
FOREWORD

OPIT was a program for closed-shell self-consistent field, molecular orbital calculations using a basis set of
floating spherical gaussian functions. The attached paper, from the early 1970s, illustrates very clearly the
efforts needed to conduct calculations of this sort, even for small molecules, on the mainframe hardware
available at the time. Elapsed times of minutes, or even hours, were not uncommon and the paper describes
a data overlaying scheme, using hash coding and linked lists of main memory and disc blocks, to ensure
that resources on the ICL 1906A were used to the very best effect (there was no virtual memory and the
technology of main memory was magnetic core storage).

Younger readers should note the following changes in usage over the years:

core store = main memory;
mill time = CPU time;
backing store = disc storage;
consolidation = link editing;
degenerate hash = overflow hash.

The last-named of these was terminology for the case where two or more distinct file names happened to
hash to the same integer value. We hi-jacked this terminology from the group theory of molecules, where
certain of the irreducible representations of the molecular point group were doubly or triply degenerate,
leading to corresponding molecular energy levels having identical values. Only after the paper was pub-
lished did we discover that the accepted terminology was ‘overflow hash’.

COLOPHON

The attached paper is a re-built version of the original published paper as properly re-typeset ‘PDF Nor-
mal’ rather than just as a bitmap scan.

This particular paper appeared in the journal “Computer Physics Communications” (Elsevier) in 1973. The
canonical published version is available online (to subscribers, or for one-off purchase) as a scanned bit-
map PDF via: http://www.sciencedirect.com/

The text was acquired by scanning the paper from an offprint and then using Readiris OCR on the resulting
TIFF files. The paper was then re-typeset using UNIX troff suite to set up the correct body typeface
(Times) and to get the line and page breaks reasonably accurate. The tables and line diagrams were re-set
using the tbl and PIC pre-processors for troff. The lettering in the line diagrams uses the Tekton typeface.

The time taken to build this paper (over several lunchtimes …) to a reconstituted ‘final draft’ form was
about 6 hours.

COMPUTER PHYSICS COMMUNICATIONS. 5 (1973) 123–135. NORTH-HOLLAND PUBLISHING COMPANY

THE OPIT SYSTEM

I. A FILE HANDLING SCHEME FOR DATA IN LARGE APPLICATIONS PROGRAMS

John C. PACKER
University of London, Computing Centre, London W.C.1., UK

and

David F. BRAILSFORD*

Department of Mathematics, University of Nottingham, Nottingham NG7 2RD, UK

Received 5 April 1972
Revised manuscript received 30 September 1972

The OPIT program is briefly described. OPIT is a basis-set-optimising, self-consistent field, molecular orbital pro-
gram for calculating properties of closed-shell ground states of atoms and molecules. A file handling technique is then put
forward which enables core storage to be used efficiently in large FORTRAN scientific applications programs. Hashing
and list processing techniques, of the type frequently used in writing system software and computer operating systems,
are here applied to the creation of data files (integral label and value lists etc.). Files consist of a chained series of blocks
which may exist in core or on backing store or both. Efficient use of core store is achieved and the processes of file dele-
tion, file re-writing and garbage collection of unused blocks can be easily arranged. The scheme is exemplified with refer-
ence to the OPIT program.

A subsequent paper will describe a job scheduling scheme for large programs of this sort.

1. Introduction

For many years now, fast, modern computers have
opened up new avenues of exploration in theoretical
physics and chemistry. Understandably, however, in
the rush to complete calculations which were previ-
ously impossible, efficient programming techniques
and optimum use of computer resources (e.g., core
storage, magnetic tapes) has often taken second place.
This paper represents an attempt to redress the balance.

The OPIT program performs self-consistent field
molecular orbital (SCF MO) calculations for atoms
and molecules using a basis set of spherical gaussian
basis functions. The original version of the program
was originated and implemented, in ALGOL, by
Packer et al. on the University of Nottingham KDF 9

* To whom all communications should be addressed.

computer [1–3]. The present version of the program has
been implemented on the ICL 1900 series computers
under the GEORGE 3 operating system. The program
code is mainly in FORTRAN but several routines
involving bit manipulation have been written using the
PLAN 4 assembler.

1.1. Operating considerations for large programs

Although there are many well-known programs for
performing SCF MO calculations (e.g., IBMOL (4) and
POLYATOM [5,6]) a feature common to these pro-
grams, and to many others in theoretical physics and
chemistry, is the excessive amount of core store
required, which makes multiprogramming with other
users of the computer well-nigh impossible. The large
amount of core required is chiefly the fault of the

124 J. C. Packer and D. F. Brailsford, The OPIT system, part 1

FORTRAN language. Although the object code
produced by a FORTRAN compiler is fast in execution,
core storage is most inefficiently used since array
bounds are static and are fixed at compile time. Attempts
to implement dynamic array bounds in FORTRAN can
be made to work but are often unwieldy [7}. The result
of this is that vast amounts of core are claimed in array
declarations so that the largest calculations can be per-
formed. Thus, smaller calculations can still be processed
by the same program but at the expense of claiming a lot
of core storage that never gets used.

