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Abstract
Component failures in complex systems, such as aircraft fuel systems, can have

catastrophic effects on system performance. There are a large number of components in these
systems, each with a number of different failure modes, some of which can cause system
failure. In order to detect and diagnose these component failures, sensors that monitor system
performance need to be included. However, the number of sensors installed is typically limited
by sensor cost and weight. An approach for selecting sensors could be taken considering sensor
usefulness for fault diagnostics.

In this paper, the sensor performance metric proposed by Reeves et al. [1] is extended to
consider a phased mission operation, with component failures occurring at various points in
the mission. The performance metric favours sensors that can detect the most failures, the
failures that affect the system for longest and the failures that cause system failure. In addition,
the performance metric considers the ability of sensors to distinguish between component
failures, i.e. to diagnose which components have caused the faults observed by these sensors.
The proposed approach is illustrated on the Airbus A380-800 fuel system, where the best
combination is found using the performance metric within a Genetic Algorithm method.

Keywords: Sensor selection; Fault diagnostics; Time dependence; Genetic Algorithm; Phased
mission

1. Introduction
Aircraft fuel systems can be very complex, typically consisting of many different

components and often many different fuel tanks, usually with a set order of tank usage. Each
of these components, such as various pumps and valves, can fail and potentially cause the
system to fail, therefore, early detection of component failures is extremely important for
retaining safe aircraft operation. In addition to being able to detect faults, failures also need to
be diagnosed so that an appropriate action can be taken and aircraft downtime can be
minimised.

Sensors are primarily used for the purpose of control and monitoring of system
performance, and in addition they can also be used for detecting and diagnosing component
failures. Sensors on a fuel system can be of more than one type, for example, flow, level,
pressure, etc. Whilst it would be best to use as many sensors as possible, so that the maximum
amount of available information about failures could be obtained, sensors have their associated
costs, such as purchase, installation, maintenance and certification costs, the latter especially
significant for safety-critical systems. Additionally, sensors also add weight to the system, a
factor of great importance in aircraft systems, where saving weight is imperative. Another
factor to consider is the overlap of sensors, i.e. what information about the system can be
obtained by more than one sensor, which means that additional sensors are providing no
additional information on the state of the system. Therefore, a suitable sensor suite needs to
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be determined such that as much information on the state of the system can be obtained, whilst
only using a limited number of sensors, in order to minimise the cost and weight of the system.

In aircraft missions, there are typically a number of phases where fuel is moved from one
tank to another, in order to maintain the centre of gravity of the aircraft. Therefore, some
failures may occur in one phase of the mission, but may not produce any observable symptoms
until a later phase of the mission. An example of this is a fuel transfer pump failing off in a
cruise phase while it is not being used and therefore does not cause a problem, but when the
fuel needs to be transferred from one tank to another later in the mission, the pump failure is
revealed and at this stage it becomes a problem. Examples like these require the inclusion of
a time-dependence factor in the sensor selection process in order to determine the most suitable
sensor suite, i.e. which sensor suite can detect component failures in the shortest time after
failure occurrence. In addition to being able to quickly detect that a component failure has
occurred, it is also beneficial to be able to quickly diagnose which component has failed. The
sooner the failure is diagnosed, the higher the probability that system failure can be prevented
by taking the appropriate action and enabling the redundant components or reconfiguring the
system.

A number of different approaches for selecting sensors in aerospace and other fields have
been proposed in the literature. For example, a method of sensor selection used by Snooke [2]
and Kang & Golay [3] is a fault symptom matrix, which has one column of a matrix
corresponding to a different component failure and one row corresponding to a different sensor.
If a sensor can detect the component failure, the corresponding element of the matrix is “1”,
and if the sensor cannot detect the component failure, it is “0”. When the entire matrix is
completed, the sum of all the elements in each row can be used to determine which sensor
detects the most component failures. However, the probability of each component failure
occurrence may vary, with some being significantly more likely than others. The columns in
the matrix could be weighted accordingly, in order to select the sensor that is most likely to
detect a component failure.

Spanache et al. [4] propose a method to select sensors considering their cost, the ability to
diagnose failures and the number of failures that cannot be discriminated between by the
sensors. The authors apply a Genetic Algorithm (GA) based optimisation technique in order
not to have to consider all combinations of sensors exhaustively. The GA optimisation
technique is also applied by Santi et al. [5], who also consider time dependence in their
methodology, i.e. the time taken to detect the component failure after its occurrence. However,
in their sensor selection method, the authors consider the minimum probability of correct
diagnosis, which could result in unreliable sensor selection if the same sensor reading can be
produced by a large number of component failures, which can occur with a very low
probability.

Other authors, such as Maul et al. [6], introduce penalty factors in their sensor valuation
methods, which are used to devalue the sensor suite if the number of sensors in the suite exceeds
the set amount. Whilst this is a way of preventing sensor suites that have more sensors than
desired being selected, it also introduces subjectivity into the methodology, potentially
resulting in a different selection of sensors if the sensor selection process is repeated by
multiple analysts.

Pourali & Mosleh [7] present a method for modelling systems using Bayesian Belief
Networks (BBN) in order to determine the best combination of sensors. The method presents
the system modelling technique and it gives some generic examples of utility functions in order
to determine the most suitable combination of sensors. Also, whilst BBNs are a suitable system
modelling technique for fault diagnostics, with Lampis et al. [8] using BBNs to diagnose
component failures, they can become impractically large for complex systems. Therefore,
alternative system modelling methods are needed.
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Reeves et al. [1] propose a performance metric to be used for sensor selection, and uses a
Bayesian Belief Network for a simple system in order to verify that the selected sensors can
detect faults and diagnose failures correctly. The approach proposed in this paper extends this
work through the introduction of time-dependence aspect in the metric, an alternative system
modelling technique and a two-level GA method, in order to determine the most suitable sensor
suite for the fuel system of the Airbus A380-800.

In this paper, the fuel system is outlined in section 2, introducing details of component
failures, available sensors and assumptions about system operation. In section 3, the
performance metric is proposed, and its application to the fuel system is given in section 4,
consisting of the description of system model, the optimisation approach and results of fault
diagnostics using the selected sensors. Discussion on the performance of the proposed method
and final conclusions are given in sections 5 and 6, respectively.

