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Finite-depth scaling of infinite quantum circuits for quantum critical points
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The scaling of the entanglement entropy at a quantum critical point allows us to extract universal properties of
the state, e.g., the central charge of a conformal field theory. With the rapid improvement of noisy intermediate-
scale quantum (NISQ) devices, these quantum computers present themselves as a powerful tool to study critical
many-body systems. We use finite-depth quantum circuits suitable for NISQ devices as a variational ansatz
to represent ground states of critical, infinite systems. We find universal finite-depth scaling relations for these
circuits and verify them numerically at two different critical points, i.e., the critical Ising model with an additional
symmetry-preserving term and the critical XXZ model.
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I. INTRODUCTION

The collective behavior of strongly correlated many-body
systems can be very distinct from the behavior of their ele-
mentary constituents, giving rise to emergent phases of matter
and transitions between them [1]. At zero temperature, a
many-body system can undergo a continuous quantum phase
transition as a parameter in the Hamiltonian is varied. At the
critical point, the system exhibits universal behavior, indepen-
dently of the microscopic details of the system [2].

In one-dimensional quantum systems, critical points are
often conformally invariant and can be described by a 1 +
1-dimensional conformal field theory (CFT) [3,4]. CFTs can
be used to obtain many analytical results for these critical
systems [3–7]. One of the most significant findings of CFTs
is that these critical points can be classified in terms of their
central charge c. For example, for the Ising universality class,
the associated central charge is c = 1

2 . The central charge is
directly related to physical quantities such as the entangle-
ment entropy. Consider a bipartition of the system into two
halves A and B, with reduced density matrices ρA and ρB.
The von Neumann entropy of subsystem A is then defined as
SA = −TrρA log ρA and analogously for subsystem B. Close
to a conformal critical point, where the correlation length ξ is
large, the entropy scales as S ∼ c

6 log ξ [5,6].
To study the universal critical behavior of a given mi-

croscopic model, numerical simulations are important [8]. A
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straightforward approach is to consider the Hamiltonian of
a finite system and diagonalize it exactly with a computer.
However, only small system sizes are tractable with this ap-
proach because the dimension of the Hilbert space grows
exponentially with the size of the system [8]. As the charac-
teristic signatures of a phase transition can, strictly speaking,
only occur in infinite systems, the limitation to small systems
obscures the observation of these signatures in computer sim-
ulations.

A successful numerical method in one dimension that
overcomes the problem of the exponentially growing Hilbert
space is the use of matrix-product states (MPSs) [9,10] as
a variational ansatz and their multitude of complementary
algorithms [11–18]. MPSs make simulations of large systems
possible because they efficiently approximate weakly entan-
gled ground states [10,14]. Furthermore, they allow us to
directly work with infinite states. MPSs follow an area law
for the entanglement entropy—that is, if the system is cut into
two subsystems, then the entanglement entropy scales only
with the size of the boundary of the subsystem and not with
the size of the subsystem itself—so the MPS ansatz is limited
by the amount of entanglement it can support. For represent-
ing ground states of gapped, local Hamiltonians, this is ideal
because these ground states follow the same area law [10,19–
22]. Ground states of critical systems, however, violate the
area law; the entanglement entropy diverges logarithmically
at a critical point [5,6]. Therefore, MPSs cannot exactly rep-
resent critical states. Trying to represent critical states with
MPSs leads to systematic deviations that are described quan-
titatively by the theory of finite-entanglement scaling [23,24];
using this framework, information about the critical state can
still be extracted, and MPSs can be used for studying critical
points [23–25].

A promising tool for studying quantum many-body sys-
tems is the use of quantum computers. As the current noisy
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FIG. 1. Infinite brick wall quantum circuit. The initial state is at
the top, then m = 3 layers of two-qubit gates in a brick wall pattern
are applied. The infinitely repeating unit cell is shaded in light blue.
The structure of the circuit leads to a causal light cone, indicated by
the orange dashed line bounding the orange area. When measuring
the two qubits indicated by the measurement symbol, only the gates
in the orange area, i.e., the gates within the light cone, contribute,
and the other gates can be ignored.

intermediate-scale quantum (NISQ) devices improve in qual-
ity, they might very soon yield a potential speed-up compared
with classical computers [26,27]. On a quantum computer,
we can use variational quantum eigensolvers (VQEs) with
finite-depth circuits to represent the ground state of a given
Hamiltonian or to simulate the time evolution [28–33]. When
using these finite-depth circuits for approximating the ground
states of critical systems, the question arises whether similar
scaling relations to the finite-entanglement scaling of MPSs
exist, which allow us to extract results for the critical state
from the finite-depth circuit.

To make the relation to MPSs more concrete, note that
finite-depth circuits can be seen as a subset of MPSs
[31,33,34]. However, the circuits used in this paper (see Fig. 1)
need exponentially fewer parameters to represent a state than
a generic MPS with a similar entanglement entropy. In other
words, these circuits can generate more entanglement than
MPSs with the same number of parameters. This had pre-
viously been discussed for a similar circuit structure in the
context of time evolved states [32,33,35]. In the context of
ground states, this was much less discussed in the literature
before. However, as we show in this paper, the circuits we use
provide a systematic scaling approach to critical states and
can thus be used to study critical systems. The reduction in
parameters is moreover crucial for the use of NISQ devices, as
the depth of circuits that can be successfully run is restricted.

In this paper, we find scaling relations for finite-depth
circuits of infinite systems at quantum critical points. In
Ref. [31], authors studied the scaling of the entanglement
entropy of such circuits at critical points in finite systems. The
authors distinguished two regimes: the finite-depth regime for
circuits that are shallow compared with the system size, where
the scaling of the entanglement entropy depends strongly on
the depth of the circuit but not on the size of the system;
and the finite-size regime for circuits that are deep compared
with the system size, where the scaling depends strongly
on the system size but not on the circuit depth. For infinite
systems, we observe scaling relations for the entanglement
entropy consistent with those found in the finite-depth regime.
Moreover, we consider other universal quantities at the critical
point and can describe their scaling quantitatively. For the

transverse-field Ising model in particular, authors in Ref. [36]
could derive some scaling relations for finite-depth circuits
analytically.

