
h

ELECTRONIC PUBLISHING, VOL . 6(4), 481–493 (DECEMBER 1993)

Journal publishing with Acrobat: the CAJUN
project

PHILIP N. SMITH, DAVID F. BRAILSFORD, DAVID R. EVANS,

LEON HARRISON, STEVE G. PROBETS AND PETER E. SUTTON

Electronic Publishing Research Group
Department of Computer Science
University of Nottingham
Nottingham, NG7 2RD, U. K.

email: circus@cs.nott.ac.uk

SUMMARY

The publication of material in ‘electronic form’ should ideally preserve, in a unified
document representation, all of the richness of the printed document while maintaining
enough of its underlying structure to enable searching and other forms of semantic
processing. Until recently it has been hard to find a document representation which combined
these attributes and which also stood some chance of becoming a de facto multi-platform
standard.

This paper sets out experience gained within the Electronic Publishing Research Group at
the University of Nottingham in using Adobe Acrobat software and its underlying PDF (Port-
able Document Format) notation. The CAJUN project1 (CD-ROM Acrobat Journals Using
Networks) began in 1993 and has used Acrobat software to produce electronic versions of
journal papers for network and CD-ROM dissemination. The paper describes the project’s
progress so far and also gives a brief assessment of PDF’s suitability as a universal document
interchange standard.

KEY WORDS Acrobat PostScript CD-ROM Networks Archiving Automatic linking

1 BACKGROUND TO THE CAJUN PROJECT

The aim of the CAJUN project was to disseminate ‘electronic’ versions of the Wiley
journal, Electronic Publishing — Origination, Dissemination and Design (EP-odd), and
the forthcoming Chapman and Hall journal, Collaborative Computing (CC), on CD-
ROM and over networks.

EP-odd is currently formatted using troff [1] and LATEX [2], with the final output
being rendered as PostScript using, respectively, the Adobe Transcript package and the
public-domain program dvips. Part of the project involved revising the journal macros for
these systems, in order to enable the automatic production of electronic forms of the jour-
nals. It was also thought beneficial to gain experience with at least one journal from a
non-computer science discipline, provided it was already published in PostScript. The
Chapman and Hall journal Optical and Quantum Electronics (OQE) was selected for this
purpose. This journal is currently being produced with Advent Desktop Publishing’s 3B2
software.

1 This project is jointly funded by John Wiley & Sons Ltd. and Chapman and Hall Ltd.
0894–3982/93/040481–13$11.50 Received 8 October 1993
 1993 by John Wiley & Sons, Ltd. Transferred (1998) to Univ. of Nottingham Revised 24 January 1994

h

482 PHILIP N. SMITH et al.

Various proprietary electronic document formats such as KnowledgeSet Corporation’s
Knowledge Retrieval System, Dynatext’s Dynabook and Interleaf’s WorldView were con-
sidered as vehicles for the CAJUN project but none of them provided the combination of
page fidelity, flexibility and ease of generation which we sought. We wanted a format
that would retain the ‘look and feel’ of a printed journal without resorting to cumbersome
and inflexible bitmapped pages. There had to be support for fast and efficient browsing of
documents, using hypertext links and text search mechanisms, within viewer software
that would be available for all the popular hardware platforms. It was also important that
we should be able to generate the underlying format easily from our PostScript and
troff/LATEX sources. Most important of all, we wanted a format that was flexible enough
to become a widely-used platform-independent standard, documented in the public
domain, rather than just another proprietary system.

The preliminary announcement of Acrobat from Adobe Systems Inc., late in 1992,
addressed many of our requirements and in January 1993 the CAJUN project acquired
Acrobat software, under β-test conditions. It was decided to use this format for the
remainder of the project.

2 WHAT IS ACROBAT?

Acrobat is the generic name for a suite of software operating on a document representa-
tion called the Portable Document Format (PDF) [3], which has been developed by
Adobe Systems Inc. The imaging model of PDF is very similar to that of Level 2
PostScript [4]. A PDF document contains a device-independent description of the
appearance of each page, together with hypertext links, ‘yellow sticker’ annotations,
bookmarks (a kind of electronic table of contents) and small thumbnail views of the
document pages. All these extra features are aids to document navigation on a computer
screen. The PDF format supports various forms of compression such as JPEG and CCITT
fax for images, and overall LZW encoding. It allows all of this information, some of
which will be ‘binary’ in nature, to be mapped to a 7-bit, base-85 ASCII representation,
thus simplifying inter-platform network transportation. The PDF file structure differs
from PostScript in that instead of being a simple series of page descriptions, it stores
pages, hypertext features and other resources as randomly-accessible objects.

