
Under consideration for publication in J. Functional Programming 1

Higher-Order Functions for Parsing∗
Graham Hutton

Department of Computer Science, University of Utrecht,

PO Box 80.089, 3508 TB Utrecht, The Netherlands.

Abstract

In combinator parsing , the text of parsers resembles BNF notation. We present the basic
method, and a number of extensions. We address the special problems presented by white–
space, and parsers with separate lexical and syntactic phases. In particular, a combining
form for handling the “offside rule” is given. Other extensions to the basic method include
an “into” combining form with many useful applications, and a simple means by which
combinator parsers can produce more informative error messages.

1 Introduction

Broadly speaking, a parser may be defined as a program which analyses text to
determine its logical structure. For example, the parsing phase in a compiler takes
a program text, and produces a parse tree which expounds the structure of the
program. Many programs can be improved by having their input parsed. The form of
input which is acceptable is usually defined by a context–free grammar, using BNF
notation. Parsers themselves may be built by hand, but are most often generated
automatically using tools like Lex and Yacc from Unix (Aho86).

Although there are many methods of building parsing, one in particular has
gained widespread acceptance for use in lazy functional languages. In this method,
parsers are modelled directly as functions; larger parsers are built piecewise from
smaller parsers using higher order functions. For example, we define higher order
functions for sequencing, alternation and repetition. In this way, the text of parsers
closely resembles BNF notation. Parsers in this style are quick to build, and simple
to understand and modify. In the sequel, we refer to the method as combinator
parsing , after the higher order functions used to combine parsers.

Combinator parsing is considerably more powerful than the commonly used meth-
ods, being able to handle ambiguous grammars, and providing full backtracking if
it is needed. In fact, we can do more than just parsing. Semantic actions can be
added to parsers, allowing their results to be manipulated in any way we please. For
example, in section 2.4 we convert a parser for arithmetic expressions to an eval-
uator simply by changing the semantic actions. More generally, we could imagine
generating some form of abstract machine code as programs are parsed.

∗ Appears in the Journal of Functional Programming 2(3):323–343, July 1992.

2 Graham Hutton

Although the principles are widely known (due in most part to (Wadler85)),
little has been written on combinator parsing itself. In this article, we present the
basic method, and a number of extensions. The techniques may be used in any lazy
functional language with a higher–order/polymorphic style type system. All our
programming examples are given in Miranda1; features and standard functions are
explained as they are used. A library of parsing functions taken from this paper is
available by electronic mail from the author. Versions exist in both Miranda and
Lazy ML.

2 Parsing Using Combinators

We begin by defining a type of parsers. A parser may be viewed as a function from
a string of symbols to a result value. Since a parser might not consume the entire
string, part of this result will be a suffix of the input string. Sometimes a parser may
not be able to produce a result at all. For example, it may be expecting a letter, but
find a digit. Rather than defining a special type for the success or failure of a parser,
we choose to have parsers return a list of pairs as their result, with the empty list
[] denoting failure, and a singleton list [(v,xs)] indicating success, with value v

and unconsumed input xs. As we shall see in section 2.2, having parsers return a
list of results proves very useful. Since we want to specify the type of any parser,
regardless of the kind of symbols and results involved, these types are included as
extra parameters. In Miranda, type variables are denoted by sequences of stars.

parser * ** == [*] -> [(**,[*])]

For example, a parser for arithmetic expressions might have type (parser char

expr), indicating that it takes a string of characters, and produces an expression
tree. Notice that parser is not a new type as such, but an abbreviation (or syn-
onym); it’s only purpose is to make types involving parsers easier to understand.

2.1 Primitive parsers

The primitive parsers are the building blocks of combinator parsing. The first of
these corresponds to the ε symbol in BNF notation, denoting the empty string.
The succeed parser always succeeds, without actually consuming any of the input
string. Since the outcome of succeed does not depend upon its input, its result
value must be pre–determined, so is included as an extra parameter:

succeed :: ** -> parser * **

succeed v inp = [(v,inp)]

This definition relies on partial application to work properly. The order of the argu-
ments means that if succeed is supplied only one argument, the result is a parser
(i.e. a function) which always succeeds with this value. For example, (succeed 5)

1 Miranda is a trademark of Research Software Limited.

Higher-Order Functions for Parsing 3

is a parser which always returns the value 5. Furthermore, even though succeed

plainly has two arguments, its type would suggest it has only one. There is no
magic, the second argument is simply hidden inside the type of the result, as would
be clear upon expansion of the type according to the parser abbreviation.

While succeed never fails, fail always does, regardless of the input string:

fail :: parser * **

fail inp = []

The next function allows us to make parsers that recognise single symbols. Rather
than enumerating the acceptable symbols, we find it more convenient to provide the
set implicitly, via a predicate which determines if an arbitrary symbol is a member.
Successful parses return the consumed symbol as their result value.

satisfy :: (* -> bool) -> parser * *

satisfy p [] = fail []

satisfy p (x:xs) = succeed x xs , p x

= fail xs , otherwise

Notice how succeed and fail are used in this example. Although they are not
strictly necessary, their presence makes the parser easier to read. Note also that the
parser (satisfy p) returns failure if supplied with an empty input string.

Using satisfy we can define a parser for single symbols:

literal :: * -> parser * *

literal x = satisfy (=x)

For example, applying the parser (literal ’3’) to the string "345" gives the
result [(’3’,"45")]. In the definition of literal, (=x) is a function which tests
its argument for equality with x. It is an example of operator sectioning , a useful
syntactic convention which allows us to partially apply infix operators.