The paper is structured as follows: In Sec. II, we introduce
brick wall circuits as a variational ansatz and study the Ising
phase transition as an example. Then in Sec. III, we adapt
the finite-entanglement scaling of MPSs to the finite-depth
scaling of the brick wall circuit. Afterward, we show evidence
for the finite-depth scaling in two numerical examples in
Sec. IV. We consider the transverse-field Ising model with
an additional symmetry-preserving term and the XXZ model.
Finally, in Sec. V, we discuss the results of the paper.

II. BRICK WALL CIRCUITS

Figure 1 shows a brick wall circuit with three layers. The
initial state of the quantum computer, with all qubits in the
state |0〉, is located at the top. Then three layers of two-qubit
gates are applied alternatingly on even and odd bonds, cre-
ating a circuit structure that resembles a brick wall. When
using the circuit as a variational ansatz, the number of layers m
in the circuit can be varied to change the number of parameters
in the circuit. This type of circuit has been used as a variational
ansatz for finite systems in Refs. [31,37]. Brick wall circuits
for infinite systems have been considered in the context of
numerical time-evolution of the entanglement spectrum in
Ref. [34]. A big advantage of this circuit is that its depth is
independent of the number of qubits in the circuit. This makes
the circuit perfect for NISQ devices, where the noise limits the
number of gates we can apply successively.

The structure of the circuit in Fig. 1 yields a causal light
cone. If we perform a measurement on the two qubits marked
by a measurement symbol in the figure, then only the gates
within the orange shaded area contribute to the outcome. This
indicates the light cone of the circuit. As only a subset of the
gates contributes to a measurement outcome, it is possible to
describe infinite states with a brick wall circuit. To do this,
consider the two-site unit cell of the circuit, shaded in light
blue in Fig. 1; by repeating it indefinitely, we obtain an infinite
state that is invariant under translations by an even number
of sites. Note that the depth of the circuit still remains the
same for the infinite state. Whenever we are interested in a
measurement outcome of the state, it is enough to consider the
gates within the light cone to get results for the infinite state.
The light cone has another consequence in that it limits the
range of the correlations in the circuit. If we measure qubits
that are sufficiently far apart, such that their light cones do
not overlap, then their measurement outcomes are indepen-
dent of one another. Consider a two-point correlation function
C(i, j) = 〈OA

i OB
j 〉 − 〈OA

i 〉〈OB
j 〉, where the two operators OA

i

and OB
j act on sites i and j, respectively. Then if the brick wall

circuit has m layers, the correlation function C(i, j) = 0 if
| j − i| � 2m. This means the correlation length of the circuit
must be bound by ξ < 2m [38].

In the following, we will treat the brick wall circuit as a
variational ansatz by parametrizing the gates and optimizing
them such that the circuit minimizes the expectation value
of a given Hamiltonian. In principle, we could calculate the
gradient of the energy with respect to the circuit on a quantum
computer and perform quantum-classical optimization like
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VQEs [28–30]. However, due to the noise in current quantum
computers, we use automatic differentiation to calculate the
gradient on a classical computer [39,40]. We then update the
gates of the circuit using gradient-based optimization algo-
rithms that make use of the Riemannian geometry of the
manifold of unitary matrices to keep the gates unitary [41–45].
Using this approach, we limit ourselves to circuits with max-
imally eight layers because optimizing the parameters takes
increasingly long for deeper circuits.

The transverse-field Ising model

As a concrete example, we consider the transverse-field
Ising model with the Hamiltonian:

H =
∑

i

−XiXi+1 + gZi. (1)

As we tune the parameter g, which controls the strength of the
transverse field, we can observe a phase transition at g = 1.
For g < 1, the system is in a symmetry-broken state with
a nonzero magnetization 〈Xi〉, which is acting as the order
parameter; for g > 1, the ground state is symmetric, and the
magnetization is zero.

Figure 2 shows the numerical results of using brick wall
circuits to represent the ground state of the Ising model as
the field strength g is tuned through the critical point. The
relative error of the energy density is shown in Fig. 2(a). The
solid blue lines show the relative error for different numbers
of layers. Increasing the number of layers also increases the
accuracy. For all numbers of layers, the error is largest around
the critical point, which is to be expected as the circuit cannot
represent the diverging entanglement entropy and long-range
correlations. Moving away from the critical point, the error
decreases as we move closer to the product states at g = 0 and
∞. There, the state can be exactly represented by a circuit
with just single-qubit gates.

The data in Fig. 2(b) show the magnetization of the cir-
cuit throughout the transition. The solid blue lines show the
magnetization as obtained from exact numerical simulation
of the circuit, and the blue dots show the data obtained from
the IBM quantum computers [46]. All data from the quan-
tum computers that we present in this paper are corrected
for readout errors [47] and global depolarizing errors [48];
for details, see Appendix B. A sharp transition between the
regime with zero magnetization and the regime with nonzero
magnetization can be seen, both in the numerical data and in
the data from the quantum computer. However, the transition
point shifts with the number of layers toward the actual tran-
sition point at g = 1. This effect is the finite-depth scaling due
to the limited correlation length of the circuit, and we will
discuss it more in depth in the next section. Note that being
able to see a nonzero magnetization implies that we find a
truly symmetry-broken state for any number of layers—this
is in contrast to simulations on finite-size systems, where a
symmetric ground state is found instead.

