBZ:

Theorem 2. Under H1 and Assumptions A1-A6

supBZ⇒MBZ
c .

Remark 2. The feasible statistic supBZ has the same limiting properties as its infeasible

counterpart.

The remaining issue that pertains to a full feasible application of supBZ, supDF and

hence U , is that the appropriate asymptotic null critical values qBZ
ξ and qDF

ξ arising from

MBZ
0 andMDF

0 depend on the volatility function σ(s). In the context of supDF, Harvey et

al. (2016) employ a wild bootstrap procedure to obtain asymptotically valid null critical

values. We now show that this same approach can be employed for supBZ and U .

4 A wild bootstrap procedure

Following Harvey et al. (2016), our wild bootstrap algorithm is defined as follows:

1. Generate a wild bootstrap sample {ybt}Tt=1 by setting

yb1 = 0, ybt = ybt−1 + ∆ytzt, t = 2, .., T

where the zt are iid standard normal variates.

2. Use the wild bootstrap sample to compute the pair of statistics supDF and supBZ,

but using σ̂2
t from the original sample {yt}Tt=1.
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3. Repeat step 1 and step 2 M times, denoting the resulting pairs of statistics by

{supDFb1, supBZb1}, ..., {supDFbM , supBZbM}.

Theorem 3. Under H1 and Assumptions A1-A6(
supDFbm

supBZbm

)
p⇒
(
MDF

0

MBZ
0

)

jointly, for any 1 ≤ m ≤M , where
p⇒ denotes weak convergence in probability.

Remark 3. The results of Theorem 3 shows that the wild bootstrap procedure is first

order valid in approximating the asymptotic null distributions of the supDF and supBZ

statistics under H1 (which includes H0 as a special case). The asymptotic validity of

the marginal bootstrap supDF statistic is shown in Harvey et al. (2016). Theorem 3

strengthens their results with the marginal convergence of the bootstrap supBZ statistic

and their joint convergence. The joint convergence occurs because both statistics are

calculated from the same bootstrap sample; this result is needed for the validity of the

union test strategy.

The ξ level bootstrap critical values are obtained from the empirical distribution func-

tions of supDFbm and supBZbm calculated from M bootstrap replications. Denoting these

critical values as qb,DF
ξ and qb,BZ

ξ , a rejection of H0 for supDF is obtained if supDF > qb,DF
ξ

and a rejection of H0 for supBZ is obtained if supBZ > qb,BZ
ξ . As T,N → ∞, it follows

that qb,DF
ξ and qb,BZ

ξ converge in probability to qDF
ξ and qBZ

ξ , so these bootstrap procedures

are correctly sized in the limit under H0, and inherit exactly the same asymptotic local

power functions under H1 as their infeasibly size-corrected counterparts in section 2.2.

The wild bootstrap counterpart of the union statistic U is given by

U bm = max

(
supDFbm,

qb,DF
ξ

qb,BZ
ξ

supBZbm

)

form = 1, ...,M . The results in Theorem 3, and an application of the continuous mapping

theorem (CMT), verifies that

U bm
p⇒ max

(
MDF

0 ,
qDF
ξ

qBZ
ξ

MBZ
0

)
.

The ξ level bootstrap critical value for the union is obtained from the empirical distribu-

tion function of U bm, and denoting this critical value as q
b,U
ξ we reject H0 when U > qb,Uξ ,

where

U = max

(
supDF,

qb,DF
ξ

qb,BZ
ξ

supBZ

)
.
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Remark 4. Notice that this is a feasible variant of U which is based on replacing qDF
ξ /qBZ

ξ

with qb,DF
ξ /qb,BZ

ξ .

As T,N → ∞, U is correctly sized in the limit under H0, since q
b,U
ξ converges in

probability to qUξ , and also obtains the same asymptotic local power function under H1

as the infeasibly size-corrected version in section 2.2.

We have therefore established asymptotic validity of bootstrap variants of supDF,

supBZ and U in terms of size control and local power. We now turn to a comparison of
the finite sample properties of these procedures.

5 Finite sample properties

Our finite sample simulations are based on (1)-(3) with T = 200. Here we set µ = 0

and x1 = 0, with the εt are generated as NIID(0, 1) random variates. Figures 3 and 4

show 0.05-level finite sample sizes and powers for the same settings of τ ∗ as used in the

asymptotic simulations of Figures 1 and 2, respectively, with the finite sample volatility

functions σt being the discrete time analogues of those given in cases (a)-(h) of section

2.2. Here we use 1,000 Monte Carlo replications, together with M = 499 bootstrap

replications.

