
A Relational Derivation of a Functional Program

Graham Hutton
Chalmers University of Technology,

Göteborg, Sweden
graham@cs.chalmers.se

September 15, 1992

Abstract

This article is an introduction to the use of relational calculi in deriving programs.
We present a derivation in a relational language of a functional program that
adds one bit to a binary number. The resulting program is unsurprising, being
the standard ‘column of half–adders’, but the derivation illustrates a number of
points about working with relations rather than functions.

1 Ruby

Our derivation is made within the relational calculi developed by Jones and Sheeran
[14, 15]. Their language, called Ruby , is designed specifically for the derivation of
‘hardware–like’ programs that denote finite networks of simple primitives. Ruby has been
used to derive a number of different kinds of hardware–like programs [13, 22, 23, 16].

Programs in Ruby are built piecewise from smaller programs using a simple set of
combining forms. Ruby is not meant as a programming language in its own right, but
as a tool for developing and explaining algorithms. Fundamental to Ruby is the use of
terse notation; most formulae fit onto a single line. Having compact formulae makes it
easier to pattern–match parts of a program with laws for transforming programs, and
lessens the drudgery of copying unchanged parts of a formulae from one step to the
next. A transformation step in Ruby is the replacement of some part of the program
with another part that denotes the same relation, but is defined in a different way.
Some transformation steps directly make the program more efficient in some way, many
just shift parts of programs around with a view to improving efficiency later on. The
calculational approach is not about being pedantic; rather it is about finding succinct
and elegant arguments. Much of the art in presenting calculations is finding just the
right level of detail. In the remainder of this section we give a brief introduction to Ruby.

Recall that a (binary) relation is a set of pairs. Throughout this article, letters
R, S, T, . . . denote relations. We often write x R y rather than (x, y) ∈ R.

The primitive relations from which Ruby programs are built are commonly just simple
arithmetic and logical functions interpreted as relations. For a function f : A → B, the

corresponding ‘functional relation’ is defined by {(a, fa) | a ∈ A}. Lifting of functions
to relations is often left implicit in Ruby; the same symbol is used for both a function
and its interpretation as a relation. Partially–applied infix functions (sections) can also
be implicitly lifted; for example, (∗2) = {(a, a ∗ 2) | a ∈ Z}. When defining a relation
R in Ruby, a R b =̂ P (where P is a predicate that may refer to a and b) abbreviates
R =̂ {(a, b) | P)}. If P = true, then the “=̂ true” part is omitted.

The basic combining forms are compose, par and converse:

Definition 1:

a (R ; S) c =̂ ∃b. a R b ∧ b S c,

(a, b) [R, S] (c, d) =̂ a R c ∧ b S d,

a R−1 b =̂ b R a.

For example,

(3, 4) (+ ; ∗2) 24,

(1, 6) [+1, ∗2−1] (2, 3).

Par can be generalised to an arbitrary number of arguments; for example, we write
[R, S, T] for the parallel composition of three relations R, S and T .

The basic combining forms have a number of useful properties:

Lemma 2:

(R ; S) ; T = R ; (S ; T),

(R−1)
−1

= R,

(R ; S)−1 = S−1 ; R−1,

[R, S]−1 = [R−1, S−1],

[R, S] ; [T, U] = [R ; T, S ; U].

A number of restructuring relations are used:

Definition 3:

a id a,

(a, b) swap (b, a),

(a, b) π1 a,

(a, b) π2 b,

a fork (a, a),

((a, b), c) lsh (a, (b, c)),

(a, (b, c)) rsh ((a, b), c).

2

Two common uses of par merit special abbreviations:

Definition 4:

fst R =̂ [R, id],

snd R =̂ [id, R].

The restructuring relations satisfy useful shunting laws, as shown below. We use the
term shunting for any transformation of the form R ; S = S ; T .

Lemma 5:

id ; R = R = R ; id,

[R, S] ; swap = swap ; [S,R],

fst R ; π1 = π1 ; R,

snd R ; π2 = π2 ; R,

R is functional ⇒ R ; fork = fork ; [R,R],

[[R, S], T] ; lsh = lsh ; [R, [S, T]],

[R, [S, T]] ; rsh = rsh ; [[R, S], T].