Figure 1 gives an overview of the Acrobat publishing process. Since its appearance in
1984 PostScript has rapidly established itself as the industry-standard page description
language. To convert a document for use with Acrobat the PostScript source is fed into a
program called Distiller which translates PostScript into PDF. Distiller is an enhanced
Level 2 PostScript interpreter which simplifies the page descriptions into the sequential,
non-procedural language used in PDF, and builds the extra non-printable features accord-
ing to parameters given to a new operator, pdfmark. This operator must appear in the
PostScript program, but for the program to print without error on a standard PostScript
printer, the pdfmark operator may be conditionally redefined in the program’s prologue
simply to pop its arguments. Anything that can be described in PostScript can be distilled
into a PDF document; any application that can generate PostScript can, at least indirectly,
also generate PDF.

Figure 1 also shows that, in the case of simple documents, a printer driver can effect
PDF output. In MS-Windows and Macintosh environments, a pseudo printer driver called
PDFWriter generates PDF files rather than commands for a specific printer. In more

h

JOURNAL PUBLISHING WITH ACROBAT 483

Existing

Archive

PostScript

NetworkCD-ROM

PDFWriter PostScript

Printer Driver

Distiller

Viewer

PDF File

Origination Software

Figure 1. The Acrobat publishing process

complex cases — for example, where an Encapsulated PostScript insert is to be
included — it is necessary to produce the entire document as PostScript in the first
instance and then to use Distiller to create PDF from the final PostScript output.

Acrobat is currently supported on IBM-compatible PC machines (either under MS-
Windows or MS-DOS) and also on Macintosh hardware: a Solaris/X-windows version is
at the β-test stage. In addition to Distiller and PDFWriter, two versions of Acrobat
viewer software are available. The Reader provides facilities for browsing and printing
existing PDF documents. If the document has already been enhanced with hypertext
links, these can be followed, but they cannot be altered in any way. By contrast, the
Exchange version has all the facilities of the Reader together with facilities for editing
the ‘hyperfeatures’ and for interleaving complete pages from other PDF documents with
those already present. In what follows we shall use the general phrase ‘viewer’ to mean
either the Reader or the Exchange version. Note that both of these use Super ATM
(Adobe Type Manager) to control the dynamic rasterisation of screen fonts from either
TrueType or Type 1 outlines.

h

484 PHILIP N. SMITH et al.

At present, PDF does not allow the underlying formatted text to be altered in any
way — it is a fixed-page format. However it does provide the following ‘hyperfeatures’:

g Annotations — textual notes which may be added to the page, forming an electronic
‘yellow sticker’;

g Thumbnails — small JPEG-compressed images of each page which can optionally
be displayed at the left-hand side of the screen;

g Links — clicking on a ‘button’ in a defined area of the page (e.g. a box around a
word) causes a jump to some destination page (or to a different view of the current
page);

g Bookmarks — a textual list, each entry of which is a link to a view of the document.
The list has a hierarchical structure, any branch of which may be initially closed
from view;

g Text search — scans the document for a given text string.

3 COMPLETING THE EP-odd POSTSCRIPT ARCHIVE

Although the long-term aim of CAJUN was to automate the production of PDF by re-
processing source versions of journal papers with enhanced macros, the corresponding
PostScript files offered a useful way to get started in advance of this automation, given
that these files could be distilled directly to PDF.

PostScript was available for a small number of papers from OQE and about 80 papers
for EP-odd. In the latter case problems arose straight away in that the EP-odd PostScript
archive was not complete. In many cases gaps had been left in the printed text so that art-
work could be ‘stripped in’ just before the journal was printed. To create a coherent PDF
version of the document it was necessary to retrieve the original artwork from either the
publisher or the author and to scan it in, using Adobe Illustrator software to vectorise the
artwork wherever possible. The diagrams were saved as EPS and placed by hand into the
existing PostScript for the paper (see below).

