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I. STATIC DEMAGNETIZING FIELD OF THE NANOGRATINGS

The nonzero components of H0
d are shown in Fig. S1 for several important directions of Hext.

As one can see, both components of H0
d increase with increasing ϕH. For the case of ϕH = 90◦ the

arrows of the demagnetizing vector field are introduced. Figure S1(a) shows that H0
d,x is negative

in the wire region and positive in the groove region of the NG, which considerably affects the

orientation of the magnetization. It is worth emphasizing that the demagnetizing field is nonzero

outside the nanograting.

The symmetry of H0
d with respect to the center of the NG wire region for the x→ −x operation

in the steady-state is given by Eq. 4 of the main text. The demagnetizing field imposes different

symmetry for the in-plane and out-of-plane magnetization components. Moreover, the symmetry

of the i-th component of the magnetization reflects the symmetry of the i-th non-zero component of

the demagnetizing field (i = x, y, z). In the case of an in-plane Hext, m
0
x(x, z) and m0

z(x, z) are even

and odd functions, respectively (see below). Furthermore, the numerator of the integrand in Eq. 4

consists of the odd functions m0
x(x− x′) and m0

z(z − z′) (one needs to change also x′ → −x′). Thus,

H0
d,x is an even, and H0

d,z is an odd function, respectively. Similarly, one obtains opposite symmetry

properties if the magnetization is parallel to the z-direction. In the case of an arbitrary out-of-

plane orientation of the magnetization, both m0 and H0
d are neither symmetric nor antisymmetric

functions.
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Figure S1. Spatial distributions of the (a) x-components and (b) z-components of the static demagnetizing

field H0
d for different directions of Hext at Hext = 200 mT. The values of ϕH are shown in between (a) and

(b) in degrees. In the case of ϕH = 90◦ arrows represent the demagnetizing vector field. The length of the

arrows is proportional to |H0
d| in the center of each arrow.

II. MAGNONS IN NANOGRATINGS FOR DAMON-ESHBACH AND

BACKWARD-VOLUME GEOMETRIES

The magnetic field dependencies of the magnon frequencies in nanogratings for both the

backward-volume (BV) and Damon-Eshbach (DE) geometries have been already reported in [S1].

In this work, we complement these dependencies by additional antisymmetric magnon modes

which cannot be accessed using a symmetric excitation and detection scheme [S1], and higher

order modes. For the calculations, all parameters are chosen as they were introduced in the main
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text.

Figure S2(a) shows the magnetic field dependence of the magnon frequencies in the DE geometry,

i.e. ϕH = 0◦. The presented dependence is similar as for the magnon modes in thin ferromagnetic

films for magnetization directions close to the easy axis, because the static demagnetizing field is

zero [S1, S2] (see also the Sec. II in the main text).

The magnetic field dependence of the magnon frequencies in the BV geometry (ϕH = 90◦) is

shown in Fig. S2(b). The corresponding inset shows the magnetic field dependence of the average

steady-state in-plane magnetization angle ϕM, indicating the saturation magnetic field at ≈ 73 mT.

For Hext smaller than the saturation magnetic field, one can observe a complicated non-monotonic

behavior with magnon-magnon interaction and corresponding avoided crossings. For Hext > 73 mT

the behavior is much simpler and in most cases the magnon frequencies monotonically grow with

increasing Hext.

Figures S3(a), (b) show the results of micromagnetic simulations for the DE geometry (ϕH = 0◦).

For this field direction, ϕM = ϕH, because the static demagnetizing field is zero [S2]. From

Fig. S3(a) one can see that all magnon branches are nonreciprocal, i.e. ω(kx) 6= ω(−kx), except for

the ground one. Moreover, indirect band gaps arise.

Figure S3(b) shows magnon modes’ spatial profiles which correspond to the center of the Bril-

louin zone at kx = 0. The ground magnon mode is quasiuniform. The next two modes are sym-

metric and antisymmetric magnon modes with kx = 2π/d. The following modes are higher-order

magnon modes. Magnon modes with wave vectors corresponding to the center of the Brillouin zone

are propagating waves. Their group velocities vg = dω
dkx

are defined by the slopes of the dispersion

curves. As an example, see Supplemental Video I, where the third mode corresponding to kx = 0

and possessing a negative group velocity, is visualized and its motion in the negative x-direction is

clearly seen.