The n–fold composition of a relation R is written Rn. For example, R3 = R ; R ; R.
Note that (Rn)−1 = (R−1)n. We abbreviate (Rn)−1 by R−n.

Definition 6:

R0 = id,
Rn+1 = Rn ; R.

1.1 Pictures

As well as denoting binary relations, Ruby terms also have a geometric interpretation as
networks of primitive relations connected by wires. For example, the primitive relation
+ (addition) can be pictured as a single node:

+
.

By convention, domain values are carried on the left-hand wires of a primitive, and range
values on the right-hand wires. Just as tuples of values are read from left to right, busses
of wires are read from bottom to top. Terms built using operators of Ruby are pictured
in terms of pictures of their arguments. A term R ; S is pictured by placing a picture
of R to the left of a picture of S, and joining the intermediate wires:

3

R S
.

A term R−1 can be pictured by bending wires in a picture of R:

R

.

In practice, such a picture is simplified by ‘pulling the domain and range wires tight’,
such that the picture of R flips about the vertical axis:

R−1

.

A term [R, S] is pictured by placing a picture of R below a picture of S:

R

S

.

Relations from pairs to pairs can be pictured as 4–sided components:

.

In Ruby the left and top connections in such a picture are interpreted as the domain
of the corresponding relation, and the bottom and right connections as the range. As
shown below, there are two natural ways to combine relations from pairs to pairs; either
place one relation beside the other, or place one below the other.

R S

R

S

.

The combining forms beside and below are defined as follows:

Definition 7:

(a, (b, c)) R↔ S ((d, e), f) =̂ ∃x. (a, b) R (d, x) ∧ (x, c) S (e, f),

((a, b), c) R l S (d, (e, f)) =̂ ∃x. (a, x) R (d, e) ∧ (b, c) S (x, f).

Notice that below is dual to beside:

Lemma 8: R l S = (R−1 ↔ S−1)
−1

.

4

1.2 Generic combining forms

A generic combining form is one whose first argument is a natural number that specifies
which instance of a general pattern is required. The most commonly used generic
combining form is map; two n–tuples are related by mapn R when their corresponding
elements are related by R.

Definition 9: (a0, . . . , an−1) (mapn R) (b0, . . . , bn−1) =̂ ai R bi.

Map expresses repeated parallel composition; for example, map4 R = [R,R,R,R]. It
is left implicit that the variable i in the map definition ranges over naturals < n. Map
distributes through composition, and commutes with converse:

Lemma 10: mapn (R ; S) = (mapn R) ; (mapn S).

Lemma 11: (mapn R)−1 = mapn R
−1.

A few generic restructuring relations are used:

Definition 12:

(a, (b0, . . . , bn−1)) apln (a, b0, . . . , bn−1),

((a0, . . . , an−1), b) aprn (a0, . . . , an−1, b),

(a0, a1, . . . , an−1) revn (an−1, . . . , a1, a0).

For example,

(1, (2, 3, 4)) apl3 (1, 2, 3, 4),

((1, 2, 3), 4) apr3 (1, 2, 3, 4),

(1, 2, 3, 4) rev4 (4, 3, 2, 1).

They satisfy shunting laws:

Lemma 13:

[R,mapn R] ; apln = apln ; mapn+1 R,

[mapn R,R] ; aprn = aprn ; mapn+1 R,

mapn R ; revn = revn ; mapn R.

Similar to map is triangle; two n–tuples are related by trin R when their ith compo-
nents are related by Ri, rather than just R as is the case for map:

Definition 14: (a0, . . . , an−1) (trin R) (b0, . . . , bn−1) =̂ ai R
i bi.

5

R

R

R

R

R R

R

R

R

R

R

R

Figure 1: Pictures of tri4 R and irt4 R

Triangles which grow in the opposite direction are also useful:

Definition 15: irtn R =̂ revn ; trin R ; revn.

See Figure 1. For example,

(a, b, c, d) tri4 (∗2) (a, 2b, 4c, 8d),

(a, b, c, d) irt4 (∗2) (8a, 4b, 2c, d).

The generic combining form row yields a relation that takes a value and an n–tuple
to an n–tuple and a value, by stacking n copies of a relation from pairs to pairs beside
one another:

Definition 16:

(a, (b)) row1 R ((c), d) =̂ (a, b) R (c, d),

rown+2 R =̂ snd apln+1
−1 ; (R↔ rown+1 R) ; fst apln+1.

