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A method of assembling the elements of the Fock matrix is described which is a modification of that due to
Dacre. Lists of symmetry equivalent one-electron integrals are used as pointers to abbreviate the process of collect-
ing two-electron integrals into the Fock matrix.

In the original POLYATOM [1] scheme for storage
of one- and two-electron integrals, lists of integral la-
bels and corresponding integral values are produced. A
label consists of indices, representing the basis functions
that appear in the integral, and a marker tag (which takes
the value 1, 2 or 3). A label with a marker tag of 1 will
be referred to as a sublist head, since it is representa-
tive of a set of integrals which are equal because of the
geometrical symmetry of the basis set. Underneath the
sublist head we have the sublist body. This consists of
labels for integrals which are equal to the sublist head
(marker = 2) or equal to minus the value of the sublist
head integral (marker = 3). In early implementations
of the scheme, this symmetry information was only
used to cut down integral evaluation times. It was not
used to aid the setting up of the Fock matrix for the
SCF process.

In 1970 a scheme was proposed by Dacre [2] for
storing only the sublist heads of the two-electron in-
tegral list and for using this smaller list to set up the
Fock matrix. This leads to a large saving in the space
required to store the list and the time to read it, when
the problem possesses symmetry. The total length of the
two-electron integral list for a basis set of N mem-
bers is

8
1���N(N + 1) (N 2 + N + 2). The reduced size of

the list, when only sublist heads are stored, can be
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calculated by group theoretical arguments [3].

In the Dacre scheme, sublist heads are stored, to-
gether with a factor m which represents, essentially,
how many times a two-electron integral label per-
mutes into itself under the operations of the symme-
try group of the basis functions. The value of the in-
tegral to be stored has to be divided by the factor m
as explained by Dacre. Then the two-electron Cou-
lomb and exchange matrices are obtained from the
formulae

Jij =
k
ΣGkĴi ′ j ′ , Kij =

k
ΣGkKi ′ j ′ ,

where Gk is a symmetry operation of the basis set’s
symmetry group. The effect of the summation is to
accumulate in Jij, after multiplication by any neces-
sary phase factors, all those Ĵi ′ j ′ , whose subscripts i ′ j ′
transform into ij on application of the operation Gk .
The summation is over all operations of the symmetry
group. Thus the complete two-electron matrices are
obtained from the partial matrices Ĵi j, K̂ij built up
from sublist head integrals, by applying each symme-
try operation, in turn, to every element of the ma-
trices, and summing over all symmetry operations.

The computer implementation of Dacre’s scheme
requires that the full symmetry transformation table
for the basis functions be available at the two-elec-
tron matrix set up stage. It does not make use of the
fact that if Jij and Jkl are symmetry related elements,
then they are equal, so that once one of them has
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been calculated from the partial matrix it is not nec-
essary to calculate the other. Utilising this property
decreases the time taken to build the complete two-
electron matrices from the partial ones and, as will
be shown below, avoids the necessity for having the
table of symmetry operations available at this stage.

A scheme has been devised and implemented which
calculates the partial two-electron matrices, as in the
Dacre scheme, but which then calculates a complete
matrix element and sets all symmetry related ele-
ments equal to this value without further calculation.
To minimise the number of passes through this proce-
dure, the Coulomb and exchange partial matrices are
first combined to give a partial two-electron Fock
matrix contribution.

F̂ij = 2Ĵi j − K̂ij

and the procedure then operates on this matrix to
give

Fij = 2Jij − Kij .

It is important to remember that a necessary re-
quirement for this scheme of partial matrix set up,
using sublist head integral values, is that all symmetry
operations on the basis set must induce only a permu-
tation of the members of the set. Symmetry opera-
tions which transform basis functions into linear com-
binations of themselves are not permitted. Equally,
the set of transformations chosen must have no effect
on the nuclei, other than permuting identical nuclei
among themselves. Elder [4], in a recent paper, dis-
cusses these points and shows how to make full use
of the nuclear symmetry when this is higher than
that of the basis set. But, for our present scheme, the
symmetry operations used must be those that are com-
mon to the nuclei and the basis functions.

If one-electron integrals are stored as in the POLY-
ATOM scheme, storing all

2
1��� N (N + 1) of them together

with their labels, then those matrix elements Fij which
are related by symmetry, and are therefore equal in
value, are indicated by the one-electron labels list. For
example, if integrals 〈i | j〉 and 〈k | l〉 are equal by sym-
metry, then

Jij = Jkl , Kij = Kkl , Fij = Fkl .

In this way the one-electron labels list can provide
pointers indicating which elements of F must be equal
by symmetry. However, we must remember that

Fij =
k
ΣGkF̂i ′ j ′ ,

which requires a sum over all valid symmetry opera-
tions, even if several of these give rise to identical con-
tributions. Thus if, instead of actually applying each
symmetry operation to every element F̂ij (as in the
Dacre scheme), we are now going to combine all sym-
metry related matrix elements, with appropriate phase
factors ±1, as indicated by the one-electron labels
list, then we must multiply each term by the number
of times it would be generated in scanning the sym-
metry transformation table. This number, m ′ , will be
equal for every member of a given sublist in the one-
electron integral labels list, and is given by m ′ = p 1 / p 2

where p 1 is the total number of symmetry operations
and p 2 is the number of members in the given sublist.
It is now necessary only to add together all symmetry
related elements of F̂ij, multiply the result by m ′ and
set all symmetry related elements of F̂ij to this value.
Hence we use two types of integer factor in our
scheme. The first is Dacre’s m factor which divides
the two-electron integral value. The second is the mul-
tiplying factor m ′ which has just been described.

Table 1 shows comparative timings for complete
calculations on various molecules using the OPIT pro-
gram [5] on an ICL 1906A computer. In this program
the SCF operation is performed many times as the
basis set is optimised. For example the time quoted
for the CH2 calculation represents 100 separate calls
of the SCF routine. In nearly every example, signifi-
cantly faster times are achieved than those obtained
from the Dacre scheme. As might be expected, the
improvement will be most noticeable for large sym-
metric molecules employing big basis sets.
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Table 1
Comparative mill (central processor) times, on a 1906A computer, for complete runs of the OPIT program using 3 different schemes of
Fock matrix set up
��������������������������������������������������������������������������������������������������

1906A mill time for complete Symmetry group No. of No. of
run of OPIT program (seconds) of basis functions symmetry basis

a) b) c) operations functions��������������������������������������������������������������������������������������������������

CH2 22.9 21.3 21.3 C2v 2 5
CH4 173.6 136.4 99.7 Td 24 6
C2H6 704.1 313.5 278.5 D3d 12 11
HF 469.8 338.4 313.8 C3v 6 6
F2 916.3 532.7 447.3 D3d 12 11��������������������������������������������������������������������������������������������������
a) Original OPIT program using POLYATOM scheme of storing all the integrals.
b) Modified OPIT program storing only sublist head integrals and using the Dacre scheme for building up the two-electron part of

Fock matrix.
c)This work.
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