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PREFACE

/ukasiewicz published his classic work on Aristotelian syllogistic

in 1951. Unlike his book, the present monograph makes no attempt to

contribute to Aristotelian scholarship, but it does aim to locate the place

of syllogistic in modern logical theory. Eukasiewiczts syllogistic, which

is simply the result of grafting some special axioms on to propositional

Iogic, with their term variables having non-empty name-like expressions

as substituends, does not show how syllogistic logic relates to the modern

logic of general propositons, and his interpretation is in any case open

to philosophical criticism. However, as a result of his pioneering study

and of others'subsequent work, I believe that it is now possible to

determine the place of syllogistic far more satisfactorily.

In Chapter 1 BS, a basic syllogistic system based on Aristotle's

Iogic, is presented in natural deduction form, so avoiding the need to

adjoin propositional principles (apart from redttctio ) in the manner of

Eukasiewicz and Bochefiski. As far as I know, the idea of presentrng

Aristotelian logic as a natural deduction system was'first suggested by

Robert Feys in a review, and I devised the system BS for teaching

purposes some years ago. In the last few years natural deduction systems

have been published by Corcoran and Smiley, but their concern has been

with exegesis of Aristotlers text. Since I am concerned with a wider

assessment of Aristotlers logic and of his contribution to the whole subject,

I am less interestd in representing the minutiae of Aristotelian doctrine

in my basic system and more interested in presenting a system I can use

to relate the syllogistic type of logic to that which has superseded it in

modern times. Deductions in BS are set out in tree form, and are

therefore far easier to construct and follow than deductions in the systems

of Corcoran or Smiley.
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Chapters 2 and 3 treat the metatheory of the basic system. The

exposit ion is relat ively informal, since I have aimed to make the whole

monograph accessible to anyone with an elementary knowledge of formal

logic. In any case, i t  wi l l  not be essential for the reader to work

through al l  the detai ls of metatheoretical proofs in order to understand

the rest  o f  the tex t .

Since S/upecki proved the completeness of l ,ukasiewicz's syl logist ic

and Wedberg proved the completeness of a system with negative terms,

much more concise proofs of these results have been given by

Shepherdson. Shepherdsonrs proofs, however, are algebraic, whereas

the proofs presented here are purely logical and are derived (and

simpli f ied) from a completeness proof given by Corcoran for his

syl logist ic system mentioned above. The style of proofs in the meta-

theory and the order of exposition were chosen particularly to bring

out a hitherto unnoticed but remarkable feature of Aristotle's attempt to

show that his logic was complete. His approach anticipates modern

Henkin-style completeness proofs. Aristot lers fundamental insights -

his idea of inferences val id in virtue of their general structure and

his use of variables to reveal i t ,  his construction of what amounts to

a nearly complete deductive system of logic - are well appreciated.

But his attempt to show that his logic is complete has received far

less attention. I f  i t  did not give a false impression of his understanding

of logic, we could almost say that Aristot le came close to anticipating

model theory.

For the purposes of the f irst four chapters, which together with the

fifth are concerned with the formal rather than the philosophical aspects

of the subject, I  use interpretat ions in which term variables have

substantival phrases as their substi tuends. This is because I wanted to

employ an interpretation of the sarne general sort as that which Aristotle

and the medievals had in mind, and whieh enabled the formal treatment
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to proceed smoothly, I also wanted to avoid prejudging the philosophical

discussion of Chapters 6 and 7. This certainly does not mean that I

really subscribe to a rtwo-narnet interpretation of general propositions:

far from it. Objections to such interpretations are presented in

Chapter 7, where I conclude that the terms of A, E, I and O proposi-

tions are best construed as predicative in nature.

The investigation of the nature of general propositions takes us into

the heart of contemporary discussion of reference and generality, and

much of Chapter 6 and 7 is concerned with critical assessment of certain

doctrines of L6sniewski, Strawson and Geach, which are also of interest

apart from their relevance to syllogistic.

Syllogistics with negative variables, derived from the nineteenth

century enlargement of traditional logic to cope comprehensively with

syllogisms containing negative terms, are dealt with in Chapter 9 as

class calculi, in which manner the basic systems are construed in the

preceding chapter.

The present work is limited to categorical syllogistic. There is

no treatment of Aristotle's modal syllogisms, nor indeed of any of his

other, more piecemeal, contributions to formal logic.

I should like to thank those who have discussed some of the contents

of this monograph with me or who have made useful comments on prelimi-

nary drafts, notably my former colleagues Michael Partridge,

David Braine (Aberdeen University) and Norton Nelkin (University of

New Orleans); my former tutor, Christopher Kirwan (Exeter College,

Oxford); and Professor Peter Geach (Leeds University). My thanks are

also due to the University of Nottingham for supplying funds, and to

Mrs. Eileen Ipng, Mrs. Rose Holman and Miss Christine Flear for

typing the manuscript. And special acknowledgement is owed to

Dr. Richard Cardwell for pioneering and organizing the monograph series

in which the present work appears as the first rolume.

Michael Clark
University of Nottingham
April, 1979
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1 . 1

CHAPTER 1

A BASIC SYLLOGISTTC SYSTEI\{

Ar is lo t l . ' s  l l t?ot , ) '  o l '  t l tc  usscr . lo t t ic  s t ' l log isnt

1.11 Until the nineteenth century Aristotle's work on the assertoric

syilogism rvas the most notable achievement in formal logic. Of course,

it by no means exhausts the interesting or important work in the field

up to that time, even by Aristotle himself, but in producing a complete

system of deductive inference, albeit of a very restricted sort, he

undoubtedly justified Leibniz's verdict that 'ltinvention de la forme

des syllogismes est une des plus belles de I'esprit humain, et m6me

des plus consid6rables' (L704, IV, xvi i ,  4, quoted by Couturat (1903) ).*

The basic syllogistic system to be presented in this chapter is

based tairly closely on Aristotle's doctrine of the assertoric syllogism

in the Prior,'lttctll 'tic's. For the moment the system will be thought of

as a logic for the four traditional types of categorical proposition, as

exemplified by the following sentences:

Every man is a hypocrite

No man is a hypocrite

Some man is a hypocrite

Not every man is hypocrite

Quantity

universal

universal

particular

particular

Quality

affirmative (A)

negative (E )

a-ffirmative (1 )

negative (O)

A proposition rvill be regarded in the medieval manner as a sentence

rvith a certain meaning and the issue of whether there exist propositions

in some more abstract sense will be left open. It will be convenient

also to follow the medieval practice of referring to the propositional

f o rms  by  means  o f  t he  l e t t e r s  rA ' ,  'E ,  , ' I ' ,  and tO ' .

+ Works referred to by author ard date are llsted at the back.



Such categorical propositions are to be formed by inserting an

appropriate term into each of the two gaps in any of the following

sentence-frames:

Every - is a(n)-; No - is a(n)-; Some is a(n)-;
Not every - is a(n) -.1

Terms may be slngle nouns or they may be noun phrases, as in

the prorpositions No Indian etephant is a cheap ?et and Some

photograph of Wittgenstein is a collectorts itemi but admissible terms

will be restricted to words whlch are count nouns or count-noun phrases.

Thus a word or phrase a will be an admissible term iJf (if and only if)

you can frame a significant question of the form, 'How many ats ate

there?'.2 Thls means that our categorical propositions belong to a

narrower range than the o<amples used by Aristotle himself, which

include cases like Some snow is u,hite, a sentence in which neither term

passes the test. However, the restrtction has certain advantages at

this point in the exposition. Inferences which involve the transposition

of subject and predicate terms cannot be rnade from propositions like

Sorne snou is white without idiomatic adjustments (Something ruhite is

snoa), whereas no such tinkering is needed in converting a sentence like

Some mnn is a hypocrite.

of Aristotle's most significant achlevements was the

introductlon of variables, which reflects his furdamental insigfut that the

validity of the lnferences he was studying depends on their form. For

term variables we shall use small rornan letters: the form of Euery

mnn is a hypocrite, fot orample, w'111 be expressed by Euery a is a b.

1Cf. Chrlsttae Ladd-FradrlfD fn Eeldwtr Q90-1_-z), 2, p. 329, clted by A.N. Prtor,
(19?6), p. 53, where ftu.tber detatls wtll be found.

2 the guestlon need not beve a defhfte a!sq/er, however. See Daztd nrleglns on
olly wavee aad crocras (1968), pp. 39-40.



L.Lz Aristotle was primarily interested in those inferences in which

a conclusion is drawn from two premisses which share one of their

terms. These syllogisms normally contain three distinct terms, one of

which appears as subject term of the conclusion and in one of the

premisses (the minor term), another which appears as the predicate

term of the conclusion and in the other premiss (the major term), and

the middle term, which appears in each premiss. A premiss itself is

ca l led 'major 'or 'minorraccord ing as i t  conta ins the rna jor  or  minor

term. The definition of major and minor terms by reference to

position in the conclusion is due not to Aristotle but to his commentator

John Philoponus, but it seems the neatest way of understanding them.

As an example we nray take the syllogism:

Every hypocrite is a liar

Some man is a hypocrite

Ttrerefore, some man is a liar

The first premiss, containing as it does the major term liar,
major premiss, the second the minor premiss, and hypoc,tite

middle term. If we replace major, minor and middle terms

ively by the variablesp, s and nq the form of the inference,

of which it is deductively valid, may be expressed like this:

is the

is the

respect-

in virtue

Every  mis  a  p

Some s is an zri

S o m e  s  i s  a p

When the major and minor terms have the positions in the premisses
which they have in the example above (major in predicate, minor in

subject position), the syllogism is said to be in the first figure. Clearly
there are three other ways of arranging the major and minor ter.lrs in
the premisses, and so four figures in all, usually presented by means of
the following medieval schemas:



1

n i p

s m

3

m p

l n s

The conclusion wilt always be: s p. It is unlikely, thouglr, that Aristotle

himself used schemas of this sort to work out the different figures,

particularly since he does not recognize a fovrth figure (thougtr he did

recognize the validity of such arguments and proves them).3

The mood of a syllogrsm is specified by giving the quantity and

quality of its constihrent propositions, with those of the major premiss

standardly given first: thus the example above is in the mood AII.

Only a minority of moods in each figure is valid. Ttre system to be

presented will enable us to prove all the valid argument patterns which

Aristotle recognized, as well as the weakened moodsa which later

logicians included in their treatment. Ttre reference list which follows

gives the medieval mnemonic names whose vowels indicate these moods,

with the names of the weakened moods in brackets:

First figure: Barbara, (Barbari), Celarent, (Celaront), Darii, Ferio

Second figure: Cesare, (Cesaro), Camestres, (Camestrop), Festino, Baroco

Third figure: Darapti, Disamis, Datisi, Felapton, Bocardo, Ferison

Fourth figure: Bramantip, Camenes, (Camenop), Dimaris, Fesapo, Fresison

1.1.3 In the Prior Analytics Aristotle shows how to reduce the moods

of the 'less evident' second and third flgures to the (unweakened) first

figure moods by means of the principles of conversion and reductio ad

absurdum. (For reductio see L.L4). For example, he reduces

Camestres in the second figure to Celarent in the first:

o See Lynn Rose (1965).

a A mood is sald to be weakened if
tbe concluslon ls partlcular and the
follows from the premlsses.

Its corcluslon ls weaker than it need be, i.e. lf
unlversal concluslon of the same quallty also

p

m

p

s



if M belongs to all N, but to no o, then N will belong to

no o. For iJ M belongs to no o, o belongs to no M: but IUI

(as was said) belongs to all N: O will then belong to no N: for

the first figure has again been formed, But since the

negative relation is convertible, N will belong to no O.

Q 7 a 9 - 1 4 . '

Aristotle frequently exlpresses propositions in the manner of this

quotation, a manner u'hich was as artificial in Greek as it is in English.

Expressed in the style we have adopted, Camestres has the form:

Every n is annt

N o o i s a n m

N o o i s a n z

We are told that the minor premiss is simply convertible. Simple

conversion involves merely.transposing the subject and predicate terms,

and seems to yield valid inferences in the cases of E and i propositions'

but invalid inferences when applied to A and O. We may set out the

simple conversion of the minor premiss thus:

N o o i s a r r n z
s . c .

No zzis an o

No n is an o is then derivable from No m is an o together with the

major premiss of Camestres, EL,e7')'n is an m, by means of the

principle of the first figure mood Celarent:

No nzis an o EverY n Ls an m

N o z i s a n o

And the concluslon of Camestres is derivable from No n is an o, agaln

by simple conversion. Puttlng these three steps together we get:



N o o i s a r l m

No rais an o Every n Ls an m
Celarent

N o z i s a n o

N o o i s a n z

What we have here is in fact a form of deduction, using the principles

of simple conversion ard Celarent as rules of inference. Given the

principle of simple conversion, the questlon of the validlty of the mood

Camestres has been reduced to that of the validity of Celarert. In

general a syllogism (a) is reduced to another syllogism (b) when the

premisses of (a) deductively yield those of (b), and the conclusion of

(b) in turn yields the conclusion of (a).

To take next an o<ample from the thlrd figure, Darapti is

reduced to Darii as follows:

Every s is an r

E v e r y s i s a p Some r is an s
C .  p .  & .

Darii
S o m e r i s a p

Euery s is an r is converted per accidens, i.e. the term varlables are

interchanged ard quantity reduced from universal to particular.

L.1,4 All the assertoric syllogisms which Aristotle dealt with are

reducibtre to the first figure in the way we have described, apart from

Baroco and Bocardo, wtrich he reduces 'indirectlyr by reductio ad

absurdum. Here is his reduction of Baroco:

if M belongs to all N, but not to some O, lt is necessary

that N does not belong to some O: for lf N belongs to all

o, afr, M is predicated also of all N, M must belong to all

O: btrt we assumed that M does not belong to some O.

1z7asz-zzbL.1



The form to be reduced is:

Every n is an nt

Not every o is an m

Not everv o is an n

(The O forms have been given in the manner arurounced in 1.11, rather

than in the 'Some - is not ...' form. See 1.3 for the explanation of

this. ) Aristotle supposes for the sake of argument that the conclusion

is false, that is, he assumes the logical contradictory of the conclusion:

Euert o i.s an n. But from this assumption and the major premiss

Erert, n is an tn we can derive ErcrT' o is an tn by means of the

principle of the first-figure mood Barbara:

Every n is an tn I Every o is an n )
Barbara

Everv o is an m.

The supposition has been enclosed within square brackets. The

conclusion now derived is the logical contradictory of the minor premiss,

llol t't 'eyt o is rttt vtt. Since logical contradictories must have

opposite trtrth-values, the tnrth of the original premisses is not

compatible with the contradictory of the original conclusion: so if the

premisses are true, the original conclusion must also be true. We

shall display the deduction of which this is the rationale as follows:

Every n ls an m I Every o is an zI

Every o is an m

Barbara

r\ot every o ls an m
f  o 8 . 8 r

Not every o ls an z

At the final step the contradictory of the suppositlon ls asserted on the

basis of the two (unbracketed) premisses Euery n is an m, Not euery o

is an. m. The question of the validiW of Baroco has been reduced to

that of the validity of Barbara, and once again we have a form of

deduction, thouglr less simple than in the previous example. As it is



used here ttle reductio principle is parasitic on other prlnciples like

simple conversion ard Barbara, and does not simply involve the direct

derivation of a conclusion from premisses. What justifies the r.a.a.

step is not simply the presence of the two contradictories above the

line but the fact that one of them rests in part on the bracketed

assumption. That assumption is di.scha.rged at t}l.e final step and so the

conclusion rests only on Euery n is an m and Not euery o is an m.

Strlctly speaking, we should not bracket any formula until it

is being discharged. Thus, just before the final step, the emerging

deduction should look like thls:

Every n is an m Every o is an z
Barbara

Every o is an m Not every o is an m

The three formulas Eoery n is an m, Euery o is an n and Not euery o

is an m jointly yield the contradictories Euery o is an m" Not euery

o is an m. The first three formulas cannot, therefore, all be trrre,

and if any two are true the third must be false. Consequently, any one

of the three can be discharged by the assertion of its contradictory,

which will follow from the other two. The formula discharged is then

bracketed to show that the formula newly derived does not rest on it.

Reducti.o arguments are, of course, a very powerful and

important mode of reasoning in logic and mathematics, Ttrey are

familiar from the work of Aristotlers contemporary, Euclid, and before

that Zenors argumerfs had more or less taken this form. As

Aristotle noticed, ,reductio arguments are available for reducing all

valid syllogisms, thougtr they are not always indlspensable.

The reduction of Bocardo mav be set out like this:

I  Every r Is a P] Every s ls an r
Barbara

E v e r y s l s a P

Not every r ls a P

Not every s ls a P
f  . 8 .  & .



Not only did Aristotle show how to reduce seeond and third figure

syllogisms to the first figure, but, among other things, he showed how

to reduce the first figure moods Darii and Ferio to Celarent via the

second figure, &d thereby showed that all syllogisms are reducible to

Barbara or Celarent. Darii is treated thus:

rf A belongs to alL B, and B to some C, it follows that

A belongs to some C. For if it belonged to no C, and belongs

to all B, then B will belong to no C: this we know by means

of  the second f igure.  (29b8-11. )

Dari i  has the form: Euery b is an a, Some c is a b / Some c is an a.

Assume the contradictory of the conclusion, viz. No c is an a. By

Camestres, already reduced to Celiarent, we may derive No c is a b,

which contradicts the minor premiss of Darii. Putting this argument

together with the 'reductiont of Camestres we may er(press the reasoning

in the following tree:

[ N o  c  i s  a n  a ]

N o a i s a c  E v e r v b l s a n a
Celarent

N o b l s a c
s .  c .

N o c i s a b S o m e c i s a D

Some c is an a
r . a . a .

No c is an a must be false tf Euery b is an a artd, Some c is a b

are true, since the trio jointly yields a pair of contradlctories. Hence

No c is an a is discharged and its contradictory asserted on the basis of

the other two formulas in the trio.

If we put together the tree for the reduction of Darapti to

Darii and the last tree for the reduction of Darii to Celarent, we have

the full reduction of Darapti to Celarent.



l N o r i s a p l

N o p i s  a n 7
s . c .

E v e r y s  i s  a p
CeLarent

N o s i s a n r
-  s . c .
N o r i s a l s

Every s is an r

Some v is an s

S o m e r i s a p

Using the same principles of inference - s.c.,  Celarent, c.p.a. and

r.a.a. - it is possible to prove Darii with sligtrtly more economy,s

. \ o  r  i s  a  2 l Every s ls an r
Celarent

c . p .  a .

r .  a .  a ,

c . p . a .

r .  a .  a .

N o s i s a 2
s . c .

N o p i s a n s

E v e r y s  i s  a P

Some p is an s

S o m e  r i s  a D

The moods now called figure 4 are dealt with by Aristotle at

2t23-27 (Fesapo and Fresison) and 535-12 (Bramantip, Camenes and

)imaris). The weakened moods can be demonstrated in much the same

;'3._\' as the others.

: . 15 Not all of the principles of inference used so far are independent

:: one another. When introducing conversion in the second chapter of

t:e Ptior Analytics Aristotle demonstrates simple conversion of .I

prcpositions and conversion per accidens of A by using r.a.a. and

sinple conversion of E. The last principle is itself demonstrated
'b1- ecthesis', but we shall disregard this for the moment. Simple

conversion of .I is demonstrated at 2520-22:

: Eteu rnre economy can be achleved by altrowlng the use d, reductio ad absur&tm
rben the lrconslsted formulas derlved are not cofradlctorles brtr corresporrllng A
r-l E formulae - codartes. (Aristotle hlmesf argues Uke thls, for exa.mpl,e, ln
lls prod d converslon lter accidens tt 25U-Lg - see below.l lbe prod d
OerapU would tben bave only two gteps, an appllcatton d Celarerf and one d r.a.a.

L 0



if some B is A . then some of the A s must be B. For

if none were, then no B would be A.

l N o a  i s a b l

N o  b  i s  a n a Some b is an a
t . a . a .

S o m e a . i s a b

and c .p .a .  o f .  A a t  251-z-19:

i f  every B is A, then some A is B. For i f  no A were

B , then no B could be A. But we assumed that every

B  i s  A . 6

l N o  a  i s  a  b l
s .  c .

N o b i s a n a Every b is an a
t . a . a .

S o m e a i s a b

Notice that the inconsistent formulas derived prior to the application

of the redu.c:tio step are not eontradictories (formulas which must have

opposite trtrth-values) but merely contraries (inconsistent formulas

which can't both be true). This form of the reducli.o principle will

have the status of a derived rule in the basic system to be presented

in this chapter.

What we have proved in the demonstration above are special

cases of the principles s.c. of.  I  and c.p.a. of A used in the tree

deductions: for e*<ample, the last demonstration shows how to deduce

Some a is a b from Et,ery b is an u, but the 'pr inciple'of c.p.a.

for A equally permits the deduction of Some a is an a from Euer5,

a is an a, etc. The tree deductions contain not propositions but

formulas, wtrich we are regarding as propositional forms, and the

rules of inference used in these deductions enable you to derive formulas

of certain patterns from other formulas of certain patterns. To

6 Conversion per accidens of E1 not actually used by Aristotle, can be proved ln a
stnilar way.

11



specify the pattern of a formula we shall use letters, ot,

arbitrary term variables. The rule of simple conversion

example, will be given as:

F ,  Y

of E,

AS

for

N o o i s a F

N o F  i s  a n  a

And to show that s.c. of .I , for e>rample, is a derived rrrle, we should

really derive Some B is an a from Some a is a B metalogically in a

proof schema.

When we set up our basic syllogistic system in the next section

we shall express the constants Euery - is a -, No - is a -, etc.,

by means of the single letters rA', 'E', r.I ' and f O' preceding the two

variables. Ttrus for Eaery a is a b we shall write Aab. This has

the advantage not only of economy but also of making it easier to

consider different interpretations of the system.

If the form of r.a.a. in which t}re reductio step immediately

succeeds the deduction of comesponding A and .E formulas is to be

treated as a derived rule of the systems we are constructing, it seems

that we need to retain c.p.a. of. A as a primitive rule. Because this

latter rule is interderivable with the principle of subaltern lnference

for A formulas, from AaF to IqB (sub.(4)),  we shal l treat sub.(A)

as primitive, since this seems to yield a sliglrt gain in perspicuity.

We show the two are interderivable by deducing sub. (A) using

c .p .a ,6 )  and  v i ce  ve rsa i

A a B
c . p . a .

I F a
s . c .  ( /  )

I a F

A a F
sub. (.4)

I  a F
s .  c .

I F a

And we shal l  also treat s.c.(/) ,  rather than s.c.(E), as primit ivb.

Ttre reader can easily verify that, in a system with sub. (4), s.c.( / )
and the narrower  form of  r .a .a .  as  pr imi t i l -e ,  s .c . (E) ,  c .p .a . (E)
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and sub.(E) are derived rules.

