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Abstract

We study the dynamics of a one-dimensional Rydberg lattice gas under facilitation (anti-
blockade) conditions which implements a so-called kinetically constrained spin system.
Here an atom can only be excited to a Rydberg state when one of its neighbors is already
excited. Once two or more atoms are simultaneously excited mechanical forces emerge,
which couple the internal electronic dynamics of this many-body system to external vi-
brational degrees of freedom in the lattice. This electron-phonon coupling results in a
so-called phonon dressing of many-body states which in turn impacts on the facilitation
dynamics. In our theoretical study we focus on a scenario in which all energy scales
are sufficiently separated such that a perturbative treatment of the coupling between
electronic and vibrational states is possible. This allows to analytically derive an effec-
tive Hamiltonian for the evolution of clusters of consecutive Rydberg excitations in the
presence of phonon dressing. We analyze the spectrum of this Hamiltonian and show —
by employing Fano resonance theory — that the interaction between Rydberg excitations
and lattice vibrations leads to the emergence of slowly decaying bound states that inhibit
fast relaxation of certain initial states.
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1 Introduction

In the past decades there has been a tremendous progress in the study of dynamical properties
of complex quantum many-body systems with cold atoms [1–3]. A significant role has been
played by Rydberg gases, in which atoms are excited to high-lying and strongly interacting
states [4–19]. Thanks to the strong state-dependent interactions between Rydberg excita-
tions, Rydberg gases constitute an ideal experimental platform for the implementation and
simulation of so-called kinetically constrained quantum systems [20–23]. The phenomenol-
ogy of such systems has been recently explored in several experiments involving bulk Rydberg
gas clouds [24] or reconfigurable optical tweezer arrays [25–27]. The results observed in
these experiments can be theoretically explained by the presence of a reduced connectivity
between different configurations in the Hilbert space [28–31]. Being first introduced for the
study of kinetic aspects in classical glassy systems [32], kinetically constrained systems have
been shown to possess peculiar dynamical properties [33–36], in relation to nucleation and
growth processes [37–39], the emergence of non-equilibrium phase transitions [40,41], local-
ization [42–44] and the absence of relaxation and thermalization in general [45–48].

In this work we analyze the influence of lattice vibrations on the dynamics of a kinetically
constrained one-dimensional Rydberg lattice gas. We focus on the so-called facilitation con-
straint, in which one Rydberg atom is favoured to (de)excite if only one neighboring Rydberg
atom is already excited [49–52]. Being held in harmonic traps, the atoms are subject to lat-
tice vibrations which couple to Rydberg excitations. This results in a phonon dressing [53]
that affects the properties of the facilitation dynamics [54]. Throughout, we consider a pa-
rameter regime where the different energy scales involved in the problem are well separated.
This allows us to employ a perturbative expansion in terms of the coupling constant between
the Rydberg excitations (represented by effective spin degrees of freedom) and the phonon
modes. By integrating out the phonon degrees of freedom, we derive an effective Hamiltonian
describing the dynamics of phonon dressed clusters of consecutive Rydberg excitations. We
investigate its energy spectrum and study the dynamics of phonon dressed Rydberg clusters.
By using Fano resonance theory, we show that phonon dressing leads to a reduced mobility
of some cluster configurations which is caused by the emergence of bound states. This ef-
fect can be observed in the dynamics of the (Rydberg atom) density making it detectable in
experiments.
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Figure 1: Setting and structure of constrained Hilbert space: (a) The system we
consider consists of a one-dimensional lattice of N harmonic traps with harmonic
frequencyω. The chain is orientated in x-direction and the spacing between adjacent
traps is a0. Each of the traps contains a single atom. The position of the center of
the trap containing the i-th atom is denoted with x0

i , while the displacement of the
atom position from the respective trap center is δx i . (b) Each atom is modeled as
a two-level system, in which the states |↓〉 and |↑〉 represent the ground state and
the (Rydberg) excited state, respectively. The atoms are excited with a laser with
Rabi frequency Ω and detuning ∆. The facilitation constraint is established when
∆+VNN = 0, where VNN denotes the interaction between two adjacent atoms in their
respective equilibrium positions. (c) For Ω� ∆, a kinetically constrained dynamics
is implemented, which takes place between resonant states. The constraint manifests
in a reduced connectivity between states in the Hilbert space: starting from an initial
single excitation, clusters of adjacent Rydberg excitations are formed. Such states
are described in terms of two coordinates, c and r, labeling the position of the center
of mass and the number of excitations, respectively. Clusters containing at least two
Rydberg excitations feature mechanical forces that act on the atoms on the edges of
the excitation clusters (indicated by green arrows).

2 One-dimensional Rydberg lattice gas

We consider a one-dimensional chain of N traps, separated by a nearest-neighbor distance
a0 and each being loaded with a single atom, as shown in Fig. 1. The electronic struc-
ture of each atom is described via a two-level system (effective spin 1/2 particle), with the
state |↑〉 denoting the excited Rydberg state and the state |↓〉 representing the ground state.
Two atoms in the Rydberg state, located at sites j and k, interact via a power-law potential
V (r j , r k) = V (|r j − r k|) = V (r j,k) = Cγ r−γj,k . Here γ = {3,6}, depending on the type of inter-
action (dipole-dipole or van der Waals) [3]. The Hamiltonian of the full system is given by

H =
N
∑

j=1

 

Ω

2
σ̂x

j +∆n̂ j +
∑

k< j

V (r j , r k)n̂ j n̂k +ωa†
j a j

!

, (1)

where Ω is the Rydberg excitation laser Rabi frequency, σ̂x = |↑〉 〈↓| + |↓〉 〈↑| is the spin flip
operator, n̂= |↑〉 〈↑| projects onto the up state, ∆ is the laser detuning from the atomic transi-
tion frequency and ω is the trap frequency. The operators a†

j and a j are the phonon creation
and annihilation operators at site j. These are defined with respect to the displacement of the
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position r j of the j-th atom, from the center of the respective trap r 0
j : δr j = r j−r 0

j . Although
in principle δr j is a vectorial quantity it is sufficient to consider only the phonon dynamics in
x-direction, i.e. parallel to the chain. Then the fluctuations around the equilibrium positions

are given in terms of bosonic operators as δx j =
q

ħh
2mω(a

†
j + a j). This approximation relies

on the fact that, if |δr j| � a0, which we assume throughout, the potential can be expanded
around the equilibrium positions and approximated to leading order as

V (r j , r k)' V (r 0
j , r 0

k) +∇V (r j , r k)|(r 0
j ,r

0
k)
· (δr j ,δr k) .

Since the interaction only depends on the relative distance between the atoms,
V (r j , r k) = Cγ r−γj,k , the gradient reads

∇ V (r j , r k)
�

�

(r 0
j ,r

0
k)
= −

γCγ

rγ+1
j,k

(r̂ j,k,−r̂ j,k)

�

�

�

�

�

(r 0
j ,r

0
k)

,

where r̂ j,k =
r j−r k

|r j−r k|
is the unit vector connecting the atom k to the atom j. The gradient of

the potential evaluated at (r 0
j , r 0

k) has non-vanishing terms only in the x-components. Thus
the only non zero component of the gradient is the one along the longitudinal direction. The
expansion of the potential is then given by

V (r j , r k)' V (r 0
j , r 0

k)−
γCγ

|x0
j − x0

k |γ+1
(δx j −δxk)

= V (r 0
j , r 0

k)−
γCγ

aγ+1
0

√

√ ħh
2mω

�

a†
j + a j − a†

k − ak

�

. (2)

This expansion makes it evident that a simultaneous excitation of two atoms to the Rydberg
state effectuates a coupling between the internal (electronic) and external (vibrational) de-
grees of freedom of the facilitated Rydberg chain.