2.2 Combinators

Now that we have the basic building blocks, we consider how they should be put
together to form useful parsers. In BNF notation, larger grammars are built piece-
wise from smaller ones using | to denote alternation, and juxtaposition to indicate
sequencing. So that our parsers resemble BNF notation, we define higher order
functions which correspond directly to these operators. Since higher order func-
tions like these combine parsers to form other parsers, they are often referred to as
combining forms or combinators. We will use these terms from now on.

The alt combinator corresponds to alternation in BNF. The parser (p1 $alt

p2) recognises anything that either p1 or p2 would. Normally we would interpret
either in a sequential (or exclusive) manner, returning the result of the first parser
to succeed, and failure if neither does. This approach is taken in (Fairbairn86).

4 Graham Hutton

In combinator parsing however, we use inclusive either — it is acceptable for both
parsers to succeed, in which case we return both results. In general then, combinator
parsers may return an arbitrary number of results. This explains our decision earlier
to have parsers return a list of results.

With parsers returning a list, alt is implemented simply by appending (denoted
by ++ in Miranda) the result of applying both parsers to the input string. In keeping
with the BNF notation, we use the Miranda $ notation to convert alt to an infix
operator. Just as for sectioning, the infix notation is merely a syntactic convenience:
(x $f y) is equivalent to (f x y) in all contexts.

alt :: parser * ** -> parser * ** -> parser * **

(p1 $alt p2) inp = p1 inp ++ p2 inp

Knowing that the empty–list [] is the identity element for ++, it is easy to verify
from this definition that failure is the identity element for alternation: (fail $alt

p) = (p $alt fail) = p. In practical terms this means that alt has the expected
behaviour if only one of the argument parsers succeeds. Similarly, alt inherits
associativity from ++: (p $alt q) $alt r = p $alt (q $alt r). This means we
do not not need to worry about bracketing repeated alternation correctly.

Allowing parsers to produce more than one result allows us to handle ambiguous
grammars, with all possible parses being produced for an ambiguous string. The
feature has proved particularly useful in natural language processing (Frost88). An
example ambiguous string from (Frost88) is “Who discovered a moon that orbits
Mars or Jupiter ?” Most often however, we are only interested in the single longest
parse of a string (i.e. that which consumes the most symbols). For this reason, it is
normal in combinator parsing to arrange for the parses to be returned in descending
order of length. All that is required is a little care in the ordering of the argument
parsers to alt. See for example the many combinator in the next section.

The then combinator corresponds to sequencing in BNF. The parser (p1 $then

p2) recognises anything that p1 and p2 would if placed in succession. Since the first
parser may succeed with many results, each with an input stream suffix, the second
parser must be applied to each of these in turn. In this manner, two results are
produced for each successful parse, one from each parser. They are combined (by
pairing) to form a single result for the compound parser.

then :: parser * ** -> parser * *** -> parser * (**,***)

(p1 $then p2) inp = [((v1,v2),out2) | (v1,out1) <- p1 inp;

(v2,out2) <- p2 out1]

For example, applying the parser (literal ’a’ $then literal ’b’) to the input
"abcd" gives the result [((’a’,’b’),"cd")]. The then combinator is an excellent
example of list comprehension notation, analogous to set comprehension in math-
ematics (e.g. {x2 | x ∈ IN ∧ x < 10} defines the first ten squares), except that lists
replace sets, and elements are drawn in a determined order. Much of the elegance
of the then combinator would be lost if this notation were not available.

Higher-Order Functions for Parsing 5

Unlike alternation, sequencing is not associative, due to the tupling of results from
the component parsers. In Miranda, all infix operators made using the $ notation
are assumed to associate to the right. Thus, when we write (p $then q $then r)
it is interpreted as (p $then (q $then r)).

2.3 Manipulating values

Part of the result from a parser is a value. The using combinator allows us to
manipulate these results, building a parse tree being the most common application.
The parser (p $using f) has the same behaviour as the parser p, except that the
function f is applied to each of its result values:

using :: parser * ** -> (** -> ***) -> parser * ***

(p $using f) inp = [(f v,out) | (v,out) <- p inp]

Although using has no counterpart in pure BNF notation, it does have much in
common with the {· · ·} operator in Yacc (Aho86). In fact, the using combinator
does not restrict us to building parse trees. Arbitrary semantic actions can be
used. For example, in section 2.4 we convert a parser for arithmetic expressions
to an evaluator simply by changing the actions. There is a clear connection here
with attribute grammers. A recent and relevant article on attribute grammars is
(Johnsson87). A combinator parser may be viewed as the implementation in a lazy
functional language of an attribute grammar in which every node has one inherited
attribute (the input string), and two synthesised attributes (the result value of the
parse and the unconsumed part of the input string.) In the remainder of this section
we define some useful new parsers and combinators in terms of our primitives.