We feel that if a program is to be used many times as
a standard package it is worth spending some time and
trouble to ensure that core is efficiently used and that
backing store is used only when absolutely necessary.
This belief led us to implement the file handling scheme
described in section 6 onwards. The scheme aims to map
files of various sizes onto a fixed amount of core in an
efficient way. The characteristic of these files is that
their size is not known until run time.

It is not the purpose of this paper to describe in detail
the quantum chemical aspects of OPIT since this has
already been done [1}. However, we shall give a brief
description of the problems encountered in calculations
of this type in sections 2–5, so that the need for the file
handling scheme can be better understood.

2. Nature of the calculation

The total energy, and other atomic and molecular
properties for closed shell ground states, are to be
obtained using the SCF MO scheme to solve the
Schrödinger equation. The expression of a ground state
wavefunction as a single Slater determinant of double
occupied orbitals, and the expansion of each orbital in
terms of a finite basis set [8,9], are so well known as not
to require elaboration here. For computational purposes
the Hartree-Fock self-consistent equations are cast in a
matrix form and the Hartree-Fock matrix, F, is built up
at every stage in the iteration process, from a knowledge
of the first order density matrix and the integrals of the
SCF hamiltonian over the chosen basis set [4–6,9].

Two of the most common choices for a basis set are
Slater type atomic orbitals and gaussian functions.

Other things being equal, the larger a basis set, and the
closer it approaches completeness for the expansion of
the orbitals, the more accurate a calculation will be,
within the limits imposed by the Hartree-Fock approxi-
mation. Our approach,however, is to use a very modest
basis set {g} of spherical gaussians [2], where

Start

Read in data
Form integral

lists

Calculate initial
integrals or update

if necessary

Set up equations
in matrix form

Solve by SCF iteration

Print energy obtained

Has
optimisation found

min. energy
?

Print final results

Finish

Optimisation routine
to vary basis set

parameters

YES

NO

Fig. 1. Overall structure of the OPIT program.

J. C. Packer and D. F. Brailsford, The OPIT system, part 1 125

g = N exp[− α (r −R)2]

and N = normalization factor, α = gaussian exponent,
r = position co-ordinate relative to the gaussian centre,
R = position of gaussian centre relative to some fixed
origin of co-ordinates.

If the basis set is small, not only can one solve for
the optimum set of MO coefficients for a fixed basis
using the Hall-Roothaan equations [8,9], but also it is
possible to include an optimisation routine, encompass-
ing the whole program, which will systematically find
the best position co-ordinates (R) and exponents (α)
within the given basis set.

A well-known feature of all quantum chemical cal-
culations is the large number of one-electron and two-
electron integrals generated by integrating the basis set
over the SCF operator. When an optimisation routine is
used, in the way described above, it is necessary to have
a technique to detect basis functions altered by the opti-
misation routine, and to recalculate any integrals that
will, in consequence, have been altered. Details of these
routines are given in [1]. A simplified flow chart for the
whole OPIT program is given in fig. 1.

3. The components of the program

3.1. Integral listing

The technique for listing the one- and two-electron
integrals is an adaptation of that described in POLY-
ATOM [5]. Briefly, it involves reading in a transforma-
tion matrix to describe the behaviour of an indexed basis
set under the transformations of the molecular point
group to which the set belongs. Using this table, lists of
one-electron and two-electron integrals are built up;
each entry in the list corresponds to combinations of the
basis set indices. The one-electron integral lists have

2
1�� N (N +1) entries for N basis functions. The two-

electron integral list has no less than

8
1�� N (N +1) (N 2 +N +2) entries. All lists take the form

of a series of sublists. A ‘sublist head’ denotes a typical
integral of a certain type and it is immediately followed
by a ‘sublist body’ which represents integrals that have
the same value as the sublist head due to the symmetry
of the problem. The number’of sublist heads can be pre-
dicted knowing the point group spanned by the basis

functions and the nuclei [10].

3.2. Integral evaluation

Integral evaluation for the spherical gaussian basis
functions over the various operators contained in the
SCF hamiltonian is relatively straightforward and the
formulae quoted by Shavitt [11] are used. The electron-
nucleus attraction integrals require, for a spherical gaus-
sian basis, a knowledge of F 0 which is closely related to
the error function. We have used the highly accurate
evaluation described by Shipman and Christoffersen
[12] and have found it to be most satisfactory.

At the end of the integral evaluation, files of integral
values have been produced. There is a one-to-one corre-
spondence between each integral value and an entry in
an integral list.

Values in the files of integrals will have to be altered
in response to variation of the basis set parameter by the
optimisation routine (see fig. 1). The updating process is
designed to preserve at all times, the overall spatial sym-
metry of the basis set. For this reason the files of integral
labels, generated from symmetry transformations, do not
need to be altered.

3.3. The SCF process

In this phase each integral labels list, and its corre-
sponding list of integral values, is used to set up the
matrices required for the SCF process. The one-electron
integrals are dealt with first and four distinct one-
electron matrices are set up.

The F matrix is then set up using these four matrices
together with the two-electron integrals. This latter file is
suitably processed [5] using the boolean information
packed into the label words. The SCF equations are then
solved iteratively in the usual way.