3 Facilitated Rydberg dynamics

3.1 Hamiltonian of a single Rydberg cluster

We focus on the situation in which the dynamics of the system is subject to the facilitation
constraint. This is achieved when the laser detuning ∆ cancels out the interaction between
two adjacent atoms, VNN = V (r 0

j , r 0
j+1) in their respective equilibrium positions (∆+VNN = 0),

as depicted in Fig. 1. Moreover, we assume that the next-nearest-neighbor interaction is small
compared to the detuning, i.e. V (r 0

j , r 0
j+2)� |∆|, and that also the Rabi frequency of the laser

is much smaller than the detuning Ω� |∆|. These conditions lead to a constrained dynamics
owed to the reduced connectivity between many-body states in the Hilbert space, which con-
serves the total number of clusters of consecutive Rydberg excitations in the lattice [55]. For
example, when starting from a single excited Rydberg atom, the following states are connected
(see also Fig. 1): |↓↑↓↓↓ . . .〉⇔ |↓↑↑↓↓ . . .〉⇔ |↓↑↑↑↓ . . .〉⇔ |↓↓↑↑↓ . . .〉⇔ |↓↓↑↑↑ . . .〉⇔ . . . .
This means that a cluster of consecutive excitations can expand or shrink, but cannot (dis)ap-
pear or split. When more than one cluster of consecutive Rydberg excitations is initially
present, these clusters can also not merge.

Throughout this work we focus on a single cluster present in the lattice. In this case it is
convenient to describe that state of a Rydberg cluster as a tensor product of its center of mass
(CM) and relative coordinate

|ψ〉= |c〉 ⊗ |r〉 . (3)
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Introducing these coordinates is particularly advantageous as they allow to reduce the complex
many-body problem to a much simpler two-body problem, thanks to the kinetically constrained
dynamics. Here c labels the position of the CM of the cluster and r denotes the number of
excitations. In a lattice with N sites with periodic boundary conditions, the CM coordinate
can take 2N different values, c = 1

2 , 1, . . . , N (in units of the lattice spacing a0), where half-
integer and integer values refer to CM positions at the middle of a lattice spacing or at a lattice
site respectively. The coordinate r is an integer number between 1 and N − 1, since a cluster
with N excitations is not allowed. According to this notation, for instance, |2〉 |3〉= |↑↑↑↓↓ . . .〉
and |52〉 |2〉= |↓↑↑↓↓ . . .〉, as shown in Fig. 1c.

Given this representation, a state |c〉 |r〉 is resonant with only four other states, provided
that 1 < r < N − 1 (when r = 1 the cluster can only increase, when r = N − 1 the cluster
can only decrease). These are: |c + 1

2〉 |r + 1〉 (the spin to the right of the rightmost excitation
flips up), |c − 1

2〉 |r + 1〉 (the spin to the left of the leftmost excitation flips up), |c − 1
2〉 |r − 1〉

(the rightmost excitation flips down), |c + 1
2〉 |r − 1〉 (the leftmost excitation flips down). Note,

that the CM coordinate and the relative coordinate are not completely independent, as integer
(half-integer) values of the CM position can be paired only with an odd (even) value for the
relative coordinate. Such coupling between the relative and CM degrees of freedom of a cluster
is a consequence of the discreteness of the lattice and does not appear in continuum space.

Using the expansion of the interaction potential, Eq. (2), and the representation in terms of
the CM and relative coordinates, we can write the Hamiltonian of a single cluster of consecutive
Rydberg excitations as

H = Ω
N
∑

c= 1
2

N−2
∑

r=1

��

�

�

�

c +
1
2

·

〈c| ⊗ (|r + 1〉 〈r|+ h.c.) + h.c.

�

(4)

− κ
N
∑

c= 1
2

N−1
∑

r=2

|c〉 〈c| ⊗ |r〉 〈r|
�

a†
c+ r−1

2
+ ac+ r−1

2
− a†

c− r−1
2
− ac− r−1

2

�

+ω
N
∑

j=1

a†
j a j .

The first term is the kinetic energy of the Rydberg cluster, while the second term contains the
coupling between the degrees of freedom of the cluster and the phonons. The constant

κ=

√

√ ħh
2mω

γCγ

aγ+1
0

=
x0p

2

γCγ

aγ+1
0

=
γ
p

2

x0

a0
VNN , (5)

quantifies the strength of this spin-phonon coupling. It depends on microscopic details, such
as the gradient of the interaction potential (which for the power-law potential considered
here can be expressed in terms of the nearest-neighbor interaction VNN) and the harmonic
oscillator length x0 =

p

ħh/(mω). In case of a repulsive potential, that we consider in the
following, Cγ > 0 and therefore κ is a positive constant.

Note that, if a cluster is composed of r consecutive excitations with the leftmost excitation
at site il and the rightmost one at site ir = il + r − 1, then only the phonon operators cor-
responding to the harmonic traps on sites il and ir couple to the cluster degrees of freedom.
Indeed, the sum over all neighboring sites of Eq. (2) gives rise to a telescoping series of the
phonon operators, whose sum is the difference between the operator corresponding to the
position of the rightmost excitation and the one at the leftmost excitation of the cluster, whose
position coordinates can be expressed in terms of c and r.

3.2 Decoupling the relative and center of mass motion of a Rydberg cluster

In the next step we introduce phonon Fourier modes through a j =
1p
N

∑

p Apei jp, with p = 2π
N k

and k = −N−1
2 , . . . ,−1, 0,1, . . . , N−1

2 (for odd N). Expressed in terms of the operators Ap, the
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Hamiltonian reads

H = Ω
N
∑

c= 1
2

N−2
∑

r=1

��

�

�

�

c +
1
2

·

〈c| ⊗ (|r + 1〉 〈r|+ h.c.) + h.c.

�

−
κ
p

N

∑

p

�

2i sin
�

r̂ − 1
2

p
�

ei ĉpAp + h.c.
�

+ω
∑

p

A†
pAp , (6)

where we have also introduced the operators r̂ =
∑N−1

r=1 r |r〉 〈r| (the sum can start from r = 1
thanks to the presence of the sine function) and ĉ =

∑N
c= 1

2
c |c〉 〈c|.

The CM degree of freedom and the phonon modes can now be decoupled by applying the
so-called Lee-Low-Pines (LLP) transformation [56] to Eq. (6), which is implemented through
the unitary operator

U = exp

¨

−i ĉ
∑

p

pA†
pAp − i

π

2

∑

p

A†
pAp

«

.

By introducing the Fourier transform of the CM coordinate, |c〉 = 1p
2N

∑

q eiqc |q〉, where

q = −2π+ 2π
N k with k = 0,1, . . . , 2N −1, the Hamiltonian can be finally be written in a block-

diagonal form as U†HU =
∑

q Hq |q〉 〈q|. Hence, after the LLP and the Fourier transform, the
label q of the CM Fourier modes has become a good quantum number, and the Hamiltonian
Hq governing the evolution within a given q sector is given by

Hq = 2Ω cos

�

1
2

�

q+
∑

p

pA†
pAp

�� N−2
∑

r=1

|r + 1〉 〈r|+ h.c.