3.1 Scanning considerations

When scanning artwork, image resolution and the number of greyscale levels used must
be balanced against storage size and the perceived quality of the image. Clearly, if the
image can be curve-fitted accurately, the file size is reduced enormously and quality is
also enhanced, particularly at high magnification. However, when curve-fitting is not
possible, the options taken depend very much on the kind of image being scanned.

Scans of printed versions of screen dumps may have been subjected to three or four
spatial filters during processing, and only trial and error is foolproof in avoiding Moiré
patterning. Scanned bit-mapped figures with significant text content are the most prob-
lematic. Comparison of the bitmapped text in the figures with the ATM-rendered fonts in
the rest of the document demonstrates very vividly that the use of vectorised lines and
outline fonts in diagrams, wherever possible, will bring many advantages — better qual-
ity, compact PostScript code, string searchability for diagram captions and so on.
Another consideration is that JPEG compression, although available in Acrobat, should
not be used on bitmaps of figures containing line art or text. JPEG achieves its impressive
compression by reducing high frequency components (fine detail), and therefore it can
only be used successfully on ‘natural’, continuous tone images, where such fine detail is

h

JOURNAL PUBLISHING WITH ACROBAT 485

of less importance. For all these reasons material such as screen dumps or photographs
can be left as bitmaps (with JPEG compression as an option), but line art should be
converted out of bitmap form using software such as CorelDraw or Adobe Illustrator.

Factors influencing scanning resolution include file size and the avoidance of Moiré
patterning. Another is the resolution of the output medium. As shown in Figure 1, the
viewer can be used to print the document to a printer (PostScript or otherwise, using stan-
dard printer drivers). For on-screen use, there is probably little point in having 1200dpi
scans, but for printing to high end imagesetters this might be considered sensible — the
owner of such a printer would be rather unhappy seeing images printed out at 300dpi. At
the moment there is no support in PDF for multiple-resolution images as there is in OPI
(Open Prepress Interface) [5]. With network dissemination in mind we favoured lower-
resolution compact images.

3.2 The lost macros of EP-odd

Ideally psfig [6] would have been used to include the new EPS artwork in the troff and
LATEX sources for the EP-odd papers. However, over the first five volumes there have
been changes to the underlying software, and to the macros, which mean that reprocess-
ing the source now, with the latest macros, results in pages where the line- and page-
breaks are different to those in the already-published volume. Page fidelity was con-
sidered to be of crucial importance and, sadly, some of the old versions of the macros had
not been archived along with the source text. Our only recourse for obtaining identical
appearance was to insert the EPS by hand, directly into the PostScript that had originally
been used to print the journal. Fortunately it has proved possible to automate the produc-
tion of PostScript and PDF (including all hyperlinks) for volumes 5 and 6 of EP-odd
including all material for the Conference Proceedings of which this paper forms a part.

4 ADDITION OF HYPERSTRUCTURE

Having completed the PostScript archive of EP-odd and received PostScript versions of
five OQE papers it was necessary to generate PDF versions of a sample of papers using
Distiller, with appropriate inclusion of links, annotations, and bookmarks.

4.1 What hyperstructure should be added?

The choice of which items should be linked hypertextually and the visual appearance of
link buttons was the subject of much debate. It was decided to use PDF intra-document
links,2 from citations to references, from figure references to the actual figure or table
and from footnote citations to the actual footnote itself. Any further embellishments
could be added in the light of user reactions to the first release of the CD-ROM.

It was necessary to decide whether the linked text should be visibly distinct from the
rest of the page, or invisible. Readers might, for example, be expected to realise that all
citations are linked to the appropriate place. Acrobat only supports one kind of visible
marking of the link: a black box drawn around the appropriate area of the page. This
tends to clash with the surrounding text, particularly with the narrow line-spacing com-
monly used in typeset journals. Instead it was decided to edit the PostScript to colour the

2 Inter-document links are not yet specified in version 1.0 of PDF, so it is not possible to make links from one
document to another, although this feature is promised for release 2.0 of Acrobat.

h

486 PHILIP N. SMITH et al.

linked text and to indicate in the call of pdfmark that the usual box around the text
should not be shown. Care had to be taken to choose a colour that rendered satisfactorily
on greyscale monitors. It also had to be a colour that did not degrade too much due to
dithering effects when rendered on a monochrome printer. Here again is a case for an
OPI-style arrangement by which black might be substituted in place of the colour when
printing out.

