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Sharp edges were first used for field ionisation mass spectrometry by
Beckey1. Although Cross and Robertson2 found that etched metal foils were more
effective than razor blades for field ionisation, blades are very convenient for
determination of field ionisation mass spectra, as reported by Robertson and
Viney 3, 4. The electric field at the vertex of a sharp edge can be calculated by the
method of the conformal transformation5. Here we give some equations for the
field deduced with the assumption that the edge surface can be approximated by
a hyperbola. We also compare two hyperbolae with radii of curvature at the vertex
of 500 Å and 1000Å with the profile of a commercial carbon-steel razor blade.

CALCULATIONS OF FIELD STRENGTH AT THE VERTEX OF A SHARP EDGE

Sharp edge above a flat plate

If z = x+iy and w = u+iv (i = √���− 1 ), the transformation

w = k cosh z (1)

where k is a constant, will transform a series of lines parallel to the x-axis, and in
the z-plane, to a series of confocal hyperbolae in the w-plane. The line y =

2
1���π in

the z-plane is transformed into the line u = 0 in the w-plane; the line y = 0 is
transformed to v = 0, but u only has values greater than a certain minimum. A
physical picture of the transformation is to regard it as transforming an infinite
parallel-plate condenser, with plates at y = 0 and

2
1���π, into two perpendicular

plates, separated by a gap, in the w-plane. A straight line in the z-plane, parallel
to the x-axis and very close to it, transforms to a hyperbola in the w-plane which
corresponds to an idealised edge; at v = 0 it has a very small radius of curvature
(see Fig. 1). The hyperbola in fact approximates quite well to the profile of the
razor blades used for field ionisation by Robertson and Viney3, 4.
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76 D. F. BRAILSFORD, A. J. B. ROBERTSON

We require to find the electric field at the vertex of the idealised edge. From
eqn. (1)

u + iv = k cosh x cosh iy + k sinh x sinh iy (2)

y

y = 1⁄2 π

x

v

u

Fig. 1. Transformation of a parallel-plate condenser in the z-plane into two perpendicular
plates separated by a gap. Equipotentials between the condenser plates are transformed into
hyperbolae. Equipotentials are shown as dashed lines.

But cosh iy = cos y and sinh iy = i sin y, hence by separating real and imaginary
parts

u = k cosh x cos y (3)

v = k sinh x sin y (4)

When the curves intersect the u-axis, v = 0 and since in general y ≠ 0 this implies

k sinh x = 0 (5)

hence x = 0. Thus eqn. (3) gives

u = k cos y (6)

at the intersection of the hyperbola with the u-axis. Hence the distance l from the
fixed plate to this point of intersection is

l = k cos y (7)

To determine the equation of the hyperbolae in the w-plane we must eliminate x
from eqns. (3) and (4). Putting

u ⁄ k cos y = cosh x (8)

v ⁄ k sin y = sinh x (9)

and squaring and subtracting we obtain

u 2 / k 2 cos2 y − v 2 / k 2 sin2 y = 1 (10)
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Thus the lines y = constant transform into hyperbolae (of which only the positive
branches are considered in this discussion). The hyperbolae have eccentricities, e,
of sec y and asymptotes given by5.

v = ±u tan y (11)

The radius of curvature r at any point on the hyperbolae is given by

r = [1 + (du / dv)2] 2
3���

/ (d2u / dv 2) (12)

Differentiation of eqn. (10) gives

du / dv = (v /u) cot2 y (13)

d2u / dv 2 = (u 2 cot2 y − v 2 cot4 y) / u 3 (14)

Clearly from eqn. (13) du / dv is zero at the vertex where v = 0, thus eqn. (12)
reduces to

r v = (d2u / dv 2)v = 0
−1

(15)

where r v is the value of r at the vertex. Thus from eqn. (14)

r v = u tan2y (16)

and from eqns. (6) and (7)

r v = l tan2y (17)

In general the field at the vertex of the hyperbola will have two
components, in the u and v directions, ∂V / ∂u and ∂V / ∂v, where V is the potential
difference between the the edge and the flat plate, and corresponds to the potential
difference between the two plates of the parallel-plate condenser. We can write

∂V / ∂u = (∂V / ∂y)(∂y / ∂u) + (∂V / ∂x)(∂x / ∂u)

∂V / ∂v = (∂V / ∂y)(∂y / ∂v) + (∂V / ∂x)(∂x / ∂v)