2. System Description
The system presented in this section is the fuel system of the Airbus A380-800. The aircraft

has a maximum take-off weight of 575000 kg and maximum landing weight of 394000 kg, and
is capable of a flight duration of more than 15 hours, due to its fuel capacity of approximately
325000 litres. The fuel is stored in eleven tanks; five of varying sizes in each wing, and one in
the tail of the aircraft. [9] details the volume and mass of fuel in each of the tanks, this
information is also presented in Table 1.

Table 1 Fuel tank volumes for the Airbus A380-800 [9]

Outer

tanks

Outer engine

feed tanks

Mid

tanks

Inner transfer

tanks

Inner engine

feed tank

Trim

tank

Total

Volume (l) 10520 27960 36460 46140 29340 23700 324540

Weight (kg) 8260 21950 28620 36220 23030 18600 254760

In this system, there are 66 components, 62 of which are considered in this paper: 20 pumps,

denoted as , and 42 valves, . Figure 1 presents an adapted version of the schematic of
the aircraft fuel system, taken from [10], with the sections of the system that are not considered
greyed out in the schematic, such as the heat exchangers and the auxiliary power unit (APU).
In order to be able to detect and diagnose failures on the system, 85 flow sensors and 11 fuel
tank level sensors are positioned in the system.

There are two phases of operation considered in this paper: engine feed and fuel transfer.
The components used for the engine feed operation mode are the pumps and the valves on the
lines that are connected to the engines at the top of Figure 1. The components that are used for
the fuel transfer are the components on the top fuel line (the line with sensor 45) that stretches
through all of the tanks and the components in the tail of the aircraft. The components on the
bottom fuel line (the line with sensor 59) are used for other operation modes, such as fuel
jettison, which are not considered in this paper. A number of sub-phases in the fuel transfer
mode describes the order in which the fuel is transferred, in order to minimise the stress on the
wings from the weight of the fuel which could cause wing bending. This order is presented in
Table 2, which details an example mission. The mission is 12 hours long (720 minutes), and
the modelling step is 1 minute.
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Figure 1 Schematic of Airbus A380-800 fuel system [10]
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Table 2 Timings of the phased mission

Phase

number

Starting

time

(minutes)

Ending

time

(minutes)

Phase description

1 0 25 Take-off and climb

2 25 65 Transfer of fuel from the inner to outer tanks (and cruise)

3 65 125 Cruise (no transfer)

4 125 265 Transfer of fuel from the inner to feed tanks (and cruise)

5 265 335 Cruise (no transfer)

6 335 475 Transfer of fuel from the mid to feed tanks (and cruise)

7 475 545 Cruise (no transfer)

8 545 585 Transfer of fuel from the trim to feed tanks (and cruise)

9 585 605 Cruise (no transfer)

10 605 645 Transfer of fuel from the outer to feed tanks (and cruise)

11 645 720 Cruise, descent and landing

It is stated in [9] that in order to prevent wing bending very little fuel is stored in the outer
tanks during take-off. Therefore, immediately after take-off and climb, some of the fuel from
the inner tanks is transferred to the outer tanks. All the other fuel transfer occurs when the
engine feed tanks are depleted to approximately 30%. Note, it is assumed that all tanks are not
run dry, and therefore, at the end of each corresponding transfer phase, there is a small quantity
of fuel remaining in the tanks. The quantities of fuel in the tanks at the beginning of the mission
are presented in Table 3.

Table 3 Fuel quantities at the start of the mission

Outer tank

(kg)

Feed tank

(kg)

Mid tank

(kg)

Inner tank

(kg)

Trim tank

(kg)

Total

(kg)

600 19000 27000 34300 15400 215200

A number of pumps in the system supply fuel at different rates. It is assumed that the
supply to each of the engines is 1 kg/s [9] and 4 kg/s in cruise and take-off respectively. The
transfer pumps are assumed to transfer the fuel between tanks at a rate of 3 kg/s. Note, there
are a number of redundant components, including engine feed pumps, which would only be
activated if the primary pump has failed, i.e. the secondary pumps will be turned on when the
corresponding primary pump is diagnosed to have failed.

Each of the 62 considered components can fail at multiple points during the mission. These
failure times are assumed to be in the middle of each phase, and the effects of the failure on the
system are assumed to have stabilised by the next time step of the mission. Each component
can fail in multiple failure states: the pumps in 7 different states and the valves in 3 failure
states. For example, the pumps can fail supplying the maximum rate (i.e. 4 kg/s), the fuel
transfer rate (i.e. 3 kg/s), the cruise rate (i.e. 1 kg/s), and be failed off (i.e. 0 kg/s), and can fail
supplying half of each of the rates, in order to represent degraded pumps (i.e. 2 kg/s, 1.5 kg/s
and 0.5 kg/s, respectively). The valves can fail fully open, fail half-open (i.e. the radius of the
opening is half of the fully open valve), and fail closed.

For simplicity, only single component failures are considered in this paper. However, even
then, the fact that each component can fail in multiple states and at multiple different points of
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time results in 2926 different cases of failures to consider. Of these 2926 failures, 2148 can be
detected, i.e. 778 failures are hidden failures as they produce no observable symptoms. In
addition, 1260 of the 2926 failures result in system failure, i.e. when the mission cannot be
completed successfully, which is assumed to occur in three ways. The first of the ways that
system failure can be caused is when the supply of fuel to the engines fall below 75% of the
nominal amount supplied to them. The second way is when the quantity of fuel in one of the
wings is significantly more than the quantity of fuel in the other wing, resulting in an imbalance
of the aircraft, potentially preventing it from remaining airborne. In this paper, the threshold
is set at one wing being 20% heavier than the other, but in reality this threshold would be lower.
The final system failure mode is when the weight of the aircraft exceeds the maximum landing
weight, with the maximum amount of remaining fuel on landing assumed to be 30000 kg, at
the end of the mission due to the quantity of fuel remaining in the tanks. Note, that effects of
component failures depend on the phase, as discussed in the introduction, i.e. if a transfer pump
in one of the inner tanks fails off in the first phase of the mission, a large quantity of fuel would
be trapped in the tank and the mission could not be completed. However, if the same transfer
pump was to fail off in the fifth or later phase, when that pump is not used anymore in the
mission, it will have no effect on the completion of the mission. Minimal cut sets were not
obtained as a part of this study, 1260 failures that cause system failure were identified by
modelling the system using if-then-else statements, discussed in section 4.1. Note that a
minimal cut set, obtained from a fault tree, is a minimum combination of component failures
such that if they all occur, system failure also occurs [11]. In the next section, the proposed
performance metric is presented.