It is obvious that the principles we have used are not limited

to a-ffording derivations of inference patterns with just one or two

premisses and that the patterns of longer inferences (rsorites', etc.)

are also derivable. As an illustration consider the following argument:

No socialist is a conformist

Some humanist is a socialist

Every humanist is a rationalist

Every rationalist is a disbeliever

Every disbeliever is a sceptic

Not every sceptic is a conformist

'fhere is no difficulty in deriving a sequent orpressing the pattern of

this inference within our basic system: Elc, IItl , Ahr, Ard, Adp tr Opc.

(Letters have been chosen which are suggested by the terms in the

inference, but it must be emphasized that these letters are not to be

thought of as short for the terms, but as variables replacing them.)

Ahr

AdP lA\cl 
Barbara

Ar'd Adc 
Barbara

A r c Elt
s . c .  ( E )

Ecl
Barbara

Celarent
r h t Eht

t . a . a .
oPc

L.2 Rtt les of t identi tyt .

Many syllogistic systems postulate that formulas of the form

Aau are n@essary trtrths, which can be done in the preserf system by

adding the following rule of ridentlty':

*

A a a

A h c

13



This is to be understood as licensing you to write any formula of the

form Aaa immediately below an asterisk written at a tip (i.e. at the

top of a branch of a tree) to indicate that the formula rests on no

assumptions. The principle was introduced by Leibniz, but Aristotle

himself makes use of the claim t}lrat Euery b i.s a b is a necessary

truth in a demonstration at 68419. Moreover, formulas of the form

Not euery a is an o seem to be the patterns of necessary falsehoods;

and if A formulas are the contradictories of the corresponding O

formulas, it follows that formulas of the form Aaa are the patterns of

necessary truths. Aristotle's belief in the necessary truth of proposi-

tions of the form Eaery a is an a also commits him to the necessary

truth of those of the form Some a is an a, which is deducible from

the A form by subaltern inference. He is also committed to the

necessary truth of the latter when, in Chapter 15 of Book II, he implies

that No c is a c is necessarily false, for this means that its contra-

dictory, Some c is a c , will be necessarily true.

The view that propositions of this last form are necessary

truths seems to be a very questionable one, however, for surely the

formula entails the existence of some c and is false if there is no c.

Indeed it has often been thought that propositions of the form Euery

a is an a ate false if there are no a's. These considerations would

count against adding the rule of identity given above and in favour

simply of adding the weaker rule:

I a B

A " t

So we shall distinguish a stronger system, with the full identity rule

(id. * ), from the weaker system, which has instead the weaker rule

(id. ). In the opening chapters we shall be concerned principally with

the weaker system.
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i . : ;  The  bas i c  s1 . s /e  r i z s

We may now proceed to a formal description of a basic

syllogistic system BS in which the deductions of sections 1.3 - 1.5

can be made. The interpretation of this system to be adopted in the

opening chapters witl be described in the next section.

Lattguage.

Cons tan t s i  'A ' ,  'E ' ,  ' I  ' ,

Square brackets: ' [  ' ,  ' ] '
Variables; tul ' b ' r  ' c '  . .  '

Fornrutiott ni.e.

A formula (wff)

variables. (The terms

abbreviated 'wff' - will

Rtt les of inference.T

( i )  s . c .  I  a 1 3  ( i i )

consists of a constant followed by just two

'formula' and 'well-formed formula' -

be used interchangeably. 1

sub. AaB (iii) Barbara Aa [3 AF y

I 9 a

(iv) Celarent AaF

I a F

E B y

E a y

In the statement of r.a.a. 'cpt and ' i l t '

arbitrary formulas and g is related to

A a y

( v )  r . a . ^ .  t  f l

are schematic letters for

,P th,ts,

tl) 4,

0

? n wlll be ndlced that to tle statemed d tbe nrles Barbara r"d Cetarert tbe
lnor premlss schema has been glven flrst, coffiary to tbe usual practlce. Ibis

ls perhaps a ltttl,e mtsl,eadtng, slrce the flrst vowel tn the nnenonlc narDes refers to
the major premlss; brd the mles are easter to remember ln tbe form glven, slnce
@currerrees d the mfddb term varlabtre occur togetber ln the mlddl,e. Indeed, thls
may well be connected wtth the fact tbat Artstotle more often gave the mlior
prentes flrst, for he reversed the subJect and predlcate letters - recall bos' be
dten speaks d B belongtng to all A , etr . If we reverse the orrder d t.he term
var'fablesand glvethe rnalor premlss schema flrst, we Sd AyB, AFU F Ayd,
with the mfddb term letter occurlng turlce ln t.he mtddle. See Patzlg (1968),
prp. 59-61.
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r f  E  =  A a F ,  E _ - -  o a ? i  t f  E  =  E a B ,

t f  q  =  I a p ,  E  =  n o p ;  r t  E  =  O a $ ,

(Similarly for i/ , ,t,.)

6=
Y _

I a F ;

A a F .

(vi) id. I aP

A a a

For the stronger system BS+ the rule id. is replaced by the

stronger identity rule id.+:

A a u

Unlike most previous formal syllogistic systems the present one

is a natural-deduction system. This has the advantage not only of

making deductions within the system easier to discover, but also of

making it unnecessary to adjoin au<iliary principles and symbols of

propositional logic not explicitly deployed by Aristotle, which would be

unavoidable if the postulates were given in oriomatic form. (Since I

started working on this book, natural deduction versions of syllogistic

have been presented independently by Corcoran (19?3) and Smiley

(19?3). Both defend che approach from the point of vlew of Aristotelian

exeges is . ;

Since the interpretation of the Prior Arnlyti.cs is not a mai:n

concern of this study, it is of little consequence if the natural-

deduction approach is not gempletely fatthful to Arlstotle. In fact,

since he probably thought of his actual syllogisms as inferences rather

than as impllcations, it may not be so very unfaithful, thouglr he does

seern to have reasoned about the sylloglsms ln terms of inference

patteras stated in implicational form. (Cf. Prior (1962), p. 116)

For the mornent deductions will be given in the form of trees.

It is easy to get an lnhritive grasp of the notlon of a tree from the

ecamples, but a rigorous definition will 
'now 

be given. Accordlng to
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this, a tree is not the array of formulas but the set of points

associated with them, thouglr we shall continue often to speak loosely

of the tree as if it rvere the proof.

For our pur?oses a tree is a tilite set of points together with

a binary relation immedintely aboue satisfying the following conditions:

(i) There is a special point R called t};Le root (elsewhere it

is called tb.e origin).

(ii) Every point e>rcept R is immediately above just one (other)

point.

(iii) For any point P in the tree there is deflnite sequence

of points, called a branch, from R to P in wtrich each point

but the first is immediately above lts predecessor. (Obviously,

ln view of (ii), there will only be one such sequence. )

(iv) Immediately above a point P there ls either:

(a) no point (in which case we call P a tip); or

(b) one point (P is a node);

(c) two points (P is a branch-poiut).

Provisionally, we may deflne a deduction (deriuatioq proof )
in BS as an array of formulas, together with any squaxe brackets

arourd formulas, which satlsftes the followlng condltions:

(i) There is a tree each polnt of which has just one formul;a

associated with it, and such that every formula ln the

deduction is associated with (is 'at') some polnt.

(ti) Each formula is elther at a tip or is derived from one

or two formulas immedlately above lt iu accorda.nce with a

nrtre of inference.
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The formula at the root is said to be derived from the set

of all those formulas at the tips which have not been discharged

(bracketed) as a result of applying r.a.a, To say that a formula rp

is derivable from a set r we shall write: f I q, sentences of this

form, like

{ e a u ,  A b c }  |  A a c  ,

being known as 'sequents'.

For the stronger system BS+ the definition needs some

extension: a deduction will be an array of formulias and, if id.+ is

used, asterisks, plus any square brackets around formulas, which

satisfies conditions (i') and (ii '). Condition (i') will require that every

point be associated with just one wff or asterisk and that every wff or

esterisk be associated with some point; and condition (ii ') will state

that each wff is either at a tip or immediately below an asterisk or

derived from one or two wffs immediately below it in accordance with

a rule of inference.

What makes the tree form of deduction so convenient for the

m,sic system is the fact that derivable forms can always be proved

f,i'' means of trees in which no assumption is associated wlth more than

crc point - what we shall call 'non-repetitive' derivations. we could,

i: consequence, stipulate the exclusion of other types of derivation,

r.ithout weakening the deductive power of the systems. (check the

forms of derivation listed for the proof procedure in 3.3 to verify this.)

An interpretation of BS

If only for er<pository convenience we shall in the first lnstance

ilt€rpret the four propositional forms ln the rnaruler whlch seems to

bave become standard in medieval loglc. This interlpretation, which
r.e shall call 'Interpretation I', was probably adopted by william of

sberwood and also by ocktram, and ts unequivocally to be found in

18



Buridan and Albert the Great. It has even been maintained by

llanley Ttromson that it was what Aristotle himself had in mind,

though if so he was not consistent about it. The affirmative forms

are to be interpreted as having existential import and entailing the

existence of something to which the subject term applies, but

existential import is denied to the negative forms . Aab (Euery a is a b)

is therefore regarded as true only when there is at least orLe a and all

the a's are brs, and lab (Some a is a D) is true when there is some-

thing which is both an a and a b. Eab (No a is a D) is true when there

is nothing which is both an a and a b, which, of course, includes the

case where there is no a. Final ly, the O form, read here as

Not erert a is a b , will be true (i) when there is no a or (ii) when

there is an a which is not a b. In the case of the O form the

medieval interpretation differs significantly from that assumed in most

contemporary textbooks. rvtrich usually render the O pattern in a

manner closer to Sonte a is not a b.

Various different interpretations will be discussed later in

the book, and there is no intention at this point of prejudging that

discussion. It must therefore be a-ffirmed that in adopting Inter-

pretation I at this stage we are not putting it forward as the preferred

interpretation nor are we claiming that the English sentences in which

the categorical propositions are expressed are most accurately

construed in this way. The term inte'rprekttion, it should be added,

is being used througlrout this book in the same way as it is used by

Alonzo Church (1956).

If you want an interpretation under which BS is sound, i.e.,

one under which every derivable form is valid, and you do not want to

depart radically from the ordinary senses of the words in wtrich we

have expressed the propositional forms, Iou are easily led to the present

interpretation. The rule of simple conversion for / formulas requires
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the / form to have existential import, for, otherwise, if there were

no a but some b, Some a is a b would be true bttt Some b is an a

false. Ttris means that the A form must have existential import;

otherwise, if there were rro & t Euery a is a D could be true but

Some a is a. b false. Now, if the reductio rule is to be sound,

correspondingA and O'forms must be contradictories, &d the same

goes for corresponding / and E forms: so if the affirmative forms

have existential import, the negative forms must lack it; otherwise

corresponding A and O (or E and ,I) propositions could both be false.

T'he weaker identity rule, id., is clearly sound under this

interpretation, since tf I ap is true there is some a and Aaa must be

true. But, as we have already pointed out, the stronger rule is

unsound under this interpretation since A aa will be false if there is

no a. The soundness of the system BS is proved formally in the next

chapter (Section 2.2r.

1.5 On the admissi,on of redundant prernisses

The assertoric syllogisms which Aristotle studied usually had

three distinct terms. It is not surprising that he is uninterested in

examples like the following, where the minor premiss is manifestly

redundant and the conclusion simply repeats the major:

Every horse

Every horse

a horse

an animal

Every horse is an animal

Yet we ouglrt nevertheless to regard this as an e(ample of a sylloglsm

in Barbara. For to say that the inference pattern Euery a is a b,

Euery b is a c, Therefore euery a is a c is valid is in effect to say

that every inference of that pattern is valld. And the example just

given is undoubtedly of that pattern, the term horse replacing both

variables a and b. In general, all inferences of the specific pattern

is

is

2 0



Et,e,ry a is an a, EuerN a is a b, Therefore eue.t- a is a b are also

of the more general pattern just given. And it is certainly possible

to establish the sequent {Aaa, Aab} | Aab by the use of the rule

Barbara. The fact that Aaa is redundant does not prevent its being

brought into the deduction

Now althougfr we cannot reasonably avoid admitting redundant

premisses like this, it might be thought that we shoulLd none the less

refuse to admit redundant premisses which cannot be brouglrt into a

deduction in this manner. Maybe we have to allow that Aub is

deducible from {eo", Aab}, but need we allow it to be deducible from

{eca, Aab} ? However, we shall resist any temptation to distinguish

between the two sorts of case, for it would unduly complicate the

formal task of assimilating syllogistic to modern logic. It is worth

noting that this distinction cannot be made for propositional calculus

inferences, since any redundant premisses can be brougfrt into a

proof by using the principles e.><emplified by { e, A} F P & Q and

{f e, q; F- P (see 4.3). Consider, for example, the inference

RyIe wrote The Concept of Mind

The moon is the earth's only natural satellite

Ryle wrote The ConcePt of Mind

This inference is of the form {P, e} t p, where Q is clearly

redurdant, and the form is derivable in virtue of the other two quoted

sequents.

For present purposes let us say that an inference pattern

is sound or valid iff there is no substittrtion instarrce in which the

premisses are true and the conclusion false. Or, rather, to cover

cases where there are no premisses: iff there is no substitution

instarrce in which the conclusion is false but there is no false
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premiss.d Then a concrete inference exemplifying some pattern will be

formally valid iff it exemplifies some valid pattern. In other words, as

Aristotle puts it at 57436-7, rif the conclusion is false, the premisses of

the argument must be false, either all or some of them'. Now, clearly,

if an inference has this property it will not lose it if we add further

premisses, no matter what they are.

Applying these considerations to our systems, we redefine a

deduction in such a way that any redundant premiss formulas may be

admitted into the proof . Redundant formulas not brought into the tree part

of the proof may be written in an initial list above the tree. Thus a proof

of the sequent {e"u, Abc, Acd, A.fg} l-  Aac wil l  look l ike this:

Acd AfS

Aab  Abc

A* 
Barbara

A deduction is now an array of formulas etc. on a tree and in a

(possibly empty) initial list. The statement of the rule r.a.a. has to be

revised to take account of these lists: an exact statement would go:

i f  r u {g }  } - .  1  and  r  u {E }  t - t ,  t hen  f  l -  E ;

and,  i f  f  u{  V}  lx  and r r  t { , }  L  i ,  then

ru{p} t- .  7 and also rI  { ,pS f ,p.

The Greek capitals denote (possibly empty) sets of formulas. (strictly,

a formula in a proof will always rest on a set of one or more formulas

ard in BS* the set may be empty: it will be convenient, however, to go

on talking of a formula resting on another formula when we mean that

the other formula belongs to the set on vtrich the first rests. )

3 More accurately sttll lfi elvety model d the premtss fornulas is a model of the
corcluslon. B$ tn the preaent case, rfrere eubetltutlou lnstarces are tn Engltsh,
our worldng defbttlou bas the same effect as the model - theoreillc one. S€e Qulne
(1970), pp. 53-54.
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We have a deduction of g from f when E is at a root and

contains all the undischarged formulas in the initial list and at the

t ips .

Actually, we should have a proof of the sequent of the example

above even if the initial list were omitted from the proof . But initial

l ists are not entirely dispensable, since a formuLa discharged by r.a.a.

may have to appear in one. And it is a consequence of the definition

that we can derive any conclusion we wish from a pair of formulas g

and 7: for example, Acd from the set {nofr,  Oab}. We simply assume

Ocd and put it in the initial list. Now { Aab, Oca} | Aab is established

thus:

Ocd

Aab

where the initial list consists simply

point, wlth which Aab is associated.

of. Ocd and the tree has onlv one

Similarly.

(initial list;

r .  a. a. (tree)

Ocd

& b

will count as a derivation of Oab from {Oca, Oab}. Since Aab, fub

are corresponding A and O formulas, we may apply r.a.a. to discharge

Ocd and derive the corresponding A formula , Acd. The full

deduction is:

I ocal

Aab eb

Acd

Another un-Aristotelian consequence of our admission of

redundant premisses arises in the stronger system BS+. Formulas

of the forms Auo or laa will be derivable separately from each

member of a pair g, ,i , as for example in the following case:
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Aab

x

id .  -

A c c

Oab

*

A c c
id. *

(initial lists)

(trees)

These are respectively proofs of {eau} F Acc and of {uu} | Acc.

In view of Aristotle's claim in Chapter 4 of Book tr that 'it is

impossible that the same thing should be necessitated by the being

ard not-being of the same thing' (SZb-+1, it seems unlikely that he

would have accepted this.

of course, if our primary interest were the interpretation of

we should not set up a system admitting redundant premisses,

the sort of svstem devised bv Corcoran and Smilev

Aristotle,

but rather

( loc. ci t . ), to which the interested reader is referred.

1 . 6 The adeEtacy of BS under Interpretation I

In the two chapters which follow we shall show that BS is

both sound and complete with respect to Interpretation I. Nevertheless

there are weiglrty reasons for dissatisfaction with the way in which the

system deals with subject-predicate propositions, as compared with

the modern post Fregean artlculation. Ttre restriction of terms to

substantival sortal e><pressions which we made in 1.11 was, in fact,

designed to mask these difficulties temporarily so that their philoso-

phical discussion could be postponed until the formal treatment of the

systems has been completed. We shall have occasion to dlscuss this

philosophical issue at some length in Chapter 7, but in the meantime

we pass on to the formal metatheory of BS.
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APPENDD( TO CHAPTER

A NOTE ON ARISTOTE IJAN EXEGESIS

The present study makes no attempt to contribute to

Aristotelian exegesis. Since, however, one of the main reasons for

reL;ating syllogistic to modern logic is to throw liglt on the development

of the subject, a few brief remarks on the exegetical issue will be

added.

Although the basic systems presented in this first chapter are

no more than loosely based on the Prior Analytics, recent work by

Corcoran (1973) and Smiley (1973) to which the reader is referred,

seems to show that they are a good deal more faithful to Aristotle than is

I,ukasiewicz's well-known system. Very rougfrly, Corcoranrs system

is like BS with formulas restricted to those with two dlstinct varlable

letters, so that his system lacks any 'identity' rule. Derivations

never have initial lists and reductio may be used only once in a

deduction, namely as the final step. According to Corcoran, the

natural deduction formulation has the advantage of showing how Aristotle

can treat the logic of. An , P't,. as an underlying loglc for the a:<iomatic

sciences treated at the beginning of the Posterior Analtttics.

Aristotle's tendency generallye to exclude propositions with

the same subject and predicate terms conflicts with his insiglrt that

the inferences he is treating are valid in virtue of their form alone.

(A similar point applies to his failure to provide for redundant

premisses.) For if an inference is valid in virtue of having the form

Barbara, for o<ample, &Dy inference of that form must be valid,

including:

e H" do.s not tgnore them edlrely, as we bave seen (brd cf. Corcoran (19?2) p. 99).
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Aab Aba

Aaa

There just is not going to be any system which is consistent with

everything Aristotle says or implies.

Corcoran, like Smiley, interprets his system in such a way

that term letters are never empty. But it can also be interpreted in

the medieval manner (our Interpretation 1), with affirmative propositions

baving existential import and negative ones lacking it. Althougtr there

is some textual basis for each of these interpretations, the basis for

the second is admittedly more tenuous. In favour of the first is

Aristotle's view in the Catego'ties that each secondary substance is

instantiated by at least one primary substance (i.e. by at least one

individual). In favour of the second is the claim put forward in

Chapter 46 of. Att. Pr., Bk.I that whereas the propositions f/ is uhite

and tt i.s-not white, are contradictories, the affirmative pair It is

rch'ite and If is not-tuhite zvs merely contraries and could both be false.

One explanation for this would be that the second pair both have

existential import, whereas only the affirmative member of the first

pair does, the negative proposition lacking it. On the other hand the

difference between It is not uhite and It is nof uhite can also be

ecplained by maintaining that, while the first is true of something like

a number which could not be q/hite, the second is false of it.

The metatheory of Corcoran's system is easily developed by

adapting details given in subsequent chapters for BS and BS+. 10

10 Slx other posslble lnterpretatlons whlch are 'suggested by Arlstottre's termlnologl
or incidental remarks' are set out on pp. 64-66 of Kneale and Kneale (1962). The
slx ln questlon are those numbered (1) - (5) a.nd (7) ln tbelr text.
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CHAPTER 2

M E T A T H E O R Y  O F  B S :
( I )  CONSISTENCY,  SOUNDNESS AND INDEPENDENCE

2 . 1  C o n s i s t a t t t t '

Bo th  bas ic  sys tems ,  BS and  BS* ,  a re  cons is ten t  i n  the  sense  tha t

no  two  w f f s  E ,  Q  a re  de r i vab le  as  theorems o f  those  sys tems .  By  a

theorem we mean a formula provable as the conclusion of  a der ivat ion

in  wh ich  i t  res ts  on  no  assumpt ions .  (Some log ic ians  rese rve  the  word

'p roo f ' f o r  de r i va t ions  o f  theorems,  bu t  we  sha l l  no t  fo l l ow  th i s  p rac t i ce . )

The consistency resul ts are not  very strong ones,  and indeed for  BS the

resu l t  i s  qu i te  t r i v ia l ,  s ince  i t  i s  easy  to  show tha t  no  theorems wha t -

soever are der ivable wi th in i t .  We shal l  demonstrate the consistency

of  the stronger system BS*,  f rom which the consistency of  the included

system BS fo l lows immediately as a corol lary.

Mekrtht,orem J. )t 'o ttffs <p, <p are derit 'able as tlrcorems of BS+.

As one would expect  f rom a cursory g lance at  the ru les,  only wffs

of  the forms Aaa and laa are der ivable as theorems. To prove

consistency,  however,  i t  is  suf f ic ient  to show that  no negat ive wffs are

der ivable as theorems, s ince one of  any pair  rp,  g is  bound to be

negative. The theorem therefore follows from the following lemma:

Letnnru:  EreT \ t  negat i re fo l "nut la,  t ,  i t t
nega ti re .l'ormu.la.

A formula g in a proof rests on

a proof rests on at least one

the set containing:

(i) itself, if it is a wff in the initial list;

(ii) itself plus any wffs in the initial list, if it is at a tip; otherwise

(iii) all wffs not yet discharged which occur either in the initial

list or at tips linked by branches to g.

fNot yet dischargedr means not discharged by the appUcation of r.a.a. any-

where in the proff above the formula E. When we say that a wff rests on

a wff we mean that the former rests on some set containing the latter,
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Thus in the proof given at the end of L.L5 Ecl rests on {erc}, Ehl

rests on {dap, Afc, Ard, Ahr, Etc}, and Opc rests on

{ ,q ,ar r ,  Afc ,  Ard,  Ahr ,  Ih t ,  E l .c } .

The proof of the lemma is by strong induction on the rank of the

negative wff rp in a proof. The rank of a wff is defined as the length

of the longest branch from the wff to a tip, unless it occurs in the

initial list, in which case it is of rank 1" For example, in the follow-

ing derivation Aab, Abc and Ecd ate each of rank 1 , Aac of rank 2,

EarI of. rank 3 and Eda of rank 4.

Aab  Abc
---.-.--Barbara

Aac Ecd
Celarent

Ead
- S . C .