In addition it was necessary to decide what view of the document should be found at
the destination of a link. Various options are available within PDF, which include:

g fitting an area of the page into the current window;
g fitting the width of the page to the width of the window and placing it with a

specified position at the top of the window;
g positioning a specified point of the page at the top of the window whilst maintain-

ing the current magnification.

The first two options allow the most control over what is actually seen by the viewer,
but forcing the whole width of a page or a whole figure to appear in the window may
result in poor image quality on lower-resolution (e.g. standard 640 × 480 VGA) displays.
Retaining the magnification the viewer is currently using (which is presumably appropri-
ate to the monitor in use) gets over this problem to some extent.

CAJUN β-test sites provided feedback to the team at Nottingham using questionnaires
and through regular project meetings. Consequently it was decided to mark-up all papers
in the project according to the following guidelines:

g Buttons for links should be displayed in dark blue rather than being enclosed in a
box. The shade of blue chosen is easy to distinguish on screen yet is dark enough to
print clearly on a 300-dpi monochrome printer. Users of monochrome screen
displays, probably small in number, will find it hard to distinguish the coloured
text, but will at least know that all textual references are linked up.

g Link destinations should bring up a view of the document with the target material
positioned at the top of the screen. The view should be at the current magnification,
as this is the most comfortable for the reader.

g PDF bookmarks should be provided for all section headings at all levels. The desti-
nation view, after following a bookmark, should be the same as for other links (i.e.
beginning of section at top of page and current magnification).

4.2 At what stage should insertions be made?

The extra features can be inserted at various stages along the document’s generation path,
using the viewer, editing the PostScript by hand before distilling, or using macros to
automate the insertion of pdfmarks into the PostScript.

4.2.1 Using the viewer

The Exchange viewer allows the user to create a button for a link by dragging out a box
around the required area on the page. Drawing boxes3 around words to be clicked on is
tedious, inaccurate, inconsistent and subject to human error.

3 Button areas still have to be defined even though the visual cue is the colouring of text.

h

JOURNAL PUBLISHING WITH ACROBAT 487

4.2.2 Insertions into the PostScript

pdfmark operators can be added to the PostScript and translated by Distiller into
appropriate PDF constructs to generate the hypertext features. PostScript programs are
tricky to edit safely (especially when bizarre transformations have been employed by the
PostScript generation software) but final results for placement of buttons etc. are poten-
tially much more accurate if done this way rather than with placement ‘by hand’ in the
viewer. Furthermore, it is relatively easy to change all pdfmarks if the semantics of the
operator change. Although PostScript is complex, documents generated by a given piece
of software are all structurally similar, so insertion of the pdfmarks gets easier with
experience. Of course, if a large corpus of PostScript is to be annotated, and provided
that the items to be linked occur in the PostScript in a grammatically uniform way, then it
is possible for a parser to insert the appropriate pdfmarks. Unfortunately, in our
PostScript archive, there were occasions where several words appeared in the PostScript
as one string. This meant that the string had to be broken up in order to find the location
and dimensions of the specific word that was to be the button. For this reason, and given
the relatively small amount of material to be transformed, we opted to amend the
PostScript by hand.

4.2.3 Generation of pdfmarks from source

It was, however, a principal aim of the project to automate the process of generating
pdfmarks from the troff or LATEX source. The EP-odd journal has been the main vehi-
cle for our experiments in automating the ‘dropping down’ of PDF hypertextual informa-
tion, from the source text into PostScript, by making use of the pdfmark operator within
a set of enhanced formatting macros. In troff, the command \X is used to insert extra
code into the PostScript, while the LATEX equivalent is the \special command. The
nature of the operands passed to the pdfmark operator depends on the type of structure
being added, but here we concentrate on the generation of hypertext links from one part
of a paper to another.

The links for reference citations, tables, figures and equations may be forward or
backward references. In principle, all the processing can be achieved in a single pass,
because the object-oriented structure of a PDF file does not dictate any ordering of the
link objects within it. The locations of linked text and corresponding destinations could
be gathered during processing of the source file and then written out in pdfmark form at
the end. However, the current version of the pdfmark operator, which encodes links for
Distiller, establishes the source of the link implicitly, by requiring the pdfmark to
appear within the PostScript for the page on which the button is to be located. This
implies that if a link is to be forwards (e.g. from a citation to the actual reference at the
end of the paper) the destination of the link will not be known at the time the pdfmark
operator has to be written into the PostScript. Traditionally, and in LATEX, such problems
are solved by passing twice over the document source, calculating destination data in the
first pass and inserting it during the second. troff does not normally use two passes, so it
was decided, in this case, to delay most of the work and to do it within the PostScript
code that was generated by psdit (the troff-to-PostScript converter supplied with the
TranScript package).