(Choosing n = 1 as the base–case for rown R avoids some technical problems with types
[17].) Just as below is dual to beside, so column is dual to row . See Figure 2.

Definition 17: coln R =̂ (rown R
−1)
−1

.

Combining forms reduce left and reduce right are relational versions of the familiar
operators of the same name from functional programming:

Definition 18:

rdln R =̂ rown (R ; π2
−1) ; π2,

rdrn R =̂ coln (R ; π1
−1) ; π1.

See Figure 3. For example, if ⊕ is a functional relation from pairs to values, then

6

R R R R

R

R

R

R

Figure 2: Pictures of row4 R and col4 R

R R R R

R

R

R

R

Figure 3: Pictures of rdl4 R and rdr4 R

7

(a, (b, c, d)) (rdl3 ⊕) ((a⊕ b)⊕ c)⊕ d,

((a, b, c), d) (rdr3 ⊕) a⊕ (b⊕ (c⊕ d)).

Summing an n–tuple (n > 0) of numbers merits its own abbreviation:

Definition 19: sumn+1 =̂ apln
−1 ; rdln +.

Here are some simple properties:

Lemma 20: fst sumn ; + = rdrn +.

Lemma 21: snd sumn ; + = rdln +.

1.3 Useful laws

The previous two sections include some laws about Ruby primitives and combining forms.
In this section we give the other Ruby laws (all standard) that are used in our derivation
of the binary addition program. Proofs of laws 25 to 28 can be found in some of the
earlier Ruby articles; all are ‘clearly true’ if one thinks in terms of pictures.

The first three laws are about the primitives + and ∗. The first is a dummy–free
version of the standard distributivity rule. The remaining two are relational properties
that are used again and again when deriving programs using Ruby.

Lemma 22: + ; ∗n = [∗n, ∗n] ; +.

Lemma 23: fst ∗n ; + ; ∗n−1 = snd ∗n−1 ; +.

Lemma 24: + ; +−1 = snd +−1 ; rsh ; fst +.

The next law expresses that the argument to map can be pushed inside a column.
(Of course, similar laws hold for rows, and reductions, but we don’t use them here.)
This law is used in the left–to–right direction, to bring together the argument of a map
and the argument of a column so that they can be manipulated together.

Lemma 25: (map through column)

fst (mapn R) ; coln S ; snd (mapn T) = coln (fst R ; S ; snd T).

The next law expresses that a transformation of a certain form (essentially a ‘shunting
transformation’) can be rippled through a column of components. (Again, similar laws
hold for rows and reductions.) When deriving programs, this law is often used to push a
type constraint upon the domain or range of a column through to the argument program.

8

Lemma 26: (column induction)

snd R ; S = T ; fst R
⇒

snd R ; coln S = coln T ; fst R.

The term Horner’s rule usually refers to

anx
n + . . . a2x

2 + a1x
1 + a0x

0 = (((anx+ . . .)x+ a2)x+ a1)x+ a0,

which shows how to evaluate polynomials more efficiently. Bird and Meertens have used
a variant of Horner’s rule to great effect in deriving functional programs [4]. The law
below is a variant of Horner’s rule that is used in Ruby.

Lemma 27: (Horner’s rule for column)

fst R ; S ; [T, T] = snd T ; S
⇒

fst (irtn R) ; coln S ; [T n, irtn T] = coln (S ; fst T).

Our final law allows a reduction and the converse of a reduction to be combined to
give a column. The application of this rule is a key step in our derivation.

Lemma 28: (combining reductions)

R ; S−1 = snd S−1 ; rsh ; fst R
⇒

rdrn R ; (rdln S)−1 = coln (R ; S−1).

2 Binary addition

In this section we derive a Ruby program that takes an n–bit binary number (n > 0) and
a single bit, and gives a carry bit and an n–bit sum; the example is taken from [12]. The
resulting program is unsurprising, being the standard ‘column of half–adders’, but the
derivation illustrates a number of important points about working with relations rather
than functions, which are discussed in section 3.