3. Proposed sensor performance metric
The proposed performance metric, I{s}, presented in Equation 1, is an average value of three

terms: a term that considers the percentage of failures the sensors can detect, DE{s}, a term that
considers the ease of diagnosis of the detected failures, DI{s}, and a term that considers the
effect that the detected failures have on the successful completion of the mission, CR{s}.

The performance metric is between values of 0 and 1, where 1 is the best possible sensor,
i.e. detects all the failures (including critical failures) as soon as they occur, and all component
failures can be diagnosed correctly with 100% confidence. It is assumed that the failure rate,
λ, is 0.000001 and 0.000005 per time step for the pumps and the valves, respectively. This
corresponds to approximately 694 and 139 days of constant use for pumps and valves,
respectively. Note that the chosen values of failure rates do not affect the outcomes of the
method; it only matters that the ratio between the component failure rates is realistic.
Alternatively, generic component failure data could be obtained from reliability data
handbooks [12]. Also note that the notation of sensor s can refer to an individual sensor or a
group of sensors.

3.1. Detection term
The detection term in [1] of the performance metric considers the percentage of component

failures that can be detected by the sensors. In order to detect the component failures, the
sensor reading must deviate from the sensor reading that is produced in normal operating
behaviour. The detection term introduced in [1] is given in Equation 2.

I{s} =
{௦}ܧܦ + {௦}ܫܦ + CR{s}

3
(1)



7

Here Pd is the sum of probabilities of considered failures’ occurrence that sensor s can
detect, and Pmd is the sum of probabilities of considered failures’ occurrence that can be
detected by at least one sensor out of all possible sensors on the system, i.e. in this example,
there are 2148 of the 2926 considered failures that can be detected since 778 failures are hidden.
The time-dependent factor considers the time of failure occurrence and the time of detection,
and is shown in Equation 3. Note, the time of detection can be the same as the time of
occurrence, or at any point later in the mission, even in later phases. If the mission is of length
T, and the failure occurs at time tf, then the time of detection, td, can be any value from tf to T.
Here Nd{s} is the number of component failures that can be detected by the considered sensor
s and the sum of Pe over Nd{s} is equal to Pd., where Pe is the probability of occurrence of a
considered failure.

The two factors in brackets consider the delay in the detection of the failure in relation to
the total length of the mission, and in relation the remaining time of the mission, respectively.
The first factor does not consider when the failure occurs, only how long it takes for the failure
to be detected, i.e. a 5 minute delay in a short mission will have a greater effect than a 5 minute
delay in a longer mission. The second factor takes into account when in the mission the failure
occurs, i.e. a failure occurring near the start of the mission influences the mission for longer
than a failure occurring towards the end of the mission, and therefore, affects the detection term
more. For both factors, the longer the delay between failure and detection, the smaller the
factor, i.e. the less favourable the sensor combination will be. This is because it will delay any
action being taken to prevent system failure, if system failure is possible to prevent. DE{s} is
equal to 1 when sensor s can detect all the considered failures that are possible to detect as soon
as they occur, and is equal to 0 when sensor s cannot detect any of the failures that can occur
on the system, i.e. Nd{s} is equal to 0.

3.2. Diagnostic term
The diagnostic term of the performance metric considers how easily a failure can be

diagnosed using sensor s. In order to diagnose the failures, the symptoms of different failures
need to be different in order to be able to distinguish between them. The larger the number of
different sensor readings, nrs, the higher the probability of diagnosing the component failures
correctly, i.e. if a different sensor reading is produced for every possible component failure, all
failures are diagnosed correctly. Assume each sensor reading i of sensor s will have a
probability of occurrence, Psri, and one of the component failures that can cause the sensor
reading will be the most likely to have caused it, where the probability of occurrence of this
failure is denoted as Pmli. The higher the ratio between Pmli and Psri the more likely that the
component failure is to be diagnosed correctly. These two terms are summed over the number
of sensor readings for sensor s, and their ratio is denoted as the diagnostic term, presented in
Equation 4.

DE{s} =
Pd

Pmd
(2)

DE{s} =
1

Pmd
෍ ௘ܲቆ1 −

൫ݐௗ − ௙൯ݐ

ܶ
ቇቆ1 −

൫ݐௗ − ௙൯ݐ

൫ܶ − ௙൯ݐ
ቇ

ேௗ{௦}

଴

(3)
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DI{s} =
∑ Pmli

nrs
i=1

∑ Psri
nrs
i=1

(4)

In a time-dependent case, the sensor readings may change over time after the occurrence
of the failure, therefore, the diagnostic capability will also change over time. Therefore, the
diagnostic term considers how soon after the detection the best diagnostic capability can be
achieved, expressed as the time step at which the highest probability of correct diagnosis is
achieved. In some cases, there may be a long delay between the occurrence of the failure and
this time step, but a reasonably high diagnostic capability can be obtained after a significantly
shorter time. Therefore, the diagnostic term considers the balance between the diagnostic
capability and the time taken to achieve it. A simple example is presented in Figure 2.