Another way to observe the phase transition in the Ising
model is to look at the entanglement entropy. If a system
is cut into two parts A and B, then the nth order Rényi en-
tropy of the subsystems is defined in terms of their reduced
density matrices ρA and ρB as S(n)

A = 1
1−n log Trρn

A. In the

FIG. 2. Phase transition of the transverse-field Ising model as
approximated by brick wall circuits. (a) The relative error of the
energy density |Eopt − E0|/|E0| that the brick wall circuits achieve
as a variational ansatz. Here, E0 is the known ground state energy
density of the transverse-field Ising model, and Eopt is the energy
density of the circuit after the optimization. (b) The local magneti-
zation 〈M〉 = 1

2 〈Xi + Xi+1〉 of the circuits. The solid blue lines show
the values obtained from numerically simulating the circuit; the blue
dots show the results from the IBM quantum computer montreal
[46]; for more details, see Appendix B. Statistical error bars have
been omitted, as they are smaller than the size of the dots.

limit n → 1, this reduces to the usual von Neumann entropy
SA = −TrρA log ρA. Note that S(n)

A = S(n)
B if the full system

is in a pure state, which is always the case for the circuits
we consider here. The von Neumann and the second Rényi
entropy of a bipartition of the infinite brick wall circuit into
two halves are shown in Fig. 3. As before, the solid blue lines
show the results of numerically simulating the circuit for dif-
ferent numbers of layers; the blue dots show the results from
the quantum computer [46]. The peak in the entanglement
entropies indicates the point of the phase transition, which
lines up with the transition point seen in the magnetization.
This shows that using a brick wall circuit as a variational
ansatz still produces a single sharp transition point, where the
nonanalytic features of the phase transition occur.

In fact, being able to observe all the relevant features of
the phase transition using brick wall circuits was not obvious
in advance. The circuit with its short correlation length being
unable to reproduce the long-range correlations of the system
around the critical point could have inhibited us from seeing
the behavior at all. As it turns out, however, we can observe
these features; the short correlation length of the circuit makes
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FIG. 3. Entanglement entropies of the brick wall circuits
throughout the phase transition of the transverse-field Ising model.
(a) The von Neumann entropy of the brick wall circuit when used
as a variational ansatz and (b) the second Rényi entropy. The solid
blue lines show the values obtained from numerically simulating the
circuit; the blue dots show the average results of runs on the IBM
quantum computers montreal and hanoi [46]; for more details, see
Appendix B.

itself instead noticeable in the form of finite-depth scaling,
which we will discuss now.

III. FINITE-DEPTH SCALING

In the previous section, we found that using brick wall
circuits to approximate the ground state of the transverse-field
Ising model along its phase transition shifts the transition
point with increasing circuit depth (see Figs. 2 and 3). This be-
havior is similar to the finite-entanglement scaling observed in
MPSs [23–25], and correspondingly, we refer to this behavior
in brick wall circuits as finite-depth scaling.

The finite-depth scaling in brick wall circuits stems from
the finite correlation length of the ansatz. At the critical point,
the correlation length of the true ground state diverges, which
cannot be captured by the circuit. Instead, features of the
transition are smoothed out, and the transition point is shifted.
We can try to quantify the scaling behavior for the circuits
analogously to how it was done for MPSs in Ref. [23]. To
do this, we assume the correlation length of the circuit at the
critical point is related to the number of layers m in the circuit
by the scaling relation:

ξm ∼ mλ, (2)

with some as of yet unknown constant λ. Note that λ � 1
because, as discussed in the previous section, the correlation
length can at most scale linearly with the circuit depth. For
the time being, the assumption in Eq. (2) can be taken as an
analogy to the case in MPSs, where the correlation length at
the critical point scales with the bond dimension χ as ξχ ∼ χκ

[23,24].
Consider a Hamiltonian that depends on a parameter t and

has a phase transition at t = 0. In terms of the Ising model
discussed in the previous section, t = g − gc, where g is the
strength of the transverse field, and gc = 1 is the location of
the phase transition. Then the correlation length of the ground
state diverges according to the power law:

ξ ∼ |t |−ν, (3)

as the critical point is approached, where ν is a critical expo-
nent. By inverting this relation, we find

|t | ∼ ξ−1/ν, (4)

which effectively states how close we are to the critical point
in terms of the correlation length. As the correlation length of
the circuit cannot diverge, we cannot reach the actual critical
point using the circuit. Instead, the critical point shifts to a
pseudocritical point t∗, which is reached when the correlation
length assumes its maximum. Inserting Eq. (2) into Eq. (4),
we find that the critical point shifts according to

|t∗| ∼ m−λ/ν. (5)

Consider a quantity Q that diverges or vanishes at the crit-
ical point according to a universal exponent ω, i.e., Q ∼ |t |ω.
This could, for example, be the order parameter of the system,
which vanishes as the critical point is approached with the
universal exponent ω = β. For the Ising model, the order
parameter is the magnetization, and β = 1

8 . Then Eqs. (2) and
(4) tell us that this translates to a scaling behavior in terms of
the circuit as

Q ∼ m−λω/ν. (6)

Apart from power law behaviors, there are also universal
logarithmic divergences, such as for the entanglement entropy.
The nth order Rényi entropy of a bipartition of the system into
two halves scales according to S(n) ∼ c

12 (1 + 1
n ) log ξ , where c

is the central charge of the corresponding CFT [5–7]. In terms
of the brick wall circuits, this translates to the scaling:

S(n) ∼ cλ

12

(
1 + 1

n

)
log (m). (7)

IV. NUMERICAL EVIDENCE OF FINITE-DEPTH SCALING

In this section, we numerically verify the finite-depth scal-
ing discussed in the previous section for two different critical
points. We consider the transverse-field Ising model with an
additional symmetry-preserving term −KZiZi+1, which has
central charge c = 1

2 , and the XXZ model with central charge
c = 1 as examples. Furthermore, we try to extract a numerical
value for λ, which only appeared as an unknown constant until
now.
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FIG. 4. Finite-depth scaling of the magnetization at the critical
point of the Ising model with an additional −KZiZi+1 term. The
Hamiltonian of the system is H = ∑

i(−XiXi+1 + gZi − KZiZi+1).
For each value of K , the strength of the transverse field g is tuned
such that the model is critical—see Eq. (9). The blue dots show the
magnetization of the circuit for different parameters; the solid blue
lines show the results of fitting the expected power law in Eq. (6)
to the data. From the fitted values, we obtain an average value of
λM = 0.938 ± 0.005; for more details, see Appendix A. Inserting
this value for λ into Eq. (6) yields the orange dashed line.