In BNF notation, repetition occurs often enough to merit its own abbreviation.
When zero or more repetitions of a phrase p are admissible, we simply write p∗. For-
mally, this notation is defined by the equation p∗ = p p∗ | ε. The many combinator
corresponds directly to this operator, and is defined in much the same way:

many :: parser * ** -> parser * [**]

many p = ((p $then many p) $using cons) $alt (succeed [])

The action cons is the uncurried version of the list constructor “:”, and is defined by
cons (x,xs) = x:xs. Since combinator parsers return all possible parses according
to a grammar, if failure occurs on the nth application of (many p), n results will be
returned, one for each of the 0 to n−1 successful applications. Following convention,
the results are returned in descending order of length. For example, applying the
parser many (literal ’a’) to the string "aaab" gives the list

[("aaa","b"),("aa","ab"),("a","aab"),("","aaab")]

Not surprisingly, the next parser corresponds to the other common iterative form
in BNF, defined by p+ = p p∗. The parser (some p) has the same behaviour as
(many p), except that it accepts one or more repetitions of p, rather of zero or
more:

6 Graham Hutton

some :: parser * ** -> parser * [**]

some p = (p $then many p) $using cons

Note that (some p) may fail, whereas (many p) always succeeds. Using some we
define parsers for number and words — non–empty sequences of digits and letters:

number :: parser char [char]

word :: parser char [char]

number = some (satisfy digit)

where digit x = ’0’ <= x <= ’9’

word = some (satisfy letter)

where letter x = (’a’ <= x <= ’z’) \/ (’A’ <= x <= ’Z’)

The next combinator is a generalisation of the literal primitive, allowing us
build parsers which recognise strings of symbols, rather than just single symbols:

string :: [*] -> parser * [*]

string [] = succeed []

string (x:xs) = (literal x $then string xs) $using cons

For example, applying the parser (string "begin") to the string "begin end"

gives the output [("begin"," end")]. It is important to note that (string xs)
fails if only a prefix of the sequence xs is available in the input string.

As well as being used the define other parsers, the using combinator is often
used to prune unwanted components from a parse tree. Recall that two parsers
composed in sequence produce a pair of results. Sometimes we are only interested in
one component of the pair. For example, it is common to throw away reserved words
such as “begin” and “where” during parsing. In such cases, two special versions of
the then combinator are useful, which throw away either the left or right result
values, as reflected by the position of the letter “x” in their names:

xthen :: parser * ** -> parser * *** -> parser * ***

thenx :: parser * ** -> parser * *** -> parser * **

p1 $xthen p2 = (p1 $then p2) $using snd

p1 $thenx p2 = (p1 $then p2) $using fst

The actions fst and snd are the standard projection functions on pairs, defined by
fst (x,y) = x and snd (x,y) = y.

Sometimes we are not interested in the result from a parser at all, only that the
parser succeeds. For example, if we find a reserved word during lexical analysis, it
may be convenient to return some short representation rather than the string itself.
The return combinator is useful in such cases. The parser (p $return v) has the
same behaviour as p, except that it returns the value v if successful:

Higher-Order Functions for Parsing 7

return :: parser * ** -> *** -> parser * ***

p $return v = p $using (const v)

where const x y = x

2.4 Example

To conclude our introduction to combinator parsing, we will work through the
derivation of a simple parser. Suppose we have a program which works with arith-
metic expressions, defined in Miranda as follows:

expr ::= Num num | expr $Add expr | expr $Sub expr

| expr $Mul expr | expr $Div expr

We can imagine a function showexpr which converts terms of type expr to the
normal arithmetic notation. For example,

showexpr ((Num 3) $Mul ((Num 6) $Add (Num 1))) = "3*(6+1)"

While such pretty–printing is notionally quite simple, the inverse operation, pars-
ing, is usually thought of as being much more involved. As we shall see however,
building a combinator parser for arithmetic expressions is no more complicated
than implementing the showexpr function.

Before we start thinking about parsing, we must define a BNF grammar for
expressions. To begin with, the definition for the type expr may itself be cast in
BNF notation. All we need do is include parenthesised expressions as an extra case:

expn ::= expn+ expn | expn− expn |
expn ∗ expn | expn/expn |
digit+ | (expn)

Although this grammar could be used as the basis of the parser, in practice it
is useful to impose a little more structure. To simplify expressions, multiplication
and division are normally assumed to have higher precedence than addition and
subtraction. For example, 3 + 5 ∗ 2 is interpreted as 3 + (5 ∗ 2). In terms of our
grammar, we introduce a new non–terminal for each level of precedence:

expn ::= term+ term | term− term | term
term ::= factor ∗ factor | factor/factor | factor
factor ::= digit+ | (expn)

While addition and multiplication are clearly associative, division and subtraction
are normally assumed to associate to the left. The natural way to express this
convention in the grammar is with left recursive production rules (such as expn ::=
expn− term). Unfortunately, in top–down methods such as combinator parsing, it
is well known that left–recursion leads to non–termination of the parser (Aho86).
In section 4.1 we show how to transform a grammar to eliminate left–recursion. For
the present however, we will leave the grammar as above, and use extra parenthesis
to disambiguate expressions involving repeated operations.