Sensor
reading

(10) (4) (4) (4)

(2)

(6) (2) (2)

(4) (2)

0 td td1 td2 td3 T time

Figure 2 Representation of the timeline of the mission for the diagnostic term

Note that Figure 2 presents all possible sensor outputs over time due to failures, i.e. in
reality as only one sensor reading would be observed at any one time, the figure with multiple
readings is only used for illustration of the diagnostics term. The solid line represents the sensor
reading produced under normal operating conditions, i.e. if no failures are present (or detected)
in the system. At time td, the sensor detects a failure when a different sensor reading is
produced, which is represented by the dotted line, for example, a cross-feed valve is open
erroneously and the flow increases. There may be a number of different component failures
that are detected at this time, in this example there are 10, since they all produce the same
sensor reading. At time td1, due to changes in operation, such as the transition to a different
mission phase, the sensor reading for some of the failures may deviate again. In this example,
6 of the 10 component failures produce a different sensor reading, represented by the dashed
line. Therefore, if diagnostics is carried out after td but before td1, the result will be quite poor,
as 10 component failures will be diagnosed as failed; whereas if diagnostics is carried out after
td1 (and before td2), the result will be better, as a smaller number of failures (4 if the sensor
reading was expressed as the dotted line, and 6 – as the dashed line) will be diagnosed as failed.
This is repeated a number of times, with at time td2 the sensor reading represented by the dashed
line splitting into two sensor readings, 2 of the 6 component failures producing the sensor
reading represented by the dashed line, and 4 of the 6 component failures being represented by
the zig-zag line. The same is the case at time td3 with the double line. Also note that in this
paper due to operational changes or failures, sensor readings change instantly; in reality there
would be a gradual change from one reading to another.

For this example of 10 component failures, if no time dependence factor is considered, then
DItd3 > DItd2 > DItd1 > DItd, where DI is the diagnostic term as presented in Equation 4.
However, if the time between td and td2 is significantly shorter than the time between td and td3,
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then it might be useful to have a lower diagnostic capability, but after a significantly shorter
time. A factor is used to consider the effect of the time to achieve improvements in the
diagnostic term. This factor is calculated for each time step, Tstep, between td and T, and is
presented in Equation 5.

Similarly to the detection term factor, the two members of the equation consider the amount
of time taken to achieve the best diagnostic capability of the failure in relation to the total length
of the mission, and the remaining time of the mission, respectively. For each time step, the
factor is calculated and multiplied by intermediate values of the diagnostic term for that
considered deviated sensor reading. This results in Value(Tstep), which is presented in Equation
6. Note, maxݔ is the number of sensor readings at each point in the mission, i.e. in the example
in Figure 2, max(td)ݔ = 1, max(td1)ݔ = 2, max(td2)ݔ = 3, etc.

For simplicity, denote N(Tstep) = ∑ ௠ܲ ௟௫
௫೘ ೌೣ൫் ೞ೟೐೛൯

௫ୀଵ , and D(Tstep) = ∑ ௦ܲ௥௫
௫೘ ೌೣ൫் ೞ೟೐೛൯

௫ୀଵ . The

time step that results in the maximum value of the term Value(Tstep) is denoted as Tstepmax, and
is used in the calculation of the time-dependent diagnostic term, which is presented in Equation
7. At each time step, there can be many different deviations, observed by the sensors, therefore,
the number of deviations at each time step is represented by nrs(td). This process is summed
over all time steps from the earliest detection time observed, tdmin, to the end of the mission, as
there are many different times at which the failure can be detected.

The diagnostic term will be equal to 1 when all component failures produce different sensor
readings as soon as they occur, and will be close to 0 when many different component failures
produce the same sensor reading.

3.3. Criticality term
The criticality term of the performance metric considers the effects of component failures

on system performance that can be detected by sensors. This term is based on the Fussell-
Vesely importance measure [13] which in this study is adapted for considering sensors.
According to definition, this importance measure considers the contribution of individual
components to the system unavailability, and is calculated by subtracting the probability of
system failure when the considered component is working from the probability of system
failure Qsys, and normalising it by the probability of system failure Qsys. The importance
measure is adapted here such that the subtracted term is the probability of system failure given
that the non-deviated sensor reading of sensor s occurs, Qsys(qs = 0). The proposed criticality
term is presented in Equation 8.

ܽܨ ൫ܶݎ݋ݐܿ ௦௧௘௣൯= ቆ1 −
൫ܶ ௦௧௘௣ − ௗ൯ݐ

ܶ
ቇቆ1 −

൫ܶ ௦௧௘௣ − ௗ൯ݐ

(ܶ− (ௗݐ
ቇ (5)

ܸܽ ݑ݈ ൫݁ܶ ௦௧௘௣൯=
ቀ∑ ௠ܲ ௟௫

௫೘ ೌೣ൫் ೞ೟೐೛൯

௫ୀଵ ቁ× ܽܨ ൫ܶݎ݋ݐܿ ௦௧௘௣൯

∑ ௦ܲ௥௫
௫೘ ೌೣ൫் ೞ೟೐೛൯

௫ୀଵ

=
ܰ( ௦ܶ௧௘௣) × ܽܨ ൫ܶݎ݋ݐܿ ௦௧௘௣൯

)ܦ ௦ܶ௧௘௣)

(6)

{௦}ܫܦ = ෍
∑ ܰ( ௦ܶ௧௘௣௠ ௔௫)௜× ܽܨ )ݎ݋ݐܿ ௦ܶ௧௘௣௠ ௔௫)௜
௡௥௦(௧)
௜ୀଵ

∑ )ܦ ௦ܶ௧௘௣௠ ௔௫)௜
௡௥௦(௧)
௜ୀଵ

௧ୀ்

௧ୀ௧೏೘ ೔೙

(7)
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CR{௦} =
Q

sys
− Q

sys
(q
௦
= 0)

Q
sys

(8)

As for the two previous terms, the criticality term of the time-dependent performance metric
considers the amount of time between the occurrence of the failure and system failure. The
time at which the system becomes critical, tc, can be any time between the time of failure, tf,
and the end of the mission, T. Note, that system failure may not occur. For this term, the
sooner after the occurrence of the failure that the system becomes critical, the larger the effect
of the failure on the criticality term.