A. Quantum Ising model

First, let us look at the transverse-field Ising model with the
additional −KZiZi+1 term. The Hamiltonian then reads

H =
∑

i

−XiXi+1 + gZi − KZiZi+1. (8)

As the added term respects the symmetry of the Ising model,
varying the parameters g and K still leads to a phase transition
between a symmetry-broken and a symmetric phase, whose
universal exponents and central charge are that of the Ising
transition. The critical points we will be considering lie at the
following parameter pairs [49]:

K 0.0 0.1 0.2 0.3 0.4 0.5
g 1.000 0.835 0.680 0.538 0.409 0.295. (9)

Let us take a look at the order parameter of the transition,
which in this case is just the magnetization 〈Xi〉. According
to Eq. (6), we expect the magnetization at the critical point to
follow the power law 〈M〉 ∼ m−λβ/ν . This behavior is shown
in Fig. 4. The blue dots show the magnetization of the circuit
for increasing circuit depth, and the different colors indicate
the different critical points. The solid blue lines show the
results of fitting a power law to the data, where the data points
for a single layer have been excluded from the fit because the
circuit is too shallow. We can see that, for every choice of K ,
the data points follow the power law nicely. More importantly,
we can see that all the lines have the same slope, which is
expected as all models have the same universal exponents.
We can now extract λ from the observed power law, as the
values for the universal exponents are known for the Ising
model—they are β = 1

8 and ν = 1. This gives an average
value of λM = 0.936 ± 0.006, which is close to the maximum
possible value of λ = 1. For more details on how we obtained
the values of λ and their uncertainties, see Appendix A.

We now turn to the finite-depth scaling of the entanglement
entropy. The von Neumann entropy scales as S ∼ cλ

6 log m
according to Eq. (7), where the central charge c = 1

2 for the
Ising model. Figure 5(a) shows the scaling behavior of the
von Neumann entropy in the brick wall circuits for the Ising
model. The blue dots show the average von Neumann entropy
of a bipartition of the infinite circuit into two halves—once
partitioned between two unit cells and once partitioned within
a single unit cell—for the different critical points. The solid
blue lines show the results of fitting the expected logarithmic
scaling to the data, where again the data points for a single
layer have been excluded as outliers from the fit because the
circuit is too shallow. The data points all lie on a straight line
in the figure, in accordance with the scaling relation in Eq. (7).
Moreover, Eq. (7) requires that all critical points exhibit a scal-
ing with the same slope; this can also be seen to be fulfilled
by the data in the figure. From the slope, we can calculate the
value for λ, using c = 1

2 for the Ising model, whose average
comes out to be λS = 0.824 ± 0.006. This result is close to
but notably smaller than the value for λM obtained from the
magnetization before.

We can compare the entanglement scaling we found for
infinite systems to the entanglement scaling of finite systems
considered in Ref. [31]. In the finite-depth regime in finite
systems, the size of the light cone is small compared with
the system size. Consequently, we expect to find the same
values for the logarithmic scaling in the finite-depth regime
as for the infinite circuits. We can calculate λ from the fitted
data presented in Ref. [31] for the Ising model and obtain
λ = 0.78 ± 0.24. Within the uncertainty, this agrees with our
result.

B. XXZ model

Let us now consider the XXZ model, whose Hamiltonian
reads

H =
∑

i

XiXi+1 + YiYi+1 + 
ZiZi+1. (10)

The parameter 
 controls the strength of the anisotropy in this
model. For −1 < 
 � 1, the XXZ model is critical and can
be described as a Luttinger liquid [50]. It has a central charge
c = 1 [3].

Figure 5(b) shows the scaling of the von Neumann entropy
in the XXZ model. As before for the Ising model, the blue
dots show the half-chain von Neumann entropy of the circuit,
and the solid blue lines show the results of fitting the expected
logarithmic behavior to the data, excluding data points for a
single layer as outliers. Note that, compared with the Ising
model in Fig. 5(a), the entanglement entropy now has much
larger values; this is because the central charge is now twice
as large. The data points follow the expected logarithmic be-
havior closely, and all the slopes of the blue lines are about the
same. This again conforms well with the behavior described
by Eq. (7). Using c = 1, we can calculate λ from the fitted
values—this gives an average of λS = 0.834 ± 0.024. The
obtained result is very close to the value of λS obtained for the
Ising model; however, in general, we do not expect models
with different central charges to have the same value for λ.
We can compare our result for the scaling of entanglement
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FIG. 5. Finite-depth scaling of the entanglement entropy in (a) the Ising model with an additional −KZiZi+1 term and (b) the XXZ model.
The Hamiltonian of the Ising model with an additional −KZiZi+1 term is given in Eq. (8) and the parameters pairs in Eq. (9); the Hamiltonian of
the XXZ model is given in Eq. (10). The blue dots show the von Neumann entropy of a bipartition of the infinite circuit; the solid blue lines show
the results of fitting the expected logarithmic behavior in Eq. (7) to the data. From the fitted values, we obtain an average (a) λS = 0.826 ± 0.004
for the Ising model and (b) λS = 0.834 ± 0.024 for the XXZ model; for more details, see Appendix A. The orange dashed lines show the
logarithmic scaling with their respective values λS .

entropy to the scaling found in Ref. [31] in the finite-depth
regime for the finite-size XXZ model. Calculating λ from the
fitted data, we obtain λ = 0.72 ± 0.48. This agrees with our
findings within the uncertainty.

V. DISCUSSION

We have introduced brick wall circuits as a variational
ansatz to represent ground states of infinite systems. By con-
sidering the transverse-field Ising model as an example, we
have seen that, despite its simple structure, the circuit can
capture relevant features of a phase transition. In this exam-
ple, we have also seen that the point of the phase transition
shifts with increased circuit depth—reminiscent of the finite-
entanglement scaling in MPSs.