−
2κ
p

N

∑

p

�

sin
�

r̂ − 1
2

p
�

�

Ap + A†
p

�

�

+ω
∑

p

A†
pAp . (7)

3.3 Effective Hamiltonian in the phonon dressing regime

In the following we will integrate or trace out the phonons, in order to obtain an effective
phonon dressed facilitation dynamics of a Rydberg cluster. To this end we apply the unitary
displacement operator

D̂ = exp

�

∑

p

ŜpA†
p − ŜpAp

�

(8)

to Hamiltonian (7). Here

Ŝp =
2κ

ω
p

N
sin
�

r̂ − 1
2

p
�

(9)

is an hermitian operator that depends on the phonon momentum p. Under the application
of the unitary D̂, each phonon annihilation operator gets shifted as D̂†Ap D̂ = Ap + Ŝp. The
displaced Hamiltonian H̃q = D†HqD reads

H̃q = D̂†

¨

2Ω cos

�

1
2

�

q+
∑

p

pA†
pAp

�� N−2
∑

r=1

|r + 1〉 〈r|

«

D̂+h.c.−ω
∑

p

Ŝ2
p +ω

∑

p

A†
pAp , (10)

where Ŝ2
p =

4κ2

ω2N sin2
� r̂−1

2 p
�

and
∑

p Ŝ2
p = 2 κ

2

ω2

∑N−1
r=2 |r〉 〈r|. We did not explicitly evaluate here

the displaced kinetic term. This is cumbersome, since Ŝp and
∑N−2

r=1 |r + 1〉 〈r| do not commute.
To make progress, nevertheless, we assume in the following that κ � ω, i.e. that the

interaction between the phonons and the Rydberg cluster dynamics is weak. We expand the

6
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displaced kinetic term in powers of κ/ω and only retain terms up to order (κ/ω)2 (this is the
same order as that of the term Ŝ2

p). To finally obtain the effective phonon dressed Hamilto-
nian, we project the displaced Hamiltonian onto the phonon vacuum, thus effectively tracing
out the phonon degrees of freedom (see Appendix A for details). The effective “lattice-only”
Hamiltonian for each CM mode q then becomes

Heff,q = 2Ω

�

1−
κ2

ω2

�

cos
�q

2

�
N−2
∑

r=1

(|r + 1〉 〈r|+ |r〉 〈r + 1|)− 2
κ2

ω

N−1
∑

r=2

|r〉 〈r|

= Jq(κ) T̂ +α(κ) |1〉 〈1| − 2
κ2

ω
, (11)

where the last constant term will be neglected in the following. Here

T̂ =
N−2
∑

r=1

(|r + 1〉 〈r|+ |r〉 〈r + 1|)

is the kinetic energy (hopping) operator of the relative dynamics of the Rydberg cluster,

Jq(κ) = 2Ω

�

1−
κ2

ω2

�

cos
�q

2

�

(12)

is the renormalized hopping rate and

α(κ) = 2
κ2

ω
(13)

is a “repulsive” potential shift acting on a cluster of length 1, i.e. containing only a single
Rydberg atom. This potential shift reflects the peculiarity of such cluster, as it is the only
one in which there are no Rydberg-Rydberg interactions. Consequently, since there are no
mechanical forces, it is completely decoupled from the phonons.

In order to assess the quality of the performed approximations we compare in the following
the band structure of the effective phonon dressed Hamiltonian

Heff =
∑

q

Heff,q |q〉 〈q| , (14)

with results from a numerical diagonalization of the full Hamiltonian (7). As can be seen in
Fig. 2 the agreement is excellent for small values of κ/ω, which is the regime where perturba-
tion theory is expected to be valid. This suggests that the obtained effective model correctly
describes the physics of phonon dressed Rydberg clusters. Moreover, the two bottom panels
show that, for increasing strength of the phonon dressing, the uppermost energy level sepa-
rates from the rest of the band. This separation can be explained by the emergence of a bound
state, which is caused by the presence of the repulsive potential α(κ) [Eq. (5)] and which
will be discussed in detail further below. Also visible is the narrowing of the bands due to the
factor 1−κ2/ω2 in the hopping rate, Eq. (12).

3.4 Experimental considerations

The perturbative expansion of the displacement operator in powers of κ/ω and the assumption
of a coherent Rydberg cluster dynamics set certain constraints on the energy scales entering
Hamiltonian (7) as well as the coherence time. In the following we will discuss whether these
can be met in current experiments. Hamiltonian (7) is the sum of three terms, with Ω, κ and
ω as the respective energy scales. A necessary condition for our perturbation theory to be

7
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Figure 2: Vibrationally dressed band structure of a single Rydberg cluster: En-
ergy bands in the free case (κ = 0) and with phonon dressing (κ 6= 0). Red lines
are obtained through numerical diagonalization of Hamiltonian (7) with N = 12
sites and a truncation of the maximum number of phonons per site to 3. Black dots
are the eigenvalues of the effective Hamiltonian (11) which has been obtained by
integrating out the phonon degrees of freedom. The trap and Rabi frequencies are
chosen such that ω = 8Ω. Note that, as κ/ω increases, the center of the band gets
lower in energy. This is due to the presence of the constant term in Eq. (11) which
is equal to −2κ2/ω and is naturally included in the numerical diagonalization of
Hamiltonian (7).

valid is that Ω,κ � ω, demanding that the trap frequency ω is much larger than the Rabi
frequency Ω and the spin-phonon coupling constant κ. The trap frequency indeed measures
the spacing between the zero-phonon band and the higher energy bands, while Ω determines
the width of the zero-phonon band. The inequality Ω � ω then ensures that the band with
zero phonons remains well separated from the higher energy bands, avoiding undesired effects
due to band mixing. The inequality involving κ and ω is on the other hand necessary for
the perturbative expansion to be valid. Both Ω and κ are independent quantities, meaning
that the derivation of the effective Hamiltonian (11) is rigorous in both situations where κ
is larger or smaller than Ω. This is due to the fact that the displacement operator (8), that
we expand perturbatively, depends on the ratio κ/ω, but not on Ω. Furthermore, in order to
legitimately describe the coherent dynamics of phonon dressed Rydberg spin clusters with the
effective Hamiltonian (11), the time scales involved therein must be considerably shorter than
the Rydberg atom lifetime. Therefore — denoting with Γ the decay rate of the Rydberg state
to other atomic states — the perturbative expansion turns out to be valid once

ω� Ω,κ� Γ (15)

is satisfied. However, the perturbation treatment is found to be surprisingly accurate even
when some of these conditions are not strictly met: as shown in Fig. 2, where the trap and
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Rabi frequencies are chosen such that ω = 8Ω, the agreement between the numerical diag-
onalization of the Hamiltonian (7) and the eigenvalues of the effective Hamiltonian (11) is
excellent even though the zero-phonon band is close to the higher energy bands.

Next, we estimate the magnitude of the spin-phonon coupling constant, Eq. (5), for a
system of 87Rb atoms. Assuming van der Waals interaction (γ = 6) among Rydberg atoms,
this reduces to

κ=
x0p

2

6 C6

a7
0

.

Choosing a ' 5µm and ω' 2π×300 kHz, we obtain x0 ' 2×10−2µm. The C6 coefficient is
proportional to n11, where n is the principal quantum number of the Rydberg state. For n' 60
Rydberg S-state, C6 ' 140 GHz µm6 [57]. We therefore obtain the estimate

κ' 2π× 25 kHz .

The lifetime for a Rydberg excitation with n ' 60 at T = 300K is τ ' 10−4s. So the decay
rate is Γ ' 2π×1.6 kHz [58], which is indeed significantly smaller than the spin-phonon cou-
pling. Noting furthermore that a Rabi frequency of the Rydberg excitation laser on the order
of Ω=ω/8' 2π×37.5 kHz is experimentally achievable [59], we see that the condition (15)
can indeed be satisfied with the above parameter choices. The assumption Ω� |∆| necessary
for the facilitation condition is also fulfilled because |∆|= VNN = C6/a

6
0 ' 10MHz.

The most challenging condition is probably the assumption of a trap frequency of
ω ' 2π × 300 kHz, which is larger than current typical values that are on the order of
ω ' 2π × 100 kHz [60]. For this latter value one has κ ' 2π × 40kHz, making the ratio
κ/ω = 0.4, close to the case depicted in the bottom right of Fig. 2. In this case the Rabi fre-
quency evaluates to Ω = ω/8 ' 2π× 12.5 kHz, which reduces the ratio Ω/Γ to about 8 and
therefore limits the time interval over which coherent evolution can be observed.

