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 70 

How we manage farming and food systems to meet rising demand is pivotal to the future of 71 

biodiversity. Extensive field data suggest impacts on wild populations would be greatly reduced 72 

through boosting yields on existing farmland so as to spare remaining natural habitats. High-yield 73 

farming raises other concerns because expressed per unit area it can generate high levels of 74 

externalities such as greenhouse gas (GHG) emissions and nutrient losses. However, such metrics 75 

underestimate the overall impacts of lower-yield systems, so here we develop a framework that 76 

instead compares externality and land costs per unit production. Applying this to diverse datasets 77 

describing the externalities of four major farm sectors reveals that, rather than involving trade-78 

offs, the externality and land costs of alternative production systems can co-vary positively: per 79 
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unit production, land-efficient systems often produce lower externalities. For GHG emissions these 80 

associations become more strongly positive once forgone sequestration is included. Our 81 

conclusions are limited: remarkably few studies report externalities alongside yields; many 82 

important externalities and farming systems are inadequately measured; and realising the 83 

environmental benefits of high-yield systems typically requires additional measures to limit 84 

farmland expansion. Yet our results nevertheless suggest that trade-offs among key cost metrics 85 

are not as ubiquitous as sometimes perceived. 86 

The biodiversity case for high-yield farming. Agriculture already covers around 40% of Earth’s ice- 87 

and desert-free land and is responsible for around two-thirds of freshwater withdrawals1. Its 88 

immense scale means it is already the largest source of threat to other species2, so how we cope 89 

with very marked increases in demand for farm products3,4 will have profound consequences for the 90 

future of global biodiversity2,5. On the demand side, cutting food waste and excessive consumption 91 

of animal products are essential1,5–8. In terms of supply, farming at high yields (production per unit 92 

area) has considerable potential to restrict humanity’s impacts on biodiversity. Detailed field data 93 

from five continents and almost 1800 species from birds to daisies9–14 reveals so many depend on 94 

native vegetation that for most the impacts of agriculture on their populations would be best limited 95 

by farming at high yields (production per unit area) alongside sparing large tracts of intact habitat. 96 

Provided it can be coupled with setting aside (or restoring) natural habitats15, lowering the land cost 97 

of agriculture thus appears central to addressing the extinction crisis2. 98 

However, a key counterargument against this land-sparing approach is that there are many other 99 

environmental costs of agriculture besides the biodiversity displaced by the land it requires, such as 100 

greenhouse gas (GHG) and ammonia emissions, soil erosion, eutrophication, dispersal of harmful 101 

pesticides, and freshwater depletion5,7,16–18. Measured per unit area of farmland the production of 102 

such externalities is sometimes greater in high- than lower-yield farming systems17,18, potentially 103 
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weakening the case for land sparing. But while expressing externalities per unit area can help 104 

identify local-scale impacts19, it systematically underestimates the overall impact of lower-yield 105 

systems that occupy more land for the same level of production20. To be robust, assessments of 106 

externalities also need to include the off-site effects of management practices, such as crop 107 

production for supplementary feeding of livestock, or off-farm grazing for manure inputs to organic 108 

systems20–22. 109 

A novel framework for comparing system-wide costs. In this paper we argue that comparisons of 110 

the overall impacts of contrasting agricultural systems should focus on the sum of externality 111 

generated per unit of production10 (paralleling measures of emissions intensity in climate-change 112 

analyses).  This approach has for the most part only been adopted for a relatively narrow set of 113 

agricultural products8,23 and farming systems (eg organic vs conventional, glasshouse vs open-114 

field20,24). Here we develop a more general framework, and apply it to a diversity of data on some 115 

major farm sectors, farming systems and environmental externalities. Existing data are limited but 116 

nevertheless enable us to explore the utility of this new approach, test for broad patterns, and make 117 

an informed commentary on their significance for understanding the trade-offs and co-benefits of 118 

high- vs lower-yield systems. 119 

Our framework involves plotting the environmental costs of producing a given quantity of a 120 

commodity against one another, across alternative production systems (as in Fig. 1). We focus on 121 

examining variation in some better-known externality costs in relation to land cost (i.e. 1/yield), 122 

because of the latter’s fundamental importance as a proxy for impacts on biodiversity. However, the 123 

approach could be used to explore associations among any other costs for which data are available. 124 