An n–bit binary number will be represented as an n–tuple of 0’s and 1’s. The
leftmost value in the tuple is assumed to be the most significant. For example, the tuple
(1, 1, 0, 1, 0) is the representation of the decimal number 26 as a 5–bit binary number;
that is, 1.24 + 1.23 + 0.22 + 1.21 + 0.20 = 26.

We begin by defining a program binn that converts an n–bit binary number to the
corresponding natural number; b abbreviates the identity relation {(0, 0), (1, 1)} on bits.
Figure 4 depicts bin4; the •’s in this picture represent b.

Definition 29: binn =̂ mapn b ; irtn (∗2) ; sumn.

9

∗2

∗2

∗2

+ + +

∗2

∗2

∗2

• • • •

Figure 4: map4 b ; irt4 (∗2) ; sum4

Given below is our specification for the addition program: R converts the binary
number to an integer and adds the bit, S−1 separates off the most significant bit of the
result, and converts the remaining integer back to binary.

Definition 30: add1n =̂ R ; S−1

R = [binn, b] ; +,

S = [b ; (∗2)n, binn] ; +.

There are natural reasons to regard this as a specification rather than an implementation.
Firstly, even though add1n as a whole denotes a functional relation, there are parts of
add1n that do not, for example + ; +−1. Secondly, one might expect that internally the
binary addition program should manipulate only 0’s and 1’s, whereas natural numbers
are used within add1n as defined above. We shall calculate a program that denotes the
same relation as add1n, but whose sub–parts are all functional, and whose primitives are
essentially bit–level operations.

We begin with some simple rearranging steps. (Note that we sometimes underline
parts of a term within a calculation. This simple trick guides the eye to the parts being
changed, and helps in pattern matching against the laws, particularly when the term
properly matches the law only after some simple re–arranging. As a byproduct, many of
the hints between steps become simpler too.)

add1n

= { def 30 }

[binn, b] ; + ; ([b ; (∗2)n, binn] ; +)−1

= { def 29 }

[mapn b ; irtn ∗2 ; sumn, b] ; + ; ([b ; (∗2)n,mapn b ; irtn ∗2 ; sumn] ; +)−1

= { sums (20,21) }

10

[mapn b ; irtn ∗2, b] ; rdrn + ; ([b ; (∗2)n,mapn b ; irtn ∗2] ; rdln +)−1

= { converse }
[mapn b ; irtn ∗2, b] ; rdrn + ; (rdln +)−1 ; [(∗2)−n ; b, irtn ∗2−1 ; mapn b]

The right–reduction and converse left–reduction can now be combined using lemma 28.
This law is used here with R = S = +. Under these assignments, the precondition is
given by lemma 24, a property of addition much used in Ruby. We continue:

[mapn b ; irtn ∗2, b] ; rdrn + ; (rdln +)−1 ; [(∗2)−n ; b, irtn ∗2−1 ; mapn b]

= { combining reductions (28) }
[mapn b ; irtn ∗2, b] ; coln (+ ; +−1) ; [(∗2)−n ; b, irtn ∗2−1 ; mapn b]

Now the triangles can be pushed inside the column using a variant of Horner’s rule,
lemma 27. This law is used here with R = ∗2, S = (+ ; +−1), and T = ∗2−1. We
verify the precondition of the law under these assignments as follows:

fst R ; S ; [T, T] = snd T ; S

≡ { assignments }
fst ∗2 ; + ; +−1 ; [∗2−1, ∗2−1] = snd ∗2−1 ; + ; +−1

≡ { distribution (22) }
fst ∗2 ; + ; ∗2−1 ; +−1 = snd ∗2−1 ; + ; +−1

⇐ { Liebniz }
fst ∗2 ; + ; ∗2−1 = snd ∗2−1 ; +

≡ { lemma 23 }
true

Continuing with the add1n calculation:

[mapn b ; irtn ∗2, b] ; coln (+ ; +−1) ; [(∗2)−n ; b, irtn ∗2−1 ; mapn b]

= { Horner’s rule (27) }
[mapn b, b] ; coln (+ ; +−1 ; fst ∗2−1) ; [b,mapn b]

= { map through column (25) }
snd b ; coln (fst b ; + ; +−1 ; [∗2−1, b]) ; fst b

Our next step is to ripple the type constraint (snd b) through the column, using column
induction (lemma 26). This law is used here with R = b, S = fst b ; + ; +−1 ; [∗2−1, b],
and T = [b, b] ; + ; +−1 ; [∗2−1 ; b, b]. Let us verify the precondition:

snd R ; S = T ; fst R

≡ { assignments }
[b, b] ; + ; +−1 ; [∗2−1, b] = [b, b] ; + ; +−1 ; [∗2−1 ; b, b]

11

We verify this identity as follows. (Within the calculation below, a set is lifted to an
identity relation by enclosing its elements between parenthesis [[and]].)