For the volatility estimates σ̂2
t we employ the Gaussian kernel

K(r) =
1√
2π

exp(−r2/2).

We determine the bandwidth h using a standard leave-one-out cross-validation bandwidth

selection procedure. Specifically, for the cross-validation criteria defined by

CV (h) =

T∑
t=2

((∆yt)
2 − σ̂2

t,−)2

where σ̂2
t,− is the Gaussian kernel-based variance estimator σ̂

2
t that imposes K(0) = 0,

the bandwidth is chosen as

hCV = arg min
h∈[hl,hu]

CV (h).

We then construct the σ̂2
t in (6) with hCV in place of h.

2

The finite sample power curves corresponding to Figure 1 (τ ∗ = 0.6) and Figure 2

(τ ∗ = 0.8) are given in Figure 3 (a)-(h) and Figure 4 (a)-(h), respectively. The results

2In our implementation, we set hl = 1/(2T ) and hu = 1/6, which ensures that the interval of
observations for which the kernel weights are non-negligible ranges from 3 to T .
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for c = 0 (which are of course the same across Figures 3 and 4) show that the feasi-

ble version of supBZ displays excellent size control for T = 200. The power curves of

the bootstrapped tests in Figure 3 (τ ∗ = 0.6) generally bear close resemblance to their

asymptotic counterparts, with the exception of the late upward volatility shift (c) where

the powers of supBZ appear lower than in the limit case. For (c) supBZ is now less

powerful than supDF.

In Figure 4 (τ ∗ = 0.8), we observe that supBZ demonstrates non-monotonicity in

its power profiles, with power reversals observed for the larger values of c (something

not observed in Figure 3). We conjecture that this behaviour is due to large values of

c causing the estimates of σ̂2
t to become inflated via their dependence on ∆yt = ∆xt =

(c/T )xt−1 + ut, which in finite samples is not necessarily a good proxy for ut unless T

is large relative to c. Despite this tendency for power reversals with supBZ, it is still

the case that the power profile of U is monotonic and again similar to whichever profile
of supDF and supBZ obtains the higher power, though obviously for large c, this profile

is now typically that of supDF rather than supBZ, in contrast to what was typically

observed in our asymptotic simulations. One noteworthy observation is that for the cases

where supBZ displays non-monotonic power, U can actually have power greater than
either supDF or supBZ for certain intermediate c values around the intersection of the

supDF and supBZ power profiles. It appears, therefore, that U offers a robust approach
to testing, capturing most of the relatively high power that supBZ can offer over supDF

for small to moderate magnitude bubbles, while retaining high power across c in cases

where the power of supBZ can drop relative to supDF.

Our model assumes a deterministic volatility function, however it is also of interest to

evaluate the performance of the tests under stochastic volatility, which is not covered by

assumption A2 but is of empirical relevance. The volatility model we simulate for this

exercise is the so-called square root process

dσ2(r) = 0.03(0.25− σ2(r))dr + 0.1
√
σ2(r)dB(r)

where B(r) is a standard Brownian motion process, and the parameter settings used are

representative of those considered in Bollerslev and Zhou (2002). The volatility model

is re-simulated in each replication of the Monte Carlo experiment, using NIID(0, 1)

drawings to approximate the Brownian motion increments, with these drawings being

independent of those for εt. Figures 3 (i) and 4 (i) report the empirical rejection frequen-

cies of the tests for this model across c. When c = 0, it can be seen that the empirical

rejection frequencies of our bootstrap tests are very close to the nominal significance

level. However, in unreported results, we found that this does not appear to hold if the

Brownian motion increments are correlated with the εt, e.g. when leverage effects are

12



present.3 As regards the power of the tests, supBZ and supDF tend to perform quite

similarly under this stochastic volatility model, with supBZ displaying small power gains

over supDF for small c, and a reverse pattern for larger c.

6 Empirical illustrations

In this section, we apply the bootstrap supDF, supBZ and U procedures to two data sets,
with supBZ using the same Gaussian kernel and cross-validation bandwidth selection

method discussed in section 5. The data are logarithms of the inflation-adjusted FTSE

index from December 1985 to December 1999 and the S&P 500 index from January 1980

to March 2000. For each dataset we consider monthly, weekly and daily frequencies.