Comparisons must be made across production systems that could, in principle, be substituted for 125 

one another, so they must be measured or modelled identically and in the same place or, if not, 126 

potential confounding effects of different methods, climate and soils must be removed statistically. 127 
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If the idea that high-yield systems impose disproportionate externalities is true, we would expect 128 

plots of externality per unit production against land cost to show negative associations (Fig. 1a, blue 129 

symbols). However observed patterns may be more complex, and could reveal promising systems 130 

associated with low land cost and low externalities, or unpromising systems with high land and 131 

externality costs (Fig. 1b, green and red symbols respectively). 132 

Our team of sector and externality specialists collated data for applying this framework to five major 133 

externalities (GHG emissions, water use, nitrogen [N], phosphorus [P] and soil losses) in four major 134 

sectors (Asian paddy rice, European wheat, Latin American beef, European dairy; Methods). We 135 

used both literature searches and consultation with experts to find paired yield and externality 136 

measurements for contrasting production systems in each sector. To be included, data had to be 137 

near-complete for a given externality – for example most major elements of GHG emissions or N 138 

losses had to be included, and if systems involved inputs (such as feeds or fertilisers) generated off-139 

site we required data on the externality and land costs of their production. To limit confounding 140 

effects we narrowed our geographic scope within each sector (Supplementary Table 1), so that 141 

differences across systems could reasonably be attributed to farm practices rather than gross 142 

bioclimatic variation. Where co-products were generated we apportioned overall costs among 143 

products using economic allocation, but also investigated alternative allocation rules. 144 

Findings for four sectors. Our first key result is that useable data are surprisingly scarce. Few studies 145 

measured paired externality and yield information, many reported externalities in substantially 146 

incomplete or irreconcilably divergent ways, and we could find no suitable data at all on some 147 

widely adopted practices. Nevertheless, we were able to obtain sufficient data to consider how 148 

externalities vary with land costs for nine out of 20 possible sector-externality combinations 149 

(Supplementary Table 1). The type of data available differed across these combinations (which we 150 

view as a useful test of the flexibility of our framework). For one combination the most extensive 151 
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data we could find was from a long-term experiment at a single location. However because we were 152 

interested in generalities, where possible we used information from multiple studies – either field 153 

experiments or Life Cycle Assessments (LCAs) conducted across several sites – and used Generalised 154 

Linear Mixed Models (GLMMs) to correct for confounding method and site effects (Methods). Last, 155 

for two sectors we used process-based models parameterised for a fixed set of conditions 156 

representative of the region. 157 

The data that we were able to obtain do not suggest that environmental costs are generally larger 158 

for farming systems with low land costs (i.e. high-yield systems; Fig. 2). If anything, positive 159 

associations – in which high-yield, land-efficient systems also have lower costs in other dimensions - 160 

appear more common. For Chinese paddy rice we found sufficient multi-site experimental data to 161 

explore how two focal externalities vary with land cost across contrasting systems (Methods). GHG 162 

costs (Fig. 2a) showed negative associations with land cost across monoculture and rotational 163 

systems (assessed separately). Our GLMMs revealed that for both system types, greater application 164 

of organic N lowered land cost but increased emissions (probably because of feedstock effects on 165 

the methanogenic community25; Supplementary Table 2); in contrast there was little or no GHG 166 

penalty from boosting yield using inorganic N (arrows, Fig. 2a). A large volume of data on rice and 167 

water use showed weakly positive covariation in costs (Fig. 2b). GLMMs indicated that increasing 168 

application of inorganic N boosted yield26, and less irrigation lowered water use while incurring only 169 

a modest yield penalty27 (Supplementary Table 2). Sensitivity tests of the rice analyses had little 170 

impact on these patterns (Methods; Supplementary Fig. 2). 171 

We found two useable datasets on European wheat, both from the UK (Methods). Our GLMMS of 172 

data from a three-site experiment varying the N fertilisation regime revealed a complex relationship 173 

between GHG and land costs (Fig. 2c; Supplementary Table 2), driven by divergent responses28 to 174 

adding ammonium nitrate (which lowers land costs but increases embodied GHG emissions) and 175 
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adding urea (which lowers land costs without increasing GHG emissions per unit production, but at 176 

the cost of increased ammonia volatilisation). A single-site experiment varying inorganic N 177 

treatments showed a non-linear relationship between land cost and N losses (Fig. 2d), with 178 

increasing N application lowering both costs until an apparent threshold, beyond which land cost 179 

decreased further but at the cost of greater N leaching (see also ref. 1). 180 

In livestock systems, all data we could find showed positive covariation between land costs and 181 

externalities. For Latin American beef, we located coupled yield estimates only for GHG emissions, 182 

but here two different types of data (Methods) revealed a common pattern. Using GLMMs again to 183 

control for potentially confounding study and site effects, we found that across multiple LCAs, 184 

pasture systems with greater land demands also generated greater emissions (Fig. 2e), with both 185 

land and GHG costs reduced by pasture improvements (using N fertilization or legumes). This 186 

pattern across contrasting pasture systems was confirmed by running RUMINANT29 (Fig. 2f), a 187 

process-based model which also identified relatively low land and GHG costs for a series of 188 

silvopasture and feedlot-finishing systems (for which comparable LCA data were unavailable). 189 