Annotations are automatically positioned in the left-hand margin by dropping the text down as a PostScript string with an appropriate pdfmark call.

h

488 PHILIP N. SMITH et al.

The standard method of formatting references in troff is to use the refer pre-processor.
Before the troff code for each reference at the end of the paper, refer writes a .]- macro
call. This is modified in the revised macro set to write the position of the reference into
an auxiliary file in the form of a PostScript dictionary. Thus as the file is processed,
PostScript code representing the destination information is gathered in a separate file. At
the same time, redefinitions of other macros called before and after the typesetting of
citations (e.g. ‘[1]’), write down PostScript procedure calls into the main PostScript file.
The only processing required after the single pass through troff is to insert the auxiliary
PostScript file (and the procedure definitions) into the prologue of this main PostScript
file.

The PostScript code which Distiller requires to make a link takes the following form:

[/Rect [<llx> <lly> <urx> <ury>] /Border [<border style>]
/Page <page number> /View [<destination>] /LNK pdfmark

The value of the /Rect key is the bounding box of the link button and this is calculated
by the PostScript procedure calls either side of the citation text. Each executes the
currentpoint operator, thus giving the baseline position before and after the text. A
fixed distance of 10 points is added to the second y-value to give <ury>. As well as cal-
ling currentpoint, the procedure after the citation text looks up the destination coor-
dinates and page number in the dictionary defined in the prologue. It then calls the
pdfmark operator to get Distiller to generate the link.

Although a more traditional two-pass process could be used in LATEX, it has been
decided to employ the same methods as described above, using the same PostScript pro-
cedures. The process is even neater, however, because dvips (unlike psdit) allows extra,
document-specific, PostScript to be inserted into an existing PostScript prologue, so there
is no need to build an auxiliary file and insert it at a later stage.

One difficulty with LATEX is finding the precise page positions of the destinations:
LATEX leaves such decisions to the very last minute, particularly when floating figures are
involved. Getting PostScript to give the destination position, as well as the button bound-
ing box, was considered a possibility, but this would require a cumbersome extra pass
through a PostScript interpreter before distillation. The solution we have adopted
involves delving into the output routines of TEX to intercept the page just before output.
Not surprisingly this has turned out to be a messy and difficult operation — and all of it
necessitated, remember, by the need to lay down a pdfmark procedure call at the source
of a link, rather than being able to delay it until the destination has been encountered.
Fortunately there is a possibility, in the near future, (see next section) that an enhanced
version of pdfmark will solve all our problems.

Generation of pdfmarks for bookmark entries also requires extra processing in order
to arrange them into a hierarchy reflecting that of the sections in the paper. This is also
done with extra PostScript procedures defined in the prologue.

4.3 Generalising the processing of hypertext items

Much of the work has involved altering macros and writing new ones in order to provide
extra information for hypertext linking. Also, quite complex PostScript procedures have
been written to perform look-up tasks which might otherwise have been carried out in a
second pass over the source. At first sight this work might seem to be very specific to the
EP-odd journal, but the processing model employed is of use for many different types of

h

JOURNAL PUBLISHING WITH ACROBAT 489

document, and on systems other than troff and LATEX. Applications wishing to generate
PDF ‘hyperfeatures’ via distillation must be able to generate PostScript, so it is not
unreasonable to use PostScript itself to do as much of the work as possible. On the
contrary, this makes the application’s task easier, particularly as two-pass processing is
not required.

A common factor for both troff and LATEX is that, being line oriented, neither of them
can deliver the current position on the page to the same degree of accuracy that can be
achieved with the PostScript currentpoint operator. It is for this reason that we
chose to delay calculation of the button position to the PostScript stage. When version 2
of pdfmark becomes available, with an optional argument for ‘source page number’, it
will be possible to position all pdfmarks at the end of the PostScript file. Values for
both the source and destination of a link will be determined using currentpoint and
all of them can be stored in the PostScript dictionary ready for look-up at the end. There
will be no need for troff and LATEX to calculate any values themselves.