The amount of time that the component is in a critical state in relation to the total mission
time, and the remaining mission time after the occurrence of the failure are considered. For
the criticality term, the time-dependence factor is introduced to the individual terms of the
criticality term, i.e. there are time-dependent expressions of ܳ௦௬௦ and ܳ௦௬௦(ݍ= 0), presented

in Equations 9 and 10, respectively. Note, the summation in Equation 9 is over all critical
events, Nc{s}, i.e. events that cause system failure, and this value is the same for any sensor s,
and the summation in Equation 10 is over all critical events that are not detected by the selected
sensor, Ncnd{s}, i.e. this value is different for each sensor.

However, there is one exception to Equations 9 and 10. The system will be critical when
the aircraft lands if the weight in the aircraft is above the maximum landing weight. As the
aircraft cannot gain weight through the mission, if it is above the maximum landing weight at
the end of the mission, it is above the maximum landing weight for the whole mission. In this
sense, the system is in this critical state throughout the whole mission and the time-dependence
factor is not considered, i.e. Equations 9 and 10 take account of the term Pe only.

3.4. Discussion
It is proposed that the performance metric is the average of the three terms. However, as

discussed by Reeves et al. [1], there may be some applications where it is desirable to favour
one term of the performance metric over the others. Therefore, the performance metric can be
used to determine a number of highly ranked combinations of sensors, and then use the values
of the individual terms for the final selection of the most suitable combination of sensors for a
specific application. For example, the criticality term could be favoured for safety-critical
systems, such as aircraft engine control systems, when early detection of critical component
failures enables the mitigation of failure effects, such as emergency rerouting and landing. The
diagnostic term could be favoured in situations when system down-time is expensive, such as
disruptions on oil and gas rigs, and the repair work has to be completed as quickly as possible.
Therefore, finding the exact component that needs maintenance can bring the system to the
working state as soon as possible, and also decrease workforce exposure to a related hazard.

In order to be able to apply the performance metric to a system operating in a phased
mission, the factor of time dependence is introduced. The three terms have similar factors

ܳ௦௬௦ = ෍ ௘ܲቆ1 −
൫ݐ௖− ௙൯ݐ

ܶ
ቇቆ1 −

൫ݐ௖− ௙൯ݐ

(ܶ− (௙ݐ
ቇ

ே೎{ೞ}

଴

(9)

ܳ௦௬௦(ݍ= 0) = ෍ ௘ܲቆ1 −
൫ݐ௖− ௙൯ݐ

ܶ
ቇቆ1 −

൫ݐ௖− ௙൯ݐ

(ܶ− (௙ݐ
ቇ

ே೎೙೏{ೞ}

଴

(10)
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included that consider how long the failure is present before the considered factor is achieved
(detection, diagnosis or becoming critical), in comparison to the length of the mission, and the
time remaining in the mission after failure occurrence, (or failure detection in the case of the
diagnostics term). However, whilst all three terms require additional computational resources
in comparison to the time-independent performance metric terms, the diagnostic term is
significantly more computationally intensive than the other two terms. This is because the
diagnostic term needs to be calculated for every remaining time step of the mission (as it may
improve throughout the mission), whereas the other two terms only need to be calculated once.
For example, if a failure occurs with X remaining time steps of the mission, Equations 5 and 6
for the diagnostic term need to be calculated X times, and finally the diagnostic term (the
summed term of Equation 7) can be obtained. The earlier in the mission the failure occurs and
the longer the mission is, the more calculations for the diagnostic term are required, whereas
during the calculation of the detection and criticality terms the relevant equations are applied
only once, regardless of the length of the mission or the time of failure occurrence. Therefore,
for comparison, calculation of detection and criticality terms takes seconds, whereas
calculation of a diagnostic terms can take several minutes.

In addition to this feature needing to be considered in the application of the method to a
complex system, the determination of the most suitable sensor combination can also be time
consuming, as there are a large number of different combinations of sensors to calculate the
performance metric for. Therefore, in order to determine the most suitable sensor combination
more efficiently, a Genetic Algorithm based optimisation process is proposed in this study,
detailed in section 4.2.

4. Application of the methodology to the fuel system of the Airbus
A380-800
The proposed methodology is applied to the fuel system presented in section 2.

4.1. System modelling
The system modelling technique uses a series of if-then-else statements in a C++ script in

order to determine the flow of fuel in each section of the system at each time step of the mission,
by asking questions, such as, is a required pump on, is there fuel coming into a section, can
fuel leave the system, etc. Input parameters are details of the mission, such as its duration and
phase description, fuel levels in each tank, fuel supply rate of each pump, if the valves are open
or not, component failure information, such as the probability of occurrence and its time of
occurrence in a simulation, as described in section 2. This information is read from the text
file into the C++ script, and the outputs, such as sensor readings, fuel levels and the state of the
system (in terms of its failure mode), are obtained for every failure scenario at every time step
over the duration of the mission.

4.2. Sensor selection using the GA method
As mentioned in section 2, there are a large number of hidden failures (778), i.e. failures

that do not produce any observable symptoms for any of the sensors. Therefore, approximately
62% of the failures can be detected, calculated as the sum of the probability of failure
occurrence for all failures that can be detected divided by the sum of the probability of failure
occurrence for all failures.

The best possible performance metric can be determined when all of the sensors on the
system are installed. This results in the best performance metric of 0.7960: with a detection
term of 0.9219, a diagnostic term of 0.4661, and a criticality term of 1. The detection term is
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less than 1 because of the time-dependence aspect, i.e. all the failures can be detected, but some
of the failures are detected with some delay, i.e. the symptoms are observed later in the mission.
The diagnostic term is also less than 1 because not all of the detected component failures can
be diagnosed correctly, as some sensor readings are being produced by more than one
component failure. Note, all critical failures can be detected as soon as, or even before, the
system becomes critical, therefore, the criticality term is 1.

As it would be impractical to select all of the sensors on the system, their combinations are
considered. Since there is a large number of sensors, there is also a large number of
combinations of sensors to consider. For example, there are over 61 million combinations of
5 sensors and over 1.1×1013 combinations of 10 sensors. It is, therefore, not feasible to
exhaustively calculate the performance metric for all the combinations of sensors, and a two-
level Genetic Algorithm (GA) approach is proposed for this purpose.