8 Graham Hutton

Now that we have a grammar for expressions, it is a simple step to build a com-
binator parser. The BNF description is simply re–written in combinator notation,
and augmented with semantic actions to manipulate the result values:

expn = ((term $then literal ’+’ $xthen term) $using plus) $alt

((term $then literal ’-’ $xthen term) $using minus) $alt

term

term = ((factor $then literal ’*’ $xthen factor) $using times) $alt

((factor $then literal ’/’ $xthen factor) $using divide) $alt

factor

factor = (number $using value) $alt

(literal ’(’ $xthen expn $thenx literal ’)’)

Note that the parser makes use of the special sequential combining forms xthen

and thenx to strip non–numeric components from result values. In this way, the
arithmetic actions simply take a pair of expressions as their argument. In the defi-
nitions given below for the actions, numval is the standard Miranda function which
converts a string of digits to the corresponding number.

value xs = Num (numval xs)

plus (x,y) = x $Add y

minus (x,y) = x $Sub y

times (x,y) = x $Mul y

divide (x,y) = x $Div y

This completes the parser. For example, expn "2+(4-1)*3" gives

[(Add (Num 2) (Mul (Sub (Num 4) (Num 1)) (Num 3)) , ""),

(Add (Num 2) (Sub (Num 4) (Num 1)) , "*3"),

(Num 2 , "+(4-1)*3")]

More than one result is produced because the parser is not forced to consume all
the input. As we would expect however, the longest parse is returned first. This
behaviour results from careful ordering of the alternatives in the parser.

Although a parse tree is the natural output from a parser, there is no such restric-
tion in combinator parsing. For example, simply by replacing the standard semantic
actions with the following set, we have an evaluator for arithmetic expressions.

value xs = numval xs

plus (x,y) = x + y

minus (x,y) = x - y

times (x,y) = x * y

divide (x,y) = x div y

Under this interpretation,

expn "2+(4-1)*3" = [(11,""), (5,"*3"), (2,"+(4-1)*3")]

Higher-Order Functions for Parsing 9

3 Layout Conventions

Most programming languages have a set of layout rules, which specify how white–
space (spaces, tabs and newlines) may be used to improve readability. In this sec-
tion we show how two common layout conventions may be handled in combinator
parsers.

3.1 Free-format input

At the syntactic level, programs comprise a sequence of tokens. Many languages
adopt free–format input , imposing few restrictions on the use of white–space — it
is not permitted inside tokens, but may be freely inserted between them, although
it is only strictly necessary when two tokens would otherwise form a single larger
token. White–space is normally stripped out along with comments during a separate
lexical phase, in which the source program is divided into its component tokens.
This approach is developed in section 4.3.

For many simple parsers however, a separate lexer is not required (as is the case
for the arithmetic expression parser of the previous section), but we still might want
to allow the use of white–space. The nibble combinator provides a simple solution.
The parser (nibble p) has the same behaviour as the parser p, except that it eats
up any white–space in the input string before or afterwards:

nibble :: parser char * -> parser char *

nibble p = white $xthen p $thenx white

where white = many (any literal " \t\n")

The any combinator used in this definition can often be used to simplify parsers
involving repeated use of literal or string. It is defined as follows:

any :: (* -> parser ** ***) -> [*] -> parser ** ***

any p = foldr (alt.p) fail

The library function foldr captures a common pattern of recursion over lists. It
takes a list, a binary operator ⊗ and a value α, and replaces each constructor “:”
in the list by ⊗, and the empty list [] at the end by α. For example, foldr (+) 0

[1,2,3] = 1+(2+(3+0)) = 6. As in this example, α is often chosen to be the right
identity for ⊗. The infix dot “.” used in any denotes function composition, defined
by (f.g) x = f (g x). It should be clear that any has the following behaviour:

any p [x1,x2,...,xn] = (p x1) $alt (p x2) $alt ... $alt (p xn)

In practice, nibble is often used in conjunction with the string combinator.
The following abbreviation is useful in this case:

symbol :: [char] -> parser char [char]

symbol = nibble.string

10 Graham Hutton

For example, applying the parser (symbol "hi") to the string " hi there",
gives ("hi","there") as the first result.

There are two points worth noting about free–format input. First of all, it is
good practice to indent programs to reveal their structure. Although free–format
input allows us to do this, it does not prevent us doing it wrongly. Secondly, extra
symbols are usually needed in programs to guide the parser in determining their
structure. Classic examples are “begin”, “end” and semi–colon from Pascal.

3.2 The offside rule

Another approach to layout, as adopted by many functional languages, is to con-
strain the generality of free–format input just enough so that extra symbols to guide
the parser are no longer needed. This is normally done by imposing a weak inden-
tation strategy, and having the parser make intelligent use of layout to determine
the structure of programs. Consider for example the following program:

a = b+c

where

b = 10

c = 15-5

d = a*2

It is clear from the indention that a and d are intended to be global definitions, with
b and c local to a. The constraint which guarantees that we can always determine
the structure of programs in this way is usually given by Landin’s offside rule
(Landin66), defined as follows:

If a syntactic class obeys the offside rule, every token of an object of the class must lie
either directly below, or to the right of its first token. A token which breaks this rule is
said to be offside with respect to the object, and terminates its parse.

In Miranda, the offside rule is applied to the body of definitions, so that special
symbols to separate definitions, or indicate block structuring, are not required. The
offside rule does not force a specific way of indenting programs, so we are still
free to use our own personal styles. It is worthwhile noting that there are other
interpretations of the offside rule. In particular, the proposed standard functional
language, Haskell, takes a slightly different approach (Hudak90).

3.3 The offside combinator

In keeping with the spirit of combinator parsing, we would like to define a single
combinator which encapsulates the offside rule. Given a parser p, we can imagine a
parser offside p with the same behaviour, except that it is required to consume
precisely those symbols which are onside with respect to the first symbol parsed.