This simplicity at the application end makes porting to other macro sets much easier;
the real work is done by a standard set of PostScript procedures included in the prologue.
Additionally, having amended the macros to include new facilities for passing down
PostScript code, one can then alter their effect, in terms of the printed appearance of
links,4 simply by adjusting or replacing the appropriate PostScript procedure.

5 ACROBAT IN CONTEXT

As discussed above, the placement of links into PDF files, starting from declarative
mark-up, is made particularly awkward by the ‘concrete’ nature of PDF’s buttons and
links and by the early binding to absolute page coordinates and to fixed page numbers.
Other hypertext systems have also addressed this problem and the elegance of any solu-
tion they propose seems directly related to the degree of abstraction possessed by links
within that system. We now survey a few such systems very briefly in order to highlight
their strengths and weaknesses with respect to PDF.

World-Wide-Web (WWW) [7] is a good example of a networked hypertext system. A
WWW document is written in HTML (Hypertext Mark-up Language) which describes
the document at an abstract, structural, level (titles, headings, paragraphs etc.). HTML
allows links to be specified in the mark-up, and these links can have a destination any-
where on the Internet. Destination documents are specified using a Universal Resource
Locator (URL) and an example of a paragraph containing such a link is shown below.

<p> In this paragraph there is a link from the word

source

to an anchor named dest1 in the file cajunintro.html.

The WWW browser is responsible for formatting the document, which enables
abstract links of this kind to be specified. In other words, the binding of links to formatted
screen or page positions is carried out at a very late stage — there is no layout informa-
tion within the HTML document itself.

WWW provides a more abstract method for specifying links than is currently avail-
able in PDF but systems such as Guide [8] show the advantages of specifying buttons and

4 For example, one may wish to put a pale box behind the word or have it red instead of blue.

h

490 PHILIP N. SMITH et al.

hidden information independent of any fixed location on a page. Like WWW, Guide’s
hyperstructure is maintained in the mark-up describing the document and in this system
the mark-up is based on troff notation. Guide implements inter-document links by the use
of action buttons and also allows information to be hidden using a ‘folding paper’
approach. For example, the words ‘more details’ could be turned into a button. Upon
selecting this button an example might then be inserted into the screen image of the
document with all subsequent information being scrolled down the page. An example of
a Guide document, with this type of button, is shown below. Here the button is specified
between .Bu and .bU while the text to be revealed when the button is selected is
bracketed between .Re and .rE.

.Bu 1 1 n
Example
.bU
.Re
.Nl
EXAMPLE 1
.Nl
rm myfile
.Nl
removes myfile from the current directory
.rE

Hypertext systems such as HyperCard [9], and NoteCards [10], stray away from a
document model with sections and paragraphs, and instead use a card model as the basis
for presenting information. Various interactive elements can be placed on the cards.
Acrobat might be considered similar to this card model. An Acrobat document has a
number of fixed pages which can be linked in any order. However, nothing is known
about the contents of the page and so there can be no interaction with the elements
thereon. Many products, including Intermedia [11] and Microcosm [12], allow links not
only to text, but also to other media types such as video, music etc.5 Interestingly, both
Intermedia and Microcosm allow links to be grouped (in webs or separate link-bases
respectively) so that a whole set of links can be made active or inactive.

It will be plain from what has just been said that the design of PDF has deliberately
been ‘bottom up’, with top priority being given to page fidelity, PostScript compatibility
and high-quality rendering of fonts. The non-revisable page-based model currently
adopted by Acrobat also means that buttons, ‘yellow stickers’ etc. have to be firmly
anchored to definite page locations rather than logical elements of the document. The
other systems we have mentioned point the way for future enhancements to PDF, particu-
larly in the areas of abstract links, document shareability and multi-media capabilities.