Genetic algorithms were initially developed by Holland [14] and they are based on the
principal of natural selection. The GA method begins by analysing a population of randomly
generated strings which represent potential solutions to the problem in question [15]. Genetic
operators, such as crossover, elitism and mutation, represent natural selection, and they form
heuristic rules that guide the search of a solution, avoiding the evaluation of the parts of the
design space where the fitness function value is low, i.e. without having to evaluate the
suitability of every possible solution exhaustively. The two-level GA method, proposed in this
paper, and the results are presented next.

The sensors in the GA are represented in the form of a chromosome with 96 genes, i.e. one
gene for each sensor, where 1 represents that a sensor is selected, and a 0 represents that a
sensor is not included. For example, for a system with 10 sensors the string, 0100010010,
represents sensors 2, 6 and 9 being selected. In the proposed GA approach the fitness function
is derived using the performance metric, and a constraint is introduced on the number of
sensors, such that any combination of sensors that violates this constraint has a penalty factor
applied, which is equal to the square of the number of sensors in the combination, as one of the
types of penalty factors, suggested by Goldberg [15]. As discussed in section 3.4, the
diagnostic term is significantly more computationally intensive than the other two terms,
therefore, in the first level of the GA method a simplified formula of the performance metric is
used as the fitness function, i.e. only the average of the detection and criticality terms. The full
performance metric, as shown in Equation 1, is then used as the fitness function in the second
level of the GA method.

The first level begins with 50 sets of randomly generated populations of sensors, each with
100 chromosomes. Each of the populations have genetic operators applied to them 100 times
to obtain 100 generations for each population. The best chromosome in the 100th generation
for each of the 50 populations is used to form a new population to be used in the second level
of the algorithm. At this step, genetic operators are applied to the population 50 times to obtain
next 50 generations. The best member of the final generation is the best combination obtained
by the two-level GA method for a set number of sensors. In this paper the GA method is
applied when the set number is from three up to 12 sensors (Table 5 and 6), and for comparison,
the combinations of three or fewer sensors are also calculated exhaustively (Table 4). Table 4
presents the best five solutions for groups of one, two and three sensors. There are a number
of sensor combinations, shown in column 3, that have the same performance metric because of
the symmetry in the system, for example, in addition to the group of two sensors {S45,
LOFTL}, which is ranked highest, there are also other combinations with the same value, such
as {S45, ROFTL}, {S46, LOFTL} and {S46, ROFTL}.
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Table 4 Groups of one, two and three sensors using the exhaustive method

Rank Sensors Number I{s} DE{s} DI{s} CR{s}

1 LOFTL 2 0.5147 0.5665 0.1795 0.7981

2 S45 2 0.3718 0.3037 0.4440 0.3677

3 LIFTL 2 0.3582 0.3049 0.3411 0.4286

4 LMTL 2 0.3410 0.0294 0.9639 0.0296

5 S25 2 0.3147 0.2856 0.2907 0.3677

1 S45 LOFTL 4 0.6204 0.6322 0.3607 0.8682

2 LOFTL LIFTL 4 0.6143 0.6358 0.2925 0.9148

3 LOFTL ROFTL 1 0.5837 0.6020 0.2531 0.8961

4 S29 LOFTL 4 0.5790 0.6164 0.2523 0.8682

5 S06 LOFTL 6 0.5767 0.5942 0.2364 0.8995

1 S45 LOFTL RIFTL 4 0.6601 0.6658 0.3997 0.9148

2 S45 LOFTL ROFTL 2 0.6592 0.6654 0.3995 0.9127

3 LOFTL LIFTL RIFTL 2 0.6555 0.6725 0.3349 0.9593

4 LOFTL ROFTL LIFTL 2 0.6538 0.6712 0.3327 0.9573

5 S06 LOFTL RIFTL 4 0.6480 0.6635 0.3215 0.9589

In general, most of the individual sensors that were ranked highly are included in the
combinations of two and three sensors, and the performance metric increases with each
additional sensor. All of the terms in the performance metric decrease when the rank decreases,
with some exceptions, for example, the combination of one sensor ranked 4th, {LMTL}, has a
high diagnostic term but the detection and criticality terms are significantly lower than the ones
of similarly ranked sensors. Since this sensor detects fewer component failures, it is easier to
diagnose them, resulting in a higher diagnostic term, therefore, it is important to study not only
the overall performance metric but also its individual terms in order to select sensors
appropriately, as also discussed in section 3.4.

Table 5 presents the best solutions for each set number of sensors, denoted as column “No.
S.”, when the first level of the GA method is implemented. The earliest generation in which
the best solution is first achieved (out of 100) in any of the populations is given in column
“Generation”, the number of populations in which the best solution is obtained given in “No.
Pop.”, and the number of different combinations of sensors with the corresponding fitness value
– in “No. Comb.” (both out of 50).

Table 5 Best combinations of sensors at the end of the first level of the GA method

No.

S.

Sensors Fit DE{s} CR{s} Generation No.

Pop.

No.

Comb.

3 S21 LOFTL RIFTL 0.8265 0.7382 0.9148 2 50 25

4 S31 ROFTL LIFTL

RIFTL

0.8671 0.7749 0.9593 10 35 13

6 S10 S51 LOFTL

ROFTL LIFTL

RIFTL

0.9305 0.8609 1.0000 23 10 9

8 S08 S13 S21 S34 S60

S76 LOFTL RIFTL

0.9525 0.9049 1.0000 23 22 22
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10 S03 S08 S10 S24 S57

S65 S72 S76 ROFTL

RIFTL

0.9610 0.9219 1.0000 13 46 46

12 S03 S13 S18 S22 S35

S38 S46 S72 S76 S85

ROFTLC LIFTLC

0.9610 0.9219 1.0000 8 50 50

The combinations of sensors detailed in Table 5 shows an increase in the detection and
criticality terms as the number of sensors increases. It also demonstrates that the maximum
value of each of the two terms can be achieved using 10 sensors and 6 sensors, respectively.