However ∂V / ∂x = 0 for the parallel-plate condenser, so

(∂V / ∂u)v = (dV / dy) (∂y / ∂u)v (18)

(∂V / ∂v)u = (dV / dy) (∂y / ∂v)u (19)

Differentiating eqn. (10) with respect to u and v in turn gives

�
�
� ∂u

∂y���
�
�
� v

= −
u 2 sin4 y + v 2 cos4 y

u cos y sin3 y����������������� (20)

�
�
� ∂v

∂y���
�
�
� u

=
u 2 sin4 y + v 2 cos4 y

v sin y cos3 y����������������� (21)

Since v = 0 and u = k cos y at the vertex
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(dy / du)v =0 = − 1 / k sin y (22)

(dy / dv)v =0 = 0 (22)

Now in eqn. (18), dV / dy is the uniform field in the parallel-plate condenser. The
negative sign of eqns. (20) and (22) shows that the field in the edge and plate
arrangement is in the opposite sense to that in the condenser. Evidently from Fig.
1, if the potential increases for decrease of y from

2
1���π to zero, then the potential in

the w-plane increases as u increases from zero to l. Let Fc be the uniform field in
the parallel-plate condenser, and Fv be the field at the vertex of the edge, when we
obtain from eqns. (18) and (7)

F v = − F c / l tan y (24)

The lower plate of the parallel-plate condenser must transform to the required
edge profile, so this plate is not at y = 0 but at y = y ′ (where y ′<<

2
1���π), hence

F c = − V / (
2
1���π − y ′) (25)

but y ′ ∼ 0, hence

F c ∼ − 2V / π (26)

and from eqn. (24)

F v = 2V / πl tan y (27)

From eqn. (17)

tan y = (r v / l) 2
1���

(28)

Thus

F v ∼ 2V / π(r vl) 2
1���

(29)

The elegant deduction of Gilliland and Viney5, which allows for a slit in the flat
plate, reduces to eqn. (29) when the slit width becomes zero. It is of interest that
the result in eqn. (29) can also be found in a simple way. This relation is valid if
the values of y = y ′ which must be taken to give the correct edge profile is almost
zero. From eqn. (17) the condition is satisfied for all the blades and edges used in
our work.

The above derivation takes no account of end effects, or of the presence of
microtips and whiskers on the edge which lead to a field enhancement factor β.
Robertson and Viney 4 estimated β to be about 7 for razor blades.

Edge suspended above a rod

Another transformation gives the macroscopic field at the vertex of an edge
above a circular rod. This system may be useful in a mass spectrometer, and is
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ELECTRIC FIELD STRENGTHS AT A SHARP EDGE 79

similar to the two-wire source of Williams6. The sources previously described 3, 4

have a blade (or foil) above a slit, and at high fields the blade or foil tends to be
pulled to one side or other of the slit because of slight imperfections in alignment.
However the edge-rod source would be self-centering.

A suitable transformation is

ln c = k ′ cosh z (30)

where c = a + ib, z = x + iy and k ′ is a constant. This transforms the parallel-plate
condenser of Fig. 2 into the edge and rod configuration shown.

y

y = 1⁄2 π

x

b

a

Fig. 2. Transformation of a parallel-plate condenser in the z-plane into a rod and plate
arrangement in the c-plane. Equipotentials are shown as dashed lines.

The complex number c can be expressed in the form

c = R exp(iθ)

whence

ln c = ln R + iθ (31)

where

R = (a 2 + b 2) 2
1���

(32)

θ = tan−1(b / a) (33)

Also from eqn. (30)

ln R = k ′ cosh x cos y (34)

θ = k ′ sinh x sin y (35)

From eqns. (32) and (33)

b = R sin θ (36)

a = R cos θ (37)

J. Mass Spectrometry and Ion Physics, 1 (1968) 75–85



80 D. F. BRAILSFORD, A. J. B. ROBERTSON

From eqns. (34)–(37) we find for the real and imaginary parts of c

a = exp(k ′ cosh x cos y) cos (k ′ sinh x sin y) (38)

b = exp(k ′ cosh x cos y) sin (k ′ sinh x sin y) (39)

A program was written for the University of London “Atlas” computer to
evaluate and plot out values of a and b for various straight lines y = constant in
the z-plane. The results, shown in Fig. 3 show that the transformation is the
desired one.

=

=

=

=
=y

y
1

2 3
8

1
4

y 1
8

y

y 0

Fig. 3. Equipotentials in the c-plane between a plate and a rod, calculated with a computer,
which gave the points shown. The equipotentials are shown as continuous lines.