For European dairy, process-based modelling of three conventional and two organic systems, 190 

parameterised for the UK, enabled us to estimate four different externalities alongside yield 191 

(Methods). This showed that conventional systems – especially those using less grazing and more 192 

concentrates – had substantially lower land and also GHG costs (Fig. 2g), in part because 193 

concentrates reduce CH4 emissions from fibre digestion30. Systems with greater use of concentrates 194 

(which have less rumen-degradable protein than grass31) also showed lower losses of N, P and soil 195 

per unit production (Fig. 2h,i,j). These broad patterns persisted when we used protein production 196 

rather than economic value to allocate costs to co-products (Methods; Supplementary Fig. 2). 197 

Incorporating land use. As a final analysis we examined the additional externalities resulting from 198 

the different land requirements of contrasting systems. To generate the same quantity of 199 
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agricultural product, low-yield systems require more land, allowing less to be retained or restored as 200 

natural habitat. This is in turn likely to increase GHG emissions and soil loss, and alter hydrology - 201 

though we could only find enough data to explore the first of these effects. For each sector we 202 

supplemented our direct GHG figures for each system with estimates of GHG consequences of their 203 

land use following IPCC methods32 to calculate the sequestration potential of a hectare not used for 204 

farming and instead allowed to revert to climax vegetation (Methods). Results (Fig. 3) showed that 205 

these GHG opportunity costs of agriculture were typically greater than the emissions from farming 206 

activities themselves and, when added to them, in every sector generated strongly positive across-207 

system associations between overall GHG cost and land cost. These patterns were maintained in 208 

sensitivity tests where we halved recovery rates or assumed half of the area potentially freed from 209 

farming was retained under agriculture (Methods; Supplementary Fig. 3). These findings thus 210 

confirm recent suggestions33,34 that high-yield farming has the potential, provided land not needed 211 

for production is largely used for carbon sequestration, to make a substantial contribution to 212 

mitigating climate change. 213 

Conclusions, caveats, and knowledge gaps. This study was conceived as an exploration of whether 214 

high-yield systems – central to the idea of sparing land for nature in the face of enormous human 215 

demand for farm products - typically impose greater negative externalities than alternative 216 

approaches. Our results support three conclusions. First, useful data are worryingly limited. We 217 

considered only four relatively well-studied sectors and a narrow set of externalities - not including 218 

important impacts such as soil health or the effects of pesticide exposure on human health20. Even 219 

then we found studies reporting yield-linked estimates of externalities scarce, with many widely 220 

adopted or promising practices within these sectors undocumented. We were not able to examine 221 

complex agricultural systems (such as mixed farming, or agroforestry) which might have relatively 222 

low externalities. Relevant data on many significant developing-world farm sectors (such as cassava 223 
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or dryland cereal production in Africa) also appear very limited. Given that a multi-dimensional 224 

understanding of the environmental effects of alternative production systems is integral to 225 

delivering sustainable intensification, more field measurements linking yield with a broader suite of 226 

externalities across a much wider range of practices and sectors are urgently needed. 227 

Second, the available data on the sector-externality combinations we considered do not suggest that 228 

negative associations between land cost and other environmental costs of farming are typical (cf Fig. 229 

1a). Many low-yield systems impose high costs in other ways too and, although certain yield-230 

improving practices have undesirable impacts (e.g. organic fertilisation of paddy rice increasing CH4 231 

emissions; see also ref. 1), other practices appear capable of reducing several costs simultaneously 232 

(see also refs 1,8,24,35,36). High (but not excessive) application of inorganic N, for example, can 233 

lower land take of Chinese rice production without incurring GHG or water-use penalties. Similarly, 234 

in Brazilian beef production adopting better pasture management, semi-intensive silvopasture and 235 

feedlot-finishing can all boost yields alongside lowering GHG emissions. It is worth noting that 236 

although most systems we examined are relatively high-yielding, other recent work suggests that 237 

positive associations (cf trade-offs) among environmental and land costs may if anything be more 238 

likely in lower-yielding systems1. 239 

Third, pursuing promising high-yield systems is clearly not the same as encouraging business-as-240 

usual industrial agriculture. Some high-yield practices we did not examine, such as the heavy use of 241 

pesticides in much tropical fruit cultivation37, are likely to increase externality costs per unit 242 

production. Of the high-yield practices we did investigate some, such as applying fossil-fuel-derived 243 

ammonium nitrate to UK wheat, impose disproportionately high environmental costs. Others that 244 

seem favourable in terms of our focal externalities incur other costs, such as high NH3 emissions 245 

from using urea on wheat28, and management regimes that reduce costs in one geographic setting 246 

may not do so in others1. Much work characterising existing systems and designing new ones is thus 247 
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needed. We suggest our framework can serve as a device for identifying existing yield-enhancing 248 

systems which also lower other environmental costs – and perhaps more importantly, for 249 

benchmarking the environmental performance of promising new technologies and practices. 250 