6 DISSEMINATION OF PDF

6.1 File granularity

The PDF for our journal papers is in the form of a separate file for each paper. With
inter-document links being unavailable until version 2.0 of Acrobat appears, we have
adopted the temporary strategy of coalescing papers so as to make a single PDF docu-
ment for each volume of the journal. Such a strategy causes few problems for

5 The absence of such features in the first release of Acrobat seems to be part of a deliberate ‘wait and see’
policy, in the hope that platform-independent multi-media standards will soon be established.

h

JOURNAL PUBLISHING WITH ACROBAT 491

dissemination on CD-ROM where the capacity of around 650 MB is ample for
containing many journal volumes. For network dissemination, though, this method is
clearly not suitable — subscribers may have neither the disc space nor the inclination for
pulling a multi-megabyte volume across the networks. For the time being, therefore, we
are using paper-sized units for our network-based dissemination and awaiting the release
of Acrobat version 2.0 to establish a standard platform-independent way of linking from
one document to another.

6.2 CD-ROM dissemination

CD-ROMs are created from an IBM compatible PC using a Philips CD-Recorder (model
CDD 521) and CDWRITE software. This software can write a DOS directory structure as
an ISO 9660 [13] image to CD-ROM or to hard disc, or can simply copy an existing ISO
9660 image to CD-ROM. The CD-ROMs produced are of course readable by any
machine with an ISO 9660-compatible drive and software.

PDF files are platform independent and experience has shown that Exchange software
running on either the PC or the Macintosh has no problems in reading the same PDF files
stored on the same ISO 9660 CD-ROM. However, until Acrobat is fully established in
the marketplace, we also need to include program binaries of the Macintosh and PC
viewers for subscribers to install on their hard discs. For the PC this is simply a matter of
copying the viewer distribution floppies into the MS-DOS directory structure before writ-
ing the CD-ROM. The viewer will then install from CD-ROM in the normal way. Also,
clicking on PDF files launches Acrobat if it is not already running.

Unfortunately there are problems associated with using the CDWRITE software to
transfer Macintosh binaries onto the ISO 9660 CD-ROM. These problems arise because
in order that files should be correctly typed, the Macintosh requires features of ISO 9660
to be used which MS-DOS does not [14]. The work-around has included the develop-
ment of an ISO 9660 editor to add in the extra information to the ISO 9660 image before
it is actually written to the CD-ROM.

6.3 Network dissemination

Network dissemination falls into two categories — push methods and pull methods. Push-
ing is the sending of information by the publishers to subscribers. Pulling is the accessing
of information of choice by subscribers who log on to a service provided by the publish-
ers.

The CAJUN proposal dealt solely with push methods, whereby the publishers would
maintain a database of subscribers, and transfer PDF papers to these sites. A hierarchical
directory structure was decided upon, to which each subscribing site should agree. Initial
dissemination would occur by flattening the corpus of papers into a single file and send-
ing this file from the publishers to the subscribers. The standard FTP file transfer
methods [15] would be used to transfer the file. Tools to unpack this file into the
appropriate directory structure would be provided. Upon each release of an issue, a new
file would be disseminated, which would unpack into the appropriate place in the existing
hierarchy.

It is clear that the ‘push’ model puts the onus on subscribers to make sure that they
have enough disc space to receive the information sent to them. This may well be a

h

492 PHILIP N. SMITH et al.

suitable model for libraries, if an electronic subscription has been taken out for the entire
journal contents, but it is not necessarily the best model for individuals wishing to browse
through contents listings in order to acquire one or two papers of interest. In order to
investigate ‘pull’ methods various network information retrieval (NIR) tools such as
Archie, Gopher and World Wide Web are under evaluation. These tools use client-server
models and, at the time of writing, an experimental service has been set up which gives
access to free copies of six already-published EP-odd papers, in PDF form, via FTP or
Gopher.

Clearly there is scope for a great deal more work in this area, especially if access to
papers is to be restricted to registered subscribers or if detailed logging and accounting is
to be introduced for all papers acquired in this way.

7 FURTHER WORK

Further work on the CAJUN project includes a final revision of the troff and LATEX mac-
ros for EP-odd and for CC so that they can drop down the required pdfmarks and be
used for the routine processing of all future papers. We also need to tidy up the PDF
archive of all EP-odd papers. It is hoped that in the future more substantial work can be
undertaken on the network dissemination issues, concentrating on pulling rather than
pushing PDF files.

8 CONCLUSION

The CAJUN project has given invaluable insights into the use of Acrobat technology for
journal publishing. Many of the problems faced and methods employed have been men-
tioned in this paper but, in general terms, PDF already suits our purposes very well.