When y =
2
1���π, eqn. (35) gives

θ = k ′ sinh x (40)

and eqn. (34) gives

ln R = 0 (41)

hence R = 1, and thus the line y =
2
1���π transforms to a circle of unit radius.

Similarly eqns.(32)–(37) show that the line y = 0 transforms to the a-axis (b = 0),
with a ≥ exp k ′ . Thus the distance l of the edge from the surface of the rod is
given by

l = exp k ′ − 1 (42)

since the circle has unit radius.

To find the radius of curvature of the edge, it is represented, as before, by a
curve lying very close to the straight line corresponding to y = 0. The radius of
curvature r at any point is
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r = [1 + (da / db)2] 2
3���

/ (d2a / db 2) (43)

Proceeding as before (eqns. (13)–(15)) we have

db
da��� =

a sin2 y . ln (b 2 + a 2) + 2b cos2 y . tan−1(b / a)

2a cos2y .tan−1(b / a) − b sin2y . ln (b 2 + a 2)
������������������������������������ (44)

From this equation da / db = 0 for b = 0, as is required. Also

�
�
� db 2

d2a����
�
�
� b = 0

=
a sin2 y . ln a

cos2 y − sin2 y . ln a����������������� (45)

Thus eqn. (43) reduces to

r v =
cos2y − sin2y . ln a

a sin2y . ln a���������������� (46)

The components in the a and b directions of the field F v at the vertex are,
since (∂V / ∂x) = 0 as before,

∂V / ∂a = (dV / dy)(∂y / ∂a) (47)

∂V / ∂b = (dV / dy)(∂y / ∂b) (48)

Now x can be eliminated from eqns. (32)–(35) to give

4k ′ 2 cos2 y

[ln(a 2 + b 2)]2
������������ −

k ′ 2 sin2 y

[tan−1 (b / a)]2
������������� = 1 (49)

and when b = 0,

ln a = k ′ cos y (50)

Differentiating eqn. (49) with respect to a and b in turn gives

�
�
� ∂a

∂y���
�
�
� b

= −
(a 2 + b 2){

2
1���[ln(a 2 + b 2]2 sin4 y + 2 [tan−1 (b / a)]2 cos4y}

cos y sin y [asin2y . ln(a 2 + b 2) + 2b cos2 y tan−1(b / a)]�����������������������������������������������

�
�
� ∂b

∂y���
�
�
� a

= −
(a 2 + b 2){

2
1���[ln(a 2 + b 2]2 sin4 y + 2 [tan−1 (b / a)]2 cos4y}

cos y sin y [2acos2y . tan−1(b / a) − b sin2 y . ln(a 2 + b 2)]�����������������������������������������������

These two equations with eqn. (50) simplify to

(dy / da)b = 0 = − 1 / ak ′ sin y (51)

(dy / db)a = 0 = 0 (52)

Letting F c = dV / dy (the uniform field in the parallel-plate condenser) we find

F v = − F c / ak ′ sin y (53)

Here again the two fields in Fig. 2 are in opposite senses. Rearranging eqn. (46)
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and substituting for sin y in eqn. (53) yields

F v =
ak ′ [r v / {a ln a + r v(1 + ln a)}] 2

1���

− F c��������������������������� (54)

In eqn. (54) if a = 1 the field is found at the surface of the rod; to obtain the field
at the edge the value of a must exceed 1. Then if r v<<a (which is so in the
experimental arrangements), the term r v(1 + ln a) in eqn. (48) is negligible
compared with a ln a and the equation becomes

F v = − F c / ak ′ (r v / a ln a) 2
1���

(55)

However, for y ∼ 0 (which transforms to the edge profile)

a = 1 + l (56)

and so from eqn. (50)

k ′ = ln(1 + l) (57)

and substituting these values and F c = − 2V / π in eqn. (55) gives

F v ∼ 2V / π[r v(1 + l) ln (1 + l)] 2
1���

(58)

However, this field is for the case where the rod has unit radius. For the general
case we regard Fig. 2 as a scale representation of the true physical arrangement,
but in which the unit of measurement is the radius R of the rod. In this
representation all true dimensions are multiplied by R −1. For the general case,
therefore, one multiplies all true dimensions in the rod-plate arrangement, and the
field in the parallel plate condenser, by R −1, and substituting into eqn. (58) gives

F v ∼ 2V / π[r vR(1 + R −1) ln (1 + (l / R)] 2
1���

(59)

Also r v << l and R v << R. Clearly as l / R becomes small compared with unity,
(1 + l / R) → 1 and ln (1 + l / R) → l / R, thus F v reduces to

F v ∼ 2V / π(r vl) 2
1���

(60)

which is identical with eqn. (29).