At every stage of the SCF iteration it is necessary to
transform the F matrix from the normalised but
nonorthogonal gaussian basis to a suitable orthonormal
basis. This transformation is effected by the Tcholesky
decomposition [13]. The eigenvalues and eigenvectors
of F in the new basis are found using the QL algorithm
[14].

126 J. C. Packer and D. F. Brailsford, The OPIT system, part 1

After each iteration the total energy is calculated.
Self consistency is deemed to have been reached when
successive energy values differ by less than 0.00001
hartree. The whole SCF process is repeated many times
during the course of optimising the basis function
parameters (see fig. 1).

4. Efficiency considerations in integral listing and
labelling

The schemes described above are well tried and
tested but keeping both integral value and label lists is
very wasteful of storage. At the moment we store

8
1�� N (N +1) (N 2 +N +2) two-electron integral labels

and a corresponding number of integral values. An obvi-
ous modification would be to store only distinct integral
values (i.e., those which correspond to sublist head
entries in the integral labels list). In the present scheme
the only point in performing the listing operation is to
avoid re-evaluation for those integrals which are the
same as a sublist head.

An algorithm, which greatly reduces the storage
space required, for integral labels and values, has been
proposed by Dacre [15]. However, in this method the
building up of the F matrix could be a slow process
since symmetry information is not used until a late
stage. Conversely, an algorithm given by Duke [16] is
very efficient for F matrix formation, but retains the
uneconomical storage features of the present scheme.
However, a method which combines these two algo-
rithms would probably be very effective.

5. Optimisation

The optimisation routine used is that due to Powell
[17]. This is a direct method–that is, it does not involve
a knowledge of the first or second derivative of the func-
tion being minimised (molecular energy) with respect to
the variables involved (gaussian positions and expo-
nents). None the less, if a package could be developed to
calculate these derivatives in the present case, there is
little doubt that the minimum energy configuration could
be found with considerably fewer function evaluations.

The use of an optimisation routine prompts the use
of total molecular energy as a convergence criterion in
the SCF phase (see section 3.3) rather than checking
convergence of elements of the density matrix. If the
SCF process ever fails to converge, an energy value will
be produced which is greater (i.e., less negative) than
the true value. Such a value, and the basis set configura-
tion which generated it, will be ignored, as the optimisa-
tion routine is constantly searching for an energy mini-
mum. Thus, provided the SCF process is stable in the
region of the optimum configuration, the optimisation
routine should eventually find the correct minimum
energy.

6. The file handling scheme

We shall now describe a scheme for file storage and
handling which could be adapted for use in any situation
where a program ought to make fuller use of the avail-
able core and backing store facilities. Although the con-
cept is, in principle, independent of the type of program
and the machine on which it is run, we shall exemplify
certain points with reference to an implementation of the
OPIT program (see sections 2–5) in FORTRAN and
PLAN on an ICL 1900 Series computer. The coding of
the file handling scheme has been done in FORTRAN
wherever possible but for some routines, involving word
packing and bit pattern comparisons, we have had to
resort to using the ICL PLAN 4 assembly language. For
the purposes of this paper an ICL 24 bit storage location
is referred to as a half-word. Two of these locations (48
bits) can be used to store real numbers and will be
referred to as words.

It will be apparent from sections 2–5 that during the
course of running the OPIT program several named
files, of integral labels, integral values, matrices etc. are
set up. These files must be stored and updated appropri-
ately when necessary. Moreover, there is a large dispar-
ity between the size of the smallest file (N 2 entries for a
basis set of N members) and the largest (∼∼ N 4 entries).
For large basis set problems, it will be necessary to use
disc backing store, since the number of two-electron
integral labels and values becomes very large. In
Packer’s [1] original KDF9 implementation of OPIT a
totally disc based file storage scheme was adopted. This
is convenient for program structuring, and fairly effi-
cient for large basis set problems, since disc transfers
could be overlapped with central processor activity. For

J. C. Packer and D. F. Brailsford, The OPIT system, part 1 127

small problems, however, the scheme was very ineffi-
cient and it would have been desirable to store all files in
core.

The file handling scheme described here is suffi-
ciently general for it to be capable of extension, in the
event of more files being created, read from or written
to. It also has the desirable attribute of running small
basis set problems in core wherever possible. Overflow
from core to disc as the basis set increases is automatic
and almost invisible to the user, thus simulating a ‘one
level store’.

The concept of using backing storage, in conjunction
with core, to provide a large ‘virtual memory’ is now
very familiar [18,19]. The principal methods of using
virtual memory are by segmentation or by paging. The
advantages and disadvantages of both schemes are dis-
cussed in a comprehensive review by Denning [20]. In
the former method the program and data space is
divided up into variable length segments, often in a
manner defined by the programmer. In the latter method
the program and data space is mapped onto ‘pages’ of a
fixed size. At any moment only a fixed number of pages
will be present in core, the remainder being held on a
backing store device. The decision as to which pages are
currently kept in core is usually done automatically by
the virtual memory device of the machine in use–though
the decision is normally based on the observed fre-
quency of use of any given page.