We close by stressing that for high-yield systems to generate any environmental benefits they must 251 

be coupled with efforts to reduce rebound effects. Several plausible mechanisms for limiting these 252 

by explicitly linking yield growth to improved environmental performance have been identified – 253 

including strict land-use zoning; strategic deployment of yield-enhancing loans, expertise or 254 

infrastructure; conditional access to markets; and restructured rural subsidies15. Without such 255 

linkages, systems which perform well per unit production may nevertheless cause net environmental 256 

harm through higher profits or lower prices stimulating land conversion38–40, and damage human 257 

health by encouraging overconsumption of cheap, calorie-rich but nutrient-deficient foods41,42,. If 258 

promising high-yield strategies are to help solve rather than exacerbate society’s challenges, yield 259 

increases instead need to be combined with far-reaching demand-side interventions1,6,41 and directly 260 

linked with effective measures to constrain agricultural expansion15. 261 

262 
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Methods 263 

Focal sectors and externalities. We focused on 4 globally significant farm sectors (Asian paddy rice, 264 

European wheat, Latin American beef, European dairy, accounting for 90%, 33%, 23% and 53% of 265 

global output of these products43) and 5 major externalities (greenhouse gas [GHG] emissions, water 266 

use, nitrogen [N], phosphorus [P] and soil losses). We chose these sector-externality combinations 267 

because preliminary work suggested they were characterised quantitatively relatively often, using 268 

diverse approaches (single-site experiments, multi-site experiments, Life Cycle Assessments [LCAs] 269 

and process-based models), enabling us to explore the generality of our framework. We then 270 

searched the literature and consulted experts to obtain paired yield and externality estimates of 271 

alternative production systems in each sector, narrowing our geographic scope so that differences in 272 

system performance could be reasonably attributed to management practices (rather than gross 273 

variation in bioclimate or soils). Our analyses have rarely been attempted previously and have 274 

complex data requirements, so we could not adopt standard procedures developed for systematic 275 

reviews on topics where many studies have attempted to answer the same research question. 276 

This process generated data on ≥5 contrasting production systems for 9 out of 20 possible sector-277 

externality combinations (Supplementary Table 1): Chinese rice-GHG emissions (from multi-site 278 

experiments); Chinese rice-water use (multi-site experiments); UK wheat-GHG emissions (a multi-279 

site experiment); UK wheat-N emissions (a single-site experiment); Brazilian beef-GHG emissions 280 

(both LCA data and process-based models); and UK dairy-GHG emissions, and N, P and soil losses 281 

(process-based models). Water use in the wheat and most of the beef systems examined was limited 282 

and so not explored further. We could not find sufficient paired yield-externality estimates for the 9 283 

remaining sector-externality combinations. 284 

The land and externality costs of each system were then expressed as total area used per unit 285 

production (i.e. 1/yield) and total amount of externality generated per unit production. All estimates 286 
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included the area used and externalities generated in producing externally-derived inputs (such as 287 

feed or fertilisers). For analytical tractability, as in other recent studies1,24 we treat impacts occurring 288 

at different times and places as being additive. Occasional gaps in estimates for a system were filled 289 

using standard values from IPCC or other sources, or information from study authors or comparable 290 

systems (details below). Where experiments or LCAs were conducted at multiple sites, we built 291 

Generalised Linear Mixed Models (GLMMs) in the package lme444 in R version 3.3.145 to identify 292 

effects of specific management practices on land and externality cost estimates adjusted for 293 

potentially confounding biophysical and methodological effects. To illustrate the effects of 294 

statistically significant management variables (those whose 95% confidence intervals did not overlap 295 

zero; shown in bold in Supplementary Table 2) we estimated land and externality costs at the 296 

observed minimum and maximum values (for continuous management variables) or with the 297 

reference category and the category that showed the maximum effect size (for categorical 298 

variables), while keeping other variables constant; we then linked these points as arrows on our 299 

externality cost/land cost plots (Fig. 2 and Supplementary Figs. 1 and 2, with arrows displaced 300 

horizontally and/or vertically for increased visibility). Where systems generated significant co-301 

products (wheat and rapeseed from rotational rice, beef from dairy) we allocated land and 302 

externality costs to the focal product in proportion to its relative contribution to the gross monetary 303 

value of production per unit area of farmland (from focal and co-product combined)46. 304 