Eda

Basis. The formula i/ is of rank 1. It is in the initial list or at

a tip. Since no rule has been applied to reach this formula, it will be

among the formulas on which it rests.

Induction step. Consider a formula r/ of rank h (F higher than 1)

and assume that every negative wff in a proof of rank lower than & rests

on sorue negative wff. We prove that it follows that the wff U of rank &'

must also rest on some negative wff.

Since i/ is of rank higher than 1 and is negative, it must be the

result of applying Ceiarent or r.o..:r.

Celarent. il is derived immediately from one negative and one

a-ffirmative wff. On the hypothesis of the induction the negative wff

above r/ rests on some negative wff. But r/ rests on the union of the

sets on which the two wffs immediately above it rest. (Thus, in the

derivation above, Aac rests on {Aab, Abc} and Ecd rests on {nca}z

Ead therefore rests on {e,ab, Abc, Ecd}.) So r/ also rests on some

negative wff.
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r.&.&. 0 is immediately below one negative wff, which on the

hypothesis of the induction will rest on some negative w{f. The newly

derived wff r/ must also rest on that negative wff, unless the latter is

discharged at this point. But it cannot be discharged at this point,

since when a negative wff is derived by r.a.a. the w{f discharged is

affirmative.

So if ,l is of rank 1 it rests on some negative wff. And if every

negative wff of rank lower than fr rests on some negative wff, so does

every wff ii of rank k. By the principle of strong mathematical induction

it follows that whatever the rank of the negative wff r/ it rests on some

negative wff.

2 ,2  Soundness

A sequent is correct iff any uniform substitution which produces a

false conclusion makes at least one premiss in the premiss-set false.

A system is sound iff every provable sequent is correct. If a system

is sound, clearly we cannot move from a set of true premisses to a

false conclusion.

It is easy to show that Bf is not sound for Interpretation I. Aaa

is derivable as a theorem of this system and has false substitution

instances Like Euery unicorn is a unicorn.l  The sequent ts Aaa has no

premisses and so a fortiori has no premises with false substituends.

Sound interpretations for BSJ will be considered later.

The present section is devoted to proving that the weaker system

BS is sound under Interpretation I. To say that the inference from

f to E is sound we shall link designations of the premiss-set and the

conclusion by means of the symbol lt-. The metatheorem to be proved

may then be expressed succinctly in the following manner:

I On the use of such substituends see Chapter 3, where it is pointed out that their
use is open to crit icism. The criticism can be avoided by using the decision
procedure of 3.3 to show that {Oaa} is consistent.
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I

Metatheorem 2. I f  f  Fns E, then f l tsr e.

The pattern of the proof is similar to that of the lemma above.

This time we wish to show that if a wff cp in z proof is false it rests

on some false wff. (We shall continue to speak loosely of true and

false wffs, since the meaning should be clear; in more cumbrous but

more accurate language the last sentence would read: all uniform

substitutions which transform a wff E in a proof into a false proposition

transform at least one of the wffs on vrhich it rests into a false

proposition. )

Once again the proof is by strong induction, on the rank of the

wft q, defined as in the last section.

Basis. g is of rank 1. It is in the initial list or at a tip, and

so will be among the wffs on which it rests.

Induction step. We show that, if the theorem holds for all wffs

of rank lower than ft (fr > 1), it holds when E has the rank &. It is

necessary to consider each rule in turn.

s.c. If the final step leading to g is an application of the rule

s.c., g will have the form IBa and will appear immediately below a

wff of the form IaP . It IBa is false and so no B is an o, then no

o is a F and IaF is false. By the hypothesis of the induction, it will

rest on some false assumption, and therefore so will /Bo.

sub. ff the final step leading to g is an application of sub.,

E will have the form IaB and will appear immediately below a wff AaF.

If IaB is false, then either there is no o or there is an o but no

c is a F; in either case AaB is false. On the induction h5pothesis

AqB will then rest on some false assumption, and so therefore will /ap.

Barbara. If the final step leadtng to g is an application of

Barbara, E will have the form Aay and will appear immediately below

wlfs of the forms AoB and, ABy, If Asy is false, either there is no a,
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in rvhich case AaB is also false, or there is some o which is not a 7,

in lvhich case it cannot be true both that every rr is a F and that every

P is  a7 ( i .e .  a t  least  one of  the wf fs  AoP,  ABy must  be fa lse) .  Thus,

if. Aoy is false, so is at least one of AaB , AFy on the hypothesis of

the induction one of them must therefore rest on some false assumption.

Since Auy rests on all the assumptions on which AaB and ABy rest, it

too will rest on some false assumption.

Celarent. If the final step Ieading to g is an application of

Celarent, g will have the form Eay and appeai immediately below wffs

of the form AaB nd E!y. If. nay is false, some o is a 7, so that it

cannot be the case both that every o is a B and that no p is a 7 ( i .e.

at least one of AaB, EBy must be false). On the hypothesis of the

induction one of AaF, EBy must rest on some false assumption, and so

therefore must Eay.

id. If the final step leading to g is an application of the weak

identi ty rule id.,  g wil l  have the form Aaa and appear immediately

below a wff. IaB. lI Aua is false, there is no a, and so /aF wiII also

be false. On the induction hypothesis Iap will then rest on some false

assumption, and so therefore wil l  1aa.

r.a.a. f f  the f inal step leading to g is an application of r.a.a.,

g will be immediately below a pair of wffs AaB, Oap or a pair

EaB , IaB. Under lnterpretation f one of each of these pairs must be

false, and on the induction hypothesis this false wff will rest on some

false assumption. g will therefore also rest on the false assumption

unless this is the wff which is discharged when g is derived, viz. the

wff. g. But if <p is false, @ will be true and so cannot be the false

assumption in question.

This completes the induction step. We have now shown that all

wffs of rank 1 are soundly derived and that, if all wffs of rank lower

than ft (k > 1) are soundly derived, then so are wffs of rank ft. It
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follows by the principle of strong mathematical induction that formulas of

any rank whatsoever are soundly derived. A11 derivable sequents, then,

are val id. Q. E. D,

The consistency of BS, which we establised in the last section, can

also be proved as a corollary of the metatheorem just proved. If there

were some negative theorem, then we should have some derivable sequent

ts EaB or F Oe?, and hence it would be the case that lF Eu? or lF OaB._

But wffs of both the forms in question have false substitution instances

(e.g. No triangte is a trinngle, Not e:uery triangle i,s a triangley.2 And

we have seen that, if there are no negative theorems, the system is

consistent.

In a similar way we can also go

in the stronger system B$ are of the

theorems of the form Aap or Iog (a *

substitution instances as Euery triangle

a c i rc le .S

on .to show that the only theorems

form Aaa ot laa. There are no

F), since they have such false

is a circle and Some triangle is

The soundness of BS also follows from the fact whose pr:oof is

indicated in Chapter 5, viz. that BS is translatable into a fragment of

the predicate calculus as standardly interpreted, which is known to be

sound.

2.3 Independence

The methods of the last section enable us to show that each of the

six rules is independent of the others, in the sense that none of the six

rules is a derived rule of the system. we take each rule in turn and

produce an interpretation under which the other rules are sound but the

rule under examination is not. The rule must then be independent, since

2 Cf . foohrote l.

3 Cf. footnote 1.
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it enables you to construct proofs not possible with the other rules alone.

In each case the soundness of the other rules is. to be shown by means of

the type of inductive proof given in the last section.

One way of proving independence is to make use of interpretations

in which A, E, .I and O signify relations between positive integers and

in which the variables accordingly take numbers as values. To prove

the independence of s.c.,  for example, we may take

A a p a s d . = P  E a B a s a >  P  I a B a s d = P  O o B  a s d t B .

Now, clearly, under this interpretation a simple conversion like that

from lab to Iba is unsound: let a = L, b = 2 and you have:-

L - 2 (true), therefore 2 = L (false). The other rules will, however,

be found valid on this interpretation.

s u b .  I n t e r p r e t A a B  a s  d = F t  E a B  a s  d = F r  I a p  a s  q  *  p  a n d

OaB as a * 0. The invalidity of the inference from Aab to lab under

this interpretation is evident if you take a = 1, D = 1; the other rules

are sound.

To prove the independence of Barbara we may follow lukasi ewicz

(1957,  p .90)  and in terpretAorB as o+L t  F ,  EaB as ot+p t  9+a,

IaB as o+B = F+o and OaF as s+t = p. The falsi ty of the sequent

{eaU, Abc} ts Aac can then be demonstrated by taking d = 2, b = L

and c = 3, which makes Aab 2+L t L, Abc L+l r 3 (both true) and

Aac 2+L = 3 (false). The other rules can be shown to be sound on

on this interpretation.

A somewhat more complex interpretation seems to be necessary

to prove the independence of Celarent. I propose the following:

AaB :

EaF :

IaP :

OaB I

and B do not differ by exactly 1 and a+1 > p.

and B differ by exactly L.

and B do not differ by exactly 1.

and B differ by exactly 1 or a +t = F.

a

d.

a

a
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On this interpretation all the rules except Celarent are sound. The

invalidity of Celarent can be shown in the following way. If Celarent

were sound the sequent {e,ab, Ebc} F Eac would be true under the

interpretation; but it is not, as is clear if you take a as 4, b as 1 and

c as 2. Then Aab, Ebc arez

4 and 1do not dif fer by exactly 1, and 4+1 > 1

1 and 2 differ by exactly 1,

which are trueo Eac is the false proposition:

4 and 2 differ by exactly 1.

Both the stronga and the weak forms of the identity rule can be

proved independent of the other rules by means of the following

interpretation:

t ake  AaB  as  a  >  B ,  EaF  as  @+P *  9+a ,

Ia$ as a+B = I  +a,  OaB as ot  =  B.

Finally, roao&. can be proved independent if all four forms,

AaF, Eap, Iap and Oaf are interpreted as d = B. The other rules are

sound on this interpretation, but r.a.a. ls not. For consider the

following derivation:

I u b l
Acd Ocd

f o  & o  & o

Aab

II a, c and d each have the value L and D has the value 2, 'the premisses

Acb and Ocd each become the true proposition 1 = 1 and the conclusion

becomes the false proposition 1 = 2.

{Tbe independence of the strong rule id.+ also follows from the fact that BS but not
g$ is sound under Interpretation I.
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CHAPTER 3

NIETATHBORY OF BS:  f i I )  COMPLETENESS

3.1 , l t ' i s lo l l<"  s  l l t ( ' t l tod oJ inru l i .dat ion

We have shown that our basic syl logist ic system BS derived from

Ar is to t le  is  sound i f  in terpreted on medieva l  l ines.  The present  chapter

is mainly concerned with proving the converse result,  that i t  is possible

to derive every val id form expressible within the system. Aristot le him-

self has made an important, though relat ively neglected, contr ibution here,

and we shal l  begin with some examination of i t .

A deductive inference is val id i f f  one cannot compatibly assert i ts

premisses and deny i ts conclusion. For, i f  the premisses entai l  the

conclusion, they must be incompatible with any proposition which is itself

incompatible with that conclusion. The inference from

{Every man is a featherless biped, Every Greek is a man}

Every Greek

is val id since the set consist ing

the conclusion:

a featherless biped

the premisses and the contradictory of

l s

o f

{Every man is a featherless biped, Every Greek is a man,

Not every Greek is a featherless biped)

has incompatible members. In general an inference from {e|c, Aab} to

Aac is val id i f  the set {e,bc, Aab, Cac} is (simultaneously) unsatisf iable.

If we have a set for which we can find substitutions to transform all its

formulas into true propositions, we have thereby shown it to be satisfiable:

for example, the wffs of the set { hb, Aba} have as instances .Nbf eL,ery

anirnal is a mnn. and Euer! man is an animal, and so there can be no

val id inference from {Ort} to Oba, since i t  is possible to assert OrD

and the contradictory of. Aba withorrt incompatibi l i ty G5422-6\.
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This manner of demonstrating the invalidity of an inference pattern

is the essence of Aristot lers method. He wants to show that his system

is complete in the sense of enabling him to derive all the inference

patterns he regards as valid syllogistic moods. To this end he takes

each of the pairs of premiss forms in the various moods and seeks to

show either that the pair yields a conclusion or that any syllogistic

inference from those premisses is invalid. Thus he takes the syllogisti-

cal ly rnon-probative' l  pair of premisses AE in the f irst f igure,

{Aba, Ecb}, and provides the trio of terms animal, mnn and, ho,yse as

respective substituends for a, b and c, giving us the true propositions

Every man is an animal

No horse is a man

In this way he is able to show that the set {Aba, Ecb, Aca} is satisf i-

able, since substitution in Acd yields the true propositioyl Euery horse

is an animal, which taken with the other two propositions gives us a trio

of true propositions instantiating the wffs of the set. Now if there were

a valid inference from {Aba, Ecb} to Eca, the set would have to be

unsatisfiable, since Aca is the contrary of Eca, And the set would also

have to be unsatisfiable if there were an inference from

{eOa, Ecb} ta Oca, since Aca and Oca are contradictories. So the

demonstration of the satisfiability of the set is sufficient to show that

the two inference patterns are invalid.

Aristotle makes use of similar substituends to show that AE in the

first figure do not have alfirmative consequences either. The terms

animal ) man and, stone are supplied as major, middle and minor terms

and their subs,fitution for a, b, and c in the set {Aba, Ecb, Eca}

generates the true propositions2 Euery man is an animal, Ato stone is a

I I take the term from Kneale and Kneale (1962). Barnest word, translating
Patzig (1968), is 'inconcludent', which though somewhat of a barbarism is more
accurate' since proof requires more than validity (as Aristotle himseU points
out elsewhere).
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tnan, No stone is an animal. It follows that there is no valid inference

from {AUa, EcD} either to Aca or to lca,

It is important to be clear what is being asserted of an inference

pattern when it is described as invalid: it is equiualenf to the claim that

i t  has some inval id substi tut ion instance. (Cf. fn. 8 in Chapter 1.) One

should avoid falling into the mistake of thinking that euery substitution

instance of every invalid pattern is itsel-f invalid.2 A pattern is valid iff

every instance is valid, and so therefore a pattern is invalid iff it is not

the case that every instance is val id, i .€. (since i f  wel l- formed it  wi l l

have instances) i f f  some instance is inval id.3

Aristotle did not find it necessary to produce fresh substituends for

every non-probative pair qf premisses, sincerhaving shown that certain

pairs yielded no syllogistic consequence, he was able to argue that certain

others must also be non-probative. Having shown that AEl (AE in the

first figure) is a non-probative pair, for example, it is easy for him to

show that the sarne is true of. Ao1.a l f .  Ao1 had some syl logist ic conse-

quence, then since E entails O, AE1 would have the same consequence;

but this has alreadv been ruled out.

It is evident that the Aristotelian method of pnoviding substituends

suffices to demonstrate the completeness of the system with respect to

sequents with just two premisses. Although Aristotle's own treatment

falls short of actually doing this in a number of minor respects, which

are briefly detailed below, there is clearly no difficulty in completing

2 ct. J. Willard Ouver G96?).

3 Thu" an invalid pattern may have a valid instance. For example, the pattern
Aba, Bcb / Eca (AEE in the first figure) has the valid lnstance: Eaery animal is
an animal , I,{o stone is an admal; therefore no stone is an animal. The example
is valid, of course, because it also instantiates the more specific valld pattern
Aaa, Eba / nba.

a Actually in this case Aristotle uses both methods.
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the task by means of his technique (which is not to say that the method

is beyond criticism, as we shall see shortly).

1. In one or two cases Aristotle thinks invalidity cannot be

demonstrated by directly providfg terms to satisfy the wffs of the

associated set. An example is EOO2z Erno, Ono / Onm. This pattern

is inval id i f  the set { Emo, Ono, Anm} is satisf iable. Now having shown

directly that EEOe is invalid, Aristotle can argue that it follows that EOOz

is invalid as well. But why should it not be possible to demonstrate this

directly? It seems easy to think of substituends to transform the wffs of

the set into a set of true propositions:

{No Uir0 is a man, Not every rook is a man,

Every rook is a bird)

Yet Aristotle would not be happy with the second of these propositions, on

the ground that to utter it is falsely to imply that some rook is a man.

He would prefer to confine the use of O propositions to cases where the

corresponding E proposition is false. (This is presumably why he ignores

the weakened moods. ) The difficulty is not confined to the partieular

example chosen, since Eno vrtll always be true for values which verify

the other two formulas, Emo, Anm - otherwise Celarent would not be a

sound rule. But we should surely not regard this as a genuine difficulty,

since all that matters is that Not euery rooh i.s a man, or whatever

O proposition we choose for this purpose, should be tnte, and that can

scarcely be doubted. It may be a misleading sentence to utter when the

corresponding E proposition is also true, but Aristotle can hardly deny

its truth if he regards subaltern inference as a sound principle.

2. Aristotle restricts his attention to syllogistic moods in the

three figures he recognizes and to patterns with three distinct variables.

A pair of premisses is either shown to yield a conclusion or substituends

are provided for the purpose of showing that the pair is syllogistically
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non-probati\/e, Nothing is said about a case like AAE 1 which, though

invalid, does not have entirely non-probative premisses (since

AAA1. AAII are pro\/able).5 Srrcf cases can easi ly be dealt with by

providing appropriate substituends, as can the invalid moods of the

fourth figure and invalid moods with only one or two distinct variables.

In the case of some val id two-premiss patterns with only two dist inct

variables, i t  is necessary to use the weak identi ty rule id. to prove them.

3. I t  is, of course, important that the proposit ions result ing from

the proposed substi tut ions should actual ly be true. But Aristot lers

examples do not always meet this requirement: he wrongly assumes the

truth, for example, of the propositions A'o s?tor is black artd Euery su)an

is  rch i l t ' (as  Geach po in ts  out  (197L) ,  p .  298) .  Indeed,  examples I ike the

Iast are best avoided anyway, since, even if we knew that there had never

in the past been any swans which were not white, w€ should probably not

be in a position to know that none would ever evolve in the future. But

admittedly many of Aristotlers examples are immune from this sort of

objection, because they are analytically true.

What now of inferences with more than two premisses? In I25

Aristotle seems to be arguing, in effect, that any valid inference with

more than two premisses can be resolved into a chain of valid (two-

premiss) syllogisms. If this argument had been successful, it would

have been sufficient to prove completeness for inferences with two or

more premisses, given a proof of completeness for two-premiss infer-

ences. (For comment on Aristot le's arguments, see Smiley (L974)).

s No doubt be thought it unnecessary to show that Ar1 1 did not have negativb
consequences, since he had shown that you could derive the A conclusiou, which
is incompatible wittr the corresponding E and o forms. And, indeed, if the
derivation is sound and the premisses are themselves mutually compatible, the
set {Aba, Acb, Aco} must be satisfiable. With three distinct variables the trno
premiss fornulae are, in fact, always mutually compatible, sharing as they do
just one variable. These considerations will not provide for cases like
AIA3 and AIOsl however. A//3 (Datisi) is validly derivable, but one cannot argue
immediately from this to the invalidity of. AIAq and AIO1.
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It is clear, anyway, that we have to go beyond the ad fuoc provision

of substituends if we are to show that BS is complete in the sense that

all valid sequents with any fin$e number of premisses are derivable,

since there are infinitely many such valid sequents. We need to show

that all the infinitely many sets associated with underivable patterns are

satisfiable. Which sets are those, precisely? They turn out to be those

sets which do not yield any pair of wffs E and Q, sets which we shall

caLl consistent (sets, thai is, which are consistent with respect to deriva-

bility). If such a pair of wffs is derivable from the set we shall call

that setrinconsistentt. It is not difficult to see that f F E iff its

associated set f U {7} is inconsistent. For if f ts E, g is derivable

from F, and g is derivable from itseU. And, if f U {7} Vietds cones-

ponding A/O or n/t wfts, a further step of r.a.ao will permit the

derivation of g from f.. So if we can show that all consistent sets are

satisfiable, we can show that all underivable sequents are invalid and

therefore that the system is complete. What Aristotle did - in effect -

was to show certain consistent sets with three wffs were satisfiable.

It is important for the purposes of the present chapter to be clear

about the distinction between the notion of (in)consistency on the one hand

and of (un)satisfiability on the other. A consistent set has the syntactic

property of failing to yield any pair of wffs g, q bV means of the rules

of inference. A satisfiable set has the semantic property of containing

wffs all of which can simultaneously be turned into true propositions by

means of uniform substitutions on the variables. Satisfiability, unlike

consistency, is therefore relative to an interpretation. A system which

is both sound and complete is one in which all and only consistent sets

are satisfiable, one, that is, in which the two properties of sets of wffs

are extensionally equivalent. (For convenience we shall count the empty

set as satisfia.ble. )

40



It is possible to describe general ways of finding terms to satisfy

the wffs of cpnsistent sets. But the use of non-logical terms of the sort

supphed by Aristotle will seem an impurity to many logicians, even when

tbe resulting prcpositions are analytic; as Geach says: rif we lcrow a

form to be invalid, it can only be through lack of ingenuity tbat we fail

to find a counter-exa.urple to it outside a specific subject-matter, since

logic applies to all subject matters aliker (1971), p. 219. The

substifirends used in the completeness proof which follows in the oext

section are consequently of a less subject-bouud character, but the

ceutral idea of the proof remains Aristotlefs basic insight that there is

no valid infereuce from f to g if the members of sone instance of

f - {7} are mutually compatible. This is, indeed, the basic idea behind

all Henkin-style proofs of completeuess. The proof is adapted and

simplified from Corcoran 0973).

3.2 ComPleteness of BS

In the present sectiou we prcve that the basic systeo BS is complete

with respect to the interpretation of the last chapter.(Interpretatlon I).

We shall indicate in later chapters how this proof may be adapted to

ptlve completeness wlth respect to somewhat different interpretatione,

But thr.oughout this section 'valid' is to mean aalil under Interpretu.tion I,

and similar remarks apply to 'satisfiabler, tunsatisfia.bler and 'il-r ithe

syubol for semantic eutailrneut). Since we have defined a deriwtion ia

tbe system in such a vray that there are always finitely many premisses,

sets of wffs mentioued in the proof are all meant to be fiuite,6

t Altbough it would be posstble to extead the system b deat with infereoces fronr
tnfinitely many premissee aDd to develop the netbatheory eccordingly, lt does not
seen northwhile for so restrlctd a system.
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, l letatheort ' t) t  : i  (Completeness), I I  f  lFr

Pt'oo!. (1) If f

( ' f  ,

e ,  t hen  f ,  O  i s

abbreviates 'F ,-

g ,  i l t c n  f  F a s  q .

unsatisf iable.

{  a l ' .  )
IF

I f  f  ,  7 is unsatisf iable, i t  is inconsistent.

I f  f ,  @ is inconsistent, f  ts ep.

The theorem fol lows from (1), (2) and (3).

(1) and (3) are easi ly proved.

(f) I f  f  lF q, then there are no uniform substi tut ions under which

q ean come out false without at least one wff in f  also coming out false.