[b, b] ; + ; +−1 ; [∗2−1, b]

= { addition }
[b, b] ; + ; [[0, 1, 2]] ; +−1 ; [∗2−1, b]

= { converse }

[b, b] ; + ; ([∗2, b] ; + ; [[0, 1, 2]])−1

= { shunting }

[b, b] ; + ; ([∗2 ; [[−1, 0, 1, 2]], b] ; +)−1

= { shunting }
[b, b] ; + ; ([b ; ∗2, b] ; +)−1

= { converse }
[b, b] ; + ; +−1 ; [∗2−1 ; b, b]

Continuing with the add1n calculation:

snd b ; coln (fst b ; + ; +−1 ; [∗2−1, b]) ; fst b

= { column induction (26) }
coln ([b, b] ; + ; +−1 ; [∗2−1 ; b, b]) ; fst b

= { def 31 }
coln HA ; fst b

= { n > 0 }
coln HA

A half adder (HA) is a relation that gives the binary carry and sum of a pair of bits:

Definition 31: HA =̂ [b, b] ; + ; ([b ; ∗2, b] ; +)−1.

Lemma 32: HA =

{((0, 0), (0, 0)),
((0, 1), (0, 1)),
((1, 0), (0, 1)),
((1, 1), (1, 0))}.

It can be implemented in terms of functional primitives:

Lemma 33: HA = [b, b] ; + ; fork ; [div 2 ; b,mod 2 ; b].

This result follows quickly from the following:

12

Lemma 34: x > 0 ⇒ ([∗x, [[0 . . . x− 1]]] ; +)−1 = fork ; [div x,mod x].

This completes the derivation of the binary addition program, which is now in the
form of an implementation. In summary, we have made the following transformation:

add1n

= { by definition }

[binn, b] ; + ; ([b ; (∗2)n, binn] ; +)−1

= { by calculation }
coln ([b, b] ; + ; fork ; [div 2 ; b,mod 2 ; b])

3 Discussion

We have shown how the relational language Ruby can be used to derive a simple func-
tional program. In this final section we stand back from this specific example and make
some comments about the use of relational calculi in deriving programs.

3.1 Why relations?

The addition program that we have derived is a functional program, in that one could
define functional versions of the Ruby combining forms in a language such as ML, and
execute the addition program. What has been gained in deriving the program within
a relational language? One answer is that during the derivation we were able to make
transformations that resulted in some sub–parts of the program being non–functional;
for example, rdrn + ; (rdln +)−1 is very much a relation. (Of course, since all our
transformation steps are equalities, the program as a whole denotes a functional relation
at all stages throughout the derivation.) One might think of relations in this context
as being ‘imaginary functions’ that are useful during the derivation process. Particularly
useful in specifying and manipulating programs is the converse operator for relations; only
injective functions have an ‘inverse’, but every relation has a converse. For example, even
though in the specification R ; S−1 for the addition program the function S is injective,
and hence has an inverse, it is only by treating S as a relation and being able to distribute
the converse operator (contravariantly) through S that progress is made.

Another reason to generalise from functions to relations is to allow non–deterministic
programs; functional programs produce at most one output for each input, relational
programs can produce an arbitrary number. A central topic of [12] is the derivation
of relational programs that are non–determinstic in a very structured way, being able
to be expressed as the union of disjoint products of sets; such relations are known as
‘difunctional’ relations. Equivalently, the difunctionals are precisely those relations that
can be expressed as the composition of a functional relation and the converse of a func-
tional relation. A great many programs can be specified as such a composition; such
programs have been called ‘representation changers’, converting an ‘abstract’ value from
one ‘concrete’ representation to another concrete representation [15, 12]. Refinement of

13

a program specified in the form f ; g−1 proceeds by sliding parts of f and g−1 through
one another, aiming towards a new program with components that are representation
changers with smaller abstract types. In this sense, ‘thinking about types’ guides re-
finement. The process is repeated until the remaining representation changers can be
implemented directly using a few standard primitives. It is encouraging to find that the
same patterns of transformations are used again and again when calculating with repre-
sentation changers. The add1n program is a simple example of a representation changer;
in this case refinement stops after one iteration, when we find that the half–adder HA
can be implemented directly.