Figure 5 and Figure 6 show the time series plots of log prices and the first differences (log

returns) for the FTSE index and the S&P 500 index, respectively, at the three sampling

frequencies. We see that the levels of both series are generally increasing during the

period considered (Homm and Breitung, 2012, consider similar sample periods so that

the sample endpoints correspond to periods where the prices reach their peaks). From

the plots of the first differences (i.e. log returns), the presence of time varying volatility

is clearly a plausible phenomenon.

The three procedures supDF, supBZ and U are applied to each of the six series, with
the results given in Table 1, the entries being bootstrap p-values associated with the dif-

ferent procedures. First we observe that the supDF test does not reject the null in favour

of explosive behaviour for any of the series considered at conventional significance levels.4

Turning to supBZ, we find evidence of explosive behaviour, at least at the 0.05-level, for

the daily FTSE series and all frequencies of the S&P 500 index. These rejections are

preserved when considering the U procedure, albeit at a slightly weaker significance level
for monthly S&P 500. This pattern of results, where rejections are obtained by supBZ

and U but not supDF, fits well with our asymptotic and finite sample simulation findings

when an explosive period of small to modest magnitude is present in the data, along with

time-varying volatility. Given that the supDF test alone fails to detect these explosive

episodes, our application reinforces our earlier findings that the WLS-based supBZ pro-

cedure can offer enhanced levels of detectability of explosive behaviour. Moreover, given

that the union of rejections procedure does not reduce the number of series for which

rejections of the unit root null are found, we again find that there is little cost to adopt-

ing this joint test approach, which also provides a degree of insurance for other potential

cases where supDF might reject but supBZ not.

3This is not a surprising result, as the wild bootstrap method only mimics the heteroskedastic pattern
in the data, but is unable to reproduce the dependence between the volatility process increments and
the model errors.

4We also compared the supDF test statistic with standard critical values obtained under an assumption
of constant volatility (as in PWY), and again failed to reject the null in all cases.
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7 Discussion and conclusion

In this paper we have proposed a WLS-based variant of the PWY test for explosive

autoregressive behaviour in a financial time series. We find that such an approach has

appealing asymptotic power properties, with the potential to deliver substantially greater

power than the established OLS-based approach for many volatility and explosive set-

tings. Given that the OLS-based test can outperform the WLS-based test for other

volatility and explosive specifications, we also suggested a union of rejections procedure

that succeeds in capturing the better power available from the two constituent tests for a

given alternative. Our approach involves a nonparametric kernel-based volatility function

estimator for computation of the WLS-based statistic, together with the use of a wild

bootstrap procedure applied jointly to both individual tests, delivering a powerful testing

procedure that is asymptotically size-robust to a wide range of time-varying volatility

specifications. Finite sample simulations indicate that the procedures should work well

in practice, and application of the tests to FTSE and S&P 500 price data supports our

premise that the WLS-based test can provide improved ability to detect explosive be-

haviour compared to extant procedures.

While we have focused our attention on a PWY-type framework, using a single supre-

mum of forward recursively calculated statistics, our WLS approach could of course be

used in the context of the double supremum testing approach of Phillips et al. (2015).

The WLS variant of their double supremum test statistic is given by

supBZ ∗ = sup
τ1∈[0,1−π],τ2∈[τ1+π,1]

BZτ1,τ2

where

BZτ1,τ2 =

∑[τ2T ]
t=[τ1T ]+1 ∆ỹtỹt−1/σ̂

2
t(∑[τ2T ]

t=[τ1T ]+1 ỹ
2
t−1/σ̂

2
t

)1/2

with ỹt and σ̂
2
t as defined above. The wild bootstrap and union of rejections methodologies

can be applied to supBZ ∗ in an entirely similar way as to supBZ, and we would anticipate

power gains to be available for these more general tests also.

Finally, the autoregressive specification that we have adopted in this paper involves

a one-time change from unit root to explosive dynamics. One could also consider a more

general nonparametric specification for ρt, along with an appropriate modification to the

testing strategy, e.g. a CUSUM-based test along the lines of Homm and Breitung (2012).