We assumed throughout that atoms in both their ground state and Rydberg state are
trapped in the lattice potential. The feasibility of this has been demonstrated in Ref. [61],
however, this is not yet standard technology in Rydberg quantum simulator setups. Further-
more, for the parameters considered, the spin-phonon coupling constant is about 15 times
larger than the Rydberg atom decay rate. However, given that κ depends on the gradient
of the interaction potential, its value can be modified by tailoring the interaction potential
between Rydberg states via microwave dressing, as theoretically discussed in Refs. [53, 62]
and demonstrated in Ref. [63]. This may allow to push the ratio κ/ω in the region that is
considered in Fig. 2.

We conclude this section by remarking that the parameter values discussed here represent
the most ideal case in that they give rise to a scenario in which all energy scales are clearly
separated. This is in fact very convenient for the theoretical analysis. In practice, it is reason-
able to expect that also parameter choices that are less stringent will permit the experimental
observation of signatures of phonon dressing in the dynamics of facilitated Rydberg clusters.

4 Dynamics of a phonon dressed Rydberg cluster

4.1 Numerical results

In this section we study the time evolution of a cluster initially prepared (at time t = 0) with
a fixed CM position c0 and a defined number of excitations r0 as

|ψ(0)〉= |c0〉 ⊗ |r0〉 .
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Figure 3: Dynamics of a Rydberg cluster with r0 consecutive initial excitations:
Time evolution of the Rydberg excitation density 〈n̂ j〉 (t) for different values of the
initial Rydberg cluster size, r0, and spin-phonon coupling strength, κ/ω. Visible
is a ballistic expansion, which becomes slower for large values of the spin-phonon
coupling constant κ. An almost complete inhibition of expansion appears in the case
r0 = 1, as the strong repulsive potential makes transitions to propagating continuum
states off-resonant. The propagation of the Rydberg clusters with r0 > 1 also slows
down with increasing spin-phonon interaction. This is due to the decrease of the
hopping rate Jq. The dotted blue lines are used to enhance the visibility of this effect.

This state evolves according to

|ψ(t)〉= e−iHeff t |ψ(0)〉=
1
p

2N

∑

q

eiqc0 |q〉 ⊗ e−iHeff,q t |r0〉 , (16)

with each q mode of the wave function evolving independently through the effective Hamil-
tonian (11).

Figure 3 shows the time evolution of the site-resolved Rydberg excitation density — a
quantity that can be experimentally measured [6] — for different values of r0 and κ/ω. For
κ = 0 (top three plots), the cluster undergoes ballistic expansion. This is indeed expected, as
in this case the effective Hamiltonian is simply given by the hopping term. As the ratio κ/ω
increases, the value of the effective hopping rate Jq(κ) becomes smaller, leading to a slowdown
of the ballistic expansion. The dashed blue lines, which are shown in the figure as a guide to the
eye, indicate this effect: the time needed for the cluster excitations to reach a given distance
from the initial location of the CM increases as the phonon dressing gets stronger. This effect is
more pronounced when the initial state has only one Rydberg excitation (r0 = 1). The reason
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for this is that this initial configuration is subjected to the repulsive potential α(κ), which is
given by Eq. (11). This brings transitions from this initial state to other states off resonance
and therefore inhibits relaxation, thereby yielding a rather pronounced manifestation of the
phonon dressing.

5 Analytical results — Fano resonance theory

In the following we focus more closely on the scenario in which an initial state is prepared,
that contains only a single excitation (r0 = 1). This case, which corresponds to the left column
in Fig. 3 is interesting, because it can to a large extent be analytically treated via Fano reso-
nance theory [64]. This theory describes the interaction between a discrete state and a set of
continuum states, and in the following we will show that our problem can be indeed mapped
onto such situation. Exploiting this connection will allow to derive an analytical expression
for the survival probability of a Rydberg cluster containing a single excitation, which yields
further insights into the inhibition of relaxation observed in Fig. 3.

We start by rewriting the effective Hamiltonian (11) as

Heff,q = Jq(κ)
N−2
∑

r=2

(|r + 1〉 〈r|+ |r〉 〈r + 1|) +α(κ) |d〉 〈d|+ Jq(κ) (|d〉 〈2|+ |2〉 〈d|)

= Ĥ0
q + V̂d + Jq(κ) (|d〉 〈2|+ |2〉 〈d|) . (17)

Here, we use the state |d〉 to denote what we previously called state |1〉. It corresponds to
the relative coordinate of a Rydberg cluster containing only a single excitation and will be
identified as the discrete state in the framework of Fano theory. The energy of this state is α(κ)
as given by Eq. (13) and the corresponding Hamiltonian is V̂d . This discrete state is coupled to
one of the continuum states which interact through the Hamiltonian Ĥ0

q . The strength of this
coupling Jq(κ) is given by Eq. (12), which contains the dependence on the CM motion. For
the sake of brevity we write in the following Jq ≡ Jq(κ) and α≡ α(κ), leaving the dependence
of these parameters on κ implicit.

The Hamiltonian Ĥ0
q is easily diagonalized and its eigenvalues {E0

q (k)}k=1,...,N−2 and nor-

malized eigenvectors |k〉, which satisfy Ĥ0
q |k〉= E0

q (k) |k〉, are

E0
q (k) = 2Jq cos

� π

N − 1
k
�

, k = 1, . . . , N − 2

and

|k〉=

√

√ 2
N − 1

N−1
∑

r=2

sin
h π

N − 1
k(r − 1)

i

|r〉 . (18)

Each eigenvector |k〉 is therefore given as a superposition of the basis vectors |r〉 with
which Ĥ0

q was originally formulated [Eq. (17)]. We now proceed by choosing the vectors
¦

|d〉 , {|k〉}k=1,...,N−2

©

as the new basis. With this change of basis, the Hamiltonian (17) is
partially diagonalized, i.e. all continuum states are now mutually orthogonal. The analogy
with the Fano resonance scenario becomes apparent by plotting the diagonal elements of the
Hamiltonian (17), as shown in Fig. 4a: a discrete (bound) state, which represents a Rydberg
cluster containing a single excitation, is coupled to a set of uncoupled continuum states. We
also show for comparison the spectrum of the fully diagonalized Hamiltonian (17) in Fig. 4b:
for α < |Jq|, the spectrum is continuous and extends over the same range as the eigenenergies
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Figure 4: Discrete state coupled to a continuum: (a) Diabatic representation.
Shown are the eigenvalues of Ĥ0

q [see Eq. (17)] and the energy of the discrete state
|d〉 (red dashed line). For α < 2|Jq|, the discrete state is embedded inside the con-
tinuum. (b) Eigenvalues of the coupled Hamiltonian (17). When α > |Jq|, a bound
state possessing a large overlap with the state |d〉 emerges from the continuum. The
red dashed line is the energy of the bound state, which is given by Eq. (19). Both
panels are obtained with N = 31.

E0
q (k) of the uncoupled problem. For α > |Jq|, a bound energy level with energy

Eb =
α2 + J2

q

α
(19)

emerges (see derivation in Appendix B), which separates from the continuum band as α is
increased. This bound state possesses a large overlap with the state |d〉. As shown below, the
existence of such a bound state and the consequent modification of the spectrum of Hamilto-
nian (17) as a function of α/|Jq| are responsible for the strong inhibition of the expansion of
a Rydberg cluster containing a single excitation (bottom left panel in Fig. 3).

Such cluster is represented by the state |ψ(0)〉= |c0〉⊗ |d〉. Here c0 denotes the initial CM
position, which has to assume an integer number because it is paired with an odd value for
the relative coordinate (Rydberg cluster of length 1, represented by |d〉), as discussed below
Eq. (3). Each of the Fourier q modes contributing to the CM state |c0〉 evolves under the
effective Hamiltonian (17) according to Eq. (16).