Rice and GHG emissions. Systematic searching of Scopus for experimental studies reporting both 305 

yields and emissions of Chinese paddy rice systems identified 17 recently published studies47–63 306 

containing 140 paired yield-emissions estimates for different systems (after within-year replicates of 307 

a system were averaged). To limit confounding effects we analysed separately the data from 308 

monoculture systems from southern provinces (2 rice crops per year; 5 studies, 60 estimates) and 309 

rotational systems from more northerly provinces (1 rice and 1 wheat or rape crop per year; 12 310 
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studies, 80 estimates). The studies documented the effects of variation in tillage (yes/no), 311 

application rates of inorganic and organic N, and (for rotational systems only) irrigation regime 312 

(continuous flooding vs episodic midseason drainage). There were insufficient data to examine 313 

effects of seedling density, crop variety, organic practices, biochar application, use of groundcover to 314 

lower emissions, N fertiliser type, or K or P fertilisation. 315 

Land cost estimates were expressed in ha-years/tonne rice grain (i.e. the inverse of annual 316 

production per hectare farmed). GHG costs were expressed in tonnes CO2eq/tonne rice grain, and 317 

included CH4 and N2O emissions for growing and fallow seasons (with the latter where necessary 318 

based on mean values from refs 47–49,64), and embodied emissions from N fertiliser production 319 

(Yara emissions database; F. Brendrup, pers. comm.). We were unable to include emissions from 320 

producing manure or K or P fertiliser, or from farm machinery. For rotational systems we adjusted 321 

the land and GHG costs of rice production downwards by multiplying them by the proportional 322 

contribution of rice to the gross monetary value of production per unit area of farmland from rice 323 

and co-product combined (using mean post-2000 prices from ref. 43). 324 

We next built GLMMs predicting variation in our estimates of land cost and GHG cost, for the 325 

monoculture and rotational datasets in turn. Management practices assessed as predictors were 326 

tillage regime (binary), application rates of organic N and of inorganic N, and irrigation regime 327 

(binary; rotational systems only). Study site was included as a random effect. For all systems we 328 

adjusted for biophysical and methodological differences across sites using the first two components 329 

from a Principal Component Analysis of site scores for 14 variables: annual precipitation, 330 

precipitation during the driest and wettest quarters, annual mean temperature, mean temperatures 331 

during the warmest and coldest quarters, maximum temperature during the warmest month, mean 332 

monthly solar radiation, latitude, longitude, soil organic carbon content, plot size, replicates per 333 

estimate, and start year (with all climate data taken from refs 65,66). PCs 1 and 2 together explained 334 
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82.3% and 76.2% of the variance in these variables for monoculture and rotational systems, 335 

respectively. Soil pH and (soil pH)2 were also assessed as additional predictors. For the monoculture 336 

models tolerance values were all >0.4 (indicating an absence of multicollinearity) except for the pH 337 

terms (both <0.1), which we therefore removed. For the rotational models all tolerance values 338 

indicated an absence of multicollinearity, but (soil pH)2 was removed because AICc values indicated 339 

model fit was no better than using soil pH alone. Final models (Supplementary Table 2) were then 340 

used to plot site-adjusted land and GHG costs (as points) and statistically significant management 341 

effects (as arrows) in Fig. 2a. We also tested the effect of allocating land and GHG costs in rotational 342 

systems based on the relative energy content of rice and co-products67 (cf relative contribution to 343 

gross monetary value; Supplementary Fig. 2). 344 

We adopted similar though simpler approaches for the next two sector-externality combinations, 345 

which again used data from multi-site experiments. 346 

Rice and water use. A systematic search on Scopus yielded 15 recent studies57,58,64,68–79 meeting our 347 

criteria containing 123 paired estimates describing the effects of variation in inorganic N application 348 

rate and irrigation regime on land and water costs of Chinese paddy rice. We analysed monoculture 349 

and rotational systems together but considered water use solely for periods of rice production. Land 350 

cost was expressed in ha-years/tonne rice grain, and water cost in m3/tonne rice grain (excluding 351 

rainfall). We adjusted these estimates for site effects in GLMMs of variation in land and water costs 352 

using as predictors the application rate of inorganic N, and irrigation regime (a 6-level factor: 353 

continuous flooding, continuous flooding with drainage, alternate wetting and drying, controlled 354 

irrigation, mulches or plastic films, and long periods of dry soil), while accounting for the effect of 355 

study site as a random effect. Tolerance values were all >0.7. Final models (Supplementary Table 2) 356 

were then used to plot site-adjusted land and water costs (points) and significant management 357 

effects (arrows) in Fig. 2b.  Almost all sources reported data on only one rice season per year, but 358 
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one study68 included separate estimates for early- and late-season rice, so we checked the 359 

robustness of our findings by re-running the analysis without the early-season data from this study 360 