As Xu (2015) demonstrates, CUSUM tests in general are not robust to nonstationary

volatility, hence such an approach would need to be robustified to the potential het-

eroskedasticity that we consider in this paper. One approach that could be considered

would be to modify the Homm and Breitung (2012) CUSUM test using our volatility

estimator σ̂2
t . This would be an interesting avenue for future research.
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Appendix: Proofs of theorems

In what follows, we set µ = 0 and y1 = 0, without loss of generality, so that yt = ỹt = xt.

Proof of Theorem 1

First notice that

BZτ =

∑[τT ]
t=2

∆ytyt−1
σ2t(∑[τT ]

t=2

y2t−1
σ2t

)1/2
.

Using the result

T−1/2y[rT ] ⇒ Uc(r)

which follows straightforwardly from Theorem 1 of Harvey et al. (2016), it follows that

T−1/2y[rT ]−1

σt
⇒ Uc(r)/σ(r) = Vc(r).

Notice that this holds for all r ∈ (0, 1) and the Uc (thus also Vc) process is defined to

have two regimes. One immediate consequence of this weak convergence result is that

T−2

[τT ]∑
t=2

y2
t−1

σ2
t

⇒
∫ τ

0

Vc(r)
2dr.

For ∆yt/σt, notice that

∆yt
σt

=

{
εt τ 6 τ ∗

(c/T )yt−1
σt

+ εt τ > τ ∗
.

Then it follows easily that when τ 6 τ ∗,

T−1

[τT ]∑
t=2

∆ytyt−1

σ2
t

⇒
∫ τ

0

Vc(r)dW (r)

and so

BZτ ⇒
∫ τ

0
Vc(r)dW (r)(∫ τ

0
Vc(r)2dr

)1/2
.
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When τ > τ ∗,

T−1

[τT ]∑
t=2

∆ytyt−1

σ2
t

= T−1

[τT ]∑
t=2

εtyt−1

σt
+ T−1

[τT ]∑
t=[τ∗T ]+1

(c/T )y2
t−1

σ2
t

⇒
∫ τ

0

Vc(r)dW (r) + c

∫ τ

τ∗
Vc(r)

2dr

and so

BZτ ⇒
∫ τ

0
Vc(r)dW (r) + c

∫ τ
τ∗ Vc(r)

2dr(∫ τ
0
Vc(r)2dr

)1/2
.

It then follows that, via the continuous mapping theorem,

supBZ⇒ sup
τ∈[τ0,1]

Lc(τ) = MBZ
c .

Proof of Theorem 2

In order for the feasible statistic BZτ , in which σ2
t is replaced by σ̂

2
t , to converge to Lc(τ)

(the limit of its infeasible counterpart), we require the following two conditions to hold:

T−1

(
T∑
t=2

(∆ytyt−1/σ̂
2
t )−

T∑
t=2

(∆ytyt−1/σ
2
t )

)
= op(1) (7)

T−2

(
T∑
t=2

(yt−1/σ̂t)
2 −

T∑
t=2

(yt−1/σt)
2

)
= op(1). (8)

To show (7) and (8), we largely adapt the strategy used in Robinson (1987) and Xu and

Phillips (2008).

For (7), first notice that the spot variance estimator can be written as

σ̂2
t =

T∑
i=2

wt,iû
2
i

where the weights are defined as wt,i = Kh

(
i−t
T

)
/
∑T

i=2Kh

(
i−t
T

)
and satisfy

∑T
i=2wt,i = 1.

Defining σ̃2
t =

∑T
i=2 wt,iu

2
i and σ̄

2
t =

∑T
i=2 wt,iσ

2
i , we can make the following decomposi-

tion:

T−1

T∑
t=2

∆ytyt−1(1/σ̂2
t − 1/σ2

t ) = T−1

T∑
t=2

∆ytyt−1(1/σ̂2
t − 1/σ̃2

t ) + T−1

T∑
t=2

∆ytyt−1(1/σ̃2
t − 1/σ̄2

t )

+T−1

T∑
t=2

∆ytyt−1(1/σ̄2
t − 1/σ2

t )

where the three right-hand-side terms are denoted as A, B and C respectively. We next
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show that all the three terms are op(1).