As the performance metric was calculated exhaustively for all combinations of 3 sensors,
the ranking of each combination determined at this level of the GA method can be determined.
The combination of 3 sensors in Table 5 is ranked 20th and there are 94 combinations of sensors
with a higher performance metric than this. This is because of the diagnostic term for this
combination (0.2785) is lower than other combinations, resulting in other combinations having
a higher performance metric. The second level of the GA method is applied for each number
of sensors (No. S.) as in the first level, and is presented in Table 6. Note, generation 0 refers
to the population at the start of the second level of the GA method, i.e. before any genetic
operators are applied in the second level.

Table 6 Best combinations of sensors at the end of the second level of the GA method

No. S. Sensors I{s} DE{s} DI{s} CR{s} Generation

3 S46 LOFTL RIFTL 0.6601 0.6658 0.3997 0.9148 10

4 LOFTL ROFTL LIFTL RIFTL 0.6871 0.7080 0.3532 1.0000 33

6 S03 S06 S18 S20 S45 ROFTL 0.7387 0.8290 0.3873 0.9997 35

8 S06 S18 S22 S45 S52 S76

LOFTL ROFTL

0.7658 0.8991 0.3985 0.9997 0

10 S07 S13 S22 S45 S53 S74 S77

LOFTL LIFTL RIFTL

0.7750 0.9219 0.4031 1.0000 20

12 S01 S06 S07 S13 S20 S45 S57

S74 S77 LOFTL ROFTL RIFTL

0.7784 0.9219 0.4134 1.0000 0

The combination of three sensors in Table 6 is the same as the one ranked 1st in Table 4,
i.e. using the exhaustive method. This is a significant improvement over the combination of
sensors selected at the end of the first level of the GA method and also shows that the ultimate
result in the case for three sensors has not been affected by the two-level method, i.e. when the
diagnostic term was omitted in the first level. Whilst the best combination of sensors was
obtained at the end of the second level of the GA method in this case, this would not always be
the case. However, it is worth noting that this result was achieved in approximately one seventh
of the time taken to calculate all 142880 combinations of three sensors exhaustively.

Also note that the combinations of 6 and 8 sensors in Table 6 do not have the criticality
term of 1, but the combinations of 6 and 8 sensors in Table 5 do. However, the combinations
of sensors in Table 6 can still detect all of the critical component failures but at a later modelling
time step for some failures.

The combination of 10 sensors consists of sensors from different sections of the system,
and in three of the four feed tanks, suggesting that it is better to spread the sensors around the
system rather than position them in close proximity to each other. The only section with two
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sensors is the tail of the aircraft. If this sensor combination was to be adapted, one of the
sensors in the tail of the aircraft may not be included and a different sensor included elsewhere,
perhaps in the fourth feed tank. However, this would require calculation of the performance
metric for different combinations of sensors, and an increase in performance metric may not
be easy to obtain. As the combination of 10 sensors in Table 6 is the smallest number of sensors
that can detect all of the component failures, this combination of sensors is selected for use in
the fault diagnostics process in the following section. The fault diagnostic process is applied
in order to determine whether the selection of sensors, derived using the proposed method, is
suitable.

4.3. Fault diagnostics
In order to verify that the chosen sensors are able to detect faults and diagnose failures, all

of the sensor readings corresponding to each of the component failures are modelled and
diagnosis of the component failures is attempted. In the fault diagnostic process a library of
sensor readings for all of the component failures, and the sensor readings that are obtained from
the model when a failure is modelled, are compared in order to determine which component
failure has occurred. If there is more than one component failure that produce the same set of
observed symptoms, each component failure will have a different probability of being that
observed failure. This is equal to the probability of each failure occurrence, divided by the
probability of all component failures that produce the observed symptoms, respectively,
(Pmli/Psri), related to the diagnostic term of the performance metric.

In order to report the results of fault diagnostics, the components are grouped into six
groups: engine feed (EF) pumps, fuel transfer (FT) pumps, dump (D) pumps, engine feed (EF)
valves, cross-feed (CF) valves, and dump and refuel (DR) valves. The summary of the
diagnosis outcomes for each of these groups is presented in Table 7, where the numbers
represent the number of component failures in each group that are diagnosed with that
diagnostic result, given in column “Diagnostic result”. In terms of notation in Table 7, “a% -
b%” refers to the diagnostic result of a% initially, but at a later time, it increases to b%, which
could also be 100%, i.e. the diagnosed failure is the actual failure. “c%d” refers to the
diagnostic result of c%, but the detection of the failure is after the occurrence of failure, i.e. td

> tf. “0% < a% < 50%” refers to the diagnostic result somewhere between 0% and 50%. The
case in the row with “16.66%” in the first column is discussed below. Finally, “0%” refers to
hidden failures.
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Table 7 Diagnostic results of component failures

Diagnostic result EF
pumps

FT
pumps

D pumps EF
valves

DR
valves

CF
valves

100% 262 45 - 22 52 -
50% 240 15 - - 16 -
a% - 100% 4 197 - - 36 -
a% - 50% - 40 - - 2 10
a% - b% - 100% - 124 - - 3 -
a% - b% - 50% - 20 - - - -
a% - b% - c% - 100% - 21 - - 1 -
50% < a% < 100% - - - 22 - -
0% < a% < 50% - 72 264 - 48 48
a% - <50% - - - - 116 40
100%d 4 6 - - 55 -
50%d - - - - 14 10
a% - < 100%d - 2 - - 33 -
0% < a% < 50%d - 42 - - 216 -
a% - < 50%d - - - - 24 -
16.66% 22 - - - - -
0% 84 32 44 88 473 57
TOTAL 616 616 308 132 1089 165