Relations A ˜ B are in one–to–one correspondence with functions A → PB, where
P here denotes the power–set operator. Why then not just stay within a functional
paradigm, for example the Bird–Meertens formalism (sometimes called Squiggol) [4],
and admit sets as a type? Our answer is that even though relations and set–valued
functions are of equivalent expressive power, the algebra of relations is much cleaner
than the algebra of set–valued functions; compare our relational calculations with the
functional calculations in [18]. Generalising from functions to relations brings many
advantages. Are there yet more general calculi with even more advantages? In [19]
de Moor observes that functions PA → PB (predicate transformers [8]) generalise
relations A ˜ B in the same way that such relations generalise functions A → B. There
is a wealth of work in the use of predicate transformers in program calculation; it would
be interesting to compare with the use of binary relations. Perhaps there are advantages
in making yet another jump and working with relations PA ˜ PB?

3.2 Types

In relational calculus it is common to write R ⊆ A×B (where A and B are sets) in
the form of a typing judgement R ∈ A ˜ B. We can make a ‘point–free’ version of this
definition by working with identity relations A,B ⊆ id as types:

R ∈ A ˜ B ≡ A ; R = R = R ; B.

We say in such a case that A is a ‘left domain’ of R, and B a ‘right domain’. An extensive
exploration of this approach is given by Backhouse et al [1]. There are advantages to
being more general and adopting equivalence relations as types rather than identity
relations [11, 12, 15, 27, 28]. Sometimes the precondition of a Ruby law that is applied
during a calculation works out to be an assertion about types; see for example the use
of column induction in the add1n derivation, in which the precondition works out to the
assertion that the identity relation fst b is a right domain of some program. For simple
examples like the add1n derivation, no special machinery is needed to verify assertions
about types. For more involved examples however, ‘domain operators’ (which yield least
domains under an appropriate ordering for the kind of types) and their associated calculus
have proved fundamental in verifying assertions about types [12]. Indeed, prior to the
use of these operators, many assertions about types in Ruby derivations were verified
either informally, or outwith the algebraic setting of the Ruby calculus.

14

3.3 Related work

The basic theory of binary relations was developed by Peirce, around 1870. Schröder
extended the theory in a very thorough and systematic way around 1895. Tarksi’s aim in
writing his well–known article [24] in 1941 was to “awaken interest in a certain neglected
logical theory”, saying that “the calculus of relations deserves much more attention than
it receives”, having “an intrinsic charm and beauty which makes it a source of intellectual
delight to all who become acquainted with it.”

Modern introductions to relational algebra that may be of interest to calculational
programmers are given by Dijkstra [7] and van Gasteren and Feijen [9]. Schmidt and
Ströhlein have recently published a textbook on relational algebra [20]. Backhouse, Vo-
ermans and van der Woude [1] extend the work of Tarski in axiomatising the relational
calculus, developing their spec calculus as a framework for deriving programs; the group
have developed a wealth of theory, but have not yet started to experiment with deriva-
tions. Haeberer and Veloso [26] derive a number of simple programs using a relational
language. Berghammer [3] proposes the use of relational algebra to specify types and
programs; the idea of characterising types by a number of relational formulae is also
explored in Desharnais’ thesis [6]. Haeberer and Veloso [25] have returned to Tarski’s
question of how the relational calculus might be extended to gain the expressive power
of first–order classical logic. An extensive categorical treatment of binary relations is
given by Freyd and Scedrov in their recent book [10]; other relevent categorical work
includes that of Barr [2], and Carboni, Kasangian and Street [5]. In his D.Phil. thesis [19]
de Moor shows how categorical results about relations can be used in solving ‘dynamic
programming’ problems.

Acknowledgements

This research was funded by SERC projects ‘relational programming’ and ‘structured
parallel programming’. Thanks to Carolyn Brown, Clare Martin and Mary Sheeran for
comments.