Any substi tut ions rvhich turn @ into a true proposit ion must turn g into a

false one, for under Interpretat ion I corresponding A, 'O wffs must have

opposite truth-values for uniform substi tut ions, and the sarne is true of

correspondiog E/I rvffs. Hence uniform substitutions which ma-lie @- true

must make some r.ff in f false: accordingiy no uniform substitutions can

make al l  the wffs of the set f ,  g come out true, and i t  is unsatisf iable.

(3) I f  corresponding A/O or Ei l  wff.s are derivable by the rules

t 'ronr f ,  Q, then g is derivable from f in one further step by f.3.8.. (given

the relat ion between g and @ defined on p. 16 abovel.

(2) fol lows from (indeed is equivalent to) (2): Et 'r ' r .r '  r 'or isis/e,t t l  st, l

ts. l '  t r ! .1's is .salr.s./ i trblt ' .  I ts demonstrat ion consti tutes the bul l i  of the

completeness proof:

Let A be a (f ini te) consistent set of wffs;

V, the set of variable letters in the wffs of A;

P(V) ,  the power  set  o f  V ( i .e .  the set  o f  subsets  o f  V; .

Then suppose that  a  set  U( . \ )  is  lb rmed f rom F(V)  in  the fo l lowing u 'av:

every wff. Aap irr A, eaeh set ccntaining the letter o,

lacking the letter p (each [eF']) is deleted fr.om P(V);

(2 \

(.r )

for

but
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for every wff. Ea{} in A, each set containing both

u and B (each ' fo, l l ) is deleted from P(V) (and, consequently,

for every Eaa in A, each [a] is deleted);

for every wff.  Oaa in A, each [ol is deleted.

The wffs of A are to be turned into propositions by interpreting the

constants A, E, 1 and O according to Interpretation I and making substi-

tutions on the variables in accordance with the following prescription:

for each variable a substitute the corresponding term

se ' t  in  U (A, )  conta in ing the le t ter  a ,  or  ' [aJ '  for  shor t .

Example:

A :  { eaO,  Oba ,  Ecb ,  I ah ,  Abb t  Oae ,  Occ )

V :  { o ,  b ,  c }

P ( V ) :  { r r ,  i o } ,  { a } ,  { " 1 ,  { o , b } ,  { o , " } ,  { b , r ) ,  { a , b , c \ }

U ( A ) :  { n ,  { t \ ,  { a , t ) l

occ alone excludes al l  sets containing c, and {a} is excluded by Aab,

Ieaving three sets in U(A). It is easy to see that on Interpreiation I the

substitutions for variable letters in the wffs of A result in true proposi-

t ions. Aab, for example, becomes Every set in U(A) containing the letter

a  is  a  set  in  U(A)  conta in ing the le t ter  b  or  EveU la l  is  a  [b ] .

We now proceed to show that the prescribed substitutions will always

result in a set of true propositions, no matter what the contents of the

consistent set.

Any formula of the form EaB, Eao or Octe (Not eueyy a is an a)

will be turned into a true proposition, because any set which could make

it false will have been deleted from P(V) in the formation of u(a). so it

remains to consider wffs in A of the forms Aap, IaB, and (where a and p

are distinct) Oap .
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l ,  Suppose that a wff.  AaB occurs in A and the prescribed

s:bsi i tut ions render i t  false. I t  cannot be falsi f ied by the presence

. :  Ur l ;  o f  some set  IaBt l ,  s ince a l l  such sets  wi l l  have been de le ted.

x-, i ts falsi ty must be due to the absence of sets containing o.

,Renrember that A w{fs are to be interpreted as having.existential import.)

Now cons ide r  t he  se t  {  a ,  y t ,  .  .  . , Tn ) ,  n  >  l ,  i n  P (V ) ,  whe re

- . . , . . o11 fn  a re  a l l  t he  v i t s  i n  V  such  t ha t  A  t s  Aay ; .  (P ,  o f  cou rse ,
' . i i l l  be one of  the y ; 's . )  We show that ,  s ince A is  cons is tcnt ,  th is

set u'iII not be deleted from P(V), and therefore that AaF must after all

r_,e turned into a true proposit ion.

The set cannot be deleted because of an A wff in A. Such a wff

. , .ould have to be of the torm Ayd or Ay;6, where 6 did not belong to

: :e  set  be ing de le ted.  But  i f  a  wf f  Aa6 e A,  6  is  one of  the 7 i 's .

. \nd i f  some Ay;6 e  A,  A y ie lds Acty t :  Ay;6 ,  Aay i  l -  Aad in  v i r tue o f

, :  the rule Barbara; and so again 6 is one of the yi 's.

Nor can the set be deleted because of some E wff in A. Four types

--i E s'ff tvould lead to the deletion of the set, viz.

r , ,c r ,  Eay i ,  Ey. ia  or  E" f  iy i  (where i  may or  may not  equal  i ) .  we can

shorr', however, that the occurrence of any wff of these types would mean

:iat the set was inconsistent. Thus AaB ts laa:

AaF sub.

/oB ia.

Aan 
"u5.

l aa

so that the occurrence of Eua in A would make i t  ineonsistent. Again,

suppose Fay; e A: then A yields Aayi and therefore layi,  making the

set  incons is tent .  The same is  t rue i f  Ey;o  €  A,  s ince ET;a I  E<ty ;

i n ' . ' i r t ue  o f  s . c ,  ( f ) .  F i na l l y ,  suppose  Ey ;a i  €  A .  Then  A  F  Aay l '

l iwr ,  Et ; l i  F  Eoya owing to  Celarent ,  and therefore A ts  Oayi .

But A will also yield 4a\ and so be inconsistent.
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Nor can the set be cleletecl because of some O wff in A. This would /.

have to  be of  the form Ouu or  Oy;y , ,  I f  i t  were Octa,  A would be

inconsistent since AaB yields Aua. U i t  were Oy;y;, -A would yield

Auy ; ,  w l - , i ch  i n  t u rn  y i e l ds  Ay ; y ; :

Ar tY ;
c .  p .  a .

IY;  t t-ff i4"

Thus i f .  AaB belongs to a consistent set A, substi tut ion according to

t l ie prescript ion must produce a true proposit ion. And since none of the

argument above for the case of AuB depends on ots being dist inct from B,

this conclusion applies equally to the special case of Acycy.

2. Suppose a wff lap occurs in A and the prescribed substi tut ions

render  i t  fa lse.  Then there js  no Icvg ]  in  U(A ) .

Now cons ide r  t l ' r e  se t  . l  c r , ,  B ,  y t . . . r y r ) ,  n  z  0 ,  i n  p (V ) ,

w l re re  111 . . . r y , ,  a re  a l l  t he  y ; r s  i n  V  such  t ha t  A  F  Auy i  o r  A  t s  AFy t .

I f .  IuB is to turn out false, the contents of A must require the delet ion

o f  t h i s  se t .

No A wff can result in i ts delet ion, since, i f  Acvr\ occurs in A,

6 wi l l  be one of  the y i 's ;  and s imi lar ly  i f  Ap6 occurs  in  A.  And i f

some Ay i6  occurs  in  A,  A y ie lds Aay;  or  AByi ,  which together

wi th  Av;6 y ie lds Aad or  Apd so that  once again  d  wi l l  be one of  the y ; 's .

I f  the set is deleted, i t  must, then, be due to some negative wff

in A. we l ist below al l  the possible types of E and o wff which could

have this effect, together with indications of the reason why in each case

the wff can occur in A only on pain of A's inconsistency.

Eaa"  loF y ie lds loc .

EPB.  / aB  y i e l ds  IPP  (by  s . c . ,  i d . ,  sub . ; .
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Ea?,

EFa,

E d,li .

E y i a .

EF ' f  l .

E" f  ip .

op?.

o" f ;T t .

EyiTJ (including cases where i = jl. Either: A I Avt;, which

vith E"y;yi yields ga\. A will also yield Ooti (and

so IayJ), or it will yield APyJ, from which it will be

possible, vmth Eary, to derive Eap. Or: A F AFyt,

which with Eygi yields EBTJ. A will also yield ABT|

(and so IFvi) or it will yield 4a\,. which with

Bp.tJ yields E aF .

Oau ,  I dP  F  Aaa .

which yields E a9.

Then either A I-Aay;, and so A I layr; or A l-  AB'ft ,

which together with Eyia (derivable by s.c.(E)

from Eayt) yields EFa, and so EaF.

Then either A ts Aayi, and so A ts Iyto in virtue of

c .p .a . ;  or  A ts  AFyt ,  which together  wi th  Ey;a

yields EFo, and so EaP .

Reasons parallel to the last two cases.

IaB I ABp.

A I Aay; or ABy;, both of which yreld Ay{f;.

Thus IaB can be deleted neither by an affirmative nor by a negative

df, and substitution in IaB according to the prescription must produce a

true prcposition. Since none of the argument above depends on a's being

distinct from p , the conclusion applies equally to the special case of laa.

3. $rppose a wff OcrB oecurs in A and that a * B. If the

prescribed substi tut ions make i t  false, U(A) must contain Ial

(since OaB Lacks existential import and is true if U(a1 lacks [ol)

but  no [a0 ' ] .
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C o n s i d e r  t h e  s e t  { a ,  y 1  1 . . .  r y , r } ,  n  >  c ,  w h e r e  f  1 r , . . r l n  a r e  a l l

the y ; 's  in  V such that  A I  Aay i .  B cannot  be one of  the y , . rs ,  s ince A

\\'ould fhen yield Aas3 and so be inconsistent. So, if. Oup is transformed

into a false proposit ion, the set under consideration wil l  have to be

deieted. But, for reasons similar to those given under 1 above, i t

cannot be deleted bv an A wff.

So it will have to be deleted by

of the negative wffs which could have

making i t  inconsistent, unless i t  also

the substif--end of. OaB.

E  a a .

E a Y i  '

E y ; a .

Ey iy i

Would exclude everv

a negative wff. We show that none

this effect can belong to A without

excludes every [o] and so verifies

I a ] .

A l -  Aay i ,  which y ie lds lvyu.

A l -  Aay; ,  which y ie lds ly ia .

O a a .

o y ; y t .

( including cases where i  = . i  ) ,  A l-  Actyi,  which

with Eyiyi yields Bayi. But A tr Aayi, which

yields (of.i .

Would exclude every Ial.

A l -  Aay i ,  wh ich  y ie lds  Ay iy , i .

This concludes the proof of Metatheorem 3.

3.3 Decision and prooJ procedures .fot '  BS

The completeness proof of the last section gives us a method of

demonstrating the satisfiability of any (finite) consistent set. We now

prove, as a corollary of Metatheorem 2 of. the last chapter, that every

satisf iable set is consistent.

Suppose A is a satisfiable set which is inconsistent: then some

paft cp, E can be derived from the set. Ex hypothesi there is some

uniform way of substituting for the variables in the wffs of the set to



to make them all come out true under Interpretation I. Substitutions

in g, g uniform with these must render one of the pair false. But then

the system would be unsound, contradicting Metatheorem 2.

So we may conclude that a set is consistent iff it is satisfiable,

and so inconsistent iff unsatisfia.ble. since every consistent set is

satisfiable by the substitutional procedure of the last section, a set is

satisfiable iff it is satisfiable by that method. This means that we have

an effective procedure for identifying unsatisfiable sets, and consequently

for identifnng correct sequents. This decision procedure will often prove

impracticable to operate, however, since if there is any appreciable

number of different variables, say 10, in the formulas of the set being

tested, P(v) witl have very many members: 10 variables in v mean 210

(Lr024, members of P(V), which will consequently take rather a long time

to construct without the help of a computer.

Illustrations

1. Does Oac fol low from {O"0, Abc}?

Test the set {Oab, Abc, Aac} for satisf iabi l i ty. V and P(V) are as in

the example on p. 43. U(A) is:

{ r r ,  { " } ,  { o , " } ,  { b , " } ,  { a , b , c } } ,

which verifies the set under the prescribed substitutions. The inference

is therefore invalid.

2. Does Oac follow from {Oal, Acb}?

Test  the set  {Oab,  Acb,  Aac} .  U(A)  is :

{ , r ,  {a } ,  {u , " } ,  {a ,b ,c } } ,

of which it is false that not every [a] is a [bJ. The inference is there-

fore valid.

48



I t  is possible, howeverr to give a fair ly brief l ist of the types of

inconsistent,/unsatisf iable set, and to show how to derive corresponding

A /O or E /t wfts from them. This not only gives us a simpler decision

procedure but also a proof procedure, that is, a mechanical way of

generating a proof for any derivable sequent. For, since a sequent f F

is derivable iff l, p- is inconsistent and we have a method of deriving

a pair r/, ,p from any inconsistent set, an additional step of r.a.a. will

complete the derivation of rp from f .

In listing the types of inconsistent/unsatisfiable set the notion of a

chairt a/' A wffs is employed. An o-p chain is either the single wff. AaB

o r  a  s e r i e s  o f  t w o  o r  m o r e A  w f f s A a y 1 , . . . , A y f l l * l r . . r A y r p ,  n  - 2 .

A set is said to contain zuch a chain when it contains all the wffs in

such a chain. Thus a set which contains the wffs Aac, Acd, Atlb, Abe

contains an a-e chain.

A chain whose last wff has B as predicate variable is a chain to F .

If there is an o-B chain we shall say o is chained to B.

The fol lowing are the inconsistent cases, with indications, where

necessary, of the way to make the derivations of inconsistent formulas:

(1) The set contains some negative wff Eaa or Oaa as well  as

some affirmative wff with a variable letter a. Oaa is

derivable from E aa or from itself, and

Aaa from AaB or ABa or laB or IBa, For example:

AaF sub.
Iap id.

Aaa

A P a  c . p .  a .
Iap id,.

Aaa

(2) The set contains some negative wff. OaB, o t F and there

is an a-B chain. AaB is derivable from the u-B chain by

successive applications of Barbara.
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( . . i )  The  se t  con ta ins  son te  r v l l  Fap  (o ,  '  / 3 )  w i th  an  a -$  c ] ra in ,

A rvB  i s  de r i va l ; l e  f ro rn  the  cha in ,  aud  so  the re fo le  i  s  l up  .

(4 )  The  sc t  cou ta ins  a  u ' f f  F 'a1J  (c t  '  p )  w i th  a  p - ru  cha in .

A$ t t ,  : rnd  l t encc  1c r l i ,  i s  de r i vab le  f rom the  cha i r r .

( ; )  - f he  sc t  con ta ius  a  w f l  l ; - ap  (c r  B )  w i th  7 -o  and  7 -p  cha ins .

Ay ru ,  Ayp  a le  dc r i vab le  f rom thc  r cspec t i ve  cha ins .

Then Fy7,  IyB are der ivable a,s fo l lows:

av-r ] -  E aR Celarcnt  ,u1YF sr-rb.

F'n) It p

( ( i )  Thc  se . t  con ta ius  sonrc  w f l ' f - ' a1 j  ( c r  -  p )  and  a  w f f  l& i j  o t  I 0a ,

(7 )  Therc  i s  a  w f f  f c r l j  (w  ' .  0 )  and  loy  o t "  1yo  w i th  a  y - { l  cha in .

I r v1 . i  y ie lds  I . / J r r ,  wh ic l t  w i th  Ayp  lde r i vab le  f ron r  the  cha in )

y ie lds / i1 ' r r , .  11,o '  is  dcr ivable ,  c i thcr  l ronr 1"y,o '  or  f  ror ; r  i tsc l f  .

( 8 )  T h e r t . i s  a  n ' 1 1  E a , p  \ e '  0 )  a n d  I l ) ^ , ' o r  l y l l  w ' i t h  a  y - c i  c h a i n .

T l i c  cha in  f  i e lds  Ayo ,  r vh i ch  w i th  EoB l , i c lds  EBo .

I l , $  i s  a l so  dc r i vab lc ,  c . i t he r  f rom IB l ,  o r  l rom i t se l f .

(9 )  There  i s  a  w f f  Ec r l3  (o '  =  1J )  and  176  o r  /07  w i th  ^  " f - t r  3nd

a  C-B  cha in .  Aya  and  A6 lJ  a re  de r i vab le  f rom the  cha ins ,

and then Edv and 16-r ,  are der ivable as fo l lows:

Ayu  EaB Ce la ren t

E Y B  s . c .  ( E \

A 6i3 EBt' Celarent -J]iI- s. c.

E 61, It\y

I l lus l t t t l io t rs

1. ls Ogb a consequence of (and therefore derivable from) the set

lEab ,  I cd ,  Ocd ,  Ace ,  Aea ,  Ad f  ,  A fd?
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Cons ide r  the  se t  {Ea l t ,  I c t l ,  Occ l ,  Ace ,  Aea ,  Ac l . f ,  A . fq ,  Agb} .  The  cha ins

tO ( r  a re :

Aea

* A c e ,  A e a ,

and the chains to b z

Agb

Afg, Asb

*Adf ,  Afg, Aqb.

The starred chain to a begins with the variable c and the starred chain

to b begins with the variable d, and these two variables are linked in

the formula lcd. The set therefore fal ls under case (9). Edc, Idc are

derivable from the set in the following way:

A c e  A e a
Barbara

Acrt EabAdf Afs

Ade Aqb 
Barbara 

Ecb
Celarent

Icd
-  g . c .

Idc

Adb Ebc
s . c .  ( , O )

Celarent
Edc

A proof of the original inference pattern, which has been shown to be both

val id and derivable, is then obtained by applyirg r.&o3.. and dischar-

ging A gb to derive Ogb. Ocd and Egh are written above the tree in an

in i t ia l  I is t .

2. Is Ogb a consequence of (and therefore derivable from) the set

\Eab,  Icd,  Ocd,  Ace,  Aea,  Ahf ,  Afg lZ

Consider the set {naU, Icd, Ocd, Ace, Aea, Ahf, Afg, Aqb}. The chains

tD a are the sarne as those in the first illustration and those to b are the

same except that the longest chain begins wrth Ahf (instead of. AdJ). There

is no negative formula with two occurrences of the same variable letter,

so that the set does not fall under case (1). There is a wff. ocd, but

no c-rl chain: so it does not fall under case (2). Nor is there any a-b
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or  h-a cha in :  cases ( :3)  and (4)  are ru led out"  No chain  to  c  shares a

r  ar iab le  rv i th  any chain  to  b :  th is  ru les out  case (5) .  There is  no

ri ' f f  1rz1.r or lba, so rul ing out case (6). There is no l  wff containing

c i ther  a  or  b ,  thus ru l ing out  (7)  and (8) .  And a l though there is  a

u ' f f  1cr1 wi th  a  crz  cha in ,  there is  no rC-D chain ,  so that  case (9)  is  a lso

ruled out, and we may conclude that the set js consistent and the original

inference pattern neither val id nor derivable.

I t  is ,  o f  course,  one th ing to  descr ibe the dec is ion and proof

procedure and another to prove that i t  is adequate as such a procedure"

-{ proof is given in the Appendix which fol lows.
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APPENDIX TO CHAPTER 3

PROOF THAT THE PROCEDURE OF 3.3
IS AN ADEQUATE DECISION AND PROOF PROCEDURE

As a preliminary we prove two lemmas, the first relating to the

mode l  se t  U (A )  desc r i bed  i n  3 .2 :

Lemma 1. If a set of c{firntatiue utfJs excludes euery set

[ a 1 r . . . r a r r | ' l  (  u , h e r e  n o  a i  - -  B ) ,  t h e r t  J o r  S o m €  a ;

the set  conta i r ts  an a; -B chain .

P r o o 1 .  C o n s i d e r  t h e  s e t  Z ,  { o l r . , . 1 e 4 t  T 1 r . . . y B } ,

n  z  1 ,  h  >  0 ,  whe re  77 r . . . 1 f  p  z re  a l l  t he  7 ; t s  cha ined  t o  some  a i

in the set of aff irmative wffs. Then either B € Z, in which case p wil l

be one of the y; ?s and so have dn ai chained to it;

ar P I Z, in which case, on the hypothesis of the

lemma, Z is excluded by some affirmative wff ,{64, 6 e Z, Tl I Z.

C is  e i ther  an a1 or  has &n a, .cha ined to  i t ,  so that  ar  o ;  is  a lscr

chained to r l ,  which is therefore one of the 7its. Consequently 4 e Z.

Contradict ion.

Hence B must belong to Z and be one of the y; ts to which Ll a i

i s  cha ined .  Q .  E .D .

Lentm.a 2. If a u,ff E is deriuable from a set of f contnining

moTe than one negatiue ttff , then it is deriuable

Jvom some subset of T containing at most one of

the negatiue uffs.

This is proved by showing:- that every affirmative wff in a proof

which rests on a set f  is derivable from a subset of I  which either

contains only affirmative wffs or is an inconsistent set just one member

of which is negative; and that every negative wff in a proof which rests
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on a set F is derivable from a subset of I iust one member of which

is negative. (Thesis T.)

The proof is by strong induction on the rank of the wff E in a

proof. (For the notion of rank see 2.1.

Basis. The formula is of rank 1, i .e. in the init ial  l ist or at

a tip. The set I on which it rests will therefore include the wff itself"

But it is also derivable from itself alone, and hence from a subset of f.

(If it is affirmative, that subset'is an all-affirmative subset; if it is

negative, the subset has only one member - its sole member - which

is negative. )

Induction step. If the thesis (T) holds for all wffs in a proof of

rank lower than & (A > 1), it holds for wffs of rank ft.

A wff of rank higher than 1 will be derived in a proof from a wff

or wffs immediately ahove it by means of one of the rules of inference.

We take each rule in turn.

s.c. g is immediately below just one affirmative wff. If rp rests

in the proof on the set f, then so does the wff immediately above it.

By the hypothesis of the induction, that wff is derivable from an all-

affirmative subset of I or an inconsistent subset of f with just one

negative member. But such a derivation can be continued by an

application of s.c. to derive p from that same subset.

sub. and id. The argument is exactly parallel to that for s.c.

Barbara. g is immediately below two affirmative wffs. If g rests

in the proof on the set f, then the affirmative wffs immediately above it

rest on subsets A and Z which exhaust I. By the hypothesis of the

induction they are either both derivable from all-affirmative subsets

of A and Z, or at least one is derivable from an inconsistent subset

of A or Z just one member of which is negative. If both are derivable
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from al l-a-ff i rmative subsets of A, Z respectively, then the application

of Barbara to the conclusions of the two derivations wil l  result in a

derivation of E from the union of the subsets of A and Z, which wil l

itseU be an all-affirmative subset of f. If at least one of the two

wffs is derivable from an inconsistent subset of A or Z just one member

of which is negative, then g is derivable from the same set, since any

wff is derivable from an inconsistent set. In this case. then, q is

derivable from an inconsistent subset of f  with just one negative member.

Celarent. E is immediately below one aJfirmative and one

negative wff. lf E rests on f, the a-ffirmative wff on A and the negative

on Z,  A i r  Z  -  l .  By the hypothes is  o f  the induct ion e i ther :  ( i )  the

affirmative wff is derivable from an all-affirmative subset of f and the

negative from a subset of. Z with just one negative member. By Celarent

E is then derivable from the union of these two subsets, which is a

subset of f  with just one negative member. Or: ( i i )  the aff irmative w{f

is derivable from an inconsistent subset of f  with just one negative

member; but since such a set yields any wff, g is also derivable from

it.  And this set is also a subset of I  with just one negative member.

r.a.a. This case is of some complexity. g is immediately belou'

one affirmative and one negative wff. If g rests on f, the a-ffirmative

wff on A and the negative on Z, then A tJ Z = f, @.