Figures S3(c), (d) show magnon modes’ dispersion curves and their spatial profiles in the BV

geometry (ϕH = 90◦). One can see, that this case drastically differs from the case of the DE

geometry. In Fig. S3(c), all modes are reciprocal. The first eleven dispersion branches are nearly
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Figure S2. Magnetic field dependencies of the magnon frequencies for the case of (a) the DE geometry

(ϕH = 0◦) and (b) the BV geometry (ϕH = 90◦). The inset in (b) shows the magnetic field dependence of

the average steady-state in-plane magnetization angle ϕM. Note, that the vertical scales in (a) and (b) are

different. The magnon mode branches correspond to the center of the Brillouin zone. The color schemes of

the lines here, below and in the main text are the same.



4

-1 0 1
14

16

18

20

22

24

d/pxk
x

z(b)(a)

Fr
eq

ue
nc

y
(G

H
z)

+- 0

11

13
12

10
9
8
7

2

6
5
4
3

1
-1 0 1

8

10

12

14

16

18

+

(d)

x

z(c)

Fr
eq

ue
nc

y
(G

H
z)

- 0k

11

13
12

10
9
8
7

2

6
5
4
3

1

d/px

Figure S3. Magnon dispersions and mode profiles at Hext = 200 mT in (a), (b) the DE geometry and (c), (d)

the BV geometry. (a), (c) Magnon dispersion curves. The vertical dotted line in (a), (c) at kx = 0 indicates

the center of the Brillouin zone. (b), (d) Spatial profiles of the magnon modes at kx = 0 in the unit cell of

the NG. The colored numbers correspond to the magnon dispersion branches.

flat [S1, S3]. Moreover, the existence of huge band gaps in their frequency spectrum is worth of

mention. The largest three band gaps are between the second and third, fourth and fifth, and fifth

and sixth magnon branches possessing values of 2.35 GHz, 1.67 GHz, and 1.7 GHz, respectively.

Figure S3(d) shows magnon modes’ spatial profiles which correspond to the center of the Bril-

louin zone at kx = 0. In the BV geometry all modes are standing waves due to the reciprocal

dispersion. The first two modes are antisymmetric and symmetric edge modes. The next three

are so-called wire modes. The 6-th and 7-th modes are symmetric and antisymmetric groove

modes [S1]. An example of wire mode oscillations can be found in the Supplemental Video II.

The presented results in Fig. S2 are perfectly consistent with previously reported experimental

(FMR) and numerical results [S1]. For the DE geometry, Fig. S2(b) has to be compared to Fig. 7

in [S1]. For the case of the BV geometry, Fig. S2(a) has to be compared to Fig. 5(d), (h) in [S1].

Note, that in this work the number of lines is larger than in [S1], because Fig. S2 shows both

symmetric and antisymmetric magnon modes.

III. SPATIAL FOURIER TRANSFORM OF MAGNON MODES

Figure S4 shows the results of spatial Fourier transforms of the magnon modes’ spatial profiles

for different directions of the external magnetic field. For instance, Fig. S4(a) for ϕH = 0◦ shows

that the value of the Fourier amplitude at n = 0 is much larger than the values for other n. That

is, this mode is a quasiuniform magnon mode. Similarly, Figs. S4 (b), (c) for ϕH = 0 show modes

with n = 1 and n = 2, respectively. In the BV geometry, the magnon modes are characterized by

several values of n. In the transition range, i.e. from ϕH ≈ 50◦ to ≈ 75◦ the spectral composition

considerably differs from the spectral composition at ϕH = 90◦. The sharp peaks are caused by

magnon-magnon interactions with other magnon modes.
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Figure S4. Dependencies of the spatial Fourier amplitudes for the main harmonics on the external magnetic

field direction for the transition of (a) ”n = 0 mode” to the edge mode; (b) ”n = 1 mode” to the wire mode;

(c) ”n = 2 mode” to the groove mode.

IV. VERIFICATION OF MICROMAGNETIC SIMULATIONS USING COMSOL

MULTIPHYSICS

In reference [S4] five µMAG standard problems of micromagnetics can be found. Among all of

them, problem #4 deals with the case of a spatially nonhomogeneous, time-dependent magnetiza-

tion precession in a thin Permalloy plate. Due to the link to the treated system in this work, in

the following, the problem is formulated and solved using COMSOL Multiphysicsr [S5] (Comsol).

In order to verify the accuracy of the solved problem using Comsol, a comparison with different

solutions given in [S4] is discussed.

We want to emphasize, that we are not claiming the novelty of utilizing Comsol for micromag-

netic simulations (see e.g. [S6, S7]). However, as far as micromagnetics is not a default module

of Comsol we decided to verify our implementation of micromagnetics to Comsol by solving the

standard micromagnetic problems.