(Supplementary Fig. 2). 361 

Wheat and GHG emissions. The Agricultural Greenhouse Gas Inventory Research Platform80–83 362 

provided 96 paired measures of variation in yield and N2O emissions in response to experimental 363 

changes in N fertiliser application rate and type. We expanded the emissions profile to include 364 

embodied emissions from N fertiliser production (from the Yara emissions database; F. Brendrup, 365 

pers. comm.). We derived land costs in ha-years/tonne wheat (at 85% dry matter) and GHG costs in 366 

tonnes CO2eq/tonne wheat. Experiments were run in 3 regions, so to adjust for site effects we built 367 

GLMMs of variation in land and GHG costs fitting study region as a random effect and using the 368 

application rates of ammonium nitrate, urea and dicyandiamide (a nitrification inhibitor) as 369 

predictors. Tolerance values were all >0.7. Adjusted land and GHG cost estimates from the final 370 

models (Supplementary Table 2) are plotted in Fig. 2c, with arrows showing statistically significant 371 

management practices. 372 

Wheat and N losses. We assessed this sector-externality combination using data from Rothamsted’s 373 

long-term Broadbalk wheat experiment, which investigates the effects of inorganic N application 374 

rates on yields of winter wheat. During the 1990s changes in field drainage enabled the 375 

measurement (alongside yield) of plot-specific leaching losses of nitrate84. Mean land and N costs – 376 

expressed in ha-years/tonne wheat (at 85% dry matter) and kg N leached/tonne wheat, respectively 377 

– were averaged across 8 seasons (thus smoothing-out rainfall effects), for each of 7 levels of N 378 

application (from 0-288 kg N [as ammonium nitrate] /ha-y; details in Fig. 2 legend). Results are 379 

plotted in Fig. 2d. 380 

Beef and GHG emissions. Two types of data were available for this sector-externality combination, 381 

enabling us to compare findings across assessment techniques. First we examined all published LCAs 382 
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of Brazilian beef production85–92. Supplementing this with a bioclimatically comparable dataset from 383 

tropical Mexico (R. Olea-Perez, pers. comm.) yielded 33 paired yield-emissions estimates for 384 

contrasting production systems. These varied in whether they used improved pasture, 385 

supplementary feeding, or improved breeds (which if unreported we inferred from age at first 386 

calving, and mortality and conception rates). There were insufficient LCA data to examine the effects 387 

of feedlots, silvopasture, or rotational grazing. Land costs were calculated in ha-years/tonne Carcass 388 

Weight [CW], incorporating land used to grow feed, and assuming a dressing percentage of 50%93. 389 

GHG costs were derived in tonnes CO2eq/tonne CW, including enteric CH4 emissions, CH4 and N2O 390 

emissions from manure, N2O emissions from managed pasture, emissions from supplementary feed 391 

production (where necessary using values from ref. 86), and embodied GHG  emissions from N, P 392 

and K fertiliser production. There were too few data to include CO2 emissions from lime application 393 

or farm machinery. Milk production was not a significant co-product. To control for site effects we 394 

built GLMMs of variation in land and GHG costs using site as a random effect and use of improved 395 

pasture, supplementary feeding and improved breeds (each a binary factor) as predictors. Tolerance 396 

values were all >0.8. Adjusted land and GHG cost estimates from the final models (Supplementary 397 

Table 2) are plotted in Fig. 2e, with arrows describing statistically significant management practices. 398 

For comparison we derived an equivalent GHG cost vs land cost plot (Fig. 2f) using a process-based 399 

model of beef production. RUMINANT29 is an IPCC tier 3 digestion and metabolism model which uses 400 

stoichiometric equations to estimate production of meat, manure N and enteric methane for any 401 

given pasture quality, supplementary feed quantity and type, cattle breed, and region. We used 402 

plausible combinations of these settings (Supplementary Table 3) and corresponding values of feed 403 

and forage protein, digestibility and carbohydrate content (judged representative of the Brazilian 404 

beef sector by MH) to derive yield and emissions estimates for 86 contrasting pasture systems. To 405 

extend beyond the scope of the LCA analyses we also modelled 50 silvopasture systems by boosting 406 
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feed quality to simulate access to Leucaena, and 8 feedlot-finishing systems by incorporating an 83-407 

120 day feedlot phase when animals received high-quality mixed ration. For each system we 408 

included the whole herd, after determining the ratio of fattening:breeding animals using the 409 

DYNMOD demographic projection tool94, based on system-specific reproductive performance 410 

parameters and animal growth rates (reflecting pasture quality and management; Supplementary 411 

Table 3). Breeding animals experienced the same conditions as fattening animals (except that in 412 

pasture and silvopasture they received no supplementary feed).  Stocking rates were set to 413 

sustainable carrying capacity for pasture and silvopasture, and 201 animals/ha for feedlots (DB pers. 414 

obs.). Yields were converted to land cost in ha-years/tonne CW, including the area of feedlots and 415 

land required to grow feed (using feed composition and yield data from refs 43,85). RUMINANT 416 

emissions estimates were supplemented with estimates of manure CH4, CO2 and N2O emissions from 417 

feed production, and N2O emissions from pasture fertilisation (from refs 32,85). Carbon 418 

sequestration by vegetation could not be included, so we probably overestimate net GHG emissions 419 

from silvopasture95. All emissions were converted to CO2eq units (using conversion factors from refs 420 