The present scheme was developed on a machine
that did not have paging hardware and to handle large
programs the only option available was to overlay (i.e.,
segment) the program. The standard ICL overlay
scheme [21] works best for overlaying program code,
i.e., when the program code is large and its associated
in-core data space is small. However, in our case, we
have the problem of modest size program code which
easily fits into core together with a very large amount of
data space. The ICL scheme permits data space to be
overlaid only if the appropriate variables are declared in
DATA statements. Moreover, although the structure of a
program is often fairly transparent, in the way that sub-
routines are linked together and called by a master pro-
gram, it must also be appreciated that data often has a
structure of its own, which is not immediately apparent
from array declarations etc. within the program. For this
reason we chose to implement our own ‘overlaying’ of

data. By storing the bulk of the program’s data in named
files of varying length, and by setting up a file dictio-
nary, it is possible to segment the data and arrange for
overlaying of data. as required, into a fixed length
workspace area. The scheme will now be described in
detail.

7. The file dictionary and core storage array,
ISTORE

All file handling and in-core file storage within the
OPIT program is carried out in an array ISTORE. The
original intention was that this should be of type INTE-
GER. Unfortunately, it has had to be declared REAL in
1900 FORTRAN to circumvent certain difficulties due
to the way integers are represented in 1900 Series
machines. ISTORE contains mainly packed words
which are manipulated by routines written in machine
code (see appendix 1). The nature of ISTORE (INTE-
GER or REAL) will be immaterial on most machines.

The layout of array ISTORE is shown in fig. 2. By
using the PLAN 4 #ELASTIC directive [22] one can
force the ISTORE array to the uppermost addresses of
the program and data area (or field length). This facility
is useful when performing postmortem dumps, or if
future program enhancements wish to alter the size of
ISTORE during execution. The limit pointer for
ISTORE is IFL and

MAIN CORE
FILE STRUCTURE

DISC POINTERS
(DP)

MAIN CORE
POINTERS (MCP)

FILE DESCRIPTION
(FD) TABLE

HASH DICTIONARY
AREA

WORKSPACE
AREA

IDBS

NFILES

IHDLIM

SIZE OF
ENTRIES

LIMIT
POINTERS

FREE STORAGE
POINTERS

ISTORE(1)

LOV

IHDLIM

INDLIM

IMCLIM

IDILIM

IFL

IDPOINT

IMCGARB

IDIGARB

Fig. 2. The layout of array ISTORE.

128 J. C. Packer and D. F. Brailsford, The OPIT system, part 1

this also marks the limit of the whole field length. It is
not strictly necessary to have array ISTORE at the top of
the field length, but it does facilitate changing the size of
the array for different runs of the program or even dur-
ing a run. Hence, programs using this scheme could
adjust their core size to suit the current conditions on the
machine.

The various areas of ISTORE will now be examined
in turn.

7.1. The workspace area

Files of integral labels and values are read down into
this area while they are being processed. Matrix setting
up and manipulation during the SCF phase (see section
3.3), is also carried out here. Waste of core due to
FORTRAN’s static array bounds is avoided by carefully
placing all matrices and files within the workspace area,
whose limit pointer (LOV) is set at run time from a
knowledge of the characteristics of the problem to be
run. For example, let the maximum workspace areas
required by the integral listing, integral evaluation and
SCF processes be LINTS, LIVS and LSCF respectively
then

LOV = AMAX0 (LINTS, LIVS, LSCF) +1.

Having computed the limit pointer in this way the
detailed placing of files within the workspace area is
achieved by calculating the limit pointers for each of the
files and using these pointers to index the array ISTORE
in an appropriate subroutine call. The mapping process
is completed by using suitable array names as formal
parameters in the subroutine declaration and also in the
call to the file reading subroutine REED (see section
8.2). To make this a little clearer, let us consider a hypo-
thetical example where a calling subroutine, ALPHA,
calls a subroutine BETA. Within BETA a file of inte-
grals, called AINTS, will be read down into an array A
in blocks of 512 words. It is also required, within BETA,
to read down two files BMATX and CMATX, of size
N2, into arrays called B and C. The appropriate coding
might then be

SUBROUTINE ALPHA
REAL ISTORE
COMMON ISTORE (10000)

COMMON/CONSTS/N
.
.
.
II = 513
JJ = II + N*N
CALL BETA(ISTORE(1), ISTORE(II),
ISTORE(JJ))
.
.
.
RETURN
END

SUBROUTINE BETA(A, B, C)
COMMON/CONSTS/N
DIMENSION A(512), B(N,N), C(N,N)
M = N*N
CALL REED (5HAINTS, A, 512)
CALL REED (5HBMATX, B, M)
CALL REED (5HCMATX, C, M)
.
.
.
RETURN
END

In this way the arrays A, B and C are, effectively,
equivalenced into the appropriate workspace area of the
array ISTORE.

7.2. The hash dictionary

All files are known by a five character identifier. A
list of all files currently used by OPIT is given in table 1.
The bit pattern representing these characters is ‘hashed’
[23] to yield a target index where (see fig. 2)

1 < index < lHDLIM.

In the present implementation IHDLlM = 128.