At present, parsers only see a suffix of the entire input string, having no knowledge
of what has already been consumed by previous parsers. To implement the offside
combinator however, we need some context information, to decide which symbols

Higher-Order Functions for Parsing 11

in the input are onside. Our approach to this extra information is the key to the
offside combinator. Rather than actually passing an extra argument to parsers,
we will assume that each symbol in the input string has been paired with its row
and column position at some stage prior to parsing.

To simplify to types of parsers involving the offside rule, we use the abbreviation
(pos *) for a symbol of type * paired with its position.

pos * == (*,(num,num))

Since the input string is now assumed to contain the position of each symbol, the
primitive parsing function satisfy must be changed slightly. As row and column
numbers are present only to guide the parser, it is reasonable to have satisfy strip
this information from consumed symbols. In this manner, the annotations in the
input string are of no concern when building parsers, being entirely hidden within
the parsing notation itself. The other parsers defined in terms of satisfy need a
minor change to their types, but otherwise remain the same.

satisfy :: (* -> bool) -> parser (pos *) *

satisfy p [] = fail []

satisfy p (x:xs) = succeed a xs , p a

= fail xs , otherwise

where (a,(r,c)) = x

We are now able to define the offside combinator. The only complication is
that white–space must be treated as a special case, in never being offside. To avoid
this problem, we assume that white–space has been stripped from the input prior
to parsing. No layout information is lost, since each symbol in the input is paired
with its position. In reality, most parsers will have a separate lexical phase anyway,
in which both comments and white–space are stripped.

offside :: parser (pos *) ** -> parser (pos *) **

offside p inp = [(v,inpOFF) | (v,[]) <- p inpON]

where

inpON = takewhile (onside (hd inp)) inp

inpOFF = drop (#inpON) inp

onside (a,(r,c)) (b,(r’,c’)) = r’>=r & c’>=c

The offside rule tells us that for the parser (offside p) to succeed, it must consume
precisely the onside symbols in the input string. As such, in the definition above
it is sufficient to apply the parser p only to the longest onside prefix (inpON). The
pattern (v,[]) in the list comprehension filters out parses which do not consume
all such symbols. For successful parses, we simply return the result value v, and
remaining portion of the input string (inpOFF). It is interesting to note that the
offside combinator does not depend upon the structure of the symbols in the
input, only that they are paired with their position. For example, it is irrelevant
whether symbols are single characters or complete tokens.

12 Graham Hutton

For completeness, we briefly explain the four standard Miranda functions used
in offside. Given a list, the function (takewhile p) returns the longest prefix in
which predicate p holds of each element. The function hd selects the first element
of a list, and is defined by hd (x:xs) = x. The function (drop n) retains all but
the first n elements of a list. Finally, “#” is the length operator for lists.

4 Building Realistic Parsers

Many simple grammars can be parsed in a single phase, but most programming
languages need two distinct parsing phases — lexical and syntactic analysis. Since
lexical analysis is nothing more than a simple form of parsing, it is not surprising
to find that lexers themselves may be built as combinator parsers. In this section
we work through an extended example, which shows how to build two–phase com-
binator parsers, and demonstrates the use of the offside combinator.

4.1 Example language

We develop a parser for a small programming language, similar in form to Miranda.
The following program shows all the syntactic features we are considering:

f x y = add a b

where

a = 25

b = sub x y

answer = mult (f 3 7) 5

If a program is well–formed, the parser should produce a parse tree of type
script, as defined below. Even though local definitions are attached to definitions
in the language, it is normal to have them at the expression level in the parse tree.

script ::= Script [def]

def ::= Def var [var] expn

expn ::= Var var | Num num | expn $Apply expn | expn $Where [def]

var == [char]

The context–free aspects of the syntax are captured by the BNF grammar below.
The non–terminals var and num correspond to variables and numbers, defined in
the usual way. Ambiguity is resolved by the offside rule, applied to the body of
definitions to avoid special symbols to separate definitions and delimit scope.

prog ::= defn∗

defn ::= var+ “=” body
body ::= expr [“where” defn+]
expr ::= expr prim | prim
prim ::= var | num | “(”expr“)”

As we would expect, application associating to the left in our language is ex-
pressed by a left–recursive production rule in the grammar (expr). As already

Higher-Order Functions for Parsing 13

mentioned in section 2.4 however, left–recursion and top–down parsing methods do
not mix. If we are to build a combinator parser for this grammar, we must first
eliminate the left–recursion. Consider the left–recursive production rule

α ::= αβ | γ

in which it is assumed that γ does not begin with an α. The assumption ensures
that the production has a non–recursive base case. (For the more general situation
when there is more than one recursive production for α, the reader is referred to
(Aho86).) What language is generated by α ? Unwinding the recursion a few times,
it is clear that a single γ, followed by any number of βs is acceptable. Thus, we
would assert that α ::= γβ∗ is equivalent to α ::= αβ | γ. The proof is simple:

γβ∗ = γ (β∗β | ε) { properties of ∗ }
= γβ∗β | γε { distributivity }
= (γβ∗) β | γ { properties of sequencing }
= αβ | γ { definition of α }

In our example language, this allows us to replace the left–recursive expr pro-
duction rule with expr ::= prim prim∗, which in turn simplifies to expr ::= prim+.
While the languages accepted by the left–recursive and iterative production rules
are provably equivalent, the parse trees will in fact be different. This problem can
fixed by a simple action in the parser; we return to this point at the end of sec-
tion 4.5.