In the following we compute the (survival) probability pd(t) for each Fourier component,
i.e. the probability for the system to remain in the initial state |d〉 at time t. To start, we
explicitly write the matrix elements of Hamiltonian (17) in the new basis

¦

|d〉 , {|k〉}k=1,...,N−2

©

:







〈d|Heff,q|d〉= α ,
〈d|Heff,q|k〉= V (k) ,
〈k|Heff,q|k′〉= E0

q (k)δk,k′ ,
(20)

with the real valued function

V (k) = Jq

√

√ 2
N − 1

sin
� π

N − 1
k
�

(21)

describing the coupling between the discrete state and the continuum. A generic eigenstate of
Hamiltonian (17) can be written as

|ψE〉= a(E) |d〉+
N−2
∑

k=1

bk(E) |k〉 , (22)
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where the amplitudes a and bk depend on the corresponding eigenvalue E. Each eigenvalue
E of course depends on q, but this dependence is left implicit in the notation for the sake
of brevity. In order to obtain an expression for the survival probability, the key quantity to
determine is the amplitude a(E). This is because, according to Eq. (22), the survival probability
is given by

pd(t) =
�

�〈d|e−iHeff,q t |d〉
�

�

2
=

�

�

�

�

�

∑

E

|a(E)|2e−iE t

�

�

�

�

�

2

. (23)

Here, the sum runs over the eigenvalues of the coupled Hamiltonian (17), which actually are
the energy levels shown in Fig. 4b. This sum hence contains the contribution coming from the
energies in the continuum, but, when α > |Jq|, also the bound state with energy Eb must be
considered.

After some calculation detailed in Appendix B, one finds that the general expression for
the survival probability is

pd(t) =

�

�

�

�

�

�

α2 − J2
q

α2
e−iEb t Θ(α2 − J2

q ) +
2J2

q

π(α2 + J2
q )

∫ π

0

d x
sin2 x

1− 2αJq

α2+J2
q

cos x
e−i2Jq t cos x

�

�

�

�

�

�

2

, (24)

where Θ is the Heaviside step function. This exact result is the squared of a sum of two terms.
The second one is the contribution to the survival probability stemming from the coupling
of the discrete state to the continuum. It involves an integration, which is convergent since
�

�

�2αJq/
�

α2 + J2
q

�

�

�

� ≤ 1 for any value of α and Jq (the integral can also be expressed by a

convergent series of Bessel functions). The first term appears only for Fourier modes for which
α > |Jq|, and depends on time only through a phase which involves the bound state energy
Eb.

For sufficiently long times the integral in the second term vanishes, and hence the survival

probability at late times is approximately given by
�

�

�(α2 − J2
q )/α

2
�

�

�

2
. This value tends to 1 as

the ratio α/|Jq| increases. This explains the restricted mobility of the single excitation cluster
shown in the bottom left corner of Fig. 3. Indeed, as α gets larger, there are more modes q for
which the condition α > |Jq| is satisfied, leading to a overall larger survival probability pd at
late times. This is explicitly illustrated in Fig. 5, where the survival probability obtained from
the numerical evaluation of Eq. (23) is compared with the analytical result (24). The three
panels are organized such that the spin-phonon coupling constant increases from left to right,
while the considered three modes q are kept fixed. In the non-interacting case (α = 0), the
survival probability associated to all the modes q decays to 0 accordingly to Eq. (B.10) given
in Appendix B. For increasing value of α, for more and more Fourier modes the inequality
α > |Jq| is satisfied and the number of modes q for which pd reaches a plateau at long times
increases. This explains the inhibition of relaxation observed for a Rydberg cluster containing
a single excitation.

6 Conclusion

We have considered a one-dimensional Rydberg lattice gas under facilitation conditions, which
mimics the features of a kinetically constrained spin model. We have shown how the coupling
between electronic and vibrational degrees of freedom — which is caused by the emergence
of state-dependent forces — impacts on the dynamics of Rydberg excitations. This dressing of
Rydberg excitations by phonons manifests in a reduction of the velocity with which facilitated
clusters of consecutive Rydberg atoms grow over time. This becomes particularly apparent for
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Figure 5: Survival probability of a Rydberg cluster containing a single excitation:
The survival probability obtained from the numerical evaluation of Eq. (23) (plotted
with dots) is exactly reproduced by the analytical result, Eq. (24), obtained from Fano
theory and plotted with full lines. For α = 0 the survival probability decays quickly
to zero for all the three considered q values. As α increases, more q-modes acquire a
non zero survival probability. This explains the strong inhibition of the spreading of a
Rydberg cluster containing a single excitation, as observed in Fig. 3. The parameters
chosen for the plots are ω= 8Ω and κ= {0, 2.7Ω, 3.5Ω}.

clusters that initially contain only a single Rydberg excitation. Using a perturbative approach
in the strength of the spin-phonon coupling constant, we obtain an effective Hamiltonian for
the dynamics of dressed Rydberg excitations, which accurately reproduces the band structure
of the full system. Using an approach inspired by Fano resonance theory, we analytically
derive an exact expression for the survival probability of the Rydberg cluster containing a
single excitation, providing an explanation for the observed inhibition of relaxation.

Signatures of the reported dynamical features should be observable on current quantum
simulator platforms based on atomic arrays [6]. However, reaching a regime in which all en-
ergy scales are separated in a way which we exploited for our analytical calculations may be
challenging. Nevertheless, basic features, such as an impact of the lattice vibration on the
propagation of excitations are expected to manifest also in settings that are currently accessi-
ble. In the future it would be interesting to consider phonon dressing of Rydberg excitations
in high-dimensional lattices. Here, the physics is expected to be significantly richer: for exam-
ple, the interaction between electronic and vibrational degrees of freedom will depend on the
shape of the Rydberg clusters. It would, moreover, be interesting to study situations in which
clusters interact or scatter off one another [65,66].
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A Derivation of Heff,q

Here we derive the effective displaced Hamiltonian given by Eq. (11) in the main text. The
derivation requires the following steps. First, we expand the displaced hopping term in Eq. (10)

14

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.041


SciPost Phys. Core 5, 041 (2022)

in powers of κ/ω. Secondly, we only keep the terms of the expansion up to order (κ/ω)2, to
be consistent with the operator Ŝ2

p which is also of order (κ/ω)2. Finally, the displaced Hamil-
tonian is projected onto the phonon vacuum state, which amounts to “integrating out” the
phonons.

Let us rewrite the expression of the displaced hopping term present in Eq. (10) in the main
text:

Hhop = D̂†

¨

2Ω cos

�

1
2

�

q+
∑

p

pA†
pAp

��«

D̂ D̂†

¨N−2
∑

r=1

|r + 1〉 〈r|

«

D̂+ h.c. , (A.1)

which, thanks to the identity D̂D̂† = 1, is given by a product of two displaced operators.