The index produced in this way acts as a pointer to a
word in the hash dictionary area of ISTORE immedi-
ately above the pointer LOV. The contents of

J. C. Packer and D. F. Brailsford, The OPIT system, part 1 129

Table 1
Files names currently used within OPIT
���

Integral lists Integral values Matrictes
���
KINTS G-INT DNSTY
VINTS K-INT OVRLP
MINTS V-INT KTCNY

M-INT HMLTN
VLUSH
VCTRH
EETAA
VLIST���

the word pointed to are arranged so that they, in turn,
point into the next area of ISTORE, viz., the file dictio-
nary area. Thus, if ISTORE (index) = 0 in the hash dic-
tionary area, then a new entry is about to be created. A
word pair for this new file is created in the file dictio-
nary area using IDPOINT (see fig. 2) to locate the next
vacant entry. If ISTORE (index) is non-zero, the entry
refers either to a previously created entry for a file of the
same name or else, by chance, two hash codes have
proved to be identical. To find out which of these alter-
natives has occurred, a chain structure in the file dictio-
nary (FD) area is followed.

In the subroutine NSEEK, which performs the hash-
ing process, a record is kept of the previous five charac-
ter name processed. This saves hashing and searching
for continuous references to the same file.

7.3. The file description table

The limit pointer INDLIM is determined by the
number of files to be stored. Two words are allocated for
each file entry and the number of files (NFILES) has
been set, for the OPIT programs, to 100. A free storage
pointer, IDPOINT, points to the next free entry subject
to the restriction

IDPOINT >| INDLIM.

The format of a file dictionary entry in a word pair is
shown in fig. 3. It will be seen that the pointer from the
hash dictionary (obtained using NSEEK) points to the
first word of the pair. The bit pattern

BOI
Rewind
Marker

CRB

<file name> DHP

← 30 bits → ←18 bits→

←16 bits→ ←16 bits→ ←16 bits→

Two word
entry in
file dictionaryhash dictionary

Pointer from

area

ISTORE(IFL)

ISTORE(1)

BOI–beginning of information block pointer
CRB–current record block pointer
DHP–degenerate hash pointer

Fig. 3. Format of a two word entry in the file description area
of ISTORE.

of the file name currently being processed is exclusive
or-ed with (filename) in the FD table entry. If the result
is zero, then the correct entry has been found. If non-
zero, then a degenerate hash situation has occurred. The
degenerate hash pointer (DHP) is consulted, to find the
next FD table entry which might match with the name
being processed. The exclusive or-ing procedure is
repeated at every stage in the DHP-generated chain until
a match is found. A setting of DHP = 0 terminates the
chain.

When an FD entry has been succesfully located the
contents of the second word of the pair can be set to
point to entries in the next two areas of ISTORE, viz.,
the main core pointer area and the disc pointer area. The
beginning of information marker (BOI) is set to point to
the first record in the main core pointer (MCP) or disc
pointer (DP) area that relates to a given file. The current
record block marker (CRB) is used when reading from
or writing to a given file, and indicates the logical posi-
tion in the file that has been reached at any given stage
of the reading and writing process. The rewind marker is
set when a previously created file structure is being
overwritten with new information. The action of the
BOI and CRB pointers will become apparent when we
study exactly how reading and writing is performed.

130 J. C. Packer and D. F. Brailsford, The OPIT system, part 1

7.4. Main core pointer and disc pointer areas

Both of these areas consist of single word entries
where each word is divided up into three 16 bit fields to
be known as the left link, information field and right link
respectively.

On initialization the entries in the MCP and DP areas
are chained together to form a free storage list. The
information fields of successive entries are set to point to
blocks of storage either in core (main core pointers), or
on disc (disc pointers). Fig. 5a shows the situation in the
MCP area on initialization. The set up in the DP area is
the same, except that disc addresses are pointed to.
When a file is being written entries are claimed from the
MCP area (or DP area if core is full) and hence storage
of the given type is also claimed. Once MCP or DP
entries have been claimed for a given file they corre-
spond to allocated storage and are chained together, in a
logical way, for each file that is written (see section 8.1).
The two pointers IMCGARB and IDIGARB point to the
next free unallocated location in the MCP and DP areas
respectively. They are also used to claim new entries
from the free storage list when file writing is in process.
Their values are initialized to:

IMCGARB = INDLIM +1,

IDIGARB = IMCLIM +1.

In order to allocate the space in ISTORE, above
LOV, between file dictionary and pointer areas, we shall
presume that the limiting factor on a calculation will be
the amount of disc store that can be allocated to integral
storage.

Let IDBSIZ be the maximum number of words to be
transferred to disc in one disc write operation (512
words for this implementation). Let IDBS be the maxi-
mum number of entries in the DP list (set to 100 in the
current implementation). We find that the total file-
structured information that can be stored in the program
is:

IDBS * IDBSIZ + IFL − IDILIM.

Thus, if we know the amount of core taken by the disc
pointer area, and by the area below INDLIM, then we
can allocate the remaining core (up to IFL) between
main core pointers and main core files. With this in mind
we see that IMCLIM is given by:

Start

Hash filename

Does FD entry
already exist

?

Create FD entry

Locate FD entry

Has file
been rewound

?

Room left
in core

?