2126 of the 2148 component failures can be diagnosed correctly by inspecting the failures
with the highest probability of occurrence for the observed sensor reading, with 889 different
component failures being diagnosed (correctly with 100% probability that it is the diagnosed
failure) before the end of the mission (all of the rows with “100%” as the final diagnostic
result). Some other component failures are diagnosed with 50% or higher confidence, (i.e. the
diagnosis is more likely to be correct than wrong), such as considered in the row “50% < a% <
100%”, i.e. it is higher than 50% but lower than 100%. The rest of component failures can be
separated into three categories; the first of which is where the possible failures that produce the
observed sensor readings, are a number of different component failures that could have
occurred at the same time in the mission. The component failures in this category are failures
of the cross-feed valves, the dump pumps, or the dump and refuel valves, in other words,
components that are located in sections of the system that are not used in normal operating
conditions, i.e. when no failures are present. The second category is where all the possible
failures are of one component failing but at multiple different times of the mission, in which
case the failure will be diagnosed correctly, but the time of failure will not be known. This is
not necessarily a problem as regardless of when it occurs it has no effect on the system until
symptoms are observed, it is more important to know which component has failed. The final
category is where there are different component failures that produce the same symptoms, some
of which are more likely to have occurred than others. If the failure is the most likely failure
it would be diagnosed correctly. An example of this occurs when the primary left inner engine
feed pump fails off, and the left inner engine feed valve fails closed. In this case, if the valve
has failed, it will be diagnosed correctly as the probability of the valve failure (83.34%) is
higher than that of the pump failure (16.66%). However, if the pump failure occurs, it will be
diagnosed incorrectly, as the probability of the pump failure occurrence is lower than the
probability of the valve failure occurrence. These pump failures are in the group, denoted by
“16.66%” in Table 7, and they are the only component failures that are not diagnosed correctly.
However, if after inspection evidence that the valve is not closed is introduced to the model,
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the correct component failure will be diagnosed. Note, there are other component failures that
will not be diagnosed correctly initially, but at a later point in the mission, the component
failures are all diagnosed correctly.

It is worth noting that most of the hidden failures observed in the system are failures of
components in the sections of the system that are not normally used, i.e. the dump and refuel
valves. However, there are some hidden failures in the sections of the system that are normally
used. The hidden failures of the engine feed pumps occur when the pumps fail in the states
they are in during operating conditions. For example, the primary pumps failing supplying the
quantity of fuel supplied in the cruise state, and the secondary pumps failing in the off state.
For the transfer pumps the hidden failures are the pumps failing off after they have already
transferred the fuel out of the corresponding tank.

In the next section, the analysis of the proposed methodology is given.

5. Discussion
The model of the system enables the determination of the sensor readings for all of the time

steps during all of the missions. It takes less than a minute to determine the sensor readings
for each of the 96 sensors, for all 720 time steps of each of the 2926 missions considered, which
is negligible in comparison to the time taken to calculate the sensor performance metric.

For simpler systems, the sensor readings produced by the model could be verified manually,
or by comparing to the outputs using a Bayesian Belief Network model of the system.
However, as this system is complex and there are a large number of different sensor readings
considered, these solutions are impractical. Therefore, a number of consistency checks were
introduced in the C++ script for verification of the model. During these checks expected sensor
readings for the different component states were compared with the sensor readings obtained
from the model. For example, if two sensor readings used to define the presence of fuel in a
section contradict each other, the modelling rules that describe fuel in this section are revised.
Overall, there were 233 consistency checks included in the script, and they were tested on a
large number of cases (approximately 4.2 million), which were defined by introducing all the
combinations of failures of two components, occurring at different times during the mission.

The application of the two-level GA method determines suitable combinations of sensors
for the fuel system. As discussed in section 4.2, there is no difference between the best
combination of 3 sensors calculated exhaustively and the best combination of 3 sensors
calculated using the two-level GA method. As it is not possible to determine whether the
combination of 10 sensors is actually the best that can be achieved without exhaustively
calculating the performance metric for all combinations of sensors, it is not possible to say how
close to the best value this combination of 10 sensors is. However, this sensor combination
detects all of the combinations of failures that are possible to detect, and therefore, all the
critical failures. The combination of sensors diagnoses all of the component failures that can
be detected successfully, apart from 22 failures. These 22 component failures can still be
diagnosed correctly, if the incorrectly diagnosed components are inspected, and the evidence
about their state is introduced to the model and the diagnostics are repeated. Also, the time
taken to apply the two-level GA method is significantly less than the calculation of the
performance metric for all combinations of sensors exhaustively.

6. Conclusions and future work
In summary, this paper proposes an extension to the sensor selection method proposed by

Reeves et al. [1] in order to consider the effect of the time of failure occurrence in a mission on
the performance of the system. The resultant sensor performance metric favours sensors that
detect and diagnose failures as soon as possible after failure occurrence, sensors that detect
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failures that can cause system failure, and favours sensors that can detect components with a
higher probability of failure occurrence.

The sensor selection methodology is applied to the fuel system of the Airbus A380-800, a
complex system consisting of over 60 components. The system is modelled using a C++ script
to enable the automatic determination of the performance metric. To do this, a mission is
considered that has several operational phases and many potential component failures. The
most suitable combination of sensors is determined using a two-level GA method. This results
in the determination of a suitable combination of sensors being achieved efficiently, enabling
the performance metric to be calculated for combinations of up to 12 sensors. Future work
could include a single-level GA method considering the full performance metric as the fitness
function and comparing the results between the two methods, which would help to determine
the impact of ignoring the diagnostic term on the sensor selection in the two-level GA method.
Note that the execution time for the single-level GA method would be higher.

The system model accurately determines the sensor readings for all combinations of
component states. It also enables the correct diagnosis of most of the detected component
failures (apart from the 22 cases, discussed previously). Potential future work in this aspect
could be to consider multiple component failures occurring within one mission and their effects
on the resultant selection of sensors. Additionally, more component failures could be
considered, for example, instead of assuming failure occurrence in the middle of the phase,
failures would occur at any time in the phase, or including more failure modes, such as tank
failures. The modelling time step could be reduced; due to this potentially the dynamic change
(instead of instant) in sensor readings could be modelled, and the percentage of correctly
diagnosed failures would increase, as deviations due to failures would be modelled to occur
and, therefore, be diagnosed sooner.

Finally, the proposed method is not specific to aircraft fuel systems, i.e. the performance
metric approach is suitable for other types of systems that could be modelled in terms of their
sensor observations and effects of failures on system performance. The effectiveness of the
selected sensor suite for fault diagnostics could be evaluated by building an extensive library
of component failures and their effects on the performance of the modelled system.
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