Based on these observations, we adapted the finite-
entanglement scaling relations for MPSs to the finite-depth
scaling of the brick wall circuits, introducing the parame-
ter λ that controls how the correlation length of the circuit
scales with its depth, i.e., ξm ∼ mλ. We then examined the
scaling behavior numerically on variations of the transverse-
field Ising model and the XXZ model and found that the
finite-depth scaling accurately describes the observed behav-
ior. From these numerical examples, we could extract values
for λ: from the scaling of the order parameter at the Ising
transition, we obtained λ

Ising
M = 0.938 ± 0.005, and from the

scaling of the entropy, we obtained λ
Ising
S = 0.826 ± 0.004

for the Ising model and λXXZ
S = 0.834 ± 0.024 for the XXZ

model. An open question remains: Why is there a discrepancy
between λ

Ising
M and λ

Ising
S ? Also, even though λ

Ising
S and λXXZ

S
are very close, in general, we expect λ to depend on the central
charge of the model, as is the case for the finite-entanglement
scaling of MPSs [23,24]. How to describe this dependence
more precisely is another open question.

Generally, the scaling relations we have studied here can
be used to extrapolate information about the exact state from
approximations with a finite-depth circuit. Once the value
of λ is known, these relations can also be used to extract
critical exponents or the central charge of a system. For that,

we would require an analytical formula for λ—just like in
the case of finite-entanglement scaling for MPSs. There, a
similar relation ξχ ∼ χκ exists, relating the bond dimension
of the MPS to its correlation length at the critical point, and
an analytical derivation for the value of κ has been given in
Refs. [24,25].

An interesting task is the generalization of brick wall cir-
cuits to two dimensions, as that is where conventional tensor
network methods struggle. The structure of the brick wall cir-
cuit can be straightforwardly adapted to two dimensions while
keeping its light cone. It would therefore be interesting to see
whether the scaling relations discussed here carry over to the
two-dimensional case. In the near future, brick wall circuits
might thus be a tool to study critical quantum many-body
systems in two dimensions.
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APPENDIX A: OBTAINING VALUES FOR λ

In Sec. IV, we presented numerical evidence for the finite-
depth scaling of a brick wall circuit and obtained numerical
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TABLE I. The values of λ obtained from fitting the finite-depth
scaling of the magnetization at the critical point of the Ising model
with an additional −KZiZi+1 term for different values of K . The
Hamiltonian is given in Eq. (A1); g is chosen such that the model
is critical—see Eq. (A2). The uncertainty of λ is calculated from the
uncertainty of the parameters of the fit. The mean value of λ is given
by λ = 0.938 ± 0.005, where the uncertainty is given by the standard
error of the mean.

K λ

0.0 0.949 ± 0.006
0.1 0.951 ± 0.006
0.2 0.942 ± 0.007
0.3 0.936 ± 0.010
0.4 0.928 ± 0.018
0.5 0.923 ± 0.014

values for the parameter λ. Here, we will discuss in more de-
tail how these values were obtained and how their uncertainty
was calculated.

First, we consider the scaling of the magnetization at
critical points of the Ising model with an additional symmetry-
preserving term, corresponding to Fig. 4. As a reminder, the
Hamiltonian of the model is

H =
∑

i

−XiXi+1 + gZi − KZiZi+1, (A1)

and the parameter pairs of the critical points we consider are
the following:

K 0.0 0.1 0.2 0.3 0.4 0.5
g 1.000 0.835 0.680 0.538 0.409 0.295.

(A2)

For each of those critical points we optimized circuits with
up to eight layers to approximate the ground state. Calculat-
ing the magnetization 〈M〉 = 1

2 〈Xi + Xi+1〉, where we average
over the two sites in the unit cell, yields the data points.
According to Eq. (6), we expect the magnetization to follow
the scaling behavior:

〈M〉 ∼ m−λβ/ν, (A3)

where the critical exponents ν = 1 and β = 1
8 are known for

the Ising phase transition. For every critical point, we can now
fit a function of the form a · m−b to the data and calculate
λ = ν

β
b. The uncertainties of the parameters a and b of the

fit can be obtained as the square root of the diagonal entries of
their covariance matrix [51] and can be propagated to λ. Doing
this, we obtain the values given in Table I. The final value
for λM = 0.938 ± 0.005 we give in the main text is obtained
by calculating the average of all values of λ obtained for the
different parameter pairs, and the uncertainty is given by the
standard error of the mean. In contrast to the uncertainty in
Table I, which loosely speaking shows how good the fitted
function describes the data points, the small standard error of
the mean shows that the obtained values of λ are all almost the
same.

Next, we consider the scaling of the von Neumann entropy
of the Ising model as presented in Fig. 5(a). The von Neumann

TABLE II. The values of λ obtained from fitting the finite-depth
scaling of the von Neumann entropy at the critical point of the Ising
model with an additional −KZiZi+1 term for different values of K .
The Hamiltonian is given in Eq. (A1); g is chosen such that the model
is critical—see Eq. (A2). The uncertainty of λ is calculated from the
uncertainty of the parameters of the fit. The mean value of λ is given
by λ = 0.826 ± 0.004, where the uncertainty is given by the standard
error of the mean.

K λ

0.0 0.826 ± 0.017
0.1 0.837 ± 0.009
0.2 0.837 ± 0.008
0.3 0.824 ± 0.011
0.4 0.822 ± 0.016
0.5 0.809 ± 0.011

entropy should follow the scaling in Eq. (7), i.e.,

S ∼ cλ

6
log (m), (A4)

with c = 1
2 for the Ising transition. For every choice of param-

eters, we can now fit a function of the form a · log(m) + b to
the data and calculate λ = 6

c a. The results of this are listed
in Table II where, as before, the uncertainty stems from the
uncertainty in the fitted parameters. Calculating the average
of all obtained values comes out to be λS = 0.826 ± 0.004,
where the uncertainty is given by the standard error of the
mean.