For A,

|A| 6
(

max
t

∣∣1/(σ̂2
t σ̃

2
t )
∣∣) T∑

t=2

∣∣(∆ytyt−1)(σ̂2
t − σ̃2

t )/T
∣∣

6
(

max
t

∣∣1/(σ̂2
t σ̃

2
t )
∣∣)(T−2

T∑
t=2

(∆ytyt−1)2

)1/2( T∑
t=2

(σ̂2
t − σ̃2

t )
2

)1/2

using Cauchy-Schwartz inequality. Notice σ̂2
t and σ̃

2
t are bounded away from 0,maxt

∣∣1/σ̂2
t σ̃

2
t

∣∣
will at most be Op(1); also it is easy to obtain that T−2

∑T
t=2(∆ytyt−1)2 = Op(1). Then

to show A = op(1), we are left to show
∑T

t=2(σ̂2
t − σ̃2

t )
2 = op(1). Now

σ̂2
t − σ̃2

t =
T∑
i=2

wt,i(û
2
i − u2

i )

=
T∑
i=2

wt,i((∆yi)
2 − (σiεi)

2)

=
T∑
i=2

wt,i((ρiyi−1 + σiεi)
2 − (σiεi)

2)

= Op(T
−1) (9)

where in the last step we use the definition that ρi = 0 before τ ∗ and ρi = c/T after τ ∗,

so σ̂2
t − σ̃2

t will be at most Op(T
−1). This further implies that

∑T
t=2(σ̂2

t − σ̃2
t )

2 = Op(T
−1),

which completes the proof for A = op(1).

For B, notice that

B = T−1

T∑
t=2

∆ytyt−1(1/σ̃2
t − 1/σ̄2

t )

= T−1

T∑
t=2

∆ytyt−1(σ̄2
t − σ̃2

t )σ̄
−4
t + T−1

T∑
t=2

∆ytyt−1(σ̄2
t − σ̃2

t )
2σ̄−4

t σ̃−2
t (10)

where the equality p−1 − q−1 = (q − p)q2 + (q − p)2p−1q−2 is used. We denote the two
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terms as B1 and B2, and we look at them separately. For B1,

B1 = T−1

T∑
t=2

∆ytyt−1(σ̄2
t − σ̃2

t )σ̄
−4
t

= T−1

T∑
t=2

(ρtyt−1 + ut) yt−1(σ̄2
t − σ̃2

t )σ̄
−4
t

= cT−2

T∑
t=[τ∗T ]+1

y2
t−1(σ̄2

t − σ̃2
t )σ̄
−4
t + T−1

T∑
t=2

utyt−1(σ̄2
t − σ̃2

t )σ̄
−4
t

= B11 +B12

where B11 and B12 are defined implicitly. Under the null B11 = 0, while under the

alternative we have

|B11| =

∣∣∣∣∣∣cT−2

T∑
t=[τ∗T ]+1

y2
t−1(σ̄2

t − σ̃2
t )σ̄
−4
t

∣∣∣∣∣∣
6 Cmax

t

∣∣(σ̄2
t − σ̃2

t )
∣∣T−2

T∑
t=[τ∗T ]+1

y2
t−1

where C generically denotes a positive constant. Notice that

P (max
t
|σ̃2
t − σ̄2

t | > ε) 6
T∑
t=2

P (|σ̃2
t − σ̄2

t | > ε)

6
T∑
t=2

E|σ̃2
t − σ̄2

t |4/ε4 = Op

(
1/(Th2)

)
(11)

and it is straightforward to show that T−2
∑T

i=2 y
2
ti−1 = Op(1), so we have B11 = op (1) be-

cause Th2 →∞. For the term B12, first notice that
{
utyt−1(σ̄2

t − σ̃2
t )σ̄t

}
is a martingale

difference sequence with respect to the filtration Ft. This is because

E
(
utyt−1(σ̄2

t − σ̃2
t )σ̄
−4
t |Ft−1

)
= yt−1σ̄

−2
t E (ut|Ft−1) + σ̄−4

t E

(
utyt−1

T∑
i=2

wiu
2
i |Ft−1

)

= σ̄−4
t E

(
utyt−1

t−1∑
i=2

wiu
2
i |Ft−1

)
+ σ̄−4

t E

(
utyt−1

T∑
i=t+1

wiu
2
i |Ft−1

)
+σ̄−4

t E
(
u3
tyt−1wt|Ft−1

)
where the first term is clearly 0, the second term is also 0 by noticing that, for i > t,

E
(
utu

2
i |Ft−1

)
= E

(
utE

(
u2
i |Fi−1

)
|Ft−1

)
= 0
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while the third term is also 0 by the assumption that E (u3
t |Ft−1) = 0.5 Using Markov’s

inequality and the fact that B12 is a sum of a martingale difference sequence we have