Now we proceed by computing the two factors separately. Since D̂ =
∏

p eŜp

�

A†
p−Ap

�

, the
second displaced operator can be computed as

D†

¨N−2
∑

r=1

|r + 1〉 〈r|

«

D =
∏

p

e−Ŝp

�

A†
p−Ap

�

�N−2
∑

r=1

|r + 1〉 〈r|

�

∏

q

eŜq

�

A†
q−Aq

�

=
N−2
∑

r=1

∏

p

e−
2κ
ω
p

N
sin( r

2 p)
�

A†
p−Ap

�

∏

q

e
2κ
ω
p

N
sin( r−1

2 q)
�

A†
q−Aq

�

|r + 1〉 〈r|

=
N−2
∑

r=1

∏

p

�

e−
2κ
ω
p

N
sin( r

2 p)
�

A†
p−Ap

�

e
2κ
ω
p

N
sin( r−1

2 p)
�

A†
p−Ap

�

�

|r + 1〉 〈r|

=
N−2
∑

r=1

∏

p

e−
2κ
ω
p

N [sin(
r
2 p)−sin( r−1

2 p)]
�

A†
p−Ap

�

|r + 1〉 〈r|

=
N−2
∑

r=1

e
∑

p −
2κ
ω
p

N [sin(
r
2 p)−sin( r−1

2 p)]
�

A†
p−Ap

�

|r + 1〉 〈r| ,

where from the 3rd to the 4th row we make use of the property of the displacement operators
D(α)D(β) = e(αβ

∗−α∗β)/2D(α+ β), where in our case α = β = Ŝp = Ŝ†
p. For κ�ω, the expo-

nential can be expanded in powers of κ/ω and the previous expression can be approximated
as

D†

¨N−2
∑

r=1

|r + 1〉 〈r|

«

D '

'
N−2
∑

r=1

|r + 1〉 〈r|+
N−2
∑

r=1

∑

p

�

Ap − A†
p

�

�

Sp(r + 1)− Sp(r)
�

|r + 1〉 〈r| (A.2)

+
1
2!

N−2
∑

r=1

∑

p

∑

v

�

Ap − A†
p

�

�

Sp(r + 1)− Sp(r)
� �

Av − A†
v

�

[Sv(r + 1)− Sv(r)] |r + 1〉 〈r| ,

where Sp(r) =
2κ
ω
p

N
sin
� r−1

2 p
�

is the eigenvalue of the operator Ŝp relative to the eigenstate
|r〉.

Now let us focus on the first displaced operator in Eq. (A.1). We write

D̂†

¨

2Ω cos

�

1
2

�

q+
∑

p

pA†
pAp

��«

D̂ = eX Ye−X ,

where

X =
∑

p

ŜpAp − ŜpA†
p and Y = 2Ω cos

�

1
2

�

q+
∑

p

pA†
pAp

��

.
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Using the Baker-Campbell-Hausdorff formula and truncating it at second order yields

eX Ye−X = Y + [X , Y ] +
1
2!
[X , [X , Y ]] + . . .

' Y + (X Y − Y X ) +
1
2!
(X X Y + Y X X − 2X Y X ) . (A.3)

The idea now is to gather Eq. (A.3) and Eq. (A.2) to collect the terms of orders κ/ω
and (κ/ω)2. We then project these terms on the subspace with no phonons by com-
puting the braket 〈0ph|Eq. (A.3) · Eq. (A.2)|0ph〉. All the terms of order κ/ω are propor-
tional to 〈0ph|Ap|0ph〉 and 〈0ph|A†

p|0ph〉 and therefore they vanish. The matrix element

evaluated for the terms of order (κ/ω)2 is instead non zero and, using the relation
Ŝp
∑N−2

r=1 |r + 1〉 〈r|=
∑N−2

r=1 Sp(r + 1) |r + 1〉 〈r|, is given by

〈0ph|Eq. (A.3) · Eq. (A.2)|0ph〉=

= Ω
N−2
∑

r=1

∑

p

n

2cos
�q+ p

2

�

Sp(r + 1)Sp(r)− cos
q
2

�

S2
p(r + 1) + S2

p(r)
�
o

|r + 1〉 〈r| .

By computing explicitly the sums over p one obtains that
∑

p cos
� q+p

2

�

Sp(r+1)Sp(r) = cos q
2
κ2

ω2

for r > 1 (if r = 1 it is equal to 0),
∑

p S2
p(r) = 2 κ2

ω2 for r > 1 (if r = 1 it is equal to 0) and
∑

p S2
p(r + 1) = 2 κ2

ω2 ∀r. This braket can thus be rewritten as −2Ω κ2

ω2 cos q
2

∑N−2
r=1 |r + 1〉 〈r|.

Taking also into account the zeroth order, (κ/ω)0, the displaced hopping term Eq. (A.1) finally
reduces to

Hhop = 2Ω

�

1−
κ2

ω2

�

cos
q
2

N−2
∑

r=1

|r + 1〉 〈r| , (A.4)

which is the first term of Eq. (11) in the main text.

B Derivation of the survival probability pd(t)

We derive here the expression for the survival probability p(t) given by Eq. (24). The deriva-
tion involves a sequence of steps which are detailed in the following: first, we derive the
eigenvalue equation for Heff,q and obtain the expression of the bound state energy Eb. Then
we calculate the general expression of |a(E)|2 appearing in Eq. (23). This allows us to compute
finally the survival probability pd(t).

Inserting Eq. (22) in the Schrödinger equation Heff,q |ψE〉= E |ψE〉 and using Eq. (20), one
obtains a system of equations in the unknowns a = a(E) and bk = bk(E) (the dependence on
E will be indicated explicitly only where necessary):

�

α a+
∑N−2

k=1 V (k) bk = E a ,
V (k) a+ E0

q (k) bk = E bk ,
(B.1)

where V (k) is the interaction potential given by Eq. (21) of the main text. As shown in Fig. 4b,
the eigenvalues E, except for the bound state energy Eb, extend over the same range to which
the uncoupled energies E0

q (k) belong. For large N , the uncoupled energies E0
q (k) form a con-

tinuous band and the eigenvalues E included in this range degenerate to the energies E0
q (k).

Therefore, in order to account for the occurrence of E = E0
q (k), the formal solution of the
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second equation reads [67]

bk =

�

1
E − E0

q (k)
+ z(E)δ(E − E0

q (k))

�

V (k) a , (B.2)

with the understanding that, when summed over k, one has to take the principal value (P.V.) of
the sum over (E−E0

q (k))
−1. The function z(E) depends on energy, and for scattering problems

one usually has conditions that imply z = iπ [68]. Here, instead, z(E) is real and is determined
by substituting the expression of bk in the first equation of (B.1). After factoring out the
coefficient a, this gives

α+ P.V.
N−2
∑

k=1

V 2(k)
E − E0

q (k)
+ z(E)

N−2
∑

k=1

V 2(k)δ(E − E0
q (k)) = E . (B.3)

This is the eigenvalue equation whose solutions E are the N − 1 eigenvalues of Heff,q. By
explicitly computing the two sums, one obtains the expression for z(E). By noticing from
Eq. (21) that

V 2(k) =
4J2

q − E0
q (k)

2

2(N − 1)
, (B.4)

which expresses the interaction potential as a function of the energy in the continuum, the
first sum can be computed as

P.V.
N−2
∑

k=1

V 2(k)
E − E0

q (k)
=

1
2(N − 1)

P.V.
N−2
∑

k=1

4J2
q − E2 + E2 − E0

q (k)
2

E − E0
q (k)

=
1

2(N − 1)

�

(N − 2)E + (4J2
q − E2)P.V.

N−2
∑

k=1

1

E − 2Jq cos
�

π
N−1 k

�

�

.

The last principal value can be computed using

P.V.
N−2
∑

k=1

1

E − 2Jq cos
�

π
N−1 k

� ' P.V.

∫ N−2

1

1

E − 2Jq cos
�

π
N−1 k

�dk

=
N − 1
π

P.V.

∫
π(N−2)

N−1

π
N−1

1
E − 2Jq cos x

d x

=
2(N − 1)
π

P.V.

∫ tan π(N−2)
2(N−1)

tan π
2(N−1)

1
E − 2Jq + (E + 2Jq)t2

d t

=

¨ N−1
q

E2−4J2
q

if E2 − 4J2
q > 0 ,

0 if E2 − 4J2
q < 0 ,

where we have taken the large N limit and used the following substitutions:

x =
π

N − 1
k, cos x =

1− t2

1+ t2
, t = tan

x
2

.