32,85 and feedlot manure distribution from ref. 96) and expressed in tonnes CO2eq/tonne CW. 421 

Dairy and four externalities. We also used process-based models to investigate how GHG emissions 422 

and N, P and soil losses varied with land cost across 5 dairy systems representative of UK practices 423 

(Supplementary Table 4; Figs. 2g-j). We modelled three conventional systems with animals accessing 424 

grazing for 270, 180 and 0 days/year, and two organic systems with grazing access for 270 and 200 425 

days/year. Model farms were assigned rainfall and soil characteristics based on frequency 426 

distributions of these parameters for real farms of each type, with structural and management data 427 

(e.g. ratios of livestock categories and ages, N and P excretion rates) based on the models of refs 428 

31,97,98. Manure management was based on representative variations of the “manure 429 

management continuum”99 (Supplementary Table 4).  Physical performance data (annual milk yield, 430 
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concentrate feed input, replacement rate and stocking rate) were obtained from the AHDB Dairy 431 

database (M. Topliff pers. comm.) for conventional systems and from DEFRA100 for organic systems. 432 

Yields were converted to land cost in ha-years/tonne Energy-Corrected Milk (ECM), including land 433 

required to grow feed (from refs 101,102, with yield penalties for organic production from ref. 103). 434 

Because 57% of global beef production originates from the dairy sector104, we adjusted land costs 435 

downwards by multiplying them by the proportional contribution of milk to the gross monetary 436 

value of production per unit area of farmland from milk and beef combined (using prices from the 437 

AHDB Dairy database (M. Topliff pers. comm.)). 438 

GHG cost estimates for each system comprised CH4 emissions from enteric fermentation (based on 439 

ref. 31), CH4 and N2O emissions from manure management (following refs 32 and 105), emissions 440 

from N fertiliser applications to pasture (from refs 106,107), and from feed production (from ref. 441 

108). Emissions from farm machinery and buildings were not included. Emissions were then summed 442 

and expressed in tonnes CO2eq/tonne ECM. Nitrate losses of each system were derived from the 443 

National Environment Agricultural Pollution–Nitrate (NEAP-N) model109,110, whilst P and soil losses 444 

were estimated using the Phosphorus and Sediment Yield CHaracterisation In Catchments (PSYCHIC) 445 

model111,98. These last three costs were expressed in kg/tonne ECM and (as with land costs) 446 

downscaled by allocating a portion of them to beef co-products, based on milk and beef prices. 447 

Finally, to check the effect of this allocation rule we re-ran each analysis instead allocating costs 448 

using the relative protein content of milk and beef (from ref. 104; Supplementary Fig. 2). 449 

GHG opportunity costs of land farmed. Alongside the GHG emissions generated by agricultural 450 

activities themselves (analysed above), farming typically carries an additional GHG cost. Wherever 451 

the carbon content of farmed land is less than that of the natural habitat that could replace it if 452 

agriculture ceased, farming imposes an opportunity cost of sequestration forgone112, whose 453 
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magnitude increases with the area under production (and hence with the land cost of the system). 454 

We quantified this GHG cost using the forgone sequestration method, whereby retaining the current 455 

land use is assumed to prevent the sequestration in soils and biomass that would occur if the land 456 

was allowed to revert to climax vegetation (see details in Supplementary Table 5).  457 

For each forgone transition, values for annual biomass accrual (≤20 years) were taken from Table 4.9 458 

of ref. 32, assuming that the climax vegetation for UK wheat and dairy was “temperate oceanic 459 

forest (Europe)”, for Chinese rice it was “tropical moist deciduous forest (Asia, continental)”, and for 460 

Brazilian beef it was “tropical moist deciduous forest (South America)”. The carbon content of all 461 

biomass was assumed to be 47% of dry matter (ref. 32 Table 4.3).  462 

Changes in soil carbon values were taken from the relevant mean percentage change in soil organic 463 

carbon values for each land conversion from a global meta-analysis113. For UK wheat and Chinese 464 

rice we used values for conversion of cropland to woodland; for UK dairy and Brazilian beef we used 465 

conversion of grassland to woodland for grazing land and conversion of cropland to woodland for 466 

land used to grow feed. Initial soil carbon values were taken from Table 2.3 of ref. 32. We assumed 467 

the soils for UK wheat were “cold temperate, moist, high activity soils”, for Chinese rice they were 468 