Obtain core pointer
from MCP area

Write to core

Obtain disc pointer
from DP area

Write to disc

Stop

Address in core

?

Find address to
be written to

using CRB pointer

YES

NO

YES

NO

NO

YES

YES

NO

Fig. 4. Flow diagram for file writing.

J. C. Packer and D. F. Brailsford, The OPIT system, part 1 131

IMCLIM = INDLIM

+ ((IFL − INDLIM − IDBS) / (IMCBSIZ +1)) −1,

where IMCBSIZ is the size of a block in the main core
storage area.

8. Operations on the file structure

8.1. Writing to a file (subroutine RITE)

In order to exemplify the function of the various
areas within ISTORE, the file writing operation will be
described in detail. The scheme is illustrated in the flow
diagram of fig. 4.

Firstly, the filename is examined to see if an entry
for that file already exists. If it exists, the FD entry is
examined; if it does not exist an FD entry is created.
Next we test to see if the writing operation will over-
write previously existing information. This test depends
on the setting of a rewind marker in the information field
of the FD word pair.

Let us presume that a new file is being written and
that there is sufficient space left in core to store the file.
A word is obtained from the MCP area using IMC-
GARB and IMCGARB is then reset. If this is the first
block to be written for the given file then the BOI field
in the FD word pair is set. More blocks of core are
claimed via the MCP area until sufficient has been allo-
cated to hold the file in question.

The structure of the MCP area before and after the
write operation is shown in figs. 5a and 5b. Note how
the pointers mcb 1 to mcb3 point to starting addresses of
in-core blocks which hold the file proper. When the
write has been completed, CRB in the FD word pair
points to the last MCP word used. Fig. 5b shows that
when blocks of storage have been allocated to a file the
direction of the left and right pointers for a given chain
is reversed compared to the initial set-up (fig. 5a). If a
call of the file writing subroutine indicates that there is
no space left in core (i.e., IMCGARB > IMCLIM) then
an entry from the DP area is claimed, the information
field of which will contain a disc address.

If a file is being overwritten (i.e., rewind marker set)
then the logical structure of the file already exists within
an allocated storage area and it is not necessary to claim
free storage words from MCP or DP to add to the list.
The CRB will already point to a word containing in its

information field the address (in core or on disc) that is
to be written to.

8.2. Reading a file (subroutine REED)

This is summarized in the flow diagram of fig. 6.
The CRB pointer is first obtained from the FD word
pair. The right link of the word pointed to by CRB is
copied down to update CRB, and acts as a pointer to the
next word to be read.

Next we inspect the information field of a given
MCP or DP word. If CRB ≤ IMCLIM the address
referred to must be in core. If CRB > IMCLIM the
address referred to is on disc. The block of information
is then read down from core or disc as appropriate.

mcb60

mcb5

mcb4

mcb3

mcb2

mcb1 0

free
storage

BOI Rewind CRB
<filename> DHP

(a)

mcb60

mcb5

mcb4 0

mcb30

mcb2

mcb1 0

free
storage

allocated
storage BOI Rewind CRB

<filename> DHP

(b)

IMCGARB

Fig. 5. (a) Part of the main core pointer area just before writing
a file. Note how BOI and CRB both point to the bottom of the
free storage list. (b) Part of the main core pointer area after
writing a file which requires 3 main core blocks. Note how the
direction of flow of the pointers is reversed in the allocated
storage area compared to the free storage area. Note also the
settings of BOI and CRB.

8.3. Logical rewinding of a file (subroutine REVIND)

At the end of a REED or RITE operation the CRB
pointer is set to the most recent block accessed. In order
to re-read or overwrite a file we first use REVIND to set
CRB = BOI in the FD word pair. The information field

132 J. C. Packer and D. F. Brailsford, The OPIT system, part 1

in the FD pair is set to 0 the first time a file is written.
After using REVIND it is set to 1.

Start

Hash filename

Does file exist

?

Get CRB pointer
from FD word pair

Signal error Stop

Inspect information
field of word pointed

to by CRB, to get
an address

Address in core

?

Read block
from core

Read block
from disc

Update CRB to
right link of word

that CRB currently
points to

Stop

NO

YES

NO

YES

Fig. 6. Flow diagram for file reading.

8.4. Logical skip backwards (subroutine SKIPB)

This function is required when one wishes to read
down a file, block by block, and then to rewrite each
block immediately after it has been read.

Study of section 8.2 shows that after a block has been
read, CRB is updated so as to access the next block to be
read. Thus, if one now performs a RITE operation on the
next block is overwritten and not the one that has just
been read. Clearly, what is needed is a routine to set
CRB to its previous value in the linked list (i.e., the left
link of the word that CRB currently points to) and this is
performed by SKIPB.