4.2 Layout analysis

Recall that the offside combinator assumes white–space in the input is replaced by
row and column annotations on the symbols. To this end, each character is paired
with its position during a simple layout phase prior to lexical analysis. White–space
itself will be stripped by the lexer, as is normal practice.

prelex = pl (0,0)

where

pl (r,c) [] = []

pl (r,c) (x:xs) = (x,(r,c)) : pl (r,tab c) xs , x = ’\t’

= (x,(r,c)) : pl (r+1,0) xs , x = ’\n’

= (x,(r,c)) : pl (r,c+1) xs , otherwise

tab c = ((c div 8)+1)*8

4.3 Lexical analysis

The primary function of lexical analysis is to divide the input string into its compo-
nent tokens. In our context, each token comprises a tag, and a string. Two strings
have the same tag only if they may be treated as equal during syntax analysis.

token == (tag,[char])

For example, we could imagine (Ident,"add") and (Lpar,"(") as tokens corre-
sponding to the strings "add" and "(". According to the last sentence of the previ-

14 Graham Hutton

ous paragraph, each reserved word or symbol such requires a unique tag. To avoid
this tedium, we choose to bundle them together as tokens with the tag Symbol:

tag ::= Ident | Number | Symbol | Junk

For example, the tokens (Number,"123") and (Symbol,"where") correspond to the
strings "123" and "where". The special tag Junk is used for things like white–space
and comments, which are required to be stripped before syntax analysis.

Like all other parsers, lexers will ultimately be defined in terms of the primitive
parsing function satisfy. Earlier we decided that this was a good place to throw
away the position of consumed symbols. Now we actually need some of this infor-
mation, since the offside combinator requires each token to be paired with its
position. Our solution is to define a new combinator, tok, which encapsulates the
process of pairing a token with its position. Since tok will be applied once to each
parser for complete tokens, it is convenient to include the tag as an extra parameter
to tok. We see then that tok provides a means to change a parser with result type
[char] into a parser with result type (pos token).

tok :: parser (pos char) [char] -> tag -> parser (pos char) (pos token)

(p $tok t) inp = [(((t,xs),(r,c)),out) | (xs,out) <- p inp]

where (x,(r,c)) = hd inp

For example, (string "where" $tok Symbol) is a parser which produces the pair
((Symbol,"where"),(r,c)) as its first result if successful, where (r,c) is the
position of the “w” character in the input string. Notice that tok may fail with
parsers which admit the empty string, in trying to select the position of the first
character when none of the input string is left. It is reasonable to ignore this problem
however, since to guarantee termination of the lexer, the empty–string must not be
admissible as a token.

We turn our attention now to lexical analysis itself. Thinking for a moment
about what the lexer actually does, it should be clear that the general structure is
as follows, where each pi is a parser, and ti a tag.

many ((p1 $tok t1) $alt (p2 $tok t2) $alt ... $alt (pn $tok tn))

We find it convenient then to define a combinator which builds parsers of this form.
Given a list [(p1,t1),(p2,t2),...] of parsers and tags, the lex combinator builds
a lexer as above.

lex :: [(parser (pos char) [char],tag)] -> parser (pos char) [pos token]

lex = many.(foldr op fail)

where (p,t) $op xs = (p $tok t) $alt xs

The standard functions “.” and foldr were explained in section 3.1. Using lex, we
now define a lexer for our language.

lexer :: parser (pos char) [pos token]

lexer = lex [(some (any literal " \t\n") , Junk),

Higher-Order Functions for Parsing 15

(string "where" , Symbol),

(word , Ident),

(number , Number),

(any string ["(",")","="] , Symbol)]

A secondary function of a lexer is to resolve lexical conflicts. There are basically
two kinds. First of all, lexical classes may overlap. For example, reserved words are
usually also admissible as identifiers. Secondly, some strings may be interpreted as
different numbers of tokens. For example, ">=" could be seen either as a represen-
tation of the operator “≥”, or as the separate operators “>” and “=”.

In our lexer, there is only one such conflict, the reserved word "where". We ar-
range for the correct interpretation by ordering the tokens according to their relative
priorities. In this case for example, reserved words appear before identifiers in the
lexer. Ordering the remaining, non–conflicting, tokens by probability of occurrence
can considerably improve the performance of the lexer.

4.4 Scanning

Since there is no natural identity element for the list constructor “:” used by many

to build up the list of tokens, white–space and comments are not removed by the
lexer itself, but tagged as junk to be removed afterwards. The strip function takes
the output from a lexer, and removes all tokens with Junk as their tag:

strip :: [pos token] -> [pos token]

strip = filter ((~=Junk).fst.fst)

The standard function (filter p) retains only those elements of a list which sat-
isfy the predicate p, and is defined by filter p xs = [x | x <- xs ; p x]. For
example, applying filter (>5) to the list [1,6,2,7] gives the list [6,7].