PDF could well exert an enormous influence on the future of electronic publishing,
even in its present state, but future enhancements, both rumoured and promised, provide
further opportunities. The format is at the moment very much page- and content-based
and though the file structure is object-oriented to some extent, source and destination of
links are still anchored to physical positions on the page rather than logical positions
within the document’s structure. We look forward to new versions of PDF, and of Acro-
bat software, to address some of these limitations. If plans to include logical structure go
ahead, then more complex searching algorithms, content revisability and sophisticated
database access become possible.

ACKNOWLEDGEMENTS

Our thanks go to the CAJUN project sponsors, Chapman and Hall Ltd. and John Wiley &
Sons Ltd., for financial support. Thanks also to Adobe Systems Inc. for providing β-test
versions of Acrobat for use on this project. It is hoped that the proceedings of the EP94
and RIDT94 conferences will appear on the CD-ROM described in this paper. We should
like to acknowledge the help of the production department of John Wiley & Sons Ltd.
and of the two Proceedings Editors (Jacques André and Christoph H

..
user) in helping to

bring this about.

h

JOURNAL PUBLISHING WITH ACROBAT 493

REFERENCES

1. J. F. Ossanna, ‘NROFF/TROFF User’s Manual’, Computing Science Technical Report No. 54,
Bell Laboratories (11th October, 1976).

2. L. Lamport, LATEX: A Document Preparation System, Addison-Wesley, 1986.
3. Adobe Systems Incorporated, Portable Document Format Reference Manual, Addison-

Wesley, Reading, Massachusetts, June 1993.
4. Adobe Systems Incorporated, PostScript Language Reference Manual, Addison-Wesley, Read-

ing, Massachusetts, December 1990. Second edition.
5. Aldus, Open Prepress Interface Specification 1.2, June 1990.
6. N. Batchelder and Trevor Darrell, Psfig — A Ditroff Preprocessor for PostScript files, Com-

puter and Information Science Dept., University of Pennsylvania, 1988. Internal Report.
7. World Wide Web, Further information can be obtained by retrieving a document with URL

http://info.cern.ch/hypertext/WWW/TheProject into a WWW browser (URL
= ‘Universal Resource Locator’).

8. P. J. Brown, ‘A Hypertext System for UNIX’, Computing Systems, 2 (1), 37–53 (1989).
9. C. Kaehler, HyperCard Power: Techniques and Scripts, Addison-Wesley, 1988.

10. F. G. Halasz, T. P. Morgan, and T. H. Trigg, ‘NoteCards in a Nutshell’, in Proceedings of the
ACM Conf. on Human Factors in Computing Science, ed. J. M. Carroll, and P. P. Tanner,
pp. 45–52, April 1987.

11. N. L. Garrett, K. E. Smith, and N. Meyrowitz, ‘Intermedia: Issues, Strategies and tactics in the
Design of a Hypermedia Document System’, in Proceedings of the Conference of Computer-
Supported Cooperative Work, 1986.

12. H. Davis, W. Hall, I. Heath, G. Hill, and R. Wilkins, ‘The Design and Implementation of an
Open Hypermedia System’, Computing Science Technical Report, Department of Electronics
and Computer Science, University of Southampton (1992).

13. International Standards Organisation, ‘Information processing — Volume and file structure of
CD-ROM for information interchange’, ISO 9660-1988 (1988).

14. Apple Computer Inc, CD-ROM and the Macintosh Computer, 1989.
15. M. Gien, ‘A File Transfer Protocol (FTP)’, Computer Networks, 2, 312–319 (1978).

	SUMMARY
	1 BACKGROUND TO THE CAJUN PROJECT
	2 WHAT IS ACROBAT?
	3 COMPLETING THE EP-odd POSTSCRIPT ARCHIVE
	3.1 Scanning considerations
	3.2 The lost macros of EP-odd

	4 ADDITION OF HYPERSTRUCTURE
	4.1 What hyperstructure should be added?
	4.2 At what stage should insertions be made?
	4.2.1 Using the viewer
	4.2.2 Insertions into the PostScript
	4.2.3 Generation of pdfmarks from source

	4.3 Generalising the processing of hypertext items

	5 ACROBAT IN CONTEXT
	6 DISSEMINATION OF PDF
	6.1 File granularity
	6.2 CD-ROM dissemination
	6.3 Network dissemination

	7 FURTHER WORK
	8 CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