Finally, we consider the XXZ model with the Hamiltonian:

H =
∑

i

XiXi+1 + YiYi+1 + 
ZiZi+1. (A5)

The critical points we considered in the main text
are 
 ∈ {−0.75,−0.50,−0.25, 0.00, 0.25, 0.50, 0.75, 1.00}.
The scaling of the von Neumann entropy is shown in Fig. 5(b).
As for the Ising model, the von Neumann entropy should
follow the scaling in Eq. (7):

S ∼ cλ

6
log(m), (A6)

only that now the central charge takes a different value, c =
1. As before, we can fit a logarithmic function a · log(m) + b
to the data and calculate λ = 6

c a for every choice of 
. The
results are shown in Table III, where the uncertainty stems
from the fitted parameters. The mean value and the standard
error of the mean are λS = 0.834 ± 0.024.

APPENDIX B: OBTAINING DATA FROM THE IBM
QUANTUM COMPUTERS

In Sec. II, we considered the phase transition of the
transverse-field Ising model as an example to use brick wall
circuits to approximate the ground state of a given model. We
looked at the magnetization and the entanglement entropies
(see Figs. 2 and 3) to observe the transition. For these two
observables, we also presented some data that were obtained
on the IBM quantum computers [46]. First, we discuss how
we measured the magnetization to obtain the data presented
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TABLE III. The values of λ obtained from fitting the finite-depth
scaling of the von Neumann entropy at the critical point of the XXZ
model for different values of 
. The Hamiltonian is given in Eq. (10).
The uncertainty of λ is calculated from the uncertainty of the param-
eters of the fit. The mean value is given by λ = 0.834 ± 0.024, where
the uncertainty is given by the standard error of the mean.


 λ

−0.75 0.68 ± 0.03
−0.50 0.82 ± 0.04
−0.25 0.85 ± 0.03

0.00 0.88 ± 0.03
0.25 0.82 ± 0.02
0.50 0.85 ± 0.04
0.75 0.87 ± 0.04
1.00 0.90 ± 0.04

in Fig. 2 and introduce the error mitigation techniques we use.
Then we present several ways for measuring Rényi entropies
of brick wall circuits on a quantum computer and discuss how
we obtained the data presented in Fig. 3.

1. Measuring the magnetization

The magnetization 〈M〉 = 1
2 〈Xi + Xi+1〉 of a three-layer

brick wall circuit can be measured with the circuit shown
in Fig. 6. The circuit consists of two parts. The first part
comprises the blue gates, which make up the light cone of
the circuit. The remaining gates of the infinite circuit do not
contribute to the measurement and, as the circuit is invari-
ant under translations by an even number, the magnetization
does not depend on which two neighboring sites are chosen.
To measure the magnetization of circuits with circuit depths
other than m = 3, the light cone simply needs to be adjusted
accordingly. The second part of the circuit consists of the
two Hadamard gates followed by measurements on the central
two qubits. The Hadamards rotate the qubits into the X basis,
so that the subsequent measurement can be used to calculate
the expectation value of the Pauli-X operator. Denoting the

FIG. 6. The circuit used to measure the magnetization 〈M〉 =
1
2 〈Xi + Xi+1〉. The circuit consists of all the gates of the brick wall
circuit that fall within the light cone. Then two Hadamard gates are
applied on the central qubits to rotate them into the X basis, after
which the measurement is performed on the two qubits.

number of shots on the quantum computer as N , the number
of times we measure |00〉 as n00 and the number of times we
measure |11〉 as n11, the magnetization can be obtained as
〈M〉 = n00−n11

N . Note that the average magnetization for each
of the results |01〉 and |10〉 is zero.

To obtain the results shown in Fig. 2, we ran the circuit
with one and five layers on the IBM quantum computer named
montreal. For each data point in the figure, we ran the circuit
42 times in succession, with 8192 shots per run. This gives us
a total of 344064 shots, which is more shots than the IBM
quantum computer allows in a single run.

Following the measurement, we can correct the raw data
from the quantum computer for two errors, namely, readout
errors and global depolarizing errors. First, let us consider
readout errors. These errors are bit-flip errors that occur when
the qubit is measured and assigned the wrong output to the
classical bit. A simple way to mitigate this error is readily
implemented in QISKIT [47]. This consists of constructing a
readout matrix that gives the probability of measuring a given
basis state as another basis state by running a calibration
circuit on the quantum computer, which prepares every basis
state. Then we can apply an appropriate pseudo-inverse of
this readout matrix to the measurement outcome of the real
experiment to correct for the average readout error.

We also correct the data from the quantum computer for
global depolarizing errors, as outlined in Ref. [48]. The basic
idea is that the state prepared on the quantum computer is
not described by the density matrix ρ0 of the applied circuit
but instead—due to global depolarizing errors—by the density
matrix ρ̃ = (1 − p)ρ0 + p

2N I; here, p denotes the strength of
the deviation from the expected density matrix, I is the iden-
tity matrix, and N is the number of qubits. When measuring
an observable O on the quantum computer, we obtain the
expectation value with respect to the perturbed density matrix
ρ̃, i.e.,

Tr(Oρ̃ ) = (1 − p)Tr(Oρ0) + p

2N
TrO. (B1)

Thus, if we were to know p, then we could deduce the expec-
tation value with respect to the unperturbed density matrix as

Tr(Oρ0) = Tr(Oρ̃ ) − p
2N TrO

(1 − p)
. (B2)

In practice, p can be calculated from a measurement where
the expected outcome is known. Then for measurements
with a similar circuit setup, p can be assumed to be the
same. In our case, the observable O is the magnetization
M = 1

2 (Xi + Xi+1), which is traceless, and hence, Eq. (B1)
simply becomes

Tr(Mρ̃ ) = (1 − p)Tr(Mρ0). (B3)

Using this relation, we can calculate p for one value of g where
the expected magnetization is known and then correct the data
for all other values of g. An obvious choice to calculate p
would be for g = 0 because, there, it is known that the circuit
has magnetization 〈M〉 = 1. However, at that point, the circuit
consists only of single-qubit gates and thus has a different
structure from the circuit for other values of g, leading to a
different value for p. Since we already know the results for

033118-8



FINITE-DEPTH SCALING OF INFINITE QUANTUM … PHYSICAL REVIEW RESEARCH 4, 033118 (2022)

the magnetization from simulating the circuits on a classical
computer, we could in principle choose any other value of g
to calculate p. Here, we choose g = 0.1 which corresponds
to the second data point in Fig. 2. Note that the perturbation

p
2N I of the expected density matrix cannot produce a nonzero
magnetization and thus cannot be the reason the magnetiza-
tion deviates from zero if the expected value would be zero.
Therefore, we can only apply this mitigation scheme in the
regime where the magnetization is nonzero.