4.5 Syntax analysis

Lexical analysis makes the initial jump from characters to tokens. Syntax analysis
completes the parsing process, by combining tokens to form a parse tree. For most
tokens, only the tag part is important during syntax analysis. Thus we define (kind
t) as a parser which recognises any token with tag t, regardless of its string part.
Once a token has been consumed by a parser, its tag becomes somewhat redundant,
in much the same way as its position becomes redundant after being consumed by
the satisfy primitive. To this end, (kind t) returns only the string part of a
consumed token:

kind :: tag -> parser (pos token) [char]

kind t = (satisfy ((=t).fst)) $using snd

Because all reserved words and symbols share the single tag Symbol, the kind

function is no use in these cases. We need a special function which matches on the

16 Graham Hutton

string part of a token. Thus, we define (lit xs) as a parser which only admits the
token (Symbol,xs). As for kind, the tag part of a consumed token is discarded:

lit :: [char] -> parser (pos token) [char]

lit xs = literal (Symbol,xs) $using snd

Recall now the BNF grammar for our example language.

prog ::= defn∗

defn ::= var+ “=” body
body ::= expr [“where” defn+]
expr ::= prim+

prim ::= var | num | “(”expr“)”

Just as in the arithmetic expression example of section 2.4, we build a parser by
simply casting the grammar in combinator notation, and including semantic actions
to build the parse tree:

prog = many defn $using Script

defn = (some (kind Ident) $then lit "=" $xthen offside body) $using defnFN

body = (expr $then ((lit "where" $xthen some defn) $opt [])) $using bodyFN

expr = some prim $using (foldl1 Apply)

prim = (kind Ident $using Var) $alt

(kind Number $using numFN) $alt

(lit "(" $xthen expr $thenx lit ")")

Recall that the offside rule is applied to the body of definitions in our example
language. In direct correspondence, see that the offside combinator is applied to
body in the defn parser above. The opt combinator used in the definition of body
above corresponds to the [· · ·] notation in BNF, denoting an optional phrase:

opt :: parser * ** -> ** -> parser * **

p $opt v = p $alt (succeed v)

Before defining the remaining semantic actions, the somewhat strange action
(foldl1 Apply) in the expr parser merits some explanation. Recall that the orig-
inal grammar in section 4.1 used left–recursion to express the left associativity of
application. By applying a simple transformation, left recursion was eliminated in
favour of iteration. In combinator parsing, iteration corresponds to many and some.
These operators produce a list as their result. What we really want from the expr

parser is a left–recursive application spine: if the result were the list [x1,x2,x3,x4],
it should be transformed to (((x1 @ x2) @ x3) @ x4), where @ denotes the appli-
cation constructor $Apply. To do this, we use a directed reduction as for the any

combinator in section 3.1, except that this time the operator should be bracketed
to the left instead of the right. That is, foldl should be used instead of foldr.
In fact we use foldl1, which is precisely the same, except that it only works with
non–empty lists, and hence we don’t need to supply a base case.

Of the three remaining semantic actions, the first two are straightforward, simply
converting results to the appropriate types. The final action takes into account that

Higher-Order Functions for Parsing 17

local declarations are found at the expression level in the parse tree, while they are
attached to definitions in the grammar.

defnFN (f:xs,e) = Def f xs e

numFN xs = Num (numval xs)

bodyFN (e,[]) = e

bodyFN (e,d:ds) = e $Where (d:ds)

4.6 The complete parser

The complete parser is obtained by simply composing four functions — prelex

(pairing symbols with their position), lexer (lexical analysis), strip (removing
white–space and comments), and prog (syntax analysis). We ignore the possibility
of errors, assuming that the lexical and syntactic analysis are always successful.
The function (fst.hd) selects the first result from lexical and syntactic phases.

parse :: [char] -> script

parse = fst.hd.prog.strip.fst.hd.lexer.prelex

5 More combining forms

We conclude our introduction to combinator parsing by presenting a few extra
combining forms that have proved useful, allowing us to make parsers more lazy,
give more informative error messages, and manipulate result values in some new
ways.

5.1 Improving laziness

While combinator parsers are simple to build, some such parsers are not as lazy as
we would expect. Recall the many combining form from section 2.3. For example,
applying the parser many (literal ’a’) to the string "aaab" gives the list

[("aaa","b"),("aa","ab"),("a","aab"),("","aaab")]

Since Miranda is lazy, we would expect the a’s in the first result to become available
one at a time, as they are parsed in the input string. This is not however what
happens. In practice the string "aaa" is not made available until it has been entirely
constructed. The implication is that parsers defined using many at the top level,
such as lexers, cannot rely on lazy evaluation to produce components of the result
lists on a supply and demand basis. We refer the reader to (Wadler85) for a more
detailed explanation of the laziness problem with many; Wadler’s solution is a new
combinator which guarantees that a parser succeeds at least once.

18 Graham Hutton

5.2 Limiting success

Combinator parsers as presented in this article return a list of results if successful.
Being able to return more than one result allows us to build parsers for ambiguous
grammars, with all possible parses being produced for an ambiguous input string.
Natural languages are commonly ambiguous. Programming languages are for the
most part completely unambiguous; at most one parse of any input string is possible.
When working with un–ambiguous grammars, it may be preferable to use a special
type for failure/success of a parser, rather than returning a list of results.

maybe * ::= Fail | OK *

parser * ** == [*] -> maybe (**,[*])

Redefining the primitive parsers and combining forms is straightforward.