The second sum in Eq. (B.3) gives

N−2
∑

k=1

V 2(k)δ(E − E0
q (k)) = V 2(E)ρ(E)Θ(4J2

q − E2)

=

q

4J2
q − E2

2π
Θ(4J2

q − E2) ,
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where we have used Eq. (B.4) and defined

ρ(E) =

�

�

�

�

�

dk
dE0

q (k)

�

�

�

�

�

k=(E0
q )−1(E)

=
N − 1

π
q

4J2
q − E2

as the density of states of the continuum {|k〉}. Collecting all the terms and taking the large N
limit, the eigenvalue equation Eq. (B.3) now reads

α+
E
2
−

q

E2 − 4J2
q

2
Θ(E2 − 4J2

q ) + z(E)

q

4J2
q − E2

2π
Θ(4J2

q − E2) = E , (B.5)

where Θ is the Heaviside step function. The energy of the bound state Eb, satisfying
E2 − 4J2

q > 0 and appearing only when α > |Jq|, can be obtained by Eq. (B.5) as

Eb =
α2 + J2

q

α
. (B.6)

It is plotted in Fig. 4b of the main text. Eq. (B.5) also provides the expression for the function
z(E)

z(E)Θ(4J2
q − E2) = π

E − 2α+
q

E2 − 4J2
q Θ(E

2 − 4J2
q )

q

4J2
q − E2

, (B.7)

that is well defined only for 4J2
q − E2 > 0, i.e. when the eigenvalue E is in the continuum. By

enforcing the normalization condition

〈ψE |ψE′〉= δE,E′ ,

using Eqs. (B.2), (B.3) as well as the properties of the Dirac delta distribution and the principal
value [64,69], one finds

|a(E)|2 =
Θ(E2 − 4J2

q )

1− dF(E)
dE

�

�

�

E=Eb

δE,Eb
+

Θ(4J2
q − E2)

V 2(E)ρ2(E)Θ(4J2
q − E2) [π2 + z2(E)]

=
Θ(E2 − 4J2

q )

1− dF(E)
dE

�

�

�

E=Eb

δE,Eb
+

Θ(4J2
q − E2)

V 2(E)ρ2(E)
�

π2Θ(4J2
q − E2) + z2(E)Θ(4J2

q − E2)
�

=
Θ(E2 − 4J2

q )

1− dF(E)
dE

�

�

�

E=Eb

δE,Eb
+

Θ(4J2
q − E2)

V 2(E)ρ2(E)π2

�

Θ(4J2
q − E2) +

�

E−2α+
q

E2−4J2
q Θ(E2−4J2

q )
�2

4J2
q−E2

�

=
Θ(E2 − 4J2

q )

1− dF(E)
dE

�

�

�

E=Eb

δE,Eb
+

Θ(4J2
q − E2)

N−1
2

�

Θ(4J2
q − E2) +

�

E−2α+
q

E2−4J2
q Θ(E2−4J2

q )
�2

4J2
q−E2

�
, (B.8)

where we denote

F(E) = P.V.
N−2
∑

k=1

V 2(k)
E − E0

q (k)
=

E
2
−

q

E2 − 4J2
q

2
Θ(E2 − 4J2

q ) ,

for brevity. Since

dF(E)
dE

�

�

�

�

E=Eb=
α2+J2

q
α

=
1
2






1−

α2 + J2
q

È

�

α2 − J2
q

�2






,

18

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.041


SciPost Phys. Core 5, 041 (2022)

one finally obtains the expression for the survival probability by summing the factor
|a(E)|2e−iE t over the N − 1 eigenvalues E (the energies in the continuum and the eventual
bound state). The Heaviside step functions in the numerators of Eq. (B.8) separates the sum
into two contributions depending whether E2 ≶ 4J2

q . This leads to

pd(t) =

�

�

�

�

�

∑
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�

�

�

�
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=

�
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∑
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�

�

�

�

�
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2

=

�

�

�

�

�

�

�
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α2
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q ) +
2

N − 1

N−2
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1

1+ [
2Jq cos( π

N−1 k)−2α]2

4Jq sin2( π
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e−i2Jq cos( π
N−1 k)t

�

�

�

�

�

�

�

2

'

�

�

�

�

�

�

�

α2 − J2
q

α2
e−iEb t Θ(α2 − J2

q ) +
2
π

∫ π

0

d x
1

1+ (
Jq cos x−α)2

Jq sin2 x

e−i2Jq t cos x

�

�

�

�

�

�

�

2

=

�

�

�

�

�

�

α2 − J2
q

α2
e−iEb t Θ(α2 − J2

q ) +
2J2
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0

d x
sin2 x

1− 2αJq
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q

cos x
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�

�

�

�

�

�

2

, (B.9)

which coincides with Eq. (24) of the main text.
Note that, when α = 0 and Jq 6= 0, one recovers the simpler case where Heff,q is merely a

hopping Hamiltonian. Here, the survival probability reduces to

pd(t) =

�

�

�

�

2
π

∫ π

0

d x sin2 x e−i2Jq t cos x

�

�

�

�

2

=
1

J2
q t2

J 2
1 (2Jq t) , (B.10)

where Jα(x) is the Bessel function of the first kind. This result is in agreement with previous
works [70,71].
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[43] M. Marcuzzi, J. Minář, D. Barredo, S. de Léséleuc, H. Labuhn, T. Lahaye, A.
Browaeys, E. Levi and I. Lesanovsky, Facilitation dynamics and localization phenomena
in Rydberg lattice gases with position disorder, Phys. Rev. Lett. 118, 063606 (2017),
doi:10.1103/PhysRevLett.118.063606.

[44] M. Ostmann, M. Marcuzzi, J. P. Garrahan and I. Lesanovsky, Localization in spin chains
with facilitation constraints and disordered interactions, Phys. Rev. A 99, 060101 (2019),
doi:10.1103/PhysRevA.99.060101.

[45] A. Lerose, F. M. Surace, P. P. Mazza, G. Perfetto, M. Collura and A. Gambassi, Quasilocal-
ized dynamics from confinement of quantum excitations, Phys. Rev. B 102, 041118 (2020),
doi:10.1103/PhysRevB.102.041118.

[46] F. M. Surace, P. P. Mazza, G. Giudici, A. Lerose, A. Gambassi and M. Dalmonte, Lattice
gauge theories and string dynamics in Rydberg atom quantum simulators, Phys. Rev. X 10,
021041 (2020), doi:10.1103/PhysRevX.10.021041.

[47] R. Verdel, F. Liu, S. Whitsitt, A. V. Gorshkov and M. Heyl, Real-time dynam-
ics of string breaking in quantum spin chains, Phys. Rev. B 102, 014308 (2020),
doi:10.1103/PhysRevB.102.014308.

[48] M. Magoni, P. P. Mazza and I. Lesanovsky, Emergent Bloch oscillations in a ki-
netically constrained Rydberg spin lattice, Phys. Rev. Lett. 126, 103002 (2021),
doi:10.1103/PhysRevLett.126.103002.

[49] C. Ates, T. Pohl, T. Pattard and J. M. Rost, Antiblockade in Rydberg excitation of an ultracold
lattice gas, Phys. Rev. Lett. 98, 023002 (2007), doi:10.1103/PhysRevLett.98.023002.