9. Conclusions on effectiveness of the scheme

The file handling scheme works extremely well
within the overall framework of the OPIT program as
described in sections 2–5. Small problems can now be
run completely in core instead of all files being on disc
as in the first implementation of OPIT [l]. As an illustra-
tion of the advantages of this facility let us consider a
calculation on the carbon atom using a basis set of 3
spherical gaussians, whose exponents are to be opti-
mised. In the KDF9 version of the program each ‘func-
tion evaluation’ (i.e., each journey round the optimisa-
tion loop — see fig. 1) took 4 sec of mill time. In the
present version it takes 0.5 sec. These figures do, of
course, represent differences in the two programs, other
than running the problem totally in core or totally on
disc (e.g., FORTRAN code instead of ALGOL). A bet-
ter test would be to force the 1900 series version of the
program to run this small problem on disc, by artificially
setting LOV to a very large value (see fig. 2) so that
there is room in core only for the file dictionary. This
would force all files onto disc storage. Unfortunately
there is no way of obtaining a value for how long the
machine is occupied in executing the program, i.e., the
mill time plus time for disc transfers. The ‘elapsed time’
for the program, in a multi-programming environment,
will, of course, include time when the OPIT program is
‘swapped out’ of core onto backing store. Hence,
elapsed time is useless for the present comparison.

A second advantage of the present scheme is in its
apparent simplicity to the ‘high level user’. That is to
say, any person incorporating this file handling scheme
into his program will interface with the scheme using
only the basic operations of REED, RITE, REVIND,

J. C. Packer and D. F. Brailsford, The OPIT system, part 1 133

SKIPB. All other manipulations performed by the
scheme, such as hashing and dictionary lookup, are
invisible to such a user.

The added flexibility of being able to ‘overflow’
from core to disc, automatically, has already been men-
tioned; it is even possible to have a single file frag-
mented between core and disc. Perhaps the greatest
advantage of the scheme, however, is the fact that
almost any number of files can be created, at will, with-
out involving major upheavals in the program coding.
We also envisage that such future enhancements as
non-serial reading and writing of files, or file deletion
and garbage collection [24], can easily be arranged. The
scheme could also be extended to permit reallocation of
files, e.g., files in core could be transferred to disc and
vice versa depending on whether they are going to be
heavily used in the next phase of the program. 1t is also
worth noting, that if core store is at a premium, there is
no reason, in principle, why areas of ISTORE such as
the hash dictionary and the pointer chains should not be
written out to disc.

The disadvantage of the scheme lies in the initial
effort to get it working and the fact that some of the rou-
tines have to be written in machine code (see appendix
1). The time overhead incurred by searching in the
appropriate areas of ISTORE is more than offset by the
advantage of being able to run small problems com-
pletely in core, but in order to speed up access of words
in ISTORE, all addressing is done relative to the base
address ISTORE(0). This base address, which is known
after consolidation and loading is stored as a program
constant. In order to assist in detecting logical errors in
the course of file handling (e.g., an attempt to read
beyond the end of a file) a series of traps is built in to the
program code, to flag an error in 6 distinct situations.
These traps are listed in appendix 2.

One of the principal remaining problems for study, is
the optimal setting of the various limit pointers, depend-
ing on the nature of the calculation to be performed. For
example, two extreme choices for IMCBSIZ (the main
core block size) would be N 2 — the size of the smallest
file to be created — and

8
1�� N (N +1) (N 2 +N +2) which

is the largest file created.

If the larger figure is chosen, one can read large files
in a single REED operation but storage space will be
wasted when storing the smaller files. Conversely, if the

lower figure is chosen, storage space is used more effi-
ciently but large files will need several REED operations
to access them. Fortunately, the gain in efficiency, espe-
cially for small basis sets, has proved so marked, even
with non-optimal pointer setting, that the effort in imple-
menting the scheme has been well worth while.

Acknowledgements

The implementation of this 1900 series version of
the OPIT program has only been made possible by the
unstinted help of other colleagues on the team. We
would like to thank Professor G.G. Hall for his constant
support for the project from its inception. Thanks are
also due to Mr. B. Ford, Mr. J. Prentice, Mr. I. Hume,
Dr. A.D. Tait, Miss J. Hylton and all the staff in the
Computing Centres of Nottingham and Loughborough
Universities.

SRC support for David F. Brailsford during the
period of this work is gratefully acknowledged.

Appendix 1

In table 2 are listed the various subroutines inherent
in the file handling scheme, together with a brief
description of their function. Although ISTORE is a
REAL array the bit patterns placed in the various words
do not, in general, correspond to floating point numbers.
This means, in 1900 Series FORTRAN, that operations
such as copying one word to another cannot be per-
formed by standard arithmetic assignment of the type
ISTORE(I) = ISTORE(J), since the nature of the bit pat-
tern is checked and an error flagged if it does not corre-
spond to a meaningful floating point number. Thus, in
order to make the scheme work on 1900 Series
machines, we have had to switch off the overflow regis-
ter and write the two extra routines COPY and
ICHZERO in PLAN. Some of the character handling
facilities afforded by the routines in table 2 could also be
carried out using standard routines provided by
ICL [25].

It should also be noted that the MCP and DP words
in ISTORE are divided up into 16 bit fields. Thus all
locations within ISTORE must be addressable in 16 bits
which limits the overall length of ISTORE to ∼∼ 65,000
words.