References

[1] Roland Backhouse, Ed Voermans and Jaap van der Woude. A relational theory of
datatypes. Proc. EURICS Workshop on Calculational Theories of Program Struc-
ture, Ameland, The Netherlands, September 1991.

[2] Michael Barr. Relational Algebras. Reports of the the Midwest Category Seminar
IV, Lecture Notes in Mathematics, vol 137, Springer–Verlag, 1970.

[3] Rudolf Berghammer. Relational specification of data types and programs. Univer-
sitat der Bundeswehr Munchen, Report 9109, September 1991.

[4] Richard Bird. Lectures on constructive functional programming. Oxford University
1988. (PRG–69)

15

[5] Aurelio Carboni, Stefano Kasangian, and Ross Street. Bicategories of spans and
relations. Journal of Pure and Applied Algebra 33 (1984) 259–267.

[6] J. Desharnais. Abstract relational semantics. Ph.D. thesis, McGill University, Mon-
treal, 1989.

[7] Edsger W. Dijkstra. A relational summary. (EWD1047)

[8] Edsger W. Dijsktra and Caroll Scholten. Predicate calculus and program semantics.
Springer–Verlag, 1990.

[9] Wim Feijen and Netty van Gasteren. An introduction into the relational calculus.
Eindhoven University of Technology, 1991. (AvG91/WF140)

[10] Peter Freyd and Andre Scedrov. Categories, Allegories. North–Holland, 1990.

[11] Graham Hutton and Ed Voermans. A calculational theory of pers as types. Glasgow
University Research Report 1992/R1.

[12] Graham Hutton. Between functions and relations in calculating programs. Ph.D.
thesis, Glasgow University, 1992. (To appear)

[13] Geraint Jones and Mary Sheeran. Timeless Truths About Sequential Circuits. Con-
current Computations: Algorithms, Architectures and Technology (ed. Tewksbury
et al), Plenum Press, New York 1988.

[14] Geraint Jones. Designing circuits by calculation. Oxford University, April 1990.
(PRG–TR–10–90)

[15] Geraint Jones and Mary Sheeran. Relations and refinement in circuit design. Glas-
gow University, February 1992.

[16] Geraint Jones and Mary Sheeran. Designing arithmetic circuits by refinement in
Ruby. Glasgow University, February 1992.

[17] Geraint Jones. A certain loss of identity . Draft Proceedings, 1992 Glasgow Work-
shop on Functional Programming. To appear in Springer Workshops in Computing.

[18] Oege de Moor. Indeterminacy in optimization problems. Proc. Summer School on
constructive algorithmics, Ameland, The Netherlands, September 1989.

[19] Oege de Moor. Categories, Relations and Dynamic Programming . D.Phil. thesis,
Oxford University, April 1992. (PRG–98)

[20] G. Schmidt and T. Ströhlein. Relationen und Grafen. Springer–Verlag, 1988.

[21] Mary Sheeran. Describing and Reasoning about Circuits Using Relations Proc.
Workshop in Theoretical Aspects of VLSI (ed. Tucker et al), Leeds 1986.

[22] Mary Sheeran. Retiming and Slowdown in Ruby. The Fusion of Hardware Design
and Verification (ed. Milne), North–Holland 1988.

16

[23] Mary Sheeran. Describing Butterfly Networks in Ruby . Proc. 1989 Glasgow Work-
shop on Functional Programming, Springer Workshops in Computing.

[24] Alfred Tarski. On the calculus of relations. Journal of Symbolic Logic, 6(3):73–89,
September 1941.

[25] Paulo Veloso and Armando Haeberer. A finitely relational algebra for classical first-
order logic. (Presented at 9th international congress of Logic, Methodology and
Phylosophy of Science, Sweden.)

[26] Paulo Veloso and Armando Haeberer. Partial relations for program derivation. Proc.
IFIP WG–2.1 Working Conference on Constructing Programs from Specifications,
USA, May 1991.

[27] Ed Voermans. A relational theory of datatypes. (working title) Ph.D. thesis, Eind-
hoven University of Technology, 1992. (To appear)

[28] Ed Voermans and Jaap van der Woude. A relational theory of datatypes: the per
version. Eindhoven University of Technology, January 1992.

17