2. Measuring Rényi entropies of brick wall circuits

In this section, we present three different ways to measure
the Rényi entropies of a bipartition of the infinite brick wall
circuit into two halves. We also give more details about how
we obtained the data presented in Fig. 3. As a reminder, the
Rényi entropy of order n is defined as S(n) = 1

1−n log Trρn,
where ρ is the reduced density matrix of the subsystem, so
in our case ρ is the reduced density matrix of one half of the
infinite state. All methods we present here will give some way
to calculate Trρn on the quantum computer.

The first approach is to directly calculate Trρn on the quan-
tum computer by contracting the density matrices. Consider a
brick wall circuit that is partitioned into two parts, as shown
in Fig. 7. The left half of the circuit is colored orange, and
the right half of the circuit is colored blue. By contracting the
outgoing quantum wires of the circuit in the blue half with
those of the conjugate circuit, we obtain the reduced density
matrix ρ of the orange half, which is indicated by the curly
brace. Taking two copies of the reduced density matrix and
contracting them as shown in the figure yields Trρ2. We can
calculate Trρn for any integer n this way, by contracting n
copies of the reduced density matrix. The expression shown
in Fig. 7 can be further simplified by canceling every unitary
gate that is contracted with its adjoint, leaving behind only
the light cones along every cut of the bipartition into two
halves. Reordering the remaining circuit blocks, we arrive at
the circuit in Fig. 8. This circuit can be run directly on the
quantum computer. Note that Ref. [34] already pointed out, in
the context of numerical MPS calculations, that the reduced
density matrix of the circuit can be written this way in terms of
its gates. This method can be used to directly compute Trρn on
a quantum computer. To obtain the Rényi entropy, we simply
run the circuit N times and count the number of times n0 that
all qubits are in the |0〉 state after the measurement. Then the
Rényi entropy is given by

S(n) = 1

1 − n
log

√
n0

N
. (B4)

The data shown for the second Rényi entropy in Fig. 3
in the main text were obtained using the method described
above. For each data point in the figure, we ran the circuit on
the IBM quantum computers named montreal and hanoi.
On montreal, we ran each circuit 42 times in succession with
32000 shots each run, giving the equivalent of 1344000 shots.
On hanoi, we ran each circuit 14 times in succession with
100000 runs shots per run, giving the equivalent of 1400000
shots. We did this procedure four times on montreal and
twice on hanoi; the average of the six results is presented in

FIG. 7. Calculating Trρ2 for one half of an infinite brick wall
circuit. The brick wall circuit is partitioned into two halves, the left
half shown in orange and the right half shown in blue. Contracting
the outgoing quantum wires in the blue half with those of the con-
jugate circuit gives the reduced density matrix ρ of the orange half,
indicated in the figure by the braces. Contracting the two copies of
the density matrix gives Trρ2. To calculate Trρn for any integer n,
one can simply add more copies of the density matrix.

Fig. 3; the error bars show the standard error of the mean. The
data are also presented in Fig. 9 in orange. Additionally, data
for the other two methods we will discuss in this section are
shown in red and green. The exact results from simulating the
circuit on a classical computer are shown in blue.

The raw data from the quantum computer are corrected for
readout errors [47] and global depolarizing errors [48]. For the
readout error correction, the same technique is applied as was
previously used for the measurement of the magnetization.
The correction of global depolarizing errors follows the same
ideas as before but needs to be slightly adapted. Since we
are counting the number of times that the final state after
the measurement is |0 . . . 0〉, we are essentially measuring the
operator O = |0 . . . 0〉〈0 . . . 0|. With this, Eq. (B1) becomes

〈0 . . . 0|ρ̃|0 . . . 0〉 = (1 − p)〈0 . . . 0|ρ0|0 . . . 0〉 + p

2N
. (B5)
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FIG. 8. Simplified circuit for calculating Trρ2 for one half of
an infinite brick wall circuit. Simplifying the circuit in Fig. 7 by
canceling unitary gates with their adjoints and arranging the gate
blocks differently, we arrive at the above circuit. This circuit can be
run on a quantum computer.

Note that, here, ρ0 refers to the density matrix of the state
prepared on the quantum computer before the final measure-
ment and not to the reduced density matrix ρ of a bipartition
of the brick wall circuit. From the above relation, we can
calculate p for g = 0.1 and then correct the results for every
other value g > 0.1. For g = 0, the state only consists of single
qubit gates, and no mitigation of global depolarizing errors is
needed.

FIG. 9. Comparing different ways to measure the second Rényi
entropy. We consider the second Rényi entropy of a single-layer brick
wall circuit approximating the ground state of the transverse-field
Ising model H = ∑

i(−XiXi+1 + gZi )—see also Fig. 3(b). The solid
blue line shows the result from simulating the circuit on a classical
computer. The orange data points were obtained by using a circuit
that contracts the reduced density matrices, the red data points were
obtained via inversion symmetry, and the green data points were
obtained via state tomography. For more details on the different
methods, see the main text. The error bars are the standard error of
the mean of several runs.

FIG. 10. Calculating Trρ2 via inversion symmetry, as discussed
in Ref. [52]. The inversion symmetry is applied to the blue part
of the circuit, which is long enough so that the light cones of the
edges, shown as orange dashed lines, do not overlap. The two edges
are therefore decoupled, and the resulting Rényi entropy is precisely
twice that of the infinite half-chain entropy.