134 J. C. Packer and D. F. Brailsford, The OPIT system, part 1

Table 2
Specification of routines needed for the file handling acheme
���

Subroutine (S) Source
Name

or function (F) language
Description

���
IHASH F PLAN Returns an index

where
1 ≤index ≤128

ICHZERO F PLAN Checks that both
half words of a
given location are
zero

COPY S PLAN Copies contents of
one REAL location
to another

RAND S PLAN Ands together con-
tents of 2 real loca-
tions

REED S FORTRAN Reads a file using
OUTLIS

RITE S FORTRAN Writes a file using
INLIS

REVIND S FORTRAN Logically rewinds a
file (see section
8.3)

SKIPB S FORTRAN Skips back one
block in a file (see
section 8.4)

INITZ S FORTRAN Initializes the vari-
ous areas of
ISTORE

RXOR S PLAN Exclusive ors
together the con-
tents of 2 REAL
locations

START S PLAN Finds location of
base address
ISTORE(0)

ILLSET S PLAN Sets 16 bits of left
link

INFOSET S PLAN Sets 16 bits of
information field

IRLSET S PLAN Sets 16 bits of right
link

ILLGET F PLAN Reads left link
���

Table 2 (continued)
���

Subroutine (S) Source
Name

or function (F) language
Description

���

INFOGET F PLAN Reads information
field

IRLGET F PLAN Reads right link
SODIT S PLAN Sets DHP in FD

word pair
LSBITS F PLAN Reads DHP
NSEEK S FORTRAN Hashes filename

and finds FD entry
INLIS S FORTRAN Finds next MCP or

DP entry for RITE
OUTLIS S FORTRAN Finds next block to

be read for REED
���

Appendix 2

Table 3 below gives a list of the various error condi-
tions trapped during file handling operations and the
name of the routine in which the error is trapped.

Table 3
Error conditions trapped by the file handling acheme
���
Error Routine Nature of
Type where trapped error���

1 RITE Overflow of
available disc area

2 NSEEK Attempt to create
more than
NFILES number
of files

3 INLIS Attempt to write
beyond end of file

4 OUTLIS Attempt to read
beyond end of file

5 INITZ Insufficient core
store allocated
for running this
problem

6 SKIPB Attempt to skip
back on an empty file

���

J. C. Packer and D. F. Brailsford, The OPIT system, part 1 135

References

[1] J .C. Packer, The Nottingham program for closed
shell molecular SCF calculations using optimised
gaussian orbitals, ed. R.A. Sack. (Copies available
on application to DFB).

[2] B. Ford, G.G. Hall and J.C. Packer, Intern. J. Quan-
tum Chem. 4 (1970) 553.

[3] D.F. Brailsford and B. Ford, Chem. Phys. Letters 12
(1972) 60.

[4] A. Veillard, lBMOL IV, Quantum Chemistry Pro-
gram Exchange, Indiana University, Bloomington,
Indiana 47401, USA.

[5] I.G. Csizmadia, J. Moskowitz, M.C. Harrison, S.
Seung, B.T. Sutcliffe and M.P. Barnett, POLY-
ATOM, Quantum Chemistry Program Exchange,
Indiana University, Bloomington, Indiana 47401,
USA.

[6] D.B. Neumann, H. Basch, R.L. Korregay, L.C. Sny-
der, J. Moskowitz, C. Hornback and P. Leibmann,
POLYATOM 2, Quantum Chemistry Program
Exchange, Indiana University, Bloomington, Indiana
47401, USA.

[7] M.W. Brinn, Computer Bull. 15 (1971) 316.

[8] G.G. Hall, Proc. Roy. Soc. A205 (1951) 541.

[9] C.C.J. Roothaan, Rev. Mod. Phys. 23 (1951) 69.

[10] D.F. Brailsford and G.G. Hall, Intern. J. Quantum
Chem. 5 (1971) 657.

[11] I. Shavitt, Methods Comp. Phys. 2 (1963) 1;

[12] L. Shipman and R. Christoffersen, Computer Phys.
Commun. 2 (1971) 201.

[13] R.S. Martin, G. Peters and J.H. Wilkinson, Num.
Math. 8 (1966) 203.

[14] H. Bowdler, R.S. Martin, C. Reinsch and J .H.
Wilkinson Num. Math. 11 (1968) 293.

[15] P. Dacre, Chem. Phys. Letters 7 (1970) 47.

[16] A.J. Duke, Chem. Phys. Letters 13 (1972) 76.

[17] M.J .D. Powell, Computer J. 7 (1964) 155.

[18] J. Fotheringham, Commun. A.C.M. 4 (1961) 435.

[19] T. Kilburn, D.B.G. Edwards, MJ. Lanigan and F.H.
Sumner, I,R.E. Trans.- EC11 2 (1962) 223.

[20] P.J. Denning, Computing Surveys 2 (1970) 153.

[21] FORTRAN 32K Disc Compiler Manual ICL Publi-
cation No. 4149.

[22] PLAN Reference Manual ICL Publication No.
4004.

[23] P. Wegner, Programming languages, information
structures and machine organisation (McGraw-Hill,
New York 1968) ch. 2.

[24] J. McCarthy et aI., LISP 1.5 programmer’s manual
(The M.I.T. Press, Cambridge, 1962).

[25] FORTRAN Compiler Libraries Manual, ICL Pub-
lication No. 4170.