P (|B12| > ε) = P

(∣∣∣∣∣T−1

T∑
t=2

∆ytyt−1(σ̄2
t − σ̃2

t )σ̄
−4
t

∣∣∣∣∣ > ε

)

6 E

∣∣∣∣∣T−1

T∑
t=2

∆ytyt−1(σ̄2
t − σ̃2

t )σ̄
−4
t

∣∣∣∣∣
2

/ε2

6 CT−2

T∑
t=2

E|∆ytyt−1|2(σ̄2
t − σ̃2

t )
2/ε2

6 CT−2ε−2

T∑
t=2

(E|∆ytyt−1|4)1/2(E(σ̄2
t − σ̃2

t )
4)1/2

6
(

max
t
E(σ̄2

t − σ̃2
t )

4
)1/2

× CT−2ε−2

T∑
t=2

(E|∆ytyt−1|4)1/2.

It is easy to see that T−2
∑T

t=2(E|∆ytyt−1|4)1/2 = Op(1), and we next show that maxtE(σ̄2
t−

σ̃2
t )

4 = op(1):

E(σ̄2
t − σ̃2

t )
4 = E

(
T∑
i=2

wt,i(u
2
i − σ2

i )

)4

6 E

(
T∑
i=2

w2
t,i(u

2
i − σ2

i )
2

)2

6 (1/Th)2E

(
T∑
i=2

wt,i(u
2
i − σ2

i )
2

)2

6 (1/Th)2
T∑
i=2

wt,iE(u2
i − σ2

i )
4

= Op

(
(1/Th)2) (12)

where in the second step Burkholder’s inequality for a martingale difference sequence is

used, in the third step the fact that maxiwt,i = O(1/(Th)) is used, in the fourth step we

use Jensen’s inequality, and in the last step we use the boundedness of the 8th moment

of εt from Assumption A3. So, we have shown B12 = op (1), which implies B1 = op(1).

For the term B2 in (10),

∣∣∣∣∣T−1

T∑
t=2

∆ytyt−1(σ̄2
t − σ̃2

t )
2σ̄−4

t σ̃−2
t

∣∣∣∣∣ 6 C
(
T−2

T∑
t=2

(∆ytyt−1)2

)1/2( T∑
t=2

(σ̄2
t − σ̃2

t )
4

)1/2

.

5In Xu and Philips (2008), a leave-one-out estimator for spot volatility is used to make the third
term 0. Here our assumption of a symmetric εt achieves the same result without the need to use the
leave-one-out estimator.
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As in the derivation of A = op(1), it is easy to see that T−2
∑T

t=2(∆ytyt−1)2 = Op(1).

Using the Markov inequality, it follows that

P

(∣∣∣∣∣
T∑
t=2

(σ̄2
t − σ̃2

t )
4

∣∣∣∣∣ > ε

)
6 E

T∑
t=2

(σ̄2
t − σ̃2

t )
4/ε

= Op(1/(Th
2)) = op(1)

by applying the result in (12), and recalling the assumption that Th2 → ∞, so we have
B2 = op (1). This completes the proof for B = op(1).

For C, notice that

C = T−1

T∑
t=2

∆ytyt−1(1/σ̄2
t − 1/σ2

t )

= cT−2

T∑
t=[τ∗T ]+1

y2
t−1(1/σ̄2

t − 1/σ2
t ) + T−1

T∑
t=2

utyt−1(1/σ̄2
t − 1/σ2

t )

= C1 + C2

where C1 and C2 are defined implicitly. For C1,

C1 =

∣∣∣∣∣∣cT−2

T∑
t=[τ∗T ]+1

y2
t−1(1/σ̄2

t − 1/σ2
t )

∣∣∣∣∣∣
6 cmax

t

∣∣σ̄2
tσ

2
t

∣∣max
t

∣∣σ2
t − σ̄2

t

∣∣T−2

T∑
t=[τ∗T ]+1

y2
t−1.