22

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.041
https://doi.org/10.1103/PhysRevLett.122.173401
https://doi.org/10.1103/PhysRevLett.112.013002
https://doi.org/10.1103/PhysRevA.90.011603
https://doi.org/10.1088/1367-2630/17/11/113039
https://doi.org/10.1103/PhysRevLett.116.245701
https://doi.org/10.1103/PhysRevA.96.041602
https://doi.org/10.1088/2058-9565/aaf29d
https://doi.org/10.1103/PhysRevLett.118.063606
https://doi.org/10.1103/PhysRevA.99.060101
https://doi.org/10.1103/PhysRevB.102.041118
https://doi.org/10.1103/PhysRevX.10.021041
https://doi.org/10.1103/PhysRevB.102.014308
https://doi.org/10.1103/PhysRevLett.126.103002
https://doi.org/10.1103/PhysRevLett.98.023002


SciPost Phys. Core 5, 041 (2022)

[50] T. Amthor, C. Giese, C. S. Hofmann and M. Weidemüller, Evidence of an-
tiblockade in an ultracold Rydberg gas, Phys. Rev. Lett. 104, 013001 (2010),
doi:10.1103/PhysRevLett.104.013001.

[51] J. T. Young, T. Boulier, E. Magnan, E. A. Goldschmidt, R. M. Wilson, S. L. Rolston, J. V.
Porto and A. V. Gorshkov, Dissipation-induced dipole blockade and antiblockade in driven
Rydberg systems, Phys. Rev. A 97, 023424 (2018), doi:10.1103/PhysRevA.97.023424.

[52] L. Festa, N. Lorenz, L.-M. Steinert, Z. Chen, P. Osterholz, R. Eberhard and C. Gross,
Blackbody-radiation-induced facilitated excitation of Rydberg atoms in optical tweezers,
Phys. Rev. A 105, 013109 (2022), doi:10.1103/PhysRevA.105.013109.

[53] F. M. Gambetta, W. Li, F. Schmidt-Kaler and I. Lesanovsky, Engineering nonBinary Ryd-
berg interactions via phonons in an optical lattice, Phys. Rev. Lett. 124, 043402 (2020),
doi:10.1103/PhysRevLett.124.043402.

[54] P. P. Mazza, R. Schmidt and I. Lesanovsky, Vibrational dressing in kineti-
cally constrained Rydberg spin systems, Phys. Rev. Lett. 125, 033602 (2020),
doi:10.1103/PhysRevLett.125.033602.

[55] M. Ostmann, M. Marcuzzi, J. P. Garrahan and I. Lesanovsky, Localization in spin chains
with facilitation constraints and disordered interactions, Phys. Rev. A 99, 060101 (2019),
doi:10.1103/PhysRevA.99.060101.

[56] T. D. Lee, F. E. Low and D. Pines, The motion of slow electrons in a polar crystal, Phys. Rev.
90, 297 (1953), doi:10.1103/PhysRev.90.297.

[57] S. Weber, C. Tresp, H. Menke, A. Urvoy, O. Firstenberg, H. Peter Büchler and S. Hoffer-
berth, Calculation of Rydberg interaction potentials, J. Phys. B: At. Mol. Opt. Phys. 50,
133001 (2017), doi:10.1088/1361-6455/aa743a.

[58] I. I. Beterov, I. I. Ryabtsev, D. B. Tretyakov and V. M. Entin, Quasiclassical calcula-
tions of blackbody-radiation-induced depopulation rates and effective lifetimes of Rydberg
nS, nP, and nD alkali-metal atoms with n ≤ 80, Phys. Rev. A 79, 052504 (2009),
doi:10.1103/PhysRevA.79.052504.

[59] P. Schauß et al., Observation of spatially ordered structures in a two-dimensional Rydberg
gas, Nature 491, 87 (2012), doi:10.1038/nature11596.

[60] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye and A.
Browaeys, Single-atom trapping in holographic 2D arrays of microtraps with arbitrary
geometries, Phys. Rev. X 4, 021034 (2014), doi:10.1103/PhysRevX.4.021034.

[61] D. Barredo, V. Lienhard, P. Scholl, S. de Léséleuc, T. Boulier, A. Browaeys and T. La-
haye, Three-dimensional trapping of individual Rydberg atoms in ponderomotive bottle
beam traps, Phys. Rev. Lett. 124, 023201 (2020), doi:10.1103/PhysRevLett.124.023201.

[62] S. Sevinçli and T. Pohl, Microwave control of Rydberg atom interactions, New J. Phys. 16,
123036 (2014), doi:10.1088/1367-2630/16/12/123036.

[63] C. Zhang, F. Pokorny, W. Li, G. Higgins, A. Pöschl, I. Lesanovsky and M. Hennrich, Submi-
crosecond entangling gate between trapped ions via Rydberg interaction, Nature 580, 345
(2020), doi:10.1038/s41586-020-2152-9.

[64] U. Fano, Effects of configuration interaction on intensities and phase shifts, Phys. Rev. 124,
1866 (1961), doi:10.1103/PhysRev.124.1866.

23

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.041
https://doi.org/10.1103/PhysRevLett.104.013001
https://doi.org/10.1103/PhysRevA.97.023424
https://doi.org/10.1103/PhysRevA.105.013109
https://doi.org/10.1103/PhysRevLett.124.043402
https://doi.org/10.1103/PhysRevLett.125.033602
https://doi.org/10.1103/PhysRevA.99.060101
https://doi.org/10.1103/PhysRev.90.297
https://doi.org/10.1088/1361-6455/aa743a
https://doi.org/10.1103/PhysRevA.79.052504
https://doi.org/10.1038/nature11596
https://doi.org/10.1103/PhysRevX.4.021034
https://doi.org/10.1103/PhysRevLett.124.023201
https://doi.org/10.1088/1367-2630/16/12/123036
https://doi.org/10.1038/s41586-020-2152-9
https://doi.org/10.1103/PhysRev.124.1866


SciPost Phys. Core 5, 041 (2022)

[65] F. M. Surace and A. Lerose, Scattering of mesons in quantum simulators, New J. Phys. 23,
062001 (2021), doi:10.1088/1367-2630/abfc40.

[66] P. I. Karpov, G.-Y. Zhu, M. P. Heller and M. Heyl, Spatiotemporal dynamics of par-
ticle collisions in quantum spin chains, Phys. Rev. Research 4, L032001 (2022),
doi:10.1103/PhysRevResearch.4.L032001.

[67] P. A. M. Dirac, Über die Quantenmechanik der Stoßvorgänge, Z. Physik 44, 585 (1927),
doi:10.1007/BF01451660.

[68] P. A. M. Dirac, The principles of quantum mechanics, Clarendon Press, Oxford, UK, ISBN
9780198512080 (1958).

[69] G. D. Mahan, Many-particle physics, Springer US, Boston, Massachusetts, US, ISBN
9781441933393 (2000), doi:10.1007/978-1-4757-5714-9.

[70] G. C. Stey and G. Gusman, Absence of decay and eigenvector localization in a soluble one-
dimensional system, Phys. Lett. A 39, 393 (1972), doi:10.1016/0375-9601(72)90110-7.

[71] S. Longhi, Nonexponential decay via tunneling in tight-binding lattices and the optical Zeno
effect, Phys. Rev. Lett. 97, 110402 (2006), doi:10.1103/PhysRevLett.97.110402.

24

https://scipost.org
https://scipost.org/SciPostPhysCore.5.3.041
https://doi.org/10.1088/1367-2630/abfc40
https://doi.org/10.1103/PhysRevResearch.4.L032001
https://doi.org/10.1007/BF01451660
https://doi.org/10.1007/978-1-4757-5714-9
https://doi.org/10.1016/0375-9601(72)90110-7
https://doi.org/10.1103/PhysRevLett.97.110402

	Introduction
	One-dimensional Rydberg lattice gas
	Facilitated Rydberg dynamics
	Hamiltonian of a single Rydberg cluster
	Decoupling the relative and center of mass motion of a Rydberg cluster
	Effective Hamiltonian in the phonon dressing regime
	Experimental considerations

	Dynamics of a phonon dressed Rydberg cluster
	Numerical results

	Analytical results — Fano resonance theory
	Conclusion
	Derivation of Heff,q
	Derivation of the survival probability pd(t)
	References