Another way to calculate the second Rényi entropy is given
in Ref. [52]. If a state is inversion symmetric, then applying
the inversion symmetry to a large region of the state yields
±Trρ2, where ρ is the reduced density matrix of that region,
and the sign is related to the topological phase of the state.
For a brick wall circuit, this situation is shown in Fig. 10.
There, the inversion symmetry is applied to the central region
colored in blue. Note that, instead of a bipartition into two
halves with a single boundary between the two regions, we
now have a bipartition into two regions with two boundaries.
To obtain the entropy of a single boundary, we must make
the region the inversion symmetry is applied to large enough
such that the light cones of its boundaries do not overlap—as
is shown in the figure. Then the boundaries decouple, and the
entropy obtained from the circuit is just twice that of a single
boundary. Thus, on the quantum computer, we can run the
circuit N times and count the number of times n0 that the state
after the measurement is |0 . . . 0〉, to obtain the second Rényi
entropy:

S(2) = −1

2
log

√
n0

N
. (B6)

The factor 1
2 appears to account for the two boundaries.

The data from this method are presented as red squares in
Fig. 9. To obtain the data, we ran the circuits on the IBM quan-
tum computers named montreal and hanoi. On montreal,
each circuit ran 42 times in succession with 32000 shots
each run, giving the equivalent data of a run with 1344000
shots. On hanoi, each circuit ran 14 times in succession with
100000 shots per run, giving data equivalent to a run with
1400000 shots. We did this procedure four times on montreal
and twice on hanoi; the average of the six results is presented
in Fig. 9; the error bars show the standard error of the mean.
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FIG. 11. The light cone of the brick wall circuit needed for state
tomography. Performing state tomography on the left half of the
circuit colored in orange yields a density matrix that can be used
to calculate the half-chain entanglement entropy of the infinite state.

Again, we corrected the raw data from the quantum com-
puter for readout errors [47] and global depolarizing errors
[48] with the same methods as before. Equation (B1) for the
correction of global depolarizing errors becomes

〈0 . . . 0|ρ̃|0 . . . 0〉 = (1 − p)〈0 . . . 0|ρ0|0 . . . 0〉 + p

2N
, (B7)

from which we can calculate p for g = 0.1 and then can
correct the data for all data points with g > 0.1.

Finally, we can also obtain the reduced density matrix by
state tomography. This is a procedure that is readily imple-
mented in QISKIT [47]. State tomography performs a set of
measurements in different bases on a subset of qubits of the
state and then can reconstruct the reduced density matrix of
the subsystem. The number of different measurements needed
scales exponentially with the size of the subsystem on which
state tomography is performed, so it becomes too costly for
very large subsystems. However, for small systems, this works
very well. To calculate the half-chain Rényi entropy of a brick
wall circuit with state tomography, it is enough to consider
the light cone of the circuit along the cut into two subsystems,
as shown in Fig. 11. This is because, for calculating the Rényi
entropy of the state, we do not actually need the density matrix
ρ of the half-infinite state; the reduced density matrix ρ ′ of
the orange half of the light cone in Fig. 11 suffices. When
calculating Trρn (see Fig. 7 for an example with n = 2), all
gates in the blue half that are not part of the light cone cancel
with the adjoint of the state after tracing out the blue half of
the state, and all gates in the orange half that are not part of
the light cone cancel with the adjoint gates of the copy of ρ.
After the cancellation, only the light cones remain, and we
effectively calculate Trρ ′n (see Fig. 8 for an example with
n = 2). Thus, performing state tomography on the orange
subsystem in Fig. 11 yields a density matrix ρ ′ that we can

use to calculate the nth order Rényi entropy:

S(n) = 1

1 − n
log Trρ ′n, (B8)

which gives the same result for the entropy as the reduced
density matrix ρ of the half-infinite state. Note, however, that
in general ρ ′ 
= ρ, and so calculating other observables with
the reduced density matrix obtained from state tomography
will yield different results.

We show the results of state tomography in Fig. 9 along
with data from the previously discussed methods. To obtain
these results, we ran the tomography circuits on the IBM
quantum computer montreal six times, with 32000 shots for
each measurement. The data shown are the mean of the six
runs, with the error bars showing the standard error of the
mean.

The data from the quantum computer are, as before, cor-
rected for readout errors [47] and global depolarizing errors
[48], as discussed before. The method for correcting global
depolarizing errors needs to be adapted slightly to the case
at hand. Remember that, instead of the density matrix of the
circuit ρ0, on the quantum computer, we actually construct
the perturbed density matrix ρ̃ = (1 − p)ρ0 + p

2N I—hence,
ρ̃ is the density matrix that will be reconstructed by state
tomography and not ρ0. Calculating Trρ̃2, which we need to
get the second Rényi entropy, we obtain the relation:

Trρ̃2 = (1 − p)2Trρ2
0 + p

2N−1
− p2

2N
. (B9)

From this relation, we can again calculate p for g = 0.1 and
subsequently obtain the unperturbed Trρ2

0 from the data ob-
tained on the quantum computer for all g > 0.1 by assuming
a constant p.

Another way to measure Rényi entropies that we have not
yet considered so far is to use randomized measurements
[53–57]. From the statistical correlations of measurements
after applying random unitary gates to a subsystem, the Rényi
entropies can be inferred. Like state tomography, it would be
enough to consider the light cone of the circuit in Fig. 11
to obtain the infinite-half chain entanglement entropy, but
instead of performing state tomography on the orange half
of the system, we could apply random unitaries before the
measurement.

Note that all methods we have presented for measuring
Rényi entropies, as well as the data presented in Fig. 9, im-
plied that we cut the circuit into two parts within the unit cell.
All presented methods work analogously for the case where
we cut the circuit into two parts between two unit cells. This
leads effectively to considering the circuit with its final layer
removed and cutting that circuit within its unit cell.
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