Thus when the edge is very near the rod, the rod behaves as a flat plane.

Calculation of field strengths for conditions used

From eqn. (29) with r V = 1000 Å (an approximate value for razor blades 4)
and with l = 0.025 cm and V = 8000V, F v = 1.02 × 107 V cm−1. If all distances
are kept constant and the plate is replaced by a rod of 0.05 cm radius, F v from
eqn. (59) is 0.925 × 107 V cm−1. The field at the blade edge is then only 0.9 of that
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with the plate. Neither of these fields is large enough for field ionisation of most
molecules without some field intensification by surface roughness.

Field at the cathode surface

A knowledge of this field is important in considering the possibility of field
emission of electrons from the rod or the plate, and possible growth of whiskers
on these electrodes in the presence of certain gases and electrostatic fields 7, 8.

The maximum field F m at the cathode evidently occurs directly underneath
the edge, and its value can be calculated for both arrangements considered. For
the edge and flat plate, from eqn. (22) at x = 0 and y =

2
1���π,

dy / du = − k −1 = − l −1

Hence from eqns. (18) and (26)

F m = 2V / πl (61)

For the edge and rod, from eqn (51) at x = 0 and y =
2
1���π,

dy / da = − 1 / k ′a

Hence for a rod of unit radius [a = 1 , k ′ = ln(1 + l)] we have from eqn. (47)

F m = 2V / [πR ln(1 + l / R)] (62)

As might be expected eqns. (63) and (64) become the same for l / R << 1.

With the values of voltage and dimensions already given, eqn. (61) gives
F m = 2.04 × 105 V cm−1 and eqn. (63) gives Fm = 2.51 × 105 V cm−1. From
Duell’s work 7 these fields seem too small to initiate whisker growth, except
perhaps on pre-existing projections. Preliminary experiments with the edge-rod
system showed that electron emission from the rod (0.05 cm radius tungsten) was
in fact important, and extreme care had to be taken in cleaning and polishing the
rod.

APPLICATION OF EQUATIONS TO RAZOR BLADES

Electron-micrography shows that the radius of curvature of a razor blade
edge is not a well-defined quantity. Perhaps a better description is given by the
average thickness at various distances back from the edge. One type of carbon-steel
blade is ground with three facets (Fig. 4). Fig. 5 shows a magnified profile of the
final facet, and, for comparison, the profile of an idealised hyperbolic edge calcu-
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W

Fig. 4. Shape of a normal carbon-steel razor blade. The length W varies from 10 to 20 µm.
The angle at the tip of the final facet is approximately 10°.

lated as follows. For the curve representing the edge profile, y → 0 and k → l,
hence eqn. (10) becomes

(u 2 / l 2) − (v 2 / l 2 y 2) = 1 (64)

Since the half-thickness t 1⁄2of the blade at any distance d from the vertex (d being
measured along the axis of symmetry of the hyperbola) is t 1⁄2 = v, and since
d = u − l, eqn. (64) gives

(d + l)2 = l 2 + (t1⁄2
2 / y 2) (65)

From eqn. (17) as y → 0 , y = (r v / l)
1⁄2 , and since l >> d, eqn. (65) gives

d = t 1⁄2 / 2r v (66)

The blade profile was calculated from eqn. (66) taking r v as 1000 Å, and as 500
Å.
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Fig. 5. Blade half thickness against distance from the edge (continuous line). Two idealised
hyperbolic edges are also shown (dashed lines), with radii at the vertex of 1000 and 500 Å.
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The correspondence of the hyperbola and the actual edge near the vertex is
reasonably close for r v = 1000 Å.

Electron micrographs show razor blade edges to be fairly smooth; any
undulations are on a relatively large scale. This accounts for the low field
intensification factor found for blades 4.

We thank the Institute of Petroleum for support to D.F.B, and Messrs.
Gillette Industries for razor blades and information on them. We thank Dr. C. M.
Cross for checking the equations.

SUMMARY

The sharp edges of a typical carbon-steel razor blade may be approximated
by a hyperbola. The electric field strength at the vertex of the edge can then be
calculated by the method of the conformal transformation. Equations are deduced
for a blade above a plate and a blade above a rod. The results are considered in
relation to the use of blades in field ionisation mass spectrometry.
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