The object of our study is given by the Permalloy plate, which is illustrated in Fig. S5. The

used parameters are L = 500 nm, d = 125 nm and t = 3 nm. We take the same Permalloy material

parameters as used in [S4] only in this section of the Supplemental Material. It is important

to emphasize that these parameters are different from the values in reference [S1], which have

been used in the main text. Hence, the exchange stiffness constant is D = 3.25 · 10−17 Tm2. The

saturation magnetization is Ms = 1.0053 T, and the Gilbert damping constant is α = 0.02.

t

d

L

L=500 nm, d=125 nm, t=3 nm

x

y

z

Figure S5. Sketch of the geometry of the micromagnetic problem (not to scale!).

The first part of the solution of problem #4 is given by the calculation of the so-called s-state,

which is the specific steady-state spatial distribution of the magnetization (see Fig. S6(a)). In

order to do so, a saturating magnetic field is applied along the [111]-crystallographic direction and,
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subsequently, slowly decreased to zero. As one can see in Fig. S6, the calculated s-state using

Comsol looks very similar to the results taken from [S4] (see Fig. S6(b)). The resulting s-state

determines the initial state for the solution of the second part of problem #4, which deals with the

time evolution of the magnetization.

For the second part of problem #4, another magnetic field is applied along the opposite direction

of the equilibrium magnetization of the s-state in order to change the magnetization orientation.

The main aim is to track the time evolution of the magnetization towards the new magnetic

field direction [S4]. The applied magnetic field is given by Hx = −24.6 mT, Hy = −4.3 mT, and

Hz = 0.0 mT. In other words, the magnetic field strength of ≈ 25 mT is directed 170 degrees

counterclockwise relative to the positive x-axis in the x-y plane.

In this paragraph, we present the details of the calculation in Comsol which could be useful for

Comsol users. For the magnetic field calculation we used the ”AC/DC” module (”Magnetic Fields,

No Currents”). The Landau-Lifshits-Gilbert equation was implemented using the basic module of

Comsol i.e. ”Mathematics” (”Coefficient form PDE”). We introduce an air sphere of 2µm radius

around the Permalloy plate with a 200-nm thick external layer of ”infinite element domain”. The

magnetic scalar potential on the surface of the sphere is set to zero. The maximum element size

in the plate is set to 5 nm. For the sphere, we choose an ”extremely coarse” mesh. We used the

quartic Lagrange discretization in the Coefficient form PDE and quadratic in the ”Magnetic Fields,

No Currents”. The maximum time step is taken as 0.5 ps.

Figure S7 summarizes the calculated time-dependent spatially averaged magnetization compo-

nents by our and other groups. Fig. S7(a) shows the comparison of the results obtained using

Comsol (lines) and using a finite difference software developed by E. Martinez, L. Torres and L.

Lopez-Diaz (dots). One can see a very good agreement between the calculated lines and dots.

Another comparison of the results using Comsol and using the finite difference software developed

by J. L. Martins and T. Rocha is presented in Fig. S7(b). In this case, perfect agreement be-

tween both calculations is observed. The discrepancy between the different calculations is due to

the fact that the exact analytical solution of the considered problem is unknown. Thus, different

approaches, different mesh sizes, etc., give slightly different results.

We want to emphasize, that the calculated amplitude of precession is on the order of the satu-

ration magnetization (see Fig. S7), which is much larger than in usual experiments investigating

(a)

(b)

Figure S6. Steady-state spatial distribution of the magnetization in the s-state: (a) taken from [S4]; (b)

Comsol calculations.
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Figure S7. Comparison of results of micromagnetic calculations which were obtained with Comsol and

results from the groups of (a) E. Martinez et al. (data for 2.5 nm mesh size [S4]) and (b) J. L. Martins et

al. (data for 1 nm mesh size [S4]).

magnons (see e.g. [S8–S11]). Hence, the three-dimensional problem #4 is strongly nonlinear and

reflects a case, which is much more complicated than the simulation of magnons in effectively

two-dimensional gratings with precession amplitudes much smaller than Ms.

The last validation of the solution of problem #4 is provided by the comparison of the spatial

distribution of the magnetization at the time, when the x-component of the spatially averaged

magnetization first crosses zero (≈ 0.1375 ns). In Fig. S8(a) one can see the spatial distribution

which was calculated by M. J. Donahue and D. G. Porter, using the OOMMF eXtensible solver [S4],

while Fig. S8(b) shows the spatial distribution of the magnetization using Comsol. Besides the

different colors, there is good agreement between both calculated distributions.

(a)

(b)

Figure S8. Spatial distribution of the magnetization at the time = 0.1375 ns (see Fig. S7). Distribution (a)

is calculated by M. J. Donahue et al., using the OOMMF software, and distribution (b) is calculated using

Comsol. The background color indicates the z component of the magnetization.
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