“tropical, wet, low activity soils”, for UK dairy they were “cold temperate, moist, high activity soils” 469 

for grazing land and for producing imported feed they were “subtropical humid, LAC soils” (South 470 

America), and for Brazilian beef for both grazing and feed production they were “tropical, moist, low 471 

activity soils”. In each case the relevant percentage change in soil organic carbon was multiplied by 472 

the initial soil carbon stock to calculate an absolute change, which, following IPCC guidelines32, we 473 

assumed took 20 years. 474 
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Total annual forgone sequestration was then estimated by adding this annual change in soil organic 475 

carbon and the annual accrual of biomass carbon under reversion to climax vegetation. We assumed 476 

(as in ref. 34) that each 1ha reduction in land cost results in 1ha of recovering habitat. As above, our 477 

land cost estimates included land needed to produce externally-derived inputs, and (for rotational 478 

rice and dairy) were adjusted downwards based on the value of co-products. These GHG opportunity 479 

costs were then added to the direct GHG emissions estimates of each system, and the summed 480 

values plotted against land cost (Fig. 3).  481 

As a sensitivity test of our key assumptions we re-ran these analyses assuming that carbon recovery 482 

rates are halved, or that (because of rebound or similar effects38–40) half of the area potentially freed 483 

from farming is retained under agriculture. These two changes to our assumptions have numerically 484 

identical effects, shown in Supplementary Fig. 3. Note that our recovery-based estimates of the GHG 485 

costs that farming imposes through land use are conservative, in that they are roughly 30-50% of 486 

those obtained from calculating GHG emissions from natural habitat clearance (annualised, for 487 

consistency with the recovery method, over 20 harvests; data not shown). 488 

Code availability. The R codes used for the analyses are available from the corresponding author 489 

upon request. 490 

Data availability. The data that support the findings of this study are available from the 491 

corresponding author upon request. 492 

493 
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Figure Legends 799 

Fig. 1 | Framework for exploring how different environmental costs compare across alternative 800 

production systems. a, Hypothetical plot of externality cost vs land cost of different, potentially 801 

interchangeable production systems (blue circles) in a given farming sector. In this example the data 802 

suggest a trade-off between externality and land costs across different systems. b, This example 803 

reveals a more complex pattern, with additional systems (in green and red circles) that are low or 804 

high in both costs. 805 

 806 

Fig. 2 | Externality costs of alternative production systems against land cost for five externalities in 807 

four agricultural sectors. All costs are expressed per tonne of production (so land cost, for instance, 808 

is in ha-years/tonne – i.e. the inverse of yield). Different externalities are indicated by background 809 

shading (grey = GHG emissions, blue = water use, pink = N emissions, purple = P emissions, buff = soil 810 

loss), and different sectors (Asian paddy rice, European wheat, Latin American beef, European dairy) 811 

are shown by icons. Points on plots derived from multi-site experiments (a, b, c) and LCAs (e) show 812 

values for systems adjusted for site and study effects via GLMMs of land cost and externality cost 813 

(for 95% confidence intervals, see Supplementary Fig . 1), while arrows show management practices 814 

with statistically-significant effects (whose 95% confidence intervals do not overlap zero in the 815 

GLMMs; Methods). In d (wheat and N emissions), progressively darker circles depict increasing 816 

nitrate application rate (0, 48, 96, 144, 192, 240 and 288 kg N/ha-year). In f (beef and GHG 817 

emissions, estimated by RUMINANT), different colours show different system types. In g-j (dairy and 818 

four externalities), circles and squares show results for conventional and organic systems, 819 

respectively (detailed in Supplementary Table 4). Spearman's rank correlation coefficients (p-values) 820 

are a. rice-rice: -0.51 (0.002), rice-cereal: -0.36 (0.06), b. 0.19 (0.26), c. -0.34 (0.14), d. -0.21 (0.66), e. 821 
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0.95 (0.001), f. 0.83 (< 0.001), g. 0.90 (0.08), h. 0.70 (0.23), i. 1.00 (0.02) and j. 1.00 (0.02). Note that 822 

these correlation coefficients do not necessarily reflect non-linear relationships (e.g., d) accurately.  823 

 824 

Fig. 3 | Overall GHG cost against land cost of alternative systems in each sector, including the GHG 825 

opportunity costs of land under farming. Y-axis values are the sum of GHG emissions from farming 826 

activities (plotted in Figs. 2 a, c, e, g) and the forgone sequestration potential of land maintained 827 

under farming and thus unable to revert to natural vegetation (Methods). All costs are expressed per 828 

tonne of production. Notation as in Fig. 2. Spearman's rank correlation coefficients (p-values) are a. 829 

rice-rice: 0.40 (0.017), rice-cereal: 0.80 (< 0.001), b. 0.99 (< 0.001), c. 0.98 (< 0.001) and d. 0.80 830 

(0.13). 831 
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