5.3 Error reporting

A simple extension of the maybe type above can be used to good effect in reporting
errors during parsing. If a combinator parser is applied to an input string contain-
ing an error, the result will often be outright failure to parse the input. Sometimes
however a prefix of the input may be parsed successfully, in which case the uncon-
sumed suffix of the input is returned as part of the result from the parser. Using the
unconsumed input to produce an error message is likely to be uninformative; the
position in the input where the longest parse ends may be far away from the error.
The problem can be solved by distinguishing between failure and an error during
parsing; in both cases we return a message giving the reason for an unsuccessful
parse:

maybe * ::= Fail [char] | Error [char] | OK *

Redefining the primitive parsers and combining forms is again straightforward: Fail
and Error values should be treated identically, except that in the definition of the
alt combining form, the second parser may be applied if the first parser fails, but
not if it produces an error. Error values are created using nofail:

nofail :: parser * ** -> parser * **

(nofail p) inp = f (p inp)

where

f (Fail xs) = Error xs

f other = other

The parser (nofail p) has the same behaviour as the parser p, except that failure
of p gives rise to an error. Two common ways in which nofail is used are (p $then

nofail q) and (p $alt q $alt nofail r). In the first case, failure of parser q

after success of parser p gives an error rather than just failure. In the second case,
failure of any alternative to succeed gives rise to an error. Experience has shown
that careful use of nofail can result in reasonably informative error reporting.

Higher-Order Functions for Parsing 19

5.4 Result values

In parsers built using the then combining form, the right–hand parser has no access
to the result produced by the left–hand parser; the results produced by the two
parsers are paired within then. Sometimes it is useful to have a parser take not just
a sequence of symbols as input, but also the result from some other parser. A new
combining form proves very useful in building such parsers:

into :: parser * ** -> (** -> parser * ***) -> parser * ***

(p $into f) inp = g (p inp)

where

g (OK (v,inp’)) = f v inp’

g other = other

We assume for convenience now that Miranda is extended with λ–expressions, writ-
ten as \v.e. The parser (p $into \v.q) accepts the same strings as the parser (p
$then q), but the treatment of result values is different: if parser p is successful,
its result value is bound to variable v, and is thus avialable to parser q; if parser
q is in turn successful, the result from the composite parser (p $into \v.q) is the
result of parser q. Contrast with the parser (p $then q), whose result is the pair
of results from parsers p and q. There are many interesting and useful applications
of the into combining form. For example, it can be used to define using and then:

p $using f = p $into \v. succeed (f v)

p $then q = p $into \v. q $using \w.(v,w)

Another application: imagine a parser of the following form.

((p $then q) $using f) $alt ((p $then r) $using g)

If on the left–side of the alt the parser p is successful but the parser q fails,
then on the right–side of the alt the parser p will be re–applied to the same
input string. This is clearly inefficient. The standard solution is to factorise out p,
giving a parser of the form (p $then (q $alt r)) $using h. The new action h

is some combination of actions f and g. A common application of such a grammar
transformation is with language constructs which have an optional component.
Examples of such constructs are “if” expressions, having an optional “else” part,
and definitions in Miranda, having an optional “where” part. A problem with the
above transformation is that the action h requires some means of telling which of
parsers q and r was successful, to decide which of actions f and g should be applied
to the result. This may necessitate parsers q and r having to encode their result
values in some way. A much cleaner treatment of the actions after factorisation is
to make the result of parser p available to the parser (q $alt r) using the into

combining form:

p $into \v. ((q $using f v) $alt (r $using g v))

20 Graham Hutton

In the original parser, the actions f and g took a pair of results as their argument;
in the parser above, the actions must be curried to take their arguments one at a
time.

Another application of into: parsing infix operators that associative to the left.
Consider a parser of the form some p. Such a parser produces lists as its result
values. Lists are an example of a right–recursive structure; a list is either empty, or
comprises a value and another list. Suppose we wanted a parser that admitted the
same strings as some p, with the results being returned in the same order, but in
a left–recursive rather than a right–recursive structure. Such a parser is

some p $using foldl1 f

where f is some left–recursive binary constructor. The use of foldl1 above was
explained towards the end of section 4.5. A drawback of this approach is the build-
ing of the intermediate list prior to applying the foldl1 operator. The need for
such an intermediate structure can be avoided by rewriting the parser using into,
accumulating a left–recursive structure as the input is parsed:

p $into manyp

where manyp v = (p $into \w. manyp (f v w)) $alt succeed v

We conclude by noting an interesting relationship between into and the Cate-
gorical notion of a monad . Combinator parsers give rise to a monad; we refer the
reader to (Wadler90) for a full explanation. In this context, the into combining
form is very closely related to the composition operator in the Kleisli category in-
duced by the monad of parsers. (The identity operator is succeed.) Being precise,
the composition operator is defined as follows.

(p $compose q) v = p v $into q

An equivalent definition is:

(p $compose q) v = succeed v $into p $into q

Acknowledgements

Thanks to Paul Hudak and John Launchbury for their comments and suggestions.

References

Aho, A., Sethi, R., Ullman, J., (1986), Compilers – Principles, Techniques and Tools,
Addison–Wesley.

Fairbairn, J., (1986), Making Form Follow Function, Technical Report 89, University of
Cambridge Computer Laboratory, June 1986.

Frost, R., Launchbury, J., (1988), Constructing Natural Language Interpreters in Lazy
Functional Languages, Glasgow University.

Hudak, P., Wadler, P. (editors), (1990), Report on the Programming Language Haskell,
Glasgow University and Yale University.

Johnsson, T., (1987), Attribute Grammars as a Functional Programming Paradigm, FPCA
87, LNCS 274.

Higher-Order Functions for Parsing 21

Landin, P., (1966), The Next 700 Programming Languages, CACM Vol. 9, March 1966.

Wadler, P., (1985), How to Replace Failure by a List of Successes, FPCA 85, LNCS 201.

Wadler, P., (1990), Comprehending Monads, FPCA 90.