Here T−2
∑T

t=[τ∗T ]+1 y
2
t−1 = Op (1),maxt |σ̄2

tσ
2
t | = Op (1), and we next show thatmaxt |σ2

t − σ̄2
t | =

o (1), as follows

σ̄2
t − σ2

t =

∑T
i=2Kh

(
i−t
T

)
σ2
i∑T

i=2 Kh

(
i−t
T

) − σ2
t

=

∫ 1

0

1

h
K

(
s− t/T

h

)
σ(s)ds(1 + o(T−1))− σ2

t

=

∫ ∞
−∞

K(s)dsσt(1 + o(T−1))− σ2
t = o(1) (13)

uniformly for all t. Then we have C1 = op (1). For C2, notice that utyt−1 is a martingale
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difference sequence, so

E (C2)2 = E

(
T−1

T∑
t=2

utyt−1(1/σ̄2
t − 1/σ2

t )

)2

= T−2

T∑
t=2

E[E(utyt−1)2|Ft−1](1/σ̄2
t − 1/σ2

t )
2

= T−2

T∑
t=2

E(y2
t−1)(σ̄2

t − σ2
t )

2σ̄−4
t σ−2

t

6 (max
t
|σ̄2
t − σ2

t |)2 max
t

∣∣σ̄−4
t σ−2

t

∣∣T−2

T∑
t=2

E(y2
t−1).

Clearly T−2
∑T

t=2E(y2
t−1) = Op(1), and it suffi ces to show maxt |σ̄2

t − σ2
t | = op(1), which

is already shown in (13). We have thus shown that C2 = op (1) and also C = op (1).

For (8), notice that

T−2

∣∣∣∣∣
T∑
t=2

(yt−1/σ̂t)
2 −

T∑
i=2

(yt−1/σt)
2

∣∣∣∣∣ 6 CT−2

T∑
t=2

y2
t−1|σ̂2

t − σ2
t |.

Since T−2
∑T

t=2 y
2
t−1 = Op(1), for (8) to hold it suffi ces to show

max
t
|σ̂2
t − σ2

t | = op(1). (14)

First make the decomposition

max
t
|σ̂2
t − σ2

t | 6 max
t
|σ̂2
t − σ̃2

t |+ max
t
|σ̃2
t − σ̄2

t |+ max
t
|σ̄2
t − σ2

t | = D + E + F

where the three terms are defined implicitly. For the term D, using the result in (9), it

easily follows that D = Op(T
−1). E = op (1) has already been shown in (11). F = o(1)

has already been shown in (13). We have thus shown (14). This completes the whole

proof.

Proof of Theorem 3

The result for supDFbm follows straightforwardly from Harvey et al. (2016). Also from

Harvey et al. (2016), it follows that

T−1/2yb[rT ]

p⇒
∫ r

0

σ(s)dW (s). (15)
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It then follows easily by the uniform consistency of the spot volatility estimator in (14),

and since σ[rT ]+1 → σ(r), that

T−1/2yb[rT ]/σ̂[rT ]+1
p⇒ V0(r).

Application of the continuous mapping theorem then gives

[τT ]∑
t=2

∆ybty
b
t−1/σ̂

2
t

p⇒
∫ τ

0

V0(r)dW (r)

[τT ]∑
t=2

y2
t−1/σ̂

2
t

p⇒
∫ τ

0

V0(r)2dr.

Denoting by BZbτ the BZτ statistic based on a bootstrap sample, we then obtain

BZbτ
p⇒
∫ τ

0
V0(r)dW (r)(∫ τ

0
V0(r)2dr

)1/2

and thus

supBZbm
p⇒MBZ

0 .
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(h) Double shift

Figure 1: Limiting local power curves, τ ∗ = 0.6, supDF: , supBZ: , U : .
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(h) Double shift

Figure 2: Limiting local power curves, τ ∗ = 0.8, supDF: , supBZ: , U : .
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(i) Stochastic volatility

Figure 3: Finite sample local power curves, τ ∗ = 0.6, supDF: , supBZ: , U : .
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Figure 4: Finite sample local power curves, τ ∗ = 0.8, supDF: , supBZ: , U : .
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Figure 5: Time series plot of FTSE index prices and returns, December 1985 to December
1999.
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Figure 6: Time Series plot of S&P500 index prices and returns, January 1980 to March
2000.
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supDF supBZ U
FTSE Daily 0.288 0.016 0.046
FTSE Weekly 0.275 0.146 0.201
FTSE Monthly 0.477 0.279 0.315
SP500 Daily 0.267 0.000 0.003
SP500 Weekly 0.170 0.002 0.011
SP500 Monthly 0.153 0.044 0.071

Table 1: Bootstrap p-values of supDF, supBZ and U .
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