(i) Suppose the affirmative wff above g is derivable from an

all-affirmative subset of A. on the hypothesis of the induction the

negative wff above g is derivable from a subset of, z with just one

negative wff.

If @- belongs to either of these subsets, the two derivations can be

extended by dlscharging @ to derive q from the remaining wffs of the

subset by r.a.a. I f  g is aff irmative, g is negative, so that the remain-

ing wffs will form an all-affirmative subset of r. If g is negative,
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@ is affirmative, and the remaining wffs will form a subset of I with

just one negative wff.

II @ belongs to neither of the subsets, their union constitutes an

inconsistent subset of I with just one negative wff. Any wff is derivable

from an inconsistent set; so a fortiori rp is derivable from it.

(ii) Suppose the affirmative wff above g is derivable from

inconsistent subset of A with just one negative wff.

If @ belongs to this subset, E is derivable from its remaining wffs

by r.a.a. If g is affirmative, @ is negative and the remaining wffs

form an all-affirmative subset of I. If g is negative, @ is atfirmative

and the remaining wffs form a subset of f with just one negative wff .

If g does not belong to the inconsistent subset, that subset is also

a subset of I. g is derivable from it, since any wff is derivable from

an inconsistent set.

This completes the proof of the lemma. The lemma means that,

if there is more than one negative premiss, all but one are redundant.

In fact, it can be shown by similar means that there is never more than

one negative wff at the tips of a tree if the set of wffs at the tips is

consistent, a result related to the traditional rule that no syllogistic

conclusion may be drawn from two negative premisses.

Metatheorem 4. The procedure

procedure for

The theorem follows if we

inconsistent sets is exhaustive,

consistent.

of 3.3 i.s an adequate decision and proof

BS.

can show that the following list of

i.e. that all other types of set are

(l) A set containing some wff Eoo or Oaa and some

affirmative wff with a variable a.

A set with some Oap (a t B) and an a-p chain.
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( r Q

(4t

( 3 )

( 5 )

( b )

( 7 )

( 8 )

(e )

A set with sorne

A set with some

A set with some

A set with EaF

A set with Eap

A set with E uB

A set with Eap

and 6-B chains.

* B) and an 0-B chain.

+ B)  and a p-u cha in .

EaF

EaF

EaF

( a

(e ,= p) and y-a and y-B chains.

(a  *  B)  and e i ther  lap or  IBa.

(a = B), either Iay or Iyo, and a 7-p chain.

(a  t  0) ,  e i ther  lBy or  IyB,  and a 7-o cha in .

(a  t  01,  e i ther  lyd or  I6y ,  and y-a

Casc L Sets with no more than one negative wff, We show that

every set of this sort which is of none of the types listed above is

satisfiable. Since we have shown that every satisfiable set is consistent,

it follows that every Case I set which belongs to none of the nine listed

types is consistent. We use the substitution methods of the completeness

proof  in  3 .  2 .

(a) The set consists only of a-ffirmatives. V cannot be deleted by

any affirmative wff, since no affirmative wff will have a predicate letter

not in V. Substitutions according to the prescriptions in 3.2 must there-

fore always result in true propositions, since V verifies all / propositions

andrafter the prescribed deletions from P(V), .4 propositions can be

falsified only if there is no set with the subject variable of the replaced

A wff. But V will contain all such letters.

(b) There

(i)

type (1) unless a

remains undeleted

substituend of the

deletion process. l

lConsequently, if the

is one negative wff.

The negative wff is Eaa or

is absent fr"om all the other

and verifies any affirmative

negative wff is automatically

Ooo.  The set  is  o f

wffs. But then V - {o}

propositions. The

verified as a result of the

negative wff is the only wff e a" z\ ls satlsfiable.
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( i i )  The negative w{f is OaB (a t F). Elther the set is of

type (2) or there is no a-B chain. No affirmative wff can turn out false,

since V cannot be deleted (OaF deletes no wffs from P(V)). Suppose now

that there is no a-B chain. By Lemma 1 there is some undeleted

set [a6r],  which veri f ies the substi tuend of. OaB. So i f  there is no o-p

chain, the set is satisf iable. l

In (iii)-(ix) EaB (a t F) is the negative wff and its substituend

is automatically verified by the deletion process.l Any wff Aya or lya

in the set is verified by {y}, which cannot be deleted either by an

a-ffirmative wff, or by an E wff in which the two variable letters are

distinct. It remains to consider affirmative wffs with two distinct

variables.

(iii) Suppose Aay oecurs in the set and its substituend is

false. Then there is no set [oJ in U(A) and so no set IaB' l .  This set

cannot be excluded by EaF, and so it must be excluded by the a-ffirmative

n'ffs alone. But then, by Lemma 1, there is an a-B chain and the set

is of type (3). So if it is not of type (3) the substituend of. Aay is true;

and a fortiori if it is of none of the nine types the substituend is true,

(iv) Suppose ABy occurs in the set and its substituend is

fa lse.  Then there is  no set  [B]  in  U(A)  and so no set  IPd, l .  Th is  set

cannot be excluded by EaF, and so it must be excluded by the affirmative

rvffs alone. But then, by Lemma 1, there is a p-a chain and the set

is of type (4). So if it is not of t5pe (4) the substituend of Apy is true;

and a fortiori if it is of none of the nine types the substituend is true.

(v) Suppose Ay62 (y * a, I t p) occurs in the set and its

substituend is false. Then there is no set I y] in U(A) and so no

set [yc'] nor l"r1'1. These last two sorts of set cannot be excluded

by Ea/, and so must be excluded by the affirmative wffs alone. But

-Including Aya, AyF as speclal cases.
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then, by Lemma 1, there is a y-a chain and a y-B chain and the set is

of type (5). So i f  the set is of none of the nine types the substi tuend

o f  Ayd  i s  t r ue .

(vi) l f .  la[3 or IBa occurs in the set i t  is of type (6).

(v i i )  Suppose lay  or  lya (y  *  d ,  y  t  P)  occurs  in  the set

and i ts  subst i tuend is  fa lse.  Then there is  no set  Iay ]  in  U(A)  and

so no I uy{3'1. Then, by Lemma 1, there is either an a-B chain and the

set is of type (3) or a y-P chain and the set is of type (7). So i f  the

set is of none the nine types the substi tuend is true.

(vi i i )  Suppose IBy or IyB (y * at |  + B) occurs in the set and

i ts  subst i tuend is  fa lse.  Then there is  no set  [By]  in  U(A)  and so

no [Pyo ' I .  Then,  by Lemma 1,  there is  e i ther  a  P-a cha in  and the set

is of type (4) or a y-a chain and the set is of type (8). So i f  the set

is of none of the nine types the substi tuend is true.

( ix) Suppose, f inal ly, that Iy d or 16y, neither variable

identical with o or B, occurs in the set and i ts substi tuend is false.

Then  the re  i s  no  se t  [ yd l  i n  U (A )  and  so  no  [ yda ' ]  and  no  [ y6 l i ' ] .

By Lemma 1, there is a y-a or 6-a chain and a y-P or 6-B chain,

and the set is accordingly of type (5) or type (9). So i f  the set is of

none of these nine t5rpes the substi tuend is true.

Every satisf iable set is consistent. So every Case I set which is

of none of the nine l isted types is consistent.

Case II. Sets with more than one negative wff.

(a) All the wffs are negative. E wffs and wffs of the form Oaot

are automatically replaced by true propositions. Suppose a wff

OaB ( o 'i B) is replaced by a false prrcposition. Then there is no

wff Ecvo or Oua, since either of these would exclude every set [a]

and so make the substituend of. OaB true. But then the set {a} cannot
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be deleted, which makes the substituend of. OaB true. Contradiction.

Hence if all the wffs are negative, they will be replaced by true

propositions, and an all-negative set must be consistent.

(b) At least one wff is affirmative. Such a set is inconsistent

only if it has an inconsistent subset consisting of just one of the negative

and all of the affirmative Mfs.

Proof. Suppose g is one of the a-ffirmative wffs. Then if the set

is inconsistent, the wff @ is also derivable from the set, since any wff

is derivable from an inconsistent set. By Lemma 2, if @ is derivable

from the set, it is derivable from a subset containing no more than one

(in fact just one) of the negative wffs, and therefore frpm a subset

containing just one of the negatives and all of the affirmatives. This

last subset will include g Md yield @, and so will be inconsistent.

Consequently, if a set A with at least one affirmative and at least two

negatives is inconsistent, it has an inconsistent subset with just one

negative. Now if A is of none of the nine types listed above, it has no

subset of any of the nine t5pes. Consequently, it has no inconsistent

subset, and must be consistent.

Cases I and II exhaust the possibilities. So every set which is of

none of the nine listed types is consistent, which means that the list of

inconsistent types is exhaustive.

As was shown in Chapter 3, it follows that the pr.ocedures of 3.3

constitute decision procedures both for derivability and validity, as well

as proof procedures, for BS. Q.E.D.

Other decision procedures

The decision procedure just

practicable we have. But for the

will be mentioned.

validated is probably the most

sake of completeness other procedures
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Since i t  is clear from the indications in 3.3 for deriving inconsistent

wffs from the various inconsistent sets that such wffs are derivable by

means of  the non-d ischarge ru les ( i .e .  those ru les d is t inc t  f rom r .a .a . ) ,

i t  i s  obv ious that  there is  a lso the fo l lowing dec is ion procedure.  To

determine whether  E is  a  consequence of  f  ,  form the set  f  ,  E.  Take

each wff in turn and apply s.c.(/)  where i t  yields a new wff.  Repeat for

sub. (.4) and id.+. Then take each pair of wffs from the (possibly) enlarged

set and apply Barbara and Celarent wherever they yield new wffs. Continue

to add wffs by repeating the whole process on the growing pool as often

as possible. The procedure is bound to come to an end, since the non-

discharge rules cannot introduce any new variable and there are only finitely

many wffs composed of the variables of the wffs of a finite set (and so only

finitely many wffs derivable from the wffs of a finite set by means of the

non-discharge ruies). The set wi l l  be inconsistent (and therefore unsatisf iable)

iff some pair, il, I is deri','ed; and the inference from f to cp will be valid

if f  the set being tested is inconsistent. I f  a pair r/ ,  I  is derived, one step

of r.a.a. wi l l  complete a derivation of g from I (so we have another proof

procedure too) .

Secondly, the arithmetical decision procedure given by Ivo Thomas

(1952) for Zukasiewicz's syl logist ic system is easi ly adapted to BS.

Further procedures are available if inference patterns are translated

into monadic predicate logic. (See Chapter 5.)
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CHAPTER .1

SYLLOGISTIC AND PROPOSITIONAL LOGIC

4.1 Tt 'acs tutt l  l i t t t 'cn' l>t 'oo.l-s

For the rnoment we shal l  abandon the compact tree arrangement of

proofs for the more usual l inear presentation, consist ing of a vert ical l ist

of formulas flanl<ed by columns giving the information which in tree

derivations is largely supplied by the layout. The relat ion between the

two modes of presentation can easi ly be grasped from the fol lowing

example of correslrnding tree and l inear proofs:

A a b  A b c
Barbara

A a c Ecd
Celarent

u o "  
" . " .  

( E )
Edq

In l inear form the proof  wi l l  lool i  l i l<e th is:

i 1 l

I o l\ / ' )

l 4 i

( 1 )  A a b  A s .

( 2 )  A b c  A s .

1 L , 2 )  ( 3 )  A a c  1 , 2  B a r b a r a

(4 )  Eca  As .

l l , 2 , 4 l  ( 5 )  E a d  3 , 4  C e l a r e n t

t t l , 2 , 4 )  ( 6 )  E t t a  5  s . c . ( E )

Within each l ine the left-hand column specif ies the set of assumption(s)

on which the formula in the central column rests, assumptions which in

a tree proof appear as undischarged formulas at the tips or in the initial

l ist.  In this l inear deduction wffs (1), (2) and (4) are assumptions and

rest on themselves, and so their own number is entered in the left-hand

column and fAs. '  fo'" a.ssrr iult l iott  is entered in the r ight-hand column.

Each wff which results from the application of a non-discharge rule, that
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i s  any r t i le  o f  the system apar t  f rom r .a .a . ,  res ts  on

rvhich support the formulals) i t  is immediately derived

numbers of any wffs from which the wff on the l ine is

are entered in tlie right-hand column together with the

being usecl.

For a tree proof which includes an application of

ta-lie the follor.ving example, repeated from Chapter 1:

lAPr )  A rb
Barbara

Apb opb

the assumptions

froin. The

immediately derived

narne of the rule

f  .  &.3 . .  we may

f .  O .  3 . .
oDr

In l inear form it  comes out as:

{ 1 }

{ z }

{ t , z )

i + )

l '2 ,4  )

A s .

A s .

1,  2  Barbara

A s .

1 1 3 & 4 r . ? . 8 .

( 1 )  [ A p r l

(2 )  Arb

(3  )  Apo

(4) opb

(5) oPr

The formula derived by r.a.a. rests on al l  the assumptions on which

Aob and, opb rest, apart from Apr, which is discharged. In view of the
presence of the left-hand column, the square brackets round discharged

assumptions could now be dispensed with, but it will do no harm to keep

them - though they need not be mentioned in the definition of a linear

deduction.

A linear deduction in the system may be defined as a finite sequence

of consecutively numbered lines each of which is made up of (the designa-

tion of) a set of assumption numbers (determined as indicated above) and

a wff which is either an assumption or results from the application of one

of the rules of inference.

63



The left-hand columns in our exarnples therefore count as integral parts

of the proofs, whereas the r ight-hand columns are merely addit ional

descriptive apparatus. We ha'u'e a deduction of g from f when and

onlv when

(i) g is on the last l ine, and

(i i)  every assumption on which g rests (as indicated by the

assumption numbers of that line) belongs to f .

I t  is obvious enough that any tree proof in BS (or BS+) can be

re-writ ten in l inear form (e.g. by f irst writ ing every wff of rank 1, then

every wff of rank 2, and so on), and every linear proof re-written in

tree form. I t  ls less evident that every sequent which has a l inear proof

has a proof  in  the form of  a  non-repel i l i t ' t ,  t ree (see L.3 ,  p .  18 ) ,  but

this can be proved without much dif f iculty. The proof is sketched below.

The l inear presentations of proofs wil l  mal<e i t  easier to consider the

formal relat ionship of the basic syl logist ic to modern logic, which cannot

be presented conveniently in the tree form defined in Chapter L unless we

use one of  Gentzen 's  ca lcu l i  o f  sequents .

I l l t  lu t l t t 'o t ' t ' t t t  , j .  ' f l r t ' re is  a l in t 'ar  der iL 'nt i rn o. f  a st 'qt tet t t  i t t  BS { f  lhcre

i s  u  t t o t t - re l>c  l i  l i t e  t r ce  c l t ' t ' i  t ' u  t i o t t  o f  l hn t  s (qu ( t l t l  i r t  BS .

S/.,r1r'lr oJ' pt'oo|'. From what we have just shown, any non-repetitive tree

proof can be re-written in linear form.

To show the converse, suppose that there were a l inear proof of a

sequent which has no proof in the form of a non-repeti t ive tree. We have

indicated on pp. 49-50 how to show that a sequent of BS has a tree proof

iff it has a non-repetitive tree proof. By Theorem 3 a sequent that has

no tree proof is inval id; so a sequent that has no non-repcl i l i t ' t ' t ree proof

is invalid. In that case some invalid sequent would have a linear proof.

But it can be shown that all sequents derivable in a linear manner are
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val id. by adapting the proof of soundness in 2.2. The rank of a formula

is redefined as i ts reference number, and the words 'wff(s) immediately

above E ' rep laced by 'wf f (s)  f rom which g has been immediate ly

der ivedt ,  e tc .  l

4.2 The Sqtmt'e of OPPosit iott

The basic systems are not rich enough to prove all of the Square of

Opposit ion relat ions which Aristot le discusses in De Interfretat ione, these

relations are conveniently summarized in the familiar diagram (Aristotle

does not himself use the terms tsubalternr and rsubcontrarvr):

subcontraries

E

a
F

F
a+
F5

a

o

We already have rules (sub. (A) and

subalternation. In order to express

terms we introduce an operator for

with two double negation rules (DN):

( i )  E _
- - E

sub.(E)) to ref lect the relat ions of

the other relations in inferential

propositional negation, r-r, together

(i i )  -  -a

a

Their soundness is evident for the usual truth-functional interpretation

of r-', The formation rule for the enlarged system must be extended

by adding that r-cp1 is well-formed whenever tpa is. We also modify

the system by de le t ingrE 'and rO' f rom the l is t  o f  pr imi t ive constants

and reintroducing them as constants defined in terms of tA I and ?r:

Df.: EaB = -IaB

Df .: OaB = -AaF

1A similar result is provable for the stronger system B$, given aD interpretation
for which it can be proved sound - see Chapter 5.
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(Definitions of this sort were originally proposed by Leibniz. ) The

medieval interpretation was tailored to ensure the possibility of such

definitions: with affirmative wffs having existential import and negative

wffs lacking it, No a is a B is equivalent to It is not the case thnt some

o is a p, and both OaB and -AaB will be read as Nof eaery a is a B.

It is now very easy to prove the inferential analogues of the logical

relations of the Square. Two formulas are contradictory iff every pair of

propositions instantiating them has one true and one false member. So we

want to show that an A wff is interderivable with the negation of the

corresponding O, -A with O, and similarly that E is interderivable with

-I, and -,6 with /. Here is a sample proof, the rest being left to the

reader:

We shall say that two formulas are contraries iff the members of

instantiating pairs are never both true. We want to show that

AaP l- -EaP atd that Eop ts -AaP. We prove the former and leave

the other to the reader:

{ t  }

{ 1 }

{ 1 }

{ r  }

{ r  }

{ r }

{ r  }

(1) Aap A s .

I. DN

2 dt.

As.

1 sub.

2 D N

3 df.

(2',)

( 3 )

(2 )

(3)

(4)

(1) AaF

- -AaF

-oo?

Iot!

- -IaP

-EaF

We shall say that two formulas are subcontraries iff the members

of instantiating pairs are never both false. So we want to show that

-IaF I OaP and -Oa? ts IaB.
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We shall  caII.  the newly enlarged version of BS, EBS (and of

Bf ,  neS*;. Atl  the results stated in this section fol low from the fact

that EBS is both sound and complete with respect to Interpretatlon I

plus the truth-functional interpretat ion of negation (see 4.4).

(On the definitions of contrariety and subcontrariety used here all

contradictories are both contraries and subcontraries. I t  is customary

to define contraries by adding that two contraries may both be false, but

i f  a pair of formulas includes a necessary formula or proposit ion this

rvill not be the case. Similarly, it is customary to define subcontraries

by including the requirement that two subcontraries may both be true,

which once more cannot be satisf ied i f  one of them is necessari ly false.

The po in t  is  made by Dav id  H.  Sanford (1968) ,  p .  65.  Lemmon (1965)

defines contraries and subcontraries as we do, and so does Strawson

( 1 e 5 1 ) .

Now under Interpretation I no formula will either be necessary or

necessarily false, so that under the customary definition A and E formulas

will always be contraries and I and O.formula.s will always be sub-

contraries. (Once again we are spealiing loosely when we speak of true

or false formulas; cf .  parenthetical remark p, :10. ) But this wi l l  not be

true of proposit ions instantiat ing them, e.g. the conjoint falsi ty of

Erery trianglc is a lrianl;le and No triangle is a tliongle is not a logical

possibi l i ty ( in a broad sense of ' logieal ') ,  since the former is a necessary

truth; nor is the conjoint truth of Some triangle is a triangle and

Not et,er) ' t t iang' le is a tr i .ang'Ie. This wil l  be so despite the attr ibution

of existential import to affirmative propositions, provided that we grant

the tnecessary existencer of triangles. Moreover, on any interpretation

under which Aaa and lao are necessarily true formulas, it will not even

be possible to hold that corresponding A and E formulas are contraries

nor that corresponding / and O formulas are subcontraries, if we define

these terms in the customary manner. )
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When we confine our consideration to elementary propositions of

the four categorical forms, there is no great harm in talking of
tthe ssnlTaryt or tthe subcontraryt of a proposition, iust as we talk of
tthe contradictoryf. But it should be noticed that a proposition may have

more than one non-equivalent contrary or subconttary, whereas it may

have no more than one non-equivalent contradictory. (Cf. Geach (1971),

pp. 70-74.) For example, No man is a hypocrite and euery man is debtor

and No man is a hypocrtte but not eaery man is a debtor are both

contrary to Euery man is a hypocrite.

4,3 The basic systems adjoined to the propositional calculus

The double negation rules are principles of a more fundamental sort

than the non-discharge rules of the basic systems. They belong to the

logic of unanalysed propositions, which is nowadays presented in the

various versions of the pr"opositional (sentential, statement) calculus. We

shall use a natural-deduction version of the calculus similar to the one

in E. J. Lemmon (L965) (which is virtually Gentzents system NK), but

unlike Lemmon we shall take only negation and conjunction as primitive

propositional operators (t-t and f&t). As under the usual interpretation

of the calculus these are to be understood in a purely truth-functional way,

so that -g is true when g is false and false when g is true; and tp & 4)

is true when and only when each conjunct is true. tPt, tQt, tEt.. .o.f€

used as propositional variables (ranging over propositions of any sort) and

the formation rules are as usual for such systems.

The rules of our propositional calculus are, with one exception,

exceedingly obvious and simple principles about negation and conjunction.

The exception is effectively a generalization of the reductio rule we have

been using in BS, and its presence as the only non-trivial rule of a

complete version of the propositional calculus (PC) indicates how powerful

a prlnciple it is. For each primitive operator there is an introduction

and elimination rule(s):
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& I  a  t ,  & E  ( q & l t l
@ e t r , )  E

DN eliminai.:on - -A

a

(o 8t  l ' \

4,

RAA IrPl

tp -t
-E

(The schema for RAA is actual ly short for the rules: i f  f  u {q} l-  X and

r  u  {E }  f ' - x ,  t hen  r  |  -E ;  and  i f  r  r l  { q }  f ' x  and  r  r j  { , / }  L  - x ,

then f u {q} f  -4, and also r U {,1,} l  -E.)

The operators for or and if are introduced as defined constants by

means of definit ions:

D f . :  ( <p  v  t 1 ' )  =  -FE  &  -d )

Df . :  (q  *  z l t )  =  - ( rp  & - r / )

(In practice outermost brackets will be dropped according to the usual

custom.  )

A deduction in the system is defined as for EBS. As an illustration

we give a proof of the principle known since medieval times as modus

ponenc lo  ponens:  P -  Q,  P l -  Q.

{ r  }

{ z }

{ g i

{ 1 }

{ z , z }

t t ,  z )

( 1 )  P  * Q

(21 P

( 3 )  I - a l

(4 )  - (P  & -Q)

( 5 )  P & - Q

(6) - -O

A s .

A s .

A s .

1 d f . *

2 , 3  & I

3 ,4  &  5  RAA

6 D N

similar rule of EBS.

{ t , z }  0 )  a

Notice that RAA operates in the satne way as the
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Suppose \\ ,e now adjoi;  EBS to the proposit ional calculus (PC) to

g ive us a  system EBS + PC.  The ru les f .a .a" .  and DN in t roduct ion then

become assimilated as derived rules. Since E is defined as -. I ,  and

Q as -A, and as we indicated in the last section A and 1 are inter-

de r i vab le  u , i t h  -O  and  -E  respec t i r r e l y ,  e  ' -A ,  and  r . a .a .  i s  more

or  less a  spec ia l  case of  the genera i  propos i t iona l  reduct io  ru le .

The primit ive rules of the new system are therefore the fol lowing:

& I ,  &E ,  RAA,  DN(e l i r n ) ,  soc .  r  sub . ,  Ba rba ra ,  Ce la ren t ,  i d .

An econorly can be effected in this basis by replacing s.c. and Celarent

by the single rule Datisi :

IBa AB)'-
I a y

To show that  th is replacement does not  af fect  the deduct ive power of  the

system rve der ive s.c.  and Celarent  wi th in the revised system and Dat is i

rv i th in the or ig inal  vers ion (using the l inear form metalogical ly) :

S .  C .

(1 ) Itu{} A s .t l )

i l l

/ r  1
\ r r

( 2 )  A a a  1  i d .

(3  )  I {3  ru  |  ,2  Dal is i

Celarent

(1 )  AaB  As .

(2 )  EBy  As .

( 3 )  l l a y l  A s .

{ 1 i

\ 2 )

{ 3 }

{ r ,  s } e) ryy 1, 3 Datisi

70



Celarent (ctd. )

{ r , : }  ( b )  r 7 y  4  s . c .

{ z i  ( 6 )  - r 7 y  z  d r .  E

l L , z j  ( 7 )  - I a r  3 , 5 &  6  R A A

, ) , r ,  ( 8 )  E a v  7 d f . E

Datisi

t l )  ( 1 )  A F y  A s .

{ z }  Q )  [  - r  a i  i  A s .

{ z }  ( 3 )  E c v y  2  d f  .  E

{ z }  ( 4 )  t u a  3  s . c . ( r , ' )

{ t , z l  ( b )  E B a  1 , 4  c e l a r e n t

{ t , z }  ( 6 )  - r 7 a  5  d f .  E

{ z }  ( )  I B a  A s .

{  1 ,7 . , \  ( 8 )  -  - I a t  2 ,6  &  ?  RAA

{ r , z }  ( e )  I a y  8 D N

The syl logist ic rules of the more economical system are therefore: sub,,

Barbara, Datisi ,  id.

The same economy can, of course, be made for EBS + PC. And

in this system the rule sub. is interchangeable with the identity rule

i d . +  1 1 1 :

*
I"*

It is obvious that the latter is a derived rule of the original system, and

sub. can be derived in the revised system in the following manner:
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{  t  I  (1)  Ao,B As.

A  ( z )  I c  a  i d . *  ( 1 )

{ r i (3) ro7 1, 2 Datisi

\  ( 4 )  A a a  i d . +

{  r  }  (S)  IB c t  3 ,4  Dat is i

{ r }  ( 6 )  r a 7  b  s . c .

I t  is now easy to see that EBS + pC is equivalent to the well_knowtr
system of lukasi ewicz, which consists of the fol lowing special axioms
adjoitred to an axiomatic version of PC (with substitution and ntotltts portens
as ru les o f  in ference) :

( i )  Aaa  ( i i i )  (Abc  &  Aab \  *  Aac

( i i )  Iaa ( iv )  (Abc & Iba)  *  1o,

and definitions of the negative constants in terms of the a-ffirmatives.2
These speclal axioms correspond to our rules id.+, id.+ (.r),  Barbara
and Datisi  and are easi ly derivable as theorems of EBg + pc once we
have proved the deduction theorem for our version of the propositional
ca lcu lus:

Metatheot 'ent ( i .  I_f f  ,  A tspc 1,, then | tspc g -- 1,.
:

{ r }  t i l  a  s r  - t )  As .

{ " }  ( n  + r )  E  n ,  & E

{ " }  @ + 2 )  - {  n ,  & E
Now snppose

t h a t  f ,  n  ( n + B )  t t ,  . . . , r t * 7

t l r e n  f  @ + 4 )  - ( q  &  - d , )  n ,  n + 2  &  n + 2 ,  R A A 3

-  f  ( n + 5 ) e - V  n + 4 ,  d f . +

2/ukaslewlcz (195?) lnterprete hls syllogtstlc as e theory of object-leugqage gentences:
that le to sey, hls varlableg range over terms (rstoner, rmanf etc.) rather than
tndlvlduals. Furthermore, the terme are treated as nemes (see.?.I below).3See exact statement of RAA on p.69.
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Axiom (iii), for example, is now proved in the following way:

i r  )

{ t }

{ r i

{ 1 }

A

Conversely,

of EBS+ + PC as

natural deduction

( 1 )  A b c  &  A a h  A s .

A b c  1  & E

A o b  1  & E

Aac 21 3 Barbara

(Abc  &z  Aac )  *  Aac  1 -4  Me t .  6

it is not difficult to establish the syllogistic rules

derived rules of l,ukasiewiezfs system (granted that

derivations are permitted within it).

(z)

( 3 )

( 5 )

(4 )

/,ukasiewicz has shown that his syllogistic axioms are independent

of one another and of his PC axioms, and his methods can very easi ly be

adapted to our system EBS+ + PC (see pp. 89-90 of / ,ukasiewiez (1957)

and c f .  2 .3  above) .

Another system which features prominently in the literature is

Bochef isk i 's  CS,  a  system which is  in  fac t  conta ined wi th in  l ,ukas iewicz 's ,

Bochefiski has Ferio in place of Datisi  ( there are various possible

replacements for Datisi) and adjoins only a fragment of PC - only those

proposit ional principles he needs in order to prove the syl logist ic ones

in the axiomatic system. Moreover he has only three term variables,

since he does not seem to be concerned with providing for the patterns

of arguments with more than two premisses. The system CS appears

rather unwieldy for the limited task it was designed to perform. (For

detai ls see Bocheirski (L%8).)

If EBS is given Interpretation I and PC is interpreted in the usual

manner, EBS + PC is sound, i .e. al l  sequents derivable in the system

are valid. The proof of this is a routine extension of the proof of the

soundness of BS given in 2.2. The consistency of the system fol lows

easi ly from this. The consisteney of the stronger system EBS + PC
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can be rapidly establ ished in the manner of Lukasiewicz (1957), p. 89,

bearing in mind the correspondence between his axioms and our rules.

lukasiewicz interprets each a-ffirmative wff AaB and IaB as a propositional

wff (q * E) & (t - tl). Then all his axioms, both Aristotelian and

propositional, are tautologies and his rules of inference, substitution and

modus ponens, preserve this property. (The consistency of EBS + PC

is of course a corol lary of the result that EB$ + pC is consistent. )

4.4 Completeness of EBS + PC

By an argument similar to the one at the beginning of section 3.2

we can show that EBS and EBS + pC are complete with respect to

Interpretation I etc. if we can show that every consistent set of wffs in

those systems is satisfiable.

Metatheorem 7. .E'-BS + PC is complete with respect to Interpretation I

combined u;ith the usual interpretation of propositiornl

logzc.

Proof. Let A be a consistent set of wffs in the primitive notation of

the system,  e .g .  {p , Iab & -Aab,  - (e  & -Aabl } .  The term

ele'mentaTy LtJf will be used for single propositional letters, their

negations and uncompounded positive Aristotelian wffs.

Suppose, now, that an inverted tree is formed by writing the wffs

of A one under the other and transforming non'elementary wffs by

successive applications of the following transformation nrles:

( i)  DN (i i) Separation a &tb
E
{

(iii) Branching

(iv) -AaB; -Eot?i -IuB:
oa$ IaF EaB

- - a
q

-@ & 4tl

/ \-a -rl)

-OaB
Aa$
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I t  is easy to check that the procedure must terminate in elementary w{fs

(proof by induction on the number of connectives in a wff).

E. rcrn tp le .  A = {p ,  Iab & -Aab,  - (e  & -Aab)}

Inverted tree: (1) P

(2\  Iab & -Aab

( 3 )  - ( Q  &  - A a b )

Iab

-Aab

h b
/ \/ \

- -A - -Aab

A a b

from

from

(2 )

( 2 )

from (3) by Branching

Let us cal l  the l ist of wffs of A at the top of the inverted tree

tl tc ini t iul  s?g' l t?(tt l ,  We can show, by strong induction on the length of

a branch wir ich includes the init ial  segment, that, i f  the init ial  segment

is consistent, so is at least one branch of the whole tree"4 Essential ly,

this is a matter of showing that each of the transformation rules preserves

consistency down at least one branch. This is very easy in the case of

( i) ,  ( i i )  and ( iv),  since they are primit ive or derived rules of inference

of EBS + PC. Nor is i t  part icularly dif f icult  in the case of ( i i i ) ,

Branching. Suppose that -(E & p) is consistent but that both

-E and -{, are inconsistent. Then E and i/ will be theorems, and so

therefore wi l l  tp  &,1 ' .  Hence -@ e tD F @ e U)  e  -@ e { ) ,  i .e .
-(E & {) wi l l  be inconsistent, contrary to hypothesis. Therefore, i f
-( ,p & dr) is consistent, at least one of the wffs E, r/  is consistent.

aThe induction hypothesis may be formulated as follows: if the first ft wffs on a
branch, B, include the initial segment and form a consistent set, then either that
branch terminates at the pth wff , or there is some P + lth wff on a branch which
ramilies from or continues B, the first F * 1 rvffs of which form a consistent set.
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In the example given above, the left-hand branch proves to be

consistent but the other branch is not, containing as it does both

-Aab and Aab.

Consider next the subset of elementary wffs of the leftmost consistent

branch (the set {tab, &b, -Q} in the example). This set is simultan-

eously satisfiable, since the subset of Aristotelian wffs is satisfiable (as

shown in 3.2); and the value true may be assigned to each of the

propositional wffs, because they do not include any propositional letter

and its negation and no interpretation of the Aristotelian wffs will exclude

any truth-value assignment to the propositional wffs.

Finally, we need to show that, if the set of elementary wffs on a

branch is satisfiable, the set of. all the wffs on that branch is satisfia.ble,

and so therefore is the subset A of wffs in the initial segment. This may

be done by strong induction on the height of the branch, and will involve

taking each transformation rule in turn and showing that truth is preserved

in an upward direction on the branch - which is simply a matter of

elementary truth-table considerations.

The construction of the inverted tree may also serve as a decision

p r o c e d u r e .  f  I E i t t  f  U { A }  i s i n c o n s i s t e n t .  L e t A = f  u { , t ' } .

A will be inconsistent iff every branch contains an inconsistent pair of

e lementary  wf fs  (e .g .  Q,  -Q;  or  Eab,  Iab;  o t  Abc,  Obc) .s

"In Chapter 5 we indieate bow to modify the proof of 3.2 to show that B$ is
complete wlth respect to a certain interpretatiou. This may be used to generate
a decision procedure for B$ and consequently for HBS+ PC, since the proof of
Metatheorem 7 is easily adapted to demonstrate the completeness of the latter
with resp€ct to that interpretation. I-[kasiewicz shows in Chapter 5 (lgb7) that
his equivalent system is decidable, using notions specifically designed to demonstrate
decidability, viz. those of 'rejectionrand what he calls'deductive equivalence',
ootions which can of course be extended beyond syllogistic logic. We have shown,
bowever, that more orthodox methods are adequate for the metatheory of
syllogistic systems. Oddly enough, although lukasiew'icz raises the ques6on of
the completeness of his system in his bok (p. 98)-he never actually pr-oves it,
though he mentions S/upecki's result.
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CHAPTER 5

SYLLOGISTIC AND PREDICATE LOGIC

5.1 The predicate calculus and Interpretation I of BS

The version of the predicate calculus to be used throughout most

of this chapter is once again similar to the system to be found in Lemmon

(1965), to which the reader is referred for a more detailed explanation.

Our version differs in four major respects: (i) the PC basis on which it

is built is the PC system of the last chapter; (ii) the existential quantifier

rules are replaced by a definition of the existential quantifier in terms of

the universal; (iii) there is only one sort of name, no distinction being

made between Lemmonts proper and arbitrary names; and (iv) all its

predicate Ietters are monadic.

In addition to the symbolism of the propositional calculus there are

the following symbols:

predicate letters:

individual variables:

F ,  G ,  H r . . .

X ,  J t t  2 2 . , .

n a m e s :  n ,  / 1  s . . .

Fm, for example, is to be thought of as expressing the form of proposi-

tions Like Mount Euerest is snou-capped. @)Fx is true when and only

when Fr is true for all values of x, and expresses the form of

propositions like Euerything is snow-capped. We add the following

formation rules, using rt' as a schematic letter for a nanne, rv' as a

schematic letter for an individual variable:

Any predicate letter followed by a single name is a wff.

Tf q(t/vl is well-formed, then so is (v)g(v).

g (v) is a formula containing v in which all occurrences of v, but no

occurrences of any other variable, are free, and q(t/v) is the formula

obtained by replacing every occurrence of v in gp) by the nane t.
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These rules are to be added to the conventional formation rules for PC,

and there are to be no other wffs. The result is a slightly unorthodox

set of tormation rules lbr a version of the predicate calculus, since they

proscribe expressions with free variables or vacuous quanti f iers, and

express ions l ihe (x) (Fx *  ExGx)  in  which a quant i f ie r  occurs  wi th in  the

-scope of another quanti f ier with the same variable, These simpli f icat ions

tal ien over frem Lemmon do not diminish the expressive power of the

system and u,i l l  not prove formally inconvenient in the present context.

Rt r les .  1 .  Universa l  e l iminat ion OE).  I f  f  F  (v)  E $) ,  then

r  I  E ( t /v ) .

2. Universal introduction (JI).  I f  f  l -  q(t l ,  where

g (t) is a wff containing t but not v, and t does

not occur in any wff in f ,  then I F (v)Eg/t).

The first rule is intuitively easy to accept, but the second is a

I i t t le more dif f icult ,  I icensing as i t  does a move from Eg) to i ts universal

general isat ion (v)q(v). Very crudely i t  may be just i f ied l ike this:

if 9(t) follows from premises which, making no mention of the individual

denoted by t, give no special information about it, then any conclusion

q(s/t),  which is the same as E(t) except that i t  has an s wherever that

formula has t,  should also fol low from the same premisses; in which

case (v)g(v) should also be a consequence of those premisses.

Df . :  f ,vg(v)  =  - (v) -p(v) .

It is usual, following Frege and Russell, to express a universal a-ffirma-

t ive form Erery a is a b in this calculus by means of a formula l ike

(x)-(Fx & -Gx) (equivalent by definit ion to (xl(Fx - Gx)); that is, to

const rue Et 'er1 'a  is  a  b  as 'Noth ing which is  an a is  not  a  b t .

Sonte a is a b is rendered, for example, as f lx(Fx & Gx). Now the

latter conforms with Interpretation I for I formulas and clearly the

predicate calculus formula is sirnply convertible to Ex(Gx & Fr) (see
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below). But in translation the A form lacks existential import, ffid, if

we are to follow the medieval interpretation, this must be restored by

adding an existential conjunct, giving us (x)(Fr * Gxl & 3.xFx and thereby

validating subaltern inference. R.8.&. requires that the E and O forms

be the contradictories of A and 1, and so we may translate formulas of

BS into the predicate calculus s5rmbolism according to the following

prescription (where g, 4t te schematic letters for predicate letters):

AaB becomes (v)(Ev * pv) & EvEv

EaF

IaF

Oot?

-Sv(gv & i lv)

f iv(gv & {v)

- ( ( v ) ( q v * p v ) & d v g v ) ,

which is interderivable with

t r v ( q v & - { v ) v - f i v g v

BS then becomes a fragment of the monadic predicate calculus, as can

readily be established by showing that the primitive rules of BS are

derlved rules of the calculus. In translation the rules of BS become:

S .  C .

sub.

f . 8 . . 0 .

id .

Barbara {(rr)(E,, * {)v) & EvEv, (v)({v - Xv) & Svr/v} l-

(v)(Ev * xv) & !.vEv

Celarent {(uX,/ . ' *  pv) & f lvgv,  - f ,v({v & Xv)}  F - f iv1 qv & yv)

{ uv( 9v & r/v} F fiv( {w & Ev)

{ (u)(Er' * rpv) & f,vgv} F trv( Ev & t!v)

becomes a special case of RAA

{ U v 1 9 v & { v ) }  F  ( v ) ( q v * q v l  & S v g v

Anlone who wishes to prove these sequents within the monadic calculus

described in the present section will find his task greatly eased if he

makes use of the following result:
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l l c ta t l reorc t r t  8 .  I f  T ,  E1t /v l  ts  t ! ( t /v )  and t  does not  ocL ' t t ' l '  in  l , (v )

or in any uJ'f  of l ,  then f,  [r 'g(v) F f,vl(v).

)
Suplrcse ( :

\ '
tha, . i  r  u i  (p 1t/v)) @l 4 $/v)

{ ,  * t  }  t  n  + I )  ( v ) -d ( v )  As .

{ n  + L  }  t  n  + 2 )  - , l ' ( t / v )  n  * L ,  U E

I L r  { n + L }  ( n + 3 ) - E ( t / v )  . . . , n & n + 2 r  R A A

{ n + a }  @ + 4 \  3 v E ( v )  A s .

{ n + 4 }  t n + 5 1  - ( v ) - E ( v )  n + 4 ,  d f .  g

f  U  {  n + L }  @ + 6 ' S  ( v ) - q ( v )  n + S t  U I

f  u  I  n + 4 ]  @ + 7 ) - ( v ) - { ( v )  n + L ,  n + S  &  n + 6 t R A A

T h e n  f  U { n + 4 }  ( z + 8 ) g v r / ( v )  n + ' 1 ,  d f . g

This metatheorem enables us to prove the translated version of s.c.

for example, simply by proving the schema gt & {t  I  t l t  & rpt. Given

the soundness of the predicate calculus under its standard interpretation,

the translatirtn of BS into a fragment of it furnishes a further proof of

the soundness of BS.

5.2 An a'rt i f ic ial interpTetation of BS+

Unlike BS, BS+ is not sound under the above translation scheme

plus the standard interpretation of monadic predicate logic.

Since (v)(qv * Ev') & f,vgv has invalid instances under that interpretation,

Aao has such instances when we add the translation scheme; hence the

strong identity rule id.+ of BSF permits derivation of invalid formulas.

We can, however, 
.modify 

and elaborate the translation until we reach

the rather artificial and unnatural seheme which follon's:l

lTbere is at least one sound alternative, but it is no less artificial.
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The interpretation thus generated, which gives existential import to the

negative wffs rather than the affirmatives, renders BSI sound and makes

a1l the translated rules of that system including id.+ derived rules of

the predicate calculus.

AsF

EaF

IaB

oqB

(v)((qv * {v) & (t l tv * qv))

- t r v ( g v & i l v ) & S v g v & t r v { v

f iv(gv & 0v) v -Evgv v -trvr lv

f lv(<pv & -r lv) v Sv(r iv & -qv)

5.3 Non'emPty terms

If the artificial interpretation given in the last section were the best

that could be done for BS+, one would have to conclude that the system,

and i ts extensions, EBS+, EB$ + PC and lukasiewicz's system, had no

interesting interpretation. However, /ukasiewicz has pointed out that his

system is sound if term variables are allowed to range only over non-

empty terms.

One way of representing this interpretation (Interpretation II) in the

predicate calculus reflects the device of adding constantine to be found in

John of St. Thomas. A, E, I and O formulas are translated in the

Frege/Russell  manner (AaB = (v)(qv - {v), OaQ = f iv(gv & -{v), etc.)

and existential premisses. are added to inferences where necessary. Thus,

in translation, the rule of subaltern inference becomes:

{(rr)(qr, * 0v), flvcpv} F f,v1 qv & Qv). To take a further example, the

sequent  {eao,  Abc}  |  toc  beeomes:

{@)@x - Gxl, (x)(Gx - Hx), ErFx} }- gx(Fx & Hx). frxFx is added

(as a constantia) to validate the sequent. $rch an addition is required

with valid syllogistic moods whenever a particular conclusion is drawn

from two universal premisses (of which there are nine cases). In EB$

the inferences from AaB to -Ea|, from Eap to -Aap ete. must also be
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treated in the same way. This manner of translat ing syl logist ic into the

predicate calculus is favoured by Alonzo Church Q-972) and E. J. Lemmon

G965), and has the merit  of making the extra-logical existential

assumptions expl ici t .  Nevertheless i t  turns the immediate subaltern

inference into a mediate one, and no longer represents A and ,E forms

as intrinsically contra-ry nor ^I and O as intrinsically subcontrary. Of

course, if an axiom schema F f,v<pv were introduced, the addition of

existential conslott l iat '  would no longer be necessary and these objections

would be avoided; but only at the cost of adding a highly implausible

postulate. It can scarcely be accepted as a truth of logic that every

predicate has application, that every describable sort of thing is actual ly

to be found in the world: indeed, i t  is clear that i t  is just false.

However, suppose we introduce a special predicate letter for predicates

which do have application, where the use of such a letter is to carry the

commitment of appl icat ion. Then the axiom schema F 8.v7'" '  (where ./  is

a schematic special-predicate letter) could be introduced arrd constantiae

again avoided. It is easy to check that, whichever of these techniques is

adopted, the translated rules of BS+ are derivable. Objections to this

mode of translat ion wil l  be considered in 5.5 when we evaluate translat ion

into many-sorted logic.

g9 is complete under Interpretation II. (Its soundness is a

corollary of its translatability into the predicate calculus, given the

soundness of the latter.) Completeness can be proved by modifying the

proof of 3.2 in the manner sketched below.

IV'Ietaf lr .eorent 9, BS+ is complete tutder Interpretat ion II .

To obtain the model set U(tr) from the set of wffs A:

for each AoB delete eacir lclp''l ;

for each EaF delete each la| l ,



0)  F i rs t  showthat ,  for  every  aeY,  there is  some I  o ]  in  U(A) .

Cons ide r  { * r y t r . . . rTn } ,  n  Z  0 ,  i n  P (V ) ,  whe re  f 1s . . . tT72  a re  a l l

the ylrs in V such that A l- Aayr. We can show that this set is

undeletable if A is consistent, in much the same way as on pp. 44-5

o f  3 . 2 .

All formulas of the forms Aa|, EaB are therefore verified by the

model set.

(2) Every formula in A of the form Ia| is vbrified. The argument

is similar to the argument on pp. 45-6 except that it is not necessary to

consider the possibility of deletion resulting from O formulas.

(3) Suppose a formula OaB occurs in A. If it is false, every set

lagt l  must  be absent  f rom U(A) .  Cons ider  the set  {ory t r . . . r lv } ,

where Tl1...r l ,  are al l  the ylrs in V such that A l-  Aayl.  F cannot

be one of the 1rt's, since A would then yield AaB &d so be inconsistent.

Its deletion by any A formula is ruled out by the usual considerations.

The only other possibilities are deletion by some wff. Eayi or Ey1a.

But A ts Aayi, which yields both Iayl and ly1a. So OqB can be fdse

only if A is inconsistent.

5.4 Many-sorted predicate logic

From a formal point of view a very attraetive way of translating a

system like BS+ into a fragment of the predicate ealculus is the one

devised by Timothy Smiley (196L). In ordinary predieate logic provable

sequents are correct for all domains wtrieh are not empty.

Thus lx(Fx v-Fx) is a theorem of the system: there is something which

either has F or lacks it, which would clearly not be tnre of the empty

domain. (Free logics, which apply equally to the empty domain, have been

devised in recent years by logicians who feel that the assumption of a

non-empty domain is an extra-logical one, but such systems need not

concern us here.) Smiley has presented a many-sorted logie, in which

individual variables range over possibly different domains, and the
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non-emptiness of each domain ref lects the non-emptiness of the terms in

B$ under Interpretation II. A variation of his system will now be

deseribed.

In the case of the ordinary predicate ealculus we suppose a single

non-empty domain over which the individual variables r, gt z etc. range.

In the many-sorted calculus we shall have indefinitety many different

sorts of individual variable, each sort associated with one of the various

domains. (The domains for different sorts need not all be different, and

where they differ they may overlap. ) We shall use a different letter of

the alphabet for each sort of variable. For example, we might take

a ,  a * ,  d * * ,  a * * * . . . t o  r ange  ove r  men ,  b ,  b * ,  b * * ,  b * * * . . . ,  t o  r ange  ove r

h5rpocrites, and so on. (a)Ca would mean that every man has the

property c, and (b)cb that every hypoerite has the property c. In orcer

to avoid breaking out into exotic symbolism, w€ use some of the roman

letters already used in the basic syllogistics: but the use of 4, b, c. . .

as sorted individual variables as well as term variables should not be

taken to imply that their roles in the respeetive systems are preeisely

the same.

There will be a sortal predicate letter corresponding to each sort

of individual variable. We shall have 'At eorresponding to the variables

in a, tB'eorresponding to the variables in b, and so on. I f  the a's

range over men, 'A'wi l l  be understood as t is a mantl i f  the Dts range

over hypoerites, rB' will be understood as 'is a hypocriter, and so on.

Just as the single domain for the ordinary predicate calculus has

to be non-empty, so each of the domains for this many-sorted calculus

will be non-empty, since it duplicates ordinary predicate logic for eaeh

of the many domains.

Finally, there will be many sorts of name, one for eaeh domain.
'Take the domain of then and suppose the variables in a to ratge over it.

Then (at least some of) the members of the domain are to be named by
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t h e  l e t t e r s  o . l ,  a 2 ,  a j r . . . .  S i m i l a r l y ,  i f  t h e  v a l i a b l e s  b ,  b * ,  b * * r ' . .

range over hy'pocri tes, a hypocrite wil l  be named by each of the

fo i lorv ing:  b1,  1 ,2 ,  b3r . . , .  D i f ferent  names,  whether  o f  the sarne or  o f

a dif ferent sort,  lnay nalne the same individual. Whereas, then, small

letters (possibly fol lowed by one or more asterisks) t t ' i t l torr l  numerieal

subscripts are t 'ar iables. small  letters r. t ' r l l i  numerical subscripts are

) ta  )n  t ' s  .

The language of the system rvill therefore eonsist of propositional

calculus symbols plus:

sorted individual variables sorted narnes sortal predicates
(bound)

a ,  a * ,  a * * ,  t l * * * r . . .  Q l ,  a ' 2 ,  Q 3 t  Q 4 r . . .

b ,  b * ,  D x * ,  b x * * r . . .  h 7 ,  b . l  ,  b i ,  b 4 r . . .

C e  r * ,  
. . , r * * ,  

c t * * r . ' .  c 1 r  r r ,  
. . . , t ,  

c 4 r " '

A

B

C

To illustrate the intended interpretation of the symbolism here are some

paradigms:

Logi cal Fortt t

Every man is a hypocrite (alBa

No man is a hypocrite -EaBa, or, equivalently, (a)-Ba

Some man is a hypocrite EaBa

Not every man is a h54pocrite -(alBa, or equivalently, \a-Ba

In general, a formula AaF will be translated into one of the form

n')Uv and a formula /oB into one of the form UvUv; O and E formulas

ri'ill be translated into the eorresponding negations.
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\o',,,' for the rules. The elimination rule for the universal quantifier

nc.L'ds a l i t t le modif icat ion from its counterpart in the single-sorted system.

For esa:nple, n'e do not want to be able to derive Ca1 from (b)Cb alone,

for this rvould be instantiated bv the inference

Every hypocrite is a liar
Therefore (the man) Jones is a liar

To turn this into a valid deductive irrference we obviouslv need the

addit ional premiss

Jones is a hypocrite

So, although we do not want to be able to derive Ca1 from (b\Cb, we Co

*'ant to be able to derive it from that premiss supplemented with the

premiss Bat. Thus the UE rule takes the fol lowing form:

I f  r  F  (v)q(v)  and f  F  V(v ; ; ,  then f  l -  Eg i /v l

Again, the rule UI needs modification as a result of the introduction

of different sorts of variable. Universal introduction is confined to the

case rvhere a narne is replaced by a variable of the same sort:

If f I g $t ) and v; does not occur in any wff in I

nor  v  in  q(v ; ) ,  then I  t -  (v )  E(v /v i )

'[r is defined as before in terms of the universal quantifier.

An additional rule is needed to reflect the relation between sorted

names and their corresponding sortal predieates, a rule which we shall

call the rsortal ruler (SR):

*
* t

This rules gives us indefinitely many theorems l ike AaTr BbE, Kh21,

where the name is of the same sort as the predieate. UI then seeures

the connection between sorted variables and their corresponding sortal
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predicates and generates theorems l ike (alAa, (e)Ee. The addit ion of

SR also gives r ise to the useful derived rule { (v)E(v)} f  ,p(vi/v), which

we shal l  cal l  'UE(S)I.  For, given (v)g(v), we have Vvr by SR, and

hence  EF i / v )  by  UE .

It is now possible to prove all the rules of BSts as derived rules of

this ca-lculus. r.a.a. becomes an obvious speeial ease of RAA and no

more need be said about it. On translation the other rules of BS+ become

the following:

s .c .  {guvu}  F gvUv,  which is  shor thand for

{ - ( u ) - vu }  t -  - ( v ) -Uv

sub.  {  1u;vu}  F f ,uvu,  =  {  1u;vu}  t -  - (u) -Vu

Barbara { (u)vu,  (v )Wv}  I  (u)wu

Celarent { 1u;Vu, -trvWv} F -guWu

id.+ n F (v)vv

We give proof schemas of all of these except Celarent, the prcof of

which is similar to that of Barbara (though slightly longer).

s " c .  { t  }  G )  [  ( v ) - U v ]  A s .

{ z }  Q )  [ v u 1 l  A s .

{ t , z }  ( 3 )  - U u r  1 , 2  U E

A (4) Uur SR

{ t }  (5 )  -Vur  z ,  3  &  4  RAA

{ 1 i  ( 6 )  ( u ) - v u  b u r

{  t }  g )  - ( u ) - w  A s .

{z }  (8 )  - (v ) -uv  1 ,  6  &  ?  RAA
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sub.

Barbara { 1 }

{ r  i
{z }
t1 )

{z i

{ r  }

{ z }

{ 1 }

{ L , z }

{ t , z }

A

(u)Vu

(u)-Vu

vur

-vur

-(u)-Vu

(u)Vu

(v)Wv

vur

wur

(u)Wu

vvr

(2)

(4)

(1 )

(3 )

( 5 )

( 1 )

(2 )

(3 )

(4)

(5 )

( 1 )

A s .

A s .

1  U E ( S )

2  UE(S)

2 , 3 & 4 R A A

A s .

A s .

L  UE(s)

2 1 3  U E

4 U I

SR1 ( l .  '

A Q) (r ')Vv Z Ul

Since f,vVv is derivable from (v)Vv, we ean thereby prove that each

domain is non-empty.

5.5 Objections to essential l l ,  nsr-empty terms

It has been pointed out (for examples, by the Kneales) that a logic

for non-empty terms is narrower, less comprehensive, than one for

unrestricted terms; but that is not the principal objection to this interpre-

tation. Essentially, the main objection is that in English and similar

natural languages noun expressions like man and uhite ,rabbit are nor

necessarilJ,-non-empty terms, so that the logic cannot really be applied

in the suggested way to natural language. It is true, for example, that

the inference from Aab to lab isfsoundrunder an interpretat ion whieh

restricts the substituends of. a to terms which are in fact non-empty, for

it will then be impossible to produee a substitution instance with a true
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prenl iss  and a fa lse eonelus ion,

sentenees are to be interpreted

of the fol lowing infcrenees is a

Every unieorn is  a quadruped

So, sonle unieorn is  a quadruped

but i t  is a nristake to thinl< that i f  A

as lacl i iug existential import the second

genuine entai lment:

Er -c ' rY  n rau  i s  a  hYPt l c l i t e

So ,  some n ran  i s  a  hypoc ' r i t e

I f  A sentenees lacl i  ex istent ia l  imprr t  the f i rs t  of  these is  not  a genuine

entai lment,  beeause the A premiss is  t rue lvhereas the 1 eonelusion is

fa lsc.  But  then thc second la i ls  to bc an entai lnrent  too,  s inee al though

t l iere are in faet  men i t  is  logical ly  possib le that  there should be none,

and so logical ly  possib le (granted that  A lacl is  existent ia l  import)  that

I i : ,  t ' t  n t ( t ) t  i s  r t  i t . t ' l , r , t ' t  i ! ,  s l -Ou ld  l t e  t r r . t c  anc l  S r rT i l t  t t t t t t t  i s  u  l r . t ' p t t< ' t ' t ! < '

f a l se .  I t  i s  a l l  vc ry  uc l i  t o  say  t l ra t  t he  sys ten - r  v r i l l  neve r  ta l i e  us  f r cm

t rue  p re rn i sses  to  a  l a l se  eone lus ion  p rov ided  u 'e  use  te rms  r ,h i ch  a re  i n

fae t  non-empty ;  the  non-empt incss  o f  ou r  t c rms  u i l l  ( excep t  pe rhaps  in

specia l  cases) be an extra- logieal  nrat ter  r , r ,h ieh * ' i l I  have to be establ ished

empir icai ly ,  and sueh e.r t ra- logieal  faets as that  men exist  should be

stated in extra premisses.  The modi f ied s ingle-sorted predieate system

rvi th speeial  scr ipt  precl icate let ters for  non-empty predicates is  open to

a s imi lar  objeet ion.  Ordinary predicates -  in Engl ish,  at  any rate -  do

not come wi th their  non-empt iness bui l t  in to their  rneaning (rv i th the

possib le except ion of  specia l  cases l i l<e ' is  coloured or  not  eoloured' ,

though even these eases are debatable) .

I t  is only an aspect of the sa-rne objeetion to the suggested use of

the many'sorted system that i t  presupposes that i t  is a necessary truth

that there is something which is an A, something which is a B, and so

on. I t  just is not neccssari ly true that there are men, hypocrites,

horses,  s tones,  e ie .

Of course, this consideration does nothing to undermine the value of

Smileyts interpretation for exegetical purposes, and there is indeed some

reason to thinl< that Aristotle himsel-f did regard terms as essentially

non-empty.  (See p.26 above,  and Corcoran (1972) ,  p .  lM. )
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5.6 A stlt.ogisfi c s-r'sfe nt for tlte Brentnno/ F'rege /Russell interpre tation

o-f gt'rtt,ral cate goricals

The following system goes over into a fragment of the ordinary

single-sorted calculus if A, E formulas are translated in the style of

Brentano, Frege and Russell as laeking existential import, u'hile

1 and O formulas have it.

In BS replace sub. by the two rules:

(.  Xletatheorent 10. )

Sllr'lclt ul' f;t'rtrt-l'. The model set

for every AaB in A,

for every EaB in A,

Universal formulas are automatical ly

be eonsidered, formulas of the forms

y (c f .  Shepherdson (1956) . )
I  cta

U(A) is to be formed as fol lows:

de le te  eaeh I  aP ' l  in  P(V) ;

delete each I oF ] in P(V).

veri f ied and only two cases have to

IoB and Oa!.

!-sP
I a q

This system ean be proved eomplete after the manner of 3.2 with

respect to an interpretation which allows terms to be empty, and takes

A and E as true if the subjeet term is empty and / and O as false.

(1) Suppose that, with A eonsistent, some wff in A of the form

Iap is  fa lse.  Then there is  no set  IaF l  in  U(A; .  Show th is  by cons ider-

i n g  t h e  s e t  { a , F , l t . . . , " l n  } ,  w h e r e  l j t . . . T n  a r e ,  a s  u s u a l ,  a l l  t h e  y ; ' s

in  V such that  A I  Aay;  or  A ts  AByt .  The set  is  undele tab le  by

an A wff for the reasons given in 3.2 and ean also be shorvn to be

undeletable by an E w{f.  (Consider Eaa, EPP, EaB, EBtt,  Bafi ,  Ey1:t

EFv; ,  EytF,  Ey, ty j . )

(21 Suppose that, with A consistent, some wff in A of the form

Oa7 @ r B) is false. Then U(A) wil l  contain no set I  aF'] .  But the set
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1uryt , . . . ,y r ) ' ,  fo rmed in  the usual  way,  wi l l  p rove undele tab le ,  both by

A udfs, for the usual reasons, and by E wffs. Consider Eaa, [ ' ) tuy;,

E y i o ,  E V y ; . )

No set A containing Oaa is consistent, since

With no rule of subaltern inference, there wil l  be no derived rules

of conversion 7,, ' t '  r tcr- i t i ,  trs f91 / and E formulas. (Under the Brentano

interpretation A and E also cease to be contraries, .I and O to be sub-

contraries. )

S .7  I I t r  I  l ip l .  ,g( ' t tc  ] 'n l  i  l \ '

None of the basic systems, even when adjoined to the propositional

calculus, is as comprehensive a system as monadic predicate calculus.

Nor, unlilie the monadic calculus, can they be extended into a polyadic

system capable of expressing relations. Take, for example, the following

relational sort of inference considered bv Ockham:

All  men are animals; Socrates sees a man; therefore,

Socrates sees an animal

the form of which can be expressed in the (polyadic) predicate calculus thus:

l (x ) (Mx *  Ax) ,  X.x( tv tx  & Ssr)  j  l l  Xx(Ar  & Ssr)

But the 6ost spectacular advance by modern over syllogistic logic is the

capacity of the full predicate calculus to cope successfully with multiple

generality. Geach (1962) has examined and eriticized the medieval attempt

to deal with multiple generality by means of different types 6f sttppositio

(reference), and it is beyond doubt that the problem was not solved until

Frege. The range of inferences expressible in our language which can

be expressed with merely syllogistic resources is narrow in the extreme

compared with those which can be expressed within the predicate calculus.

Syllogistic cannot begin to express and distinguish between the following

pair of inferences devised by Geach (1971, p.102ff.) ,  for example, the

first of which is clearly valid and the second invalid:
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(A) (1) Any thing that counts as the personal property of a tribes-
man is suitable to offer to a guest by way of hospitality

(2) One thing that counts as the personal property of a
tribesman is that tribesmanrs wife

(3) So she is suitable to offer to a guest by way of
hospitality

(b) (4) Any woman whom every tribesman admires is beautiful
by European standards

(5) One woman whom every tribesman admires is that
tribesmanrs wife

(6) So she is beautiful by European standards

Within the predicate calculus the patterns of these arguments can be given

in the following way (though Geach himself would not actually approve of

these analvses - see 7.2 below):

(A )  ( 1 )  ( x ) ( y ) ( (Tx  &  Byx \  -  Sy )

(2) ( rXyX( Tx & I t lxy\  -  Byx)

(3) (xl(yl(rx & Mxyl * Sr)

(B) (4) (x)((wx & (yXTy -  Ayx))  -  Ex)

(5) (y)(ry * src(Wx & Mxy & Ayx))

(6) (yl(ry * gr( Wx & Mxy & Exl)

To whatever extent natural language is streamlined when re-expressed

by means of predicate calculus symbolism, the latter is still an

incomparably more powerful tool for the analysis of inferences than

syllogistic. Moreover, there is clearly no hope of developing syllogistic

into a language capable of expressing mathematics. The axioms of set

theory can only be expressed in a symbolism which can cope with multiple
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seneral i ty. Consider, for example, the pcwer set a-xiom (rrariables here

I ' ang ing  ove r  se t s ) :  ( . r  ) t r ' ( z ) (  z (1 '  *  z ; : ' ) .  Th i s  imp l i es  t ha i  t he  se t  o f

sul;sets of aly set is i tself  a sct, rvhich is clearly dist inguishable from the

false claim thirt  there is one and the same set rvir ich is the power set

o f  cver5,  set ,  i rnp l ied by f , t ' (x ) (2 . ) (eerr  *  z '=x) .

Iirege found that the traditional manller of analysing seutences stood

i1 tire g'ay of developing-. means of expressing multiple generality. Instead

ol treating tsocrates is a phi losolrherr as composed of subject-copula-

predicate-ternl,  he found i t  better to treat the copula as part of the

predicate. The predicate was thou3-l i t  of as referr ing to a function, of

q'hich the referencc of t l ie subject term r,vas the argument. For accounts

of Fregets inventionr r ightly cal led by the Kneales (1962, p. 511) tone of

the .greatest intel lectr.ral inventions of the nineteenth centuryt,  the r"eader

is  re fer red to  Anthcny Kenny,  (1973,  Chapter  2) ,  P.  T .  Geach (1971,  1 .1)

and Micl iael Drmnrett (19713, Cha1.;ter 2). In a later chapter we shal l  turn

to a consideration of subject and predicate aud a cotlrparison between the

traditional and predicate calculus treatments of thetn. Meaurvhile, in the

next cSapter we shall lool< at a rather different type of iuterpretation of

traditional logic, rvhich has received extensive attention in recent years.

APPENDD( TO CHAPTER 5

SINGULAR TERI\{S

Srniley has eompared certain proofs in the lnally-sorted logic with

Ar is to t lers  use of  texposedt  terns in  h is  proofs  by t ' r1 l r r ' .s l .s .  Smi ley  has

free variables where we have names, but we may make a similar

comparison.

In his treatment of assertoric logic Aristotle indicates ecthetic proofs

in four cases: simple conversion of ,8, Darapti, Datisi and Bocardo,

though no cletails are given in the case of Datisi. We shall take Darapti
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f i rst,  th: mrcC in rvhich lrp fol lo'ws from {atp, Asr}. Having sho;vn th-Lt

i t  is provable bcth by direct and indirect reCr:t ior, h,:  d,:s '3ribes a third

rn-- lh: l  of prorf:

. " , i f  hoth  P anr l  R be long to  a l l  S,  shcu ld  c : r :  o f  th :  Ss,  e .B.  N,

be taken, both P anl R r. l ' i l l  l ielong io this, anl thus P wil l

be lorg Lo s , l :n ,?  R.  (28422\

It  is very natural,  at least using th' t  Oxford transiat ion, to take N as a

singular term,rnl construe the argument in th,:  fol lo,.ving way. Every s

is  a  p  and every  s  is  an r ;  i f  one s ,  ca l l  i t  tNt ,  is  taken,  then i t  w i l l

be bcth  a ,  an l  a .n  r i  h :n :e  s . rm3 r  Ls  a  p .  Su:h an in terpreta t ion,

thrugh i t  gives us a simple and perspicuoas proof, hes been vigorously

disputed i .n recent t imes by l . ,ukasiewicz (1957, pp. 59-671 and Patzig

(1968, pp. 156-68), the latter providing further lextual evidence to suppcrt

Lukasiewiczts case. Th:y interpret th: exposed berm as 1 general term

ar-rC claim thrt Aristot le is arguing somelhat as fol lows. I f  ever.y s is

both a p and an T, then for some term rzr, every z is both a p and an r,

and so therefore some r is a p. Aristotle's ecthetic proofs are claimed

to be significant, not for the role they play in his logic - which they

regar:d as quite incidental - but because the notion of existential quantifi-

cation is implicit in them.

Now eyen though i t  nrw seems an unl ikely interpretat ion of the text,

i t  seems ciear that the procf using N as a singular term is both val id

anC p,:rspicuo:rs provideC that A proposit ions are taken as having

existential impori.  Lul<asiewicz (1957) cri t ic izes Aristot le's comrnentator

AlexanC:r for taking N as a singuiar term anC construing the procf as

an empir ical ore d,:penCing o,r th,:  perception of an individual, which

f,ukasiewicz s: lys is rnot suff icient for a logicat p:ocf '  (p. 62). But,

clearl-v, o:re can use N in the pr 'roi as:r singular term without perceiving

its referent, and the demonstration does not have to be construed as
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empir ica l .  Even thc- rugh Ar is to t le  probabl l '  d id  not  in [end h is  e-xp, - ,ser i

terms as s ingular  terms,  i t  is  i t r terest ing to  fo l lo \ \ 'L rp  th is  in terpretar ion.

Before presenting the analogue of this proof in the manr'-sorted

calculus, \ \re prove the fol lou' ing derived principle of the calculus:

P1 {Ur ' ;  & Vv i }  F  3r .Uv

Intuit i r .el.y this is ver.y clear: i f  some individual, v;,  is both a u and a v,

then some v is a ,r.  This is the principle rel ied on in the ecthetic

argument  i f  N is  taken as a  s ingu lar  term.

t r j

t z . l

{ z i
1 . )  I
1 1 )

i 1 , 2 )

tz)
\ z )

( 1 )  [ ( r ' ) -Uv  I

(2) Ur'; & Vv;

(3) Uvi

({) Vvi

(s)  -Uv;

(6)  - (v) -Uv

(7) trvUv

A s .

A s .

2 & E

2 & E

1, '1 UE

1 , 3 & 5 R A A

6  d f . g

Non'. using this principle u,e can give the proof of (an instance of)

Darapti in the follorving form:

{ t i  ( 1 )  ( s ) p s  A s .

( z  )  e )  (  s ) R s  A s .

t t )  ( s )  p s r  1  U E ( s )

{ z }  ( 4 )  R s  r  2  u E ( s )

{ t , z }  ( 5 )  p s 1  & . R s ]  3 , 4 & I

{ t , z }  ( 6 )  r , r p r  5 p l

The sorted name here, s1, is the analogue of N taken as a singular term.
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The ecthetic proof of the simple conversion of _E is given at
t i a  1 5 - 1 7 :

If  no B is A, neither can any A be B. For i f  some ,4 (say c)
were B, i t  would not be true that no B is A: for c is a B.

If rve take C as a singular term it is again possible to mimic the proof
in the lnany-sorted system, though we need first to state another derived
principle (which we sharl leave to the reader to prove):

P2 If f, q(vi/v\ F .lt, and v,. does not occur

in g(v), tlt or any wff of I, then

f, Ivcp(v) l- ,l)

This is, in fact, Lemmonts rule of existential el imination, and for
further illustrations and an explanation of lts use the reader is referred
to pp. 112-16 of his book. The proof of {(q-Ab} r @)-Ba (a typical
instance of s.c.(E) can now be given in the fol lowing form (i t  is not
ciaimed, of course, that these are necessari ly the simplest, most
straightforward proofs of the sequents in this calculus):

{ r  }  ( 1 )  I s . aBa l  es .

{ z }  e t  Ba :  As .

A (3 )  Aa r  SR

{z }  e )  s ,bAb z ,  s  p l

{ t  }  (b)  s.bAb 1,  2-4 p2

{t  }  (6)  - (b ' ) -Ab s df  .s

{ t }  g l  bt-Ab As.

{z}  (8)  -x,aBa 1,  6 & ? RAA

{t  }  (e)  -  - (a l -Ba 8 df  .s

{ t }  (10) (al-Ba e DN
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Ecthesis is conciseiy indicated as a second way of proving (an instance of )

Bocardo ({osp, Asr} f  orpl at 28b 20-22.

Proof is possible without reduction ad impossibi'le, if one of the

Ss be taken to which P does not belong.

Using a singular term, the argument would presumably be reconstructed

lil.e this. Some s is not a p but every s is an r. So take one of the

sts, saj s1, which is not a p: i t  must be an r.  Then you have an r

which is not a p. Its analogue in the many-sorted system uses P2 and

a principle similar to Pl:

P3 { -uul & vv; } l'- Uv-Uv

The derivation of P3 is also similar to that of P1. We may now give the

following proof of Bocardo:

{ r  }

{ z }

{ e }

{ z }

{ z , s }

{ z , s }

{ r , z }

(1)  E s-Ps As.
/

(2) (  s)Rs As.

(3 )  [ -Ps  r ]  As .

8 s r 2 uE (S)

(5)  -Ps r  & Rs 1 3 ,4  A1

(6) gr-Pr 5 P3

(7)  l r -Pr  1 ,  2-6  Pz

(4)

It is possible to introduce singular terms into syllogistic in the form

of sorted names along lines suggested by the foregoing. Again we use

small roman letters with numerical subscripts as soited names.
rUt and'O are introduced as further eonstants and the formation rule

extended to allow formulas of the forms (lo# and laiB f.or ui is a B

and a ; is not a B respectively. The system, BS+ with names, has the

following primitive rules, the original rules of BS+ becomlng derived

ru les:
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( i )  U a i7  t t  u ;y
I{tv

( i i )  UatB Uaf l
opy

(c f "  P l ) (cf .  P3)

Gil [u ct ;81 Gd, IA a 19]
Ict{t E Q@ q

A E

provided in the case of both rules (iii) and (iv) that g does

not contain a;.

(vi) r .a.a. - as for B$, but add that:(v) t

u a ; a
(cf. sR)

t f g = A o # r 6 = i a , [ t ;

i I e = O o t B r 6 = U o t P ,

The asymmetry between subject and predicale in singular propositions with

names as subjects is reflected by the fact that narnes are allowed only in

subject place.

The whole of the original basic syllogistic BS* is now derivable on the

the basis of these quasi-ecthetic principles and r.a.a. As examples we

give the derivations of s.c. and id.+.

s . c .  { t }  ( 1 )  I a g  A s .

{ z }  Q )  uo t7  As .

A (3) (Jot1a Rule (v)

{z}  e)  Iga 2 ,8  Rule  ( i )

{1} (5) r\a 1, 2-4 Rule l i i i )

i d . +  { t }  ( 1 )  [ o a o t ]  A s .

{ z }  e )  [ 0  a p  l  A s .
A (3)  ua la  Rule  (v)

{ z }  e )  A a a  1 ,  2  &  3  r . 8 . o & o

A (5) Aao 1, 2-4 Rule ( iv)



CHAPTER 6

STRAWSONTS I}TTERPRETATION AND THE
QUESTTON OF EXISTENTIAL IMPORT

6.1 Strautsont s inte'rpretation of traditional logic

A categorlcal proposition with subject term a will be said to

have existential import tff it is a logically necessary condltion of its

truth that there is (was/wilt be) an a, If exlstentlal import is urder-

stood in thls way, Strawson's interpretation, to be found ln hls article
'On Referring' (1950) and in his book Introduction to Logical Theory

Qff) $952), attributes such import to all four forms. (O propositions

are given in the more customary manner: fSome ... is not ...t) ard

predicates are not restricted to the form is a + noun (phrase).) Under

his lnterpretation, which is supposed to be falthful to the ordinary

meanings of the categorical sentences - a clalm we shall consider ln

6.3 - the whole of traditional logic with negatlve terms ls supposed to

hold good. We may consider it as an lnterpretation of EBS+ (since we

shall see that lt makes id. * come out valid), and not wait until the

introduction rf negative terms in Chapter 9, because it is now clear

that Strawson was actually wrong in thinking that traditional loglc with

negatitte terms id sound under his interpretation.

Accordlng to Strawson, a statement in one of the categorical

forms is tnre or false only if its subject term has applicatlon. On

p. L77 of. ILT he says:

We are to lmagine that every logical rule of the system, wtren

orpressed in terms of truth and falsity, ls preceded by the

phrase 'assuming that the statements concerned are either

true or false, then ...r. Ttrus the rule that A is the contra-

dictory of O states that, lf corresponding statements of the

A and O forms both have trr.th-values, then they must have
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opposite truth-values; the rule that A entails 1 states that, if

corresponding statements of these forms have truth-values,

then if the statement of the A form is true. the statement of

the 1 form is true, and so on.

under this interpretation the semantic analogue of the rule id. + will

read: 'Assuming that the statement expressed by A qa is true or false,

then it is true on the basis of no further assumptions', so that id.+ will

turn out sound. (There is reason to think that Strawson did not intend

it to do so - see the note by T.J. Smiley (196?) - but no matter.)

And it is easy to see that the other rules of EBS+ are validated as well.

In traditional logic with negative terms one of the principles of

invers ion,  EaF I  I  a '8 ,  is  made inva l id . l  (a '  is  to  be read here as

ton-a.) The following set verifies Eab (interpreted as

Ib  l a l  zs  a  [ b l )  and  f a l s i f i es . t a - rb  (Some  l a ' )  i s  a  [ a ] ) :

{ n, {"1}
Or, to take a less formal counter-example:

No elephant is a unicorn (true)

Therefore, some non-elephant is a unicorn (false)

Someone attracted by Strawson's interpretation of the English sentences

might respond that this was so much the worse for the traditional logic

of negative terms, which erroneously regarded inversion of E as a

valid step. (we shall have more to say about negative terms later.,r

It is true that Strawson has not been consistent in the accounts

he has given of entailment in the rvritings we are refeming to. some-

times, for example, he seems to adopt a more conventional account:

I 5.g shqpter g. Smiley mqkes the point in his note.
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It is seU-contradictory to conjoin S ',vith the denial of S' if

S' is a necessary condit ion of the truth, simply, of S .. .

The relation between S and S' in this case is that S entails

S ' .  ( l L T . p .  1 7 5 ,  S e e a l s o p . 2 I 2 . )

In other words. S entails S' iff S' must be true whenever S is true

(i .e. i f f  S str ict ly implies S').  But this rvi l l  not do i f  Strawson wants

to save traditional logic, since it fails to validate simple conversion of

^E: consider

(1) No elephant is a unicorn

(2) No unicorn is an elephani

Strau'sott must regard (1) as true. since i ts existential presupposit ion

is satisf ied, and (2) as truth-valueless, since i ts existential pre-

supposition is false. There can be little doubt, therefore, that his

intended account of entailment is more accurately given abor.e in the

quotation from p, 177. On that account S entails S' iff it cannot be the

case that S' is false and S true,l

Yet there are serious objections to that accourrt of entailment.

In the first place transitivity breaks down in lvhat is surely an

unacceptable manner. This can be shorvn by the follorving example,

rvhich would have tc count as an entailment on the Strarvsonian account:

Therefore, (5)

No dog is a unicorn

(In the U. K. ) every animal which is not a dog

may be kept without a Post Office licence

some unicorn may be kept without a Post Office

licence

- It ls not clear whether he woul.d want to add ttre addltlonal proviso that if S' ls
false S must be false too, as Hart (1951) does tn his slmilar accoutd of the Square
of Opposltion. Smlley thinks Strawson lmplies this ou p. 213 of ILT.

( 3 )

(4 \
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On l ir l ' r ' ielv both premisses are true, r i 'hi le on Strarvson's view the

conclusion is neither true nor false. If , horvever. it did have a truth-

value and there t(cre a unicorn, i t  rvould, on the f irst premiss, be an

animal but not a dog, and, given the truth of the second premiss, an

animal you could keep without a llcence. The conclusion would be true,

and on Strawson's account it is therefore jointly entailed by (3) and (4).

No\\,, on Strarison's account - and on any reasonable vierv - (5) entails

the someu,hat clumsily expressed statement:

(6) Something that may be kept without a Post

Office licence is a 'rnicorn

rvhich on Strawson's view is false, and so cannot be entailed by (3) and

(4). Some logicians have wanted to define a notion of entailment which

is not unrestrictedly transitive, but in such instances transitivity is

sacrificed for the sake of avoiding the Lewis paradoxes and in any case

breaks down only when necessary or impossible propositions are involved.

(For some account of this see the f inal essay in G.H. von wright (1957).)

Even more serious is the following consideration. As

strawson himself clearly recognizes on p. 13 of ILT, logicai inference

should never take us from true premisses to conclusions which are not

true:

Though inferring, proving, arguing have different purposes, they

seem usually to have also the common purpose of connecting

truths with truths. The validity of the steps is, in general,

prized for the sake of the truth of the conclusions to which thev

lead.

strawson's account of entailment is unacceptable since it divorces

entailment from inference in this respect. We just do not want to have

true premisses entailing conclusions which are not true. Once we know

that our premisses are true, we should not have to appeal to further
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extra-logical considerations to determine whether their logical

consequences are true. Some other definitions of entailment do not

allow that every inference corresponds to an entailment, since they

restrict the latter's transitivity; but to have entailments which do not

correspond to valid logical inferences is quite unacceptable. Hence, we

should reject the claim that (5) above is jointly entailed by (3) and (41.

The more conventional account of entailment quoted from p. L75 of.

ILT was much better, since it was not open to this criticism; but, as

we have seen, it cannot be used to save traditional logic in a

St.rawsonian manner. To the extent that it worked, Strawsonrs inter-

pretation depended on a redefinition of semantic entailment rvhich is

wholly unacceptable to a logician.

One of Strawson's motives for wanting to interpret syllogistic in

the manner described was to underpin his treatment of the grammatical

subject expressions of categorical sentences as genuine logical subjects.

Here he thinks traditional logic is superior to predicate logic, which

construes such grammatical subjects as logically predicative. Yet surely

this is a serious mistake. On Strawson's view, to say 'Some mammal

is a sea-dweller'is to refer to a particular mammal and say of it that

it is a sea-drveller. But to which mammal? The one the speaker is

thinking of ? But he may not be thinking of any mammal in particular.

And, even if he were, his statement would still be true if the mammal

he was thinking of were not a sea-dweller, provided at least one other

mammal lived in the sea. And, if the statement were false, it would

not be false simply because the particul;ar mammal thought of by the

speaker was not a sea-dweller, but because no mammal was,

6 . 2 E.r is lenI ia l  inrpot ' l  and pt ' r ,s t rpposi l io t t

We may, of course, consider Strawson's view of the exlstential

import of categorical statements quite irrespective of whether he has

provided an acceptable interpretation of traditional logic. Althou$t he
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accepts that, at least in many ordinary cases, all four types have

existential import as we have defined it, he would deny that the

statements expressed by those sentences t'tttai.lcd their existential

commitments. Rather. they are held to presuppose them. According

to IL? S presupposes S ' i f f  S can be t rue or  fa lse on ly  i f  S ' is  t rue.

But in this case S'cannot be false when S is true, and so, on the

account of entaitment attributed to Strawson above, if S presupposes St

i t  a lso enta i ls  i t .3

It may appear that we can deny that presupposition is a case

of entailment by follorving Hart (see footnote 2 above) and stipulating

that s entails s' iff (i) s' cannot be false when S is true and (ii) s must

be false i f  S' is false, The extra condit ion, ( i i ) ,  however. proves far

too strong. It would disqualify as an entailment the relation from, for

example,

1 r-i

since the Strawsonian

t rue nor  fa lse.4

(7) Some unicorn is an elephant

(8) Some elephant is a unicorn

view requires that (8) be false while (Z) is neither

'  Cf. G. Nerllch (1965); R. Montague (1969).

4 Moreover, use of the revised deflnitlon to make prestpposlng and ertailing
mttually exclusive also has tle following embarrasslng coneequence. Consider

(P1) Some famous one-banded piaalst is still giving
concerts aad anyone stlll givlag corcerts must exlst.

(P1') There ls (axlsts) a famous one-harded ptanist.
Arguably (the statement expressed by) (P1) entalls (that erpressed by) (P1'). Now
suftpose thet (Pl ') expresses a false statened: then surely at least one of tbe
conjuncts of (Pl ) must also ercpress a false statement. But lt cannot be the
second conjunct, slnce that expresses a oecessary truth. And on the Strawsoni-n
vlew the flrst does not express a statemed wlth tnrth-value. Once agaln, tbe
ouly way out would be an uryalatable resf,rictton on the f,ransitlvity of entatlmert.
(It is therefore no consolatlon tbat the argument on pp. 96-? wor:lrl zof show tlat
entallment as deflned by Ha:t was uon-translttve. )
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So there does not seem any obviously plausible way of denying

that presupposition is a special case of entailmentl what seemed to be a

distinctive way of dealing with existential import proves not to be so

distinctive after all.

Possibly the most that can be said, then, is that the existential

implication of a categorical statement expressed by a sentence of one of

the four forms is a distinguishable species of entailment. We may say

that S Presup\oses S'ifs both S and its negation entail S'. Now given

that the pairs A/O and E/I contain contradictories, it does follow that,

if statements of each of the four forms entail that the subject term has

reference (to put it rather loosely), they presuppose it in the sense just

defined.

Ttre views discussed in the present and previous sections are

those defended by Strawson from 1950 to 1954. It may be thouglrt

unfair to subject that position to as detailed a scrutiny as we have given

it here, on the grorurd that it is insufficiently worked out. But, even

if this ls so, it has nevertheless received a good deal of attention and

figured in many an introductory logic course, for which reason alone it

could scarcely be ignored.

In a moie recent paper ('Identlfying Reference and Tnth-valuesl,

1964, reprinted in his (1971)) Strawson has made some concessions,

but he still wants to insist that the statement that some mammal is a

land-dweller, for example, presupposes and does not entail that there

is a mammal. He thinks that such a view stands irrespective of

wbether we regard tlt former statement as lacklng a truth-value when

its presuppositlon is false. In one respect this does indeed malie his

position less vulnerable, since the thesis that A, E, I and O

'Sic. Ihe 'lf' ls not to be urderstood as 'tf and only lf', sirce tbe condltion which
follows is proposed only as a sufflclent oue.
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propositions lack truth-r'alue when their subject-terms are empty is one

lvhich is open to question. For example, the following proposition is

surely true:

If there are unicorns in Loch Ness, then some unicorns are

very elusive creatures

Yet if its consequent lacks a truth-value, it seems a little odd to

ascribe one to the whole proposition (or, if Strarvson would prefer it,

to regard the conditional sentence as expressing a true statement). Ttre

trouble with the revised position of L964 is that it is impossible to

assess it, since we no longer have any clear account of the notion of

presupposition, the definition of which previously depended on the

possibility of truth-valueless utterances of significant sentences.

6 . 3 Existential imptn't : soil le fu't,t lter c ottsidetation s

Under both Strawson's interpretation and Interpretation I

affirmative categoricals have existential import; but how faithful is such an

interpretation to the actual meaning of those sentences ? We shall

continue to include in our discussion sentences in which the predicate has

an adjective or a verbal phrase after the copula, since the significance

of the applicative particles e,L)€TJtand some can hardly be claimed to

differ according to which of the three forms the predicate has.

On the face of it, is seems self-contradictory to say, 'Every

man is a hypocrite but there are no men'. However, whether this is

so or not, there are other propositions of the A form whieh evidently

Iack existential import, like Bradley's example (L) Euery trespasse.r uill

be prosecuted, the exhibition of which does not prove to be an empty

threat merely in the event of there being no one who trespasses.

Moreover, it strictly implies the proposition (2) Erert blue-skinned

trespasser uill be prosearted. Now suppose there are trespassers and
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each one is prosecuted. Then the first proposition is uncontroversially

true. Suppose also, unsurprisingly enough, that none of the trespassers

is blue-skinned. Then, if the first proposition does indeed strictly

imply the second, the second must also be true, despite its lack of

existential import.

This does not necessarily mean that the Frege/Russell analysis

('Ttrere is no one who is a trespasser but who will not be prosecutedf,

etc.) is to be adopted. For on this analysis the first proposition is

true if there are no trespassers and so is Et'ery trespasser will auoid

prosecution. It would be natural to hold that further grounds are needed

for the truth of the first proposition than merely the absence of tres-

passers, e.g, that the owners had made a firm and irrevocable decision

to prosecute anyone who trespassed on their lard.

However, this objection to the Frege,/Russell analysis is by no

means conclusive. Ke5mes himself notes that '[asJ regards the ordinary

usage of language there can be no doubt that we seldom do as a matter

of fact make predications about non-existent subjects. For such

predications would in general have little utility or interest for us'

(1906, p, 235\. In A sentences like those under conslderation, the

existential implication miglrt be one of those conversational lmplicatures

arising out of pragmatic conventions which Grlce has drawn our

attention to.6 The Frege/Russell analysis of those sentences could then

stard.

It is clear anyhow that the system BS cannot be accepted as a

logic for all of tbe A sentences beglnning wrth Euery, since at l,east

some of them Iack eristentlal import. And where sentences beginning

with Euery lack existential import, the corresponding sentences

beginning wlt}i, Any, Anyone, Anybody ard All will surely lack lt too.

5 See H.P. Grlce (1961) and (19?5), L.J. Cohen (19?1), R.M. Hare (19?1).
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(Try modifying the e><amples (1) and (2) above.) The sarne applies,

I think, even to Eat'h, in spite of the claims about euer)t and eac'lt

made by Zeno Vendler (1962): Each t:res|asser tuill lte prosecuted. no

more entails that there will be any trespassers than does Erery

l r a s p a s s e r . . , .

The position with .[ propositions is relatively uncontroversial,

and it seems difficult to affirm the consistency of Sonze a is F bul

lhere'is rto a or its more idiomatic plural form. It is not to the point

to cite an e(amp1e like Sonte gh.osts are unfriettdll'. which might occur

in a story or conversation about a story; for in those contexts it tuould

be self-contradictory to say that some glrosts were friendly but there

were no ghosts. The following example from an old textbook is

scarcely more disturbing:

(3) Some of the cruisers for which pl;ans were made

in the last budget are not being constructed

For once again it does not seem possible consistently to say that some

of the planned cruisers are not being constructed but that no cruisers

were planned. In any case, the semantics of sentences containing

clauses governed by psychological phrases ('plans were made') are

notoriously problematic, and since those sentences clearly require

special treatment, it is quite reasonable in the present context to restrict

our discussion to straightforward'non-intentionalt sentences.

Since particular affirmative sentences have existential import

and at least some universal affirmatives lack it (or lack it in some

contexts), BS is not always an appropriate logic for affirmatives. It

may even be true that only in special cases, where the existential

commitment is explicitly added, or strictly implied by some special

subject phrases (as in'Al lof the cruisers which were bui l t  . . . ' ) ,  is

that logic an appropriate one. Only in those cases, perhaps, are
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subaltern inference and c.p.&. valid (and A and E forms contrary).

By contrast with Strawsonrs interpretation, Interpretation I gives

no existential import to .E propositions . No can certainly replac e Euery in

(1) or (2) without introducing such import, and there is indeed some

pLausibility in the claim that the form No a is F because there is no a

is unrestrictedly seU-consistent. Keynes cites such oramples as:

No unicorns have ever been seen

No satlsfactory solution of the problem of squaring

the circle has ever been published

which are true simply because there are no unicorns and because there

is no way of squaring the circle. once again, in those cases where

existential lmport might seem to be carried (No mammal is inuerte-

brate?1, it may be possible to explain the impUcation as a non-logical

conversational implicature. To say that no a Fts when one knew that

there was no a would be to violate the pragmatic principle not to say

something weak wtren one is in a position to say something stronger. It

Day, then, be the case that ecistential lmport is carrled by universal

negative propositions only in cases like:

(6) None of the planes became operailonal

Finallyr in the case of O proposittons, tt seems that, tf

some a Fts has existential import, then so does some a does not F.

This ls ultry, when we wanted to interpret o in accordance with the

practice of medieval logicians like Buridan, we used the form 'Not

every . . . '. But it is not at all certain that thts readlng secures the

intended result either, as can be seen by adding Not to the beglnnlng

of (1) ot (2). Doesn't Not eueryone who passes this examinntion is lucky

logically imply that there will be some successful though luckless candl-

date? certatnly if anA sentence like Euery whale is a mammal bas

ecistential lmport it is hard to deny it to Nol euery whale is a mammal.
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For compaTe a case ll'here the special nature of the subject term gtves

rise to an undeniable existential entailment:

(7) Every ship they built had flaws l
(8) Not every ship the;- built had flaws )

If we propose to interpret BS in accordance with Interpretation

I. then, the. English sentence forms we have used in previous chapters

are not wholly suitable. A sentence may need to be supplemented with

an existential conjunct, or O sentences with a disjunct cancelling exist-

ent ia l  impor t  (A:or t  r ' l ' r ' , ' , \ ' ( /  is  a  b  o t ' t l te re  is  no a) .  And i f ,  as  seems

reasonable, the unmodified,4. E, / and O sentences are to be analysed

in the Frege,/Russell manner. we emerge with an interpretation under

ii'hich neither BS nor BS" is sound. (The syllogistic which fits this

ir-rterpretation was given at the end of the last chapter. )

Anyone interested in the question of the existential import of

general categorical propositions will have found the treatment here

sketchy. over-simple and deliberately inconclusive. I believe that the

issue is of too little importance to have warranted all the attention

Iogicians have given it-. and I have therefore not attempted to add

significantly to their discussions,. But a lucid and thorouglr treatment will

be found in Keynes (1906), an elegant historical review by Alonzo Church

(1965), and further summaries and references are given (regrettably

u'ithout their virtues of style and organization) by J.S. Wu